
Lukas Vanhoucke

decentralized social networks
Comparing file-based and query-based access techniques for

Academic year 2017-2018
Faculty of Engineering and Architecture
Chair: Prof. dr. ir. Koen De Bosschere
Department of Electronics and Information Systems

Master of Science in Computer Science Engineering
Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Joachim Van Herwegen
Supervisor: Prof. dr. ir. Ruben Verborgh

Lukas Vanhoucke

decentralized social networks
Comparing file-based and query-based access techniques for

Academic year 2017-2018
Faculty of Engineering and Architecture
Chair: Prof. dr. ir. Koen De Bosschere
Department of Electronics and Information Systems

Master of Science in Computer Science Engineering
Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Joachim Van Herwegen
Supervisor: Prof. dr. ir. Ruben Verborgh

© Ghent University

The author(s) gives (give) permission to make this master dissertation available for consultation and to
copy parts of this master dissertation for personal use. In the case of any other use, the copyright terms
have to be respected, in particular with regard to the obligation to state expressly the source when quoting
results from this master dissertation. (May 30, 2018)

Acknowledgements

During the past year, I’ve spent numerous hours familiarizing myself with the wonderful ecosystem of
Linked Data. This would never have went this smooth without the help of Ruben Verborgh and Joachim
Van Herwegen, who pointed me in the right direction whenever I was unsure. Ruben, you were the one
to inspire me into working on this subject and continued to do so throughout the year. Your insights into
decentralized social media were invaluable. Joachim, you provided me with lots of technical knowledge
about Linked Data and were always ready to evaluate my progress. You pointed out many irregularities
while going over my thesis with much care. I especially liked that you were not afraid to mention your
style preference, even when it is just something minor like disliking the color of syntax highlighting in code
listings. Both Ruben and Joachim were very quick to respond to mails, which I appreciate a lot. A big
thanks to the both of you.

The subject of the thesis was not set in stone. At the start of the first semester, I was planning to collab-
orate closely with the Open Webslides team. I am thankful to Esther De Loof for introducing me to this
platform and advising me to look into certain annotation systems. I would also like to thank the whole
Open Webslides team for developing this product. I have used it plenty of times to test my annotations
plugin. However, as the year progressed, I started focusing more on access techniques, and less on the
actual implementation of an annotation system for your platform. I hope the results of this thesis may still
be meaningful to you.

Finally, thanks to the people of W3C and especially the ones of the Social Web Working Group and the
people that collaborated to the Solid project. Although I never had the need to contact any of them directly,
their documentation and discussions helped me out a lot.

v

Abstract

Comparing file-based and query-based access techniques for decentral-
ized social networks

Social media applications of today have been heavily criticized for not fully disclosing what their users’
data is used for. As it is stored on their servers, they often claim ownership over all data. Each platform
has its own centralized database, or information silo. This vendor lock-in makes it almost impossible to
transfer your data from one platform to another.

In this master’s dissertation, a potential decentralized solution to these problems is explored, specifically
in the context of decentralized annotations. Data is stored as Linked Data in the user’s own personal
online datastore (pod) and can be accessed by applications in multiple ways.

Here, file-based access techniques are compared against query-based access techniques. When file-
based access is used, information is stored in files, and only whole files can be collected. Querying
happens client-side. Query-based access requires information to be stored in a single graph on a SPARQL
endpoint, and responds to requests by querying the data server-side. The advantages and limitations of
both techniques are first explored for decentralized annotations. Afterwards, it is checked whether the
results are still valid for social applications other than annotations.

Multiple test setups that implement decentralized annotations, along with an actual annotation plugin,
were used to compare the two access techniques. For file-based access, a Solid server is used, while
query-based access required a RESTful server on top of a SPARQL endpoint to be written from scratch.

With query-based access, complex intersections can be performed in a single query. This for instance
allows more advanced ACL to be used. It also outperforms file-based access when collecting many
annotations, but this difference can sometimes be neglected through a good caching design. File-based
access techniques are able to reuse existing file-based technologies such as directory watchers and Git.
It also comes with an inherent directory structure, it is easier to manually manipulate data, and it is easily
reusable in contexts other than annotations.

The annotation plugin shows that the investigated techniques have the potential to replace present-day
centralized social applications.

Keywords: Decentralized – Social media – Linked Data – Solid – Annotations

vi

Extended abstract

vii

Comparing file-based and query-based access
techniques for decentralized social networks

Lukas Vanhoucke
Supervisor: Ruben Verborgh

Counsellor: Joachim Van Herwegen

Abstract—Social media applications of today have been heavily
criticized for not fully disclosing what their users’ data is
used for. As it is stored on their servers, they often claim
ownership over all data. Each platform has its own centralized
database, or information silo. This vendor lock-in makes it
almost impossible to transfer your data from one platform to
another. In this master’s dissertation, a potential decentralized
solution to these problems is explored, specifically in the context
of decentralized annotations. Data is stored as Linked Data
in the user’s own personal online datastore (pod) and can be
accessed by applications in multiple ways. Here, file-based access
techniques are compared against query-based access techniques.
When file-based access is used, information is stored in files,
and only whole files can be collected. Querying happens client-
side. Query-based access requires information to be stored in a
single graph on a SPARQL endpoint, and responds to requests by
querying the data server-side. The advantages and limitations of
both techniques are first explored for decentralized annotations.
Afterwards, it is checked whether the results are still valid
for social applications other than annotations. Multiple test
setups that implement decentralized annotations, along with an
actual annotation plugin, were used to compare the two access
techniques. For file-based access, a Solid server is used, while
query-based access required a RESTful server on top of a
SPARQL endpoint to be written from scratch. With query-based
access, complex intersections can be performed in a single query.
This for instance allows more advanced ACL to be used. It also
outperforms file-based access when collecting many annotations,
but this difference can sometimes be neglected through a good
caching design. File-based access techniques are able to reuse
existing file-based technologies such as directory watchers and
Git. It also comes with an inherent directory structure, it is
easier to manually manipulate data, and it is easily reusable in
contexts other than annotations. The annotation plugin shows
that the investigated techniques have the potential to replace
present-day centralized social applications.

Keywords: Decentralized, social media, Linked Data, Solid,
Annotations

I. INTRODUCTION

The size of social networks such as Facebook, Twitter and
Instagram blew up in the past decade. For instance, Facebook
has over two billion active users. This amount of data is
an invaluable asset to sell to third parties, e.g. for market
predictions and personalized ads.

An additional problem are the growing number of informa-
tion silos. The information that is stored on one traditional
social network, cannot easily be transfered to another social
network. This information includes messages, friends, photos,
personal details, and more. This problem is illustrated in
Figure 1. The main cause of this development is the fact that

Figure 1: Drawing which illustrates the silo problem. People
are stuck within particular social networking platforms. They
would like to benefit from other social networking platforms
and share the data from one platform with people on a differ-
ent platform. (Source: David Simonds, www.economist.com,
2008)

it is simply much easier to manage, publish and search large
amounts of similarly structured content using a centralized
platform [1]. A side-effect of this is that people tend to stay
with the same social network since changing is too hard. This
is called vendor lock-in and is advantageous for the companies.
The information that is stored in the silo, can be used by the
silo owners for whatever they want, as long as it corresponds
with the agreed policies [2]. This is usually stated in the
end user license agreement, which is unfortunately seldom
read. With fewer than 1% of the servers serving over 99%
of the content, the current phenomenon of information silos
goes against the original intention of the Web to become a
decentralized platform [1].

II. LITERATURE REVIEW

The problems stated in the introduction can be avoided by
using decentralized technologies.

A. Linked Data

Linked Data is an example of a decentralized technology. It
uses the Resource Description Framework (RDF) to express
meaning by encoding triples of subject, predicate and object

1

Figure 2: Graphical representation of the Linked Data Notifi-
cations protocol. (Source: Capadisli et al. [4])

as Universal Resource Identifiers (URIs). The main advantage
of expressing nodes and their relationships as URIs is to make
it easier for computers to draw unambiguous conclusions.
Ontologies bundle the concepts and relationships concerning
a specific topic. Just like regular databases, RDF datasets can
be queried using a specialized query language: SPARQL.

B. Decentralized social network technologies

Preferably, the application logic of a social network should
be fully decoupled from the data to avoid a vendor lock-
in. Interoperability can only be maximized if well-defined
protocols and standards are developed. At this point, social
platforms become views over your data instead of fully con-
tained applications [3].

In order to have a decentralized social network with the
same capabilities as traditional social networks, some addi-
tional services may be required. For instance, the Linked Data
Notifications (LDN) protocol [4] allows notifications to be
represented as Linked Data so that they can be shared and
reused across applications. It uses an inbox to store a collection
of received notifications, which are retrievable resources that
return RDF data. Because these notifications are reusable and
accessible by all applications, there needs to be a way for
consumers to autonomously find this inbox. Therefore, the
inbox should be announced by using a ldp:inbox triple.
The protocol is shown in Figure 2.

C. Linked Data Platform

The W3C specification for Linked Data Platform (LDP) [5]
describes HTTP as a means to implement CRUD operations
(Create, Read, Update, and Delete) on Linked Data Platform
resources. All LDP resources (including containers) have their
own URI. In this thesis, Solid will be used extensively. This
is a set of conventions and tools to build decentralized social
applications implementing LDP and based on Linked Data
Principles.

III. PROBLEM DESCRIPTION

The centralization of current-day’s social networks has two
large consequences: data cannot be reused across applications,

and the user loses ownership over the data. These problems
can be solved by making use of Linked Data technologies.

Although Linked Data uses the same syntax (i.e. RDF),
triples can be accessed in multiple ways. A first option is to
store triples in multiple files. Accessing a triple then requires
collecting the whole file in which the triple resides, and query-
ing the file client-side. This is a file-based access technique.
At the time of writing, Solid uses this access technique by
default and will therefore be used as this technique’s reference
implementation. A second option is to store all triples in
the same graph on a SPARQL endpoint, and use server-side
queries to collect the relevant triples. Custom middleware
will be inserted between the SPARQL endpoint and the data-
requesting user to allow the middleware to generate queries at
the user’s request. For instance, when a user wants to request
all information about his friends, he would send a GET request
to the RESTful /friends endpoint. This type of access will
be referred to as graph- or query-based access.

The goal of this work is to find a comprehensive answer to
the following research questions:

• Q1: What are the advantages and limitations of using
graph-based techniques over file-based techniques in the
context of decentralized collection of annotations?

• Q2: How does the number of annotations influence their
collection time when using graph-based and file-based
access techniques?

• Q3: How do these access techniques compare on user-
friendliness and difficulty of implementation?

• Q4: How are these techniques reusable in social applica-
tion contexts other than annotations?

Using the gathered knowledge, following hypotheses can
then either be confirmed or falsified:

• H1: In the context of annotations, query-based access has
faster retrieval of annotations

• H2: File-based access techniques can reuse existing
filesystem-based techniques to make certain tasks easier,
such as watching for updates using directory watchers or
changing data using common text editors.

• H3: File-based access techniques can easily be reused in
other social contexts, while this is harder for query-based
access techniques.

• H4: The differences between file-based and query-based
access techniques are still present when they are used for
decentralized social applications other than annotations.

To test these hypotheses, we implemented decentralized an-
notations using both access techniques, as they are considered
to be a social application.

IV. ANALYSIS

A. Decentralized Annotations

Most websites that implement some sort of annotation
system, store annotations on their own servers. Here, they
have to be stored in the user’s datapod instead. To allow
interoperability between different applications, the annotations
are stored as Linked Data using the Web Annotation Data

2

Figure 3: Basic annotation structure using the TextQuoteS-
elector. Here, the word “annotation” would be highlighted.
(Source: [6])

Model. Annotations consist of a body and a target that it relates
to.

When an annotation is created, it is stored in a data pod
of the user’s choice. If the user’s datapod uses a hierarchical
structure, the annotations should be saved in an annota-
tions directory, which is usually announced by using the
oa:annotationService predicate. Here, oa denotes the
Web Annotation Ontology. This could for example be added
to the user’s WebID, or to the website by embedding it as
RDFa.

To “upload” an annotation, the website needs to be notified
that an annotation for the website was created. This can
be accomplished by sending a Linked Data Notification to
website’s ldp:inbox, which should be announced by the
website (again, preferably through the use of RDFa). Upon
receiving the notification, a link is added to the website’s local
list of annotations. To display the annotations, the website
exposes this list and lets the users collect the annotations by
themselves.

B. Data manipulation

Both the file-based and query-based setup expose data in
a RESTful way, although they are fundamentally different
in the way data is manipulated. First, manually manipulating
data is easier when data is stored as files since common text
editors can be used. Querying the data usually happens client-
side, after collecting the files. In the case of annotations, each
annotation is represented in a single file.

In contrast, query-based techniques use SPARQL queries to
retrieve certain predefined fields. Since only field values are
returned, less information is available compared to file-based
techniques. Requesting a query-based resource (i.e. query-
based access) requires a specific query for each request, which
is generated by the server. This means that the server code has
to be aware of what the files look like in order to expose
an interface to the data. In other words, the server needs
application knowledge in order to write meaningful queries.

C. Detecting updates

The Linked Data Notifications specification (LDN) [4]
benefits from being able to process new or updated resources
as they enter the server’s inbox. Detecting this can be accom-
plished in 3 ways. First, the state of the inbox can periodically
be polled. Depending on the polling rate, processing updates
might happen with a significant delay. Alternatively, the server
can inspect all incoming packets and see whether they are
being watched by the user. This is possible for both access
techniques. The final option is to attach a file or directory
watcher to the resource you want to track. This is only possible
for file-based servers. This option offers more flexibility to the
end user.

D. Directories

A user’s datapod can contain large amounts of data. To
avoid losing track of what data belongs together, some kind
of structure is necessary. Servers that implement their Linked
Data as files can use the operating system’s file system for
organization. Here, query-based servers are at a disadvantage,
since they initially do not have any inherent structure. All data
is stored in the same graph as an ocean of triples. However,
an artificial directory structure can be implemented by using
the LDP standards.

E. Complex intersections

When a file-based server is used, each annotation is stored
in a separate file. But what if complex intersections have
to performed? Assume for example that someone wishes to
collect all annotations for which the creator’s age is over fifty
years. In such cases, all files have to be collected in order to
do perform the intersection. When all information is stored in
a single graph on a SPARQL endpoint, executing intersecting
queries becomes a lot easier, as all data can be queried at once,
and server-side.

F. Access control

Solid uses WebAccessControl (WAC) to allow or deny
access to resources. This uses an ontology with simple rules to
determine whether users or groups, identified by their WebID,
can read a resource, write or append to it, or a combination
of the three. The granularity of WAC is one file. Sometimes,
it can be useful to have an even finer-grained ACL, which is
only possible with query-based access.

First of all, WAC can be implemented within a single
graph on a SPARQL endpoint that stores all relevant data.
For hierarchical ACL to work, a directory structure needs
to be present. Otherwise, a single root ACL controls access
to all resources in the graph. Therefore, using a SPARQL
endpoint has no disadvantages concerning ACL compared to
using Solid. However, having all data in a single graph allows
more complex queries, which can be used to implement more
complex ACL rules as well.

For this thesis, an experimental extension to WebAccess-
Control was developed to demonstrate these two types of
additional ACL rules. A graph consists of many triples, each

3

of which is considered a field. In some cases, it can be useful
to determine which fields can be accessed by the user or
application. For instance, a phonebook application should only
be able to see the names and phone numbers of your friends,
and a birthday reminder app should only see the names and
the birthdays of your friends.

Entire results should also be filterable. For instance, instead
of sending all annotations, those that refer to an admins-only
page are filtered out of the results for normal users. This
is horizontal filtering, whereas in the previous case vertical
filtering was used.

Things start to get more difficult when complex structures
– such as annotations – are used. In this case, the server
needs to know the structure, and how the possible fields are
related to this structure. This is a large drawback, since it
cannot easily be extended to other applications. We solved
this problem by allowing the ACL to give hints towards
generating a meaningful query. Unfortunately, this option is
tightly coupled to the application and how the server generates
the queries and is not comprehensible for other servers that
generate the queries in a different way. It would be more
effective when an annotation’s structure is set in stone and
included in the graph, so that applications know exactly what
the annotation looks like. SHACL [7] could help with this.

G. Caching
Caching is the act of keeping copies in order to speed up

the system. A drawback of decentralization is that resources
have to be collected from all around the globe, which takes a
long time and also stresses the network. Instead, copies from
multiple sources could be distributed. Doing so is possible
for both file-based and query-based access, since both servers
are implemented as RESTful endpoints. The corresponding
ACL files have to be included in the cache, otherwise plenty
of requests still have to be sent. However, this implies that
the data owners allow their ACL files to be public, which is
definitely not always the case!

H. Versioning
To keep track of changes in files, file-based datapods can use

existing technologies such as Git. These technologies cannot
be used in combination with query-based access techniques,
since they’re simply not available for SPARQL endpoints.
Instead, custom middleware could be written to keep track
of changes to the graph, and to recreate the content at any
point in time. This is however very complex and is still an
active topic of research.

V. IMPLEMENTATION OF AN ANNOTATION PLUGIN

In order to objectively compare file-based and query-based
access, we developed multiple tools. Most of these tools
manipulate decentralized annotations. The end result is an
annotation plugins for file-based access and another for query-
based access.

The plugins require the website to have a
oa:AnnotationService and a ldp:inbox field.
The utilized architecture is shown in Figure 4.

Figure 4: Architectural diagram showing the connections be-
tween the annotation plugin and the datapods. Note that the
website, the user’s datapod and the website’s datapod may
reside on different servers.

A. Storing annotations

After selecting some text to highlight, an annotation graph
is created. The graph is then posted to the user’s an-
notation directory, which is announced in his profile as
oa:AnnotationService. Upon success, the inbox of the
website is notified about this new annotation using the LDN
protocol, so that it can add the annotation URL to its list of
annotations. However, when query-based access is used, only
the link to the user’s annotation service needs to be added to
this list, as all annotations are collected through this service.

B. Loading annotations

There are two options to load annotations. The first option
is to let the client collect a list of annotations. Therefore, the
client will first request the list of annotations to the server’s
annotationService. All annotations on the list are then
collected. File-based access requires a request to be sent for
each annotation, while only a request per datapod is necessary
when query-based access is used. The second option is let
the server collect its own list of annotations. Doing so, the
server will need to look at its local list of annotations, and
then request all foreign annotations. The biggest advantage
over client-side collection is the fact that the server can cache
annotations of other users.

VI. EVALUATION

A. Performance

The performance of both access techniques are compared
by measuring measure the timing differences between manip-
ulating annotations on file-based and query-based servers. All
tests are executed on a laptop with 8 GB RAM and an Intel®
Core™ i7-7500U CPU @ 2.70GHz and a 50 Mbps internet
connection. The annotations are stored on a remote server, for
which a DigitalOcean droplet with a single vCPU, 2 GB RAM
is used.

A storage test was performed for 1, 10, 100 and 500
annotations. It was attempted to do this test for 1000 an-
notations, but the Solid server could not handle this many
requests. The results of this test can be found in Figure 5.

4

0

20

40

60

80

100

120

140

160

1 10 100 1000

A
ve

ra
ge

 s
to

ra
ge

 t
im

e
p

er
 a

n
n

o
ta

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

Number of annotations stored in a row

Average storage time in function of number of annotations
stored at once

Series1 Series2

Figure 5: Results of the storage test visualized using a graph
with corresponding standard deviations over 5 runs. The x-axis
uses log-scale and the y-axis uses linear-scale.

0.1

1

10

100

1000

1 10 100 1000

A
ve

ra
ge

 c
o

lle
ct

io
n

 t
im

e
p

er
 a

n
n

o
ta

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

Number of annotations collected at once

Average collection time in function of number of annotations
collected at once

File-based collection Query-based collection

Figure 6: Results of the loading test visualized using a graph
with corresponding standard deviations over 5 runs. Both axes
use log-scale.

Clearly, storing annotations is slightly faster when using query-
based techniques. However, the storage times for both access
techniques are within the same order of magnitude. This is
because each annotation is sent as a single request, and these
communication delays are bottlenecking the system.

After having stored these annotations, they can now be
loaded. In this test, all annotations for all websites are collected
at once. The results are visualized in Figure 6. There is now a
large difference between file-based and query-based retrieval.
This time, the communication delay is less of a bottleneck
for query-based access, since all annotations can be retrieved
using a single request.

B. Comparing the access techniques in the context of anno-
tations

File-based implementations such as Solid are able to deal
with all kinds of RDF documents due to its simplicity of only

manipulating at file-level granularity. Meanwhile, in order to
implement query-based access to new types of data, one or
multiple new access endpoints have to be programmed since
each request requires a new custom SPARQL query. This
confirms hypothesis H3.

Detecting updates is easier when using file-based access,
since you can simply attach a listener to the directory you
would like to watch. Similarly, versioning is easy by using
versioning systems such as Git, and raw graph data can be
edited with your standard text editor, or any file-based API.
These are all examples of technologies that already exist and
can be reused in the context of file-based access, but not when
using query-based access, confirming hypothesis H2.

Another important aspect of a good access technique in the
context of annotations is retrieval performance. When loading
annotations, users prefer to have them show up as fast as
possible. File-based access has user experience flaws when a
large amount of annotations have to be collected. It is possible
to reduce this delay by implementing application-specific
caching mechanisms, such as caching all annotations for a web
page in the same file and returning this file upon a request to
the AnnotationService. This is however not something
Solid supports by default. Therefore, hypothesis H1 can be
confirmed, although file-based access can negate performance
differences in some scenarios. First, if all annotations are
cached within the AnnotationService’s datapod, query-
based access seems to be faster. However, file-based access
endpoints can be adapted to return all annotations on a list
with just a single request. This requires modifying server-
side code, and goes against the rules of the LDP standard.
An even better solution is to cache all annotations for a
webpage in the same file, and then return this file when the
AnnotationService is contacted. This can be done in a
single request and is fully LDP-compliant. A second scenario
is the following. When a small number of annotations per
user are stored, and the annotations’ ACL states that they are
not publicly viewable by all users, and the ACL itself is not
public either, the annotations cannot be cached! In this case,
the performance is determined by communication delays, and
thus the number of users. A last scenario occurs when each
user stores a large amount of annotations with the same ACL
rules as previous scenario. In this case, query-based access
easily outperforms file-based access. However, note that the
users’ datapods can still implement good caching mechanisms,
in which case the performance differences will again become
negligible.

C. Decentralized social applications in general

During this dissertation, it was assumed that decentralized
annotations are representative for all decentralized social appli-
cations, as stated by hypothesis H4. Now that most differences
have been examined, it becomes clear that annotations were
indeed representative.

The discussed differences are still there when looking at
social applications other than annotations, confirming hypoth-
esis H4. For instance, assume a social network application

5

where images are shared between people. Conceptually, this is
still similar to annotations: adding an annotation to a specific
website becomes posting an image and a description to the
application’s website. The image and its metadata are still
stored on your own server, while the website keeps track of
all URIs.

VII. CONCLUSION

The Cambridge Analytica scandal has recently sparked
conversation about what social networks are allowed to do with
your data. This company used the data of about 87 million
Facebook profiles to manipulate elections. It shows a clear
need to regulate personal data. With the arrival of the General
Data Protection Regulation (GDPR), which was enforced on
25 May 2018, some of the privacy issues concerning traditional
centralized social networks have been resolved. In the context
of this thesis, data portability is the most important right
given to the users. This allows people to request data in a
machine readable format which can be used in other contexts,
such as a competing social media website. However, only the
data that was provided by the data subject can be retrieved,
not the data that was additionally generated by the platform.
Also, there is no incentive for the companies to represent
this data as something that is easily reusable by a competitor.
Decentralization is therefore still the preferred solution.

During this thesis, both file-based and query-based access
was explored by using a decentralized annotations set-up.
We proved that annotations are easily decentralizable. While
query-based access outperforms file-based access when col-
lecting many annotations, this difference can sometimes be
neglected through a good caching design. File-based access
techniques are able to reuse existing file-based technologies
such as Git and directory watchers. It also makes manu-
ally manipulating data easier, and implementing a directory
structure is straightforward since it is inherent to a file-
system. File-based access relies on a simple API (e.g. the
LDP specification) which allows easy reusability in other con-
texts. Meanwhile, the back-end to handle query-based access
currently requires a new specific implementation for each
endpoint. As there is already a file-based LDP implementation,
Solid, it is easier for a developer to set up a decentralized
application. To the best of our knowledge, there are no existing
datapod technologies that allow query-based access. While
there are many advantages to using file-based access, there is
one feature that is exclusive to query-based access: performing
complex intersections in a single query. This may, depending
on the application, be a good reason to use query-based access
over file-based access. In fact, through its better performance,
query-based access can still compete with file-based access,
especially when it is supported by easy-to-use user interfaces
that abstract away the differences for end users.

Some of the topics that were handled during this thesis can
still require some additional research. First, while advanced
caching may solve some performance issues that occur with
file-based access, it lacks an actual implementation. Further-
more, when a datapod’s ACL is not publicly visible, it is not

always possible to cache the datapod’s contents. This is a
problem for both file-based and query-based access techniques.
Future work can explore ways to increase performance without
having to share the datapod’s ACL. Also, the advanced ACL
for query-based access to annotations currently has the flaw
of being application dependent. We proposed to use SHACL
to solve this problem, but this was not implemented. Future
research may explore other options, or implement SHACL in
order to prove that it solved this problem. Finally, one of the
biggest flaws of query-based access is the fact that each new
endpoint requires some new endpoint-specific code. There may
be ways to simplify this task, potentially even automating it.

This thesis proves that decentralization of social applications
is perfectly feasible. In the future, a utopian internet in which
everyone has their own datapod and where applications are
reduced to interfaces of our data [3] may become reality.
Nevertheless, some bridges still need to be crossed, like
developing feasible business models, as decentralization does
not come for free. Applications may charge the users to use
their interface and there will be a need for good service
providers who will host your data for a small fee. However,
once most people grasp the potential of a decentralized social
ecosystem and decide to switch, the application developers
will follow. In the end, the competition for the best interfaces
– now based on service quality instead of data ownership – will
result in something that is essentially not very different from
what we have now, but without many of its disadvantages.

REFERENCES

[1] S. Capadisli, A. Guy, R. Verborgh, C. Lange, S. Auer,
and T. Berners-Lee, “Decentralised authoring, annotations
and notifications for a read-write web with dokieli,” in
International Conference on Web Engineering. Springer,
2017, pp. 469–481.

[2] C.-m. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and
T. Berners-Lee, “Decentralization: The future of online
social networking,” in W3C Workshop on the Future of
Social Networking Position Papers, vol. 2, 2009, pp. 2–7.

[3] R. Verborgh, “Paradigm shifts for the decentralized
web,” 2017, https://ruben.verborgh.org/blog/2017/12/20/
paradigm-shifts-for-the-decentralized-web/.

[4] S. Capadisli, A. Guy, C. Lange, S. Auer, A. Sambra, and
T. Berners-Lee, “Linked data notifications: a resource-
centric communication protocol,” in European Semantic
Web Conference. Springer, 2017, pp. 537–553.

[5] J. Arwe, A. Malhotra, and S. Speicher, “Linked data
platform 1.0,” W3C, W3C Recommendation, Feb. 2015,
http://www.w3.org/TR/2015/REC-ldp-20150226/.

[6] B. Young, P. Ciccarese, and R. Sanderson, “Web
annotation vocabulary,” W3C, W3C Recommendation,
Feb. 2017, https://www.w3.org/TR/2017/REC-annotation-
vocab-20170223/.

[7] D. Kontokostas and H. Knublauch, “Shapes con-
straint language (SHACL),” W3C, W3C Recommenda-
tion, Jul. 2017, https://www.w3.org/TR/2017/REC-shacl-
20170720/.

6

Contents

1 Introduction 1

1.1 Social networks . 1

1.2 Criticism of traditional social networking platforms . 3

1.3 Open Webslides . 4

1.4 Structure of the thesis . 5

2 Related literature 6

2.1 Decentralized social networking platforms . 6

2.1.1 Trusted personal server . 7

2.1.2 Peer-to-peer architecture . 8

2.1.3 Blockchain . 9

2.1.4 Solving the silo problem . 10

2.2 Linked Data . 10

2.2.1 Semantic Web . 10

2.2.2 Web of Data . 11

2.2.3 Publishing Linked Data . 14

2.2.4 RDF serialization formats . 16

2.2.5 Querying RDF: SPARQL . 18

2.3 Semantic social networks . 20

2.3.1 Designing a distributed semantic social network 20

2.3.2 Web ID . 20

2.3.3 Storage . 21

2.3.4 Services . 21

2.4 Linked Data Platform . 23

2.4.1 Solid . 24

2.5 Annotation systems . 25

2.5.1 W3C Web Annotation Data Model . 25

2.5.2 Hypothesis . 27

2.5.3 dokieli . 27

3 Problem description 29

3.1 Accessing Linked Data . 29

3.2 Goal of the thesis . 30

4 Analysis 31

xiv

CONTENTS xv

4.1 Decentralized Annotations . 31

4.1.1 Annotations as Linked Data . 31

4.1.2 Writing and reading annotations . 33

4.2 Data manipulation . 33

4.2.1 Retrieval of data . 34

4.2.2 Manually manipulating data . 36

4.2.3 Hosting public resources . 37

4.2.4 Non-RDF data . 37

4.2.5 Current Web . 38

4.3 Detecting updates . 38

4.4 Directories . 38

4.4.1 Hierarchic structure . 38

4.4.2 Directories in file-based and query-based servers 39

4.5 Intersections . 40

4.5.1 File-based intersections . 40

4.5.2 Intersections over a single graph . 40

4.6 Access control . 41

4.6.1 File-based ACL . 41

4.6.2 Graph-based ACL . 42

4.6.3 Development of an ACL extension . 42

4.6.4 Adding advanced ACL to the SPARQL server . 45

4.6.5 Adapting the ACL extension for annotations . 47

4.7 Caching . 49

4.8 Versioning . 49

5 Implementation 50

5.1 Test setup . 50

5.1.1 Setup with file-based access . 50

5.1.2 Setup with query-based access . 51

5.1.3 Generator . 52

5.2 Implementation of an inbox listener for file-based access 53

5.3 Implementation of a directory structure for the single-graph query-based server 53

5.4 Demonstrative setup for intersections . 54

5.5 Annotation Plugin . 56

5.5.1 Inspiration . 57

5.5.2 User interface . 57

5.5.3 Highlighter . 57

5.5.4 Comments . 58

5.5.5 Loading annotations . 58

5.5.6 Query-based annotation plugin . 60

5.5.7 Possible extensions . 61

6 Evaluation 62

CONTENTS xvi

6.1 Performance . 62

6.1.1 Storing annotations . 62

6.1.2 Loading annotations . 64

6.1.3 Loading specific annotations . 64

6.1.4 Conclusion . 66

6.2 Annotation plugin for Open Webslides . 66

6.3 Comparing the access techniques in the context of annotations 66

6.3.1 Difficulty of implementation . 67

6.3.2 Retrieval performance . 67

6.3.3 State of research . 67

6.3.4 Implementing update detection . 67

6.3.5 Weighing the pros and cons . 68

6.4 Decentralized social applications in general . 68

7 Conclusions 69

7.1 SWOT analysis for decentralization using Linked Data 69

7.1.1 Strengths . 69

7.1.2 Weaknesses . 69

7.1.3 Opportunities . 69

7.1.4 Threats . 69

7.2 Relevance . 70

7.3 Conclusion . 70

Bibliography 72

Appendix A Using advanced ACL for annotations 77

Appendix B JavaScript code for routing and handling requests 81

List of Figures

1.1 Monthly active users on social media . 2

1.2 Facebook user growth . 2

1.3 Social network silos . 4

1.4 Open Webslides example . 5

1.5 Open Webslides co-creation . 5

2.1 Framework of decentralized social network . 7

2.2 Components of Safebook . 8

2.3 Decentralized privacy using blockchain technology . 9

2.4 RDF triple . 11

2.5 Linked Open Vocabularies . 12

2.6 BBC Linked Data . 13

2.7 Growth of LOD cloud . 14

2.8 303 redirects . 15

2.9 Architecture of a distributed semantic social network . 20

2.10 Linked Data Notifications . 23

2.11 Solid architecture . 24

2.12 Solid pod architecture . 24

2.13 Annotation Model . 26

2.14 Architecture of dokieli . 27

4.1 Basic annotation structure . 32

4.2 Solid editing interface . 37

5.1 Annotation generator . 52

5.2 Annotation plugin architecture . 56

5.3 GUI of the annotation plugin. 57

5.4 Posting an annotation . 58

5.5 Loading annotations . 59

6.1 Test: Storing annotations . 63

6.2 Test: Loading annotations . 65

6.3 Test: Loading specific annotations . 65

6.4 Prefix-exact-suffix . 66

xvii

List of Tables

2.1 SPARQL query results on example data . 19

6.1 Time required to store a number of annotations using the file-based and query-based test
setups. 63

6.2 Time required to collect a number of annotations using the file-based and query-based test
setups. 64

6.3 Time required to collect a specific number of annotations out of a total of 200 annotations
using the file-based and query-based test setups. 64

xviii

List of abbreviations

ACL Access Control List

API Application programming interface

CRUD Create, Read, Update, Delete

DSSN Decentralized Semantic Social Network

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LDN Linked Data Notifications

LDP Linked Data Platform

pod Personal on-line datastore

REST Representational State Transfer

RDF Resource Description Framework

RDFa RDF in attributes

SHACL Shapes Constraint Language

SPARQL (Recursive acronym for) SPARQL Protocol and RDF Query Language

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAC Web Access Control

xix

List of namespaces

as: http://www.w3.org/ns/activitystreams# (Activity streams)

acl: http://www.w3.org/ns/auth/acl# (Web Access Control)

dc: or terms: http://purl.org/dc/terms/ (Metadata terms)

foaf: http://xmlns.com/foaf/0.1/ (Social relations)

ldp: http://www.w3.org/ns/ldp# (Linked Data Platform)

oa: http://www.w3.org/ns/oa# (The Web Annotation Data Model)

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# (RDF namespace)

rdfs: http://www.w3.org/2000/01/rdf-schema# (Core data modeling vocabulary)

xx

http://www.w3.org/ns/activitystreams#
http://www.w3.org/ns/auth/acl#
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/
http://www.w3.org/ns/ldp#
http://www.w3.org/ns/oa#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#

Chapter 1

Introduction

1.1 Social networks

Nowadays, most people live their lives alongside an online image of themselves. Platforms such as
Facebook, Instagram and Twitter are some of today’s most popular social networks. All three of these
platforms allow their users to create an account, also known as Internet persona, and become friends
with other users, follow products and celebrities, share photos, talk to each other, and a lot more. Thanks
to the Internet, we are more connected than ever.

But why do we need these online social networks? Humans have lived thousands of years without them,
building up their own offline social network by writing down addresses, visiting and sending ‘snail’ mail1.
This last term already suggests the most important reason: speed of communication. It allows people
to meet other people all around the world in a matter of seconds: friends, family, people that share your
interests, bloggers, etc. Often, long lost friends have once again found each other through social media.
It is not just a recreational concept: professionals can, for instance, use LinkedIn as a means to improve
their career chances. All popular platforms are user friendly, allowing less tech savvy people to enjoy all
of these benefits. And the best part? Participation is usually free!

But social networks have a much broader meaning. According to Scott [74], the idea of social networks
in sociology includes face-to-face relationships, political associations and connections, economic trans-
actions among business enterprises, and geopolitical relations among nation states and international
agencies. In fact, any online platform where you cooperate with other people is considered part of your
social network. For instance, Google Docs is an alternative to Microsoft Word, allowing people to write
on the same document simultaneously. Doodle enables a group to schedule the best possible date for a
meeting, and online forums are social platforms to bring together people with similar interest. Harris [40]
states that there are hundreds of different types of social media platforms.

Clearly, social networks offer many advantages. But is it really this perfect innovation it appears to be?
There is one core observation that suggests an answer to this question. The platforms are usually free,
which means that the hosting and development costs should be covered not by the users, but by someone
else. One option could be that social networks are sponsored by the government, but this is not the case.
In fact, according to Shirky [76], a government should maintain Internet freedom as a general goal, not as
a tool for achieving immediate policy aims in specific countries. Therefore, most traditional social network
platforms are government independent. Another option is offering an improved experience through a
subscription model. In a similar model, the social networks are giving users the ability to purchase virtual
goods. This is commonly known as microtransactions. For instance, Facebook offered a service to send
virtual gifts to friends, along with a personalized message, for a small fee. Also, many on-site games,
often called Social Network Games, or SNGs (e.g. CityVille, Texas Hold’em Poker, Farmville, etc.), offer in-
game advantages or cosmetic upgrades as microtransactions [53]. Facebook and Twitter started out with

1Snail mail is a retronym for mail, distinguishing postal mail from electronic mail.

1

1 Introduction 2

Figure 1.1: Chart showing the monthly users on some of current day’s most popular social network platforms.
(Source: https://techcrunch.com/2017/06/27/facebook-2-billion-users/)

Figure 1.2: Facebook monthly active users per year since 2004.
(Source: https://techcrunch.com/2017/06/27/facebook-2-billion-users/)

funding from venture capitalists [25], raising several million dollars each. These investors expect that those
sites will become profitable in the future. The way this is most commonly done, is through advertising.
Companies can promote their products by buying advertisements (ads). Because many social network
sites have millions of daily users, their ads can reach many potential customers. More importantly, ads can
be targeted towards certain profiles, improving the efficiency of their marketing campaign. This is made
possible by analyzing the one thing users give back to the social networking platforms: data. According
to Casteleyn et al. [29], profile pages of people are not always a correct illustration of themselves, but are
often shaped to how they want to be perceived by others. For this reason, data could be seen as a crystal
ball for future consumer intentions. Besides using data for advertising, data is commonly sold to third
parties. The size of these social networks become increasingly bigger. In 2008, Facebook surpassed
the user count of MySpace, which was 109 million visitors per month [33]. On the 27th of June, 2017,
Mark Zuckerberg notified2 the world that Facebook officially reached more than two billion monthly active
users. The number of monthly users on some of the most popular social network platforms is shown in
Figure 1.1, and the growth of Facebook is shown in Figure 1.2. Having this much data is an invaluable
asset to sell to third parties for market predictions. This is made clear by Wolf [87]: “Data is just as likely
to be as big a piece of the business equation as advertising. Facebook, LinkedIn, MySpace and Twitter

2https://www.facebook.com/zuck/posts/10103831654565331

https://techcrunch.com/2017/06/27/facebook-2-billion-users/
https://techcrunch.com/2017/06/27/facebook-2-billion-users/
https://www.facebook.com/zuck/posts/10103831654565331

1 Introduction 3

already possess billions of pieces of useful data that can infer so much about what’s happening – and
what is going to happen – in consumer society.”.

1.2 Criticism of traditional social networking platforms

Many people think that ads are sufficient to generate revenue. However, a 2009 comScore study showed
that only 16% of all visitors ever click on an ad, and 8% account for 85% of all clicks [2]. Today, more and
more social networking sites try to profit from licensing their users’ data. In 2016, Twitter reported a third-
quarter revenue of $616 million, of which $71 million was generated from data licensing [65]. Because
of the vast amount of data, social networking sites are an attractive target for many organizations who
need large amounts of user data. As research has shown, it can be used to positively impact business
decision making [39]. An assumption frequently made by social networks is that anonymous data is
sufficient to protect privacy. Backstrom et al. [8] and Narayanan and Shmatikov [59] have shown that
it is still possible to de-anonymize data, even when all names were removed from the data. Often, this
data is used for good intentions. For instance, while still controversial, the law enforcement agencies
in The Netherlands have used social networking data to investigate organized crime [47]. Unfortunately,
some of these organizations have malicious intentions, for example identity theft, targeted scams, stalking
and more [42]. Many of these criminals acquire their data through crawling. Since social platforms have
acquired a poor reputation for privacy, crawling is surprisingly easy, as Bonneau et al. [22] demonstrated
for Facebook. The quickest way of collecting data is by crawling Facebook’s public profile listings, which
consist of a person’s name, picture, group memberships and links to eight friends. Note that these listings
are public, i.e. you do not need an account to view them. Although the listings are optional, less than 1%
of users change the default setting, which enables the listings [21]. Even better for crawling is making
use of valid Facebook accounts. This way, you can see all friends of users who use the default privacy
settings. Even when not using the defaults, Facebook has been notorious for a large disparity between
desired and actual privacy settings. For every piece of content you share, the uploader can choose who is
able to access his content. Facebook offers five granularities: only the uploader, a specific list of friends,
all friends, all friends of friends, and everyone. Despite this perceived control of information, a survey
conducted by Liu et al. [54] show that 39% of users that have changed their default settings, are having
difficulty maintaining their privacy settings correctly. More importantly, half of the users do not care and
keep using the default settings (share with everyone).

Another problem of modern day’s society is a phenomenon called “The Filter Bubble”. It was first described
by Eli Pariser [60], and although the problem is not unique to social networks, it does play a large role
in how we experience social networking platforms. In his book, he googles the exact same keywords
on two different laptops, and retrieved vastly different results. This is caused by personalization, a core
strategy for almost every top site on the Internet. Using data collected by the platform, relevant new data
can be generated (e.g. personalized ads). This data is mostly collected without the user knowing how,
which leads to popular conspiracy theories. For instance, some believe the Facebook app is listening to
your conversations and storing important keywords [56]. Personalization shapes what we buy, but does
more than that. It starts to orchestrate our lives. 36% of Americans under thirty exclusively use social
networking sites to catch up on news [60]. The algorithms running on these sites try to personalize what
you see, which results in a unique universe of information for each of us. It fundamentally changes the
way we encounter ideas and information. What the algorithm presents to you, is biased, subjective, and
not always true. But from within the bubble, it is difficult to notice how biased it actually is. As Pariser
says: “It is a cozy place, populated by our favorite people and things and ideas”. Inside the bubble, chance
encounters that bring insight and learning are rare. Coming into contact with paradigms that completely
change the way we think about the world and ourselves, becomes near impossible if personalization is
too acute. Unfortunately, we usually do not have a choice to enter the bubble.

An additional problem are the growing number of information silos. The information that is stored on one
traditional social network, cannot easily be transfered to another social network. This information includes

1 Introduction 4

Figure 1.3: Drawing which illustrates the silo problem. People are stuck within particular social networking plat-
forms. They would like to benefit from other social networking platforms and share the data from one
platform with people on a different platform. (Source: David Simonds, www.Economist.com, 2008)

messages, friends, photos, personal details, and more. The two platforms can be completely different.
For example, you could want to use your facebook name and pictures to sign up for a dating website.
When using a different social network, one might want to reuse everything that is stored on another social
network, but few robust mechanisms to do so exist. This problem is illustrated in Figure 1.3. Fitzpatrick
and Recordon [36] summarized this as follows: “People are getting sick of registering and re-declaring
their friends on every site.” The main cause of this development is the fact that it is simply much easier
to manage, publish and search large amounts of similarly structured content using a centralized platform
[27]. The information that is stored in the silo, can be used by the silo owners for whatever they want,
as long as it corresponds with the agreed policies [89]. This is usually stated in the end user license
agreement, which is unfortunately seldom read. Furthermore, they reserve the right to change their
EULA at any time. Therefore, many people do not know what data is being used, and for what purposes.
Most social networks provide the option to deactivate your account, however it is often not possible to
completely erase all personal information from the site [5]. With fewer than 1% of the servers serving over
99% of the content, the current phenomenon of information silos goes against the original intention of the
Web to become a decentralized platform [27].

1.3 Open Webslides

A goal of this thesis is to study and develop a decentralized solution for annotations. Since annotations
are posted and observed by multiple users, it is a social application. In particular, the solution will be
tested on Open Webslides’ annotations3. This free platform enables teachers to create interactive slides.
For instance, one can easily embed a YouTube video into a slide. The teacher can also flip the classroom
by asking questions to the students, which they can answer by using an app4. In fact, anything on the
Web can be added to the slides by using iframes, which display the content live, as if you were on the
website itself, as shown in Figure 1.4. The platform also allows easy co-creation of slides, paving the way
for a good cooperation between teacher and students. This is illustrated in Figure 1.5. Since the slides
are Web-based, they are easy to share and can be opened on any device with a Web browser. Updates

3http://openwebslides.github.io
4For example: www.menti.com

http://openwebslides.github.io
www.menti.com

1 Introduction 5

Figure 1.4: An example of an Open Webslide which
shows some of its possibilities. (Source:
https://openwebslides.github.io/
cocos_kickoff/#webslides)

Figure 1.5: The process of co-creation, as shown on an
Open Webslide. On the website itself, this
slide is animated in multiple steps. (Source:
https://openwebslides.github.io/
cocos_kickoff/#open-source)

are retrieved upon a page refresh, and since each slide has its own URL, you are able to link to specific
slides. The slides are created using HTML. In case one does not know how to write HTML, an editor is
available. The advantage of HTML is the concept of content before layout. Content can for instance easily
be transformed from slides into course notes, without having to rewrite your HTML code.

The annotations will be able to precisely point to the relevant content. They will be stored as Linked Data,
following the Solid conventions. In the rest of this thesis, these concepts will be covered extensively.

1.4 Structure of the thesis

The thesis starts with a review of articles that influence this work. It includes an introduction to the
technologies that will be used. The next chapter describes the problem and research questions. The
hypotheses are stated at the end of this chapter. Then, a largely theoretical analysis of the differences be-
tween file-based and query-based access techniques is given. These differences are then put to the test
in a chapter about the various setups that were developed. Using the knowledge that was gathered during
all previous chapters, a new chapter evaluates the differences in the context of annotations and evaluates
whether decentralized annotations are a viable alternative to centralized annotations. The chapter ends
by comparing annotations to social applications in general. Finally, a SWOT analysis for decentralization
using Linked Data is given, along with a conclusion.

https://openwebslides.github.io/cocos_kickoff/#webslides
https://openwebslides.github.io/cocos_kickoff/#webslides
https://openwebslides.github.io/cocos_kickoff/#open-source
https://openwebslides.github.io/cocos_kickoff/#open-source

Chapter 2

Related literature

In this chapter, a survey of relevant publications is given, most of which is crucial to understand the rest of
the thesis. It is important to have knowledge of previous contributions to the fields of decentralized social
networks, Linked Data and annotation systems in order to understand the position of this thesis in these
fields.

2.1 Decentralized social networking platforms

Some of the problems stated in section 1.2 can be avoided by using decentralized technologies. The
definition of decentralization according to Rohit Khare [46] is as follows: “A decentralized system is one
which requires multiple parties to make their own independent decisions.” In this context, the information
that is used by social network platforms, will not be stored on the platform provider’s servers. Instead, it
could for instance be stored on a server of your choice, or fragments of your information can be stored on
multiple different servers. There are no restrictions on what you want to store. Figure 2.1 shows a simple
illustration of a decentralized framework. According to Yeung et al. [89], users will be given back control
in following three aspects thanks to decentralization:

• Privacy: Users can decide who has access to their information.

• Ownership: If the information is stored on a trusted server (e.g. your local computer), users are
the sole owners of their information. Your data cannot legally be licensed to other parties, unless
you give consent.

• Dissemination: Data can be disseminated however a user wants.

Decentralization does come with multiple technical challenges. For instance, in a centralized social net-
work, all profile pictures are stored in the same format. However, in a decentralized social network, users
have the freedom to store their profile picture in whatever format they want. There is no central authority
that enforces a specific format. This means that decentralized social applications should be able to handle
multiple formats, and use a default profile picture if no compatible image is found. Verifying reverse links
is another challenge. It is easy for someone to store a relationship on his profile, saying he is friends with
another person. However, this might not necessarily be true. Robust verification mechanisms should be
provided to see if the friendship is mutual.

Besides the issues that concerns decentralized social network networks, decentralization in itself comes
with some risks [38]. For instance, centralized servers are usually very strong at defending against attacks
(e.g. DDoS attacks), while smaller servers (as is typically the case for decentralized servers) are much
more prone to attacks, due to the fact that they are often run by hobbyists with small budgets. Another
issue that could arise is the illusion of control when people blindly trust their data to e.g. a friend’s server.
The fact that it is possible to move around your data, does not mean it is safe to do so. Illusion of control

6

2 Related literature 7

Figure 2.1: A framework of decentralized online social networking (Source: Yeung et al. [89])

can also be an issue in the context of sharing data. Websites like Facebook are still able to connect the
dots and consume your data (although not necessarily in a legal manner), which remains problematic
when oversharing.

2.1.1 Trusted personal server

Diaspora [16] was one of the first decentralized social networks. It was launched in November of 2010. It
differentiates itself from traditional social networks by allowing users to store their profile on any Diaspora
server, or pod, they want. Some users desire complete control and host their own server, while others
join an existing server. The server makes use of push design to communicate with other servers. For
instance, sharing a message on your wall will prompt the server to push this message to the servers
of all your friends. Although there is no central server, the security and integrity of your information is
still in the hands of the server administrators. Because of the push mechanism, your information is also
pushed to other servers, meaning that you should trust both your own server’s administrators, as your
friend’s server’s administrators. This could potentially lead to a privacy leak. Besides, many people do not
have the resources to set up their own server and choose to join an existing server. Well-known servers
with reliable uptime are the best candidate-pods, and this comes with consequences. On April 20141,
the three largest pods hosted over 92% of all users, with the largest pod hosting over 75% of all users.
This unbalanced population combined with the fact that pods are application-specific makes clear that,
although Diaspora had decentralized intentions, it is still quite similar to a centralized social network.

A different approach to decentralization was taken by Seong et al. [75] in the development of PrPl, short
for private-public. It is based on a person-centric architecture. Similar to the pods in Diaspora, each
individual stores his digital assets in a Personal-Cloud Butler service. The main difference between PrPl’s
Butler and Diaspora’s pods is that PrPl only allows one user per Butler. One can choose to run this
service on his own server, or contact a paid or ad-supported vendor of his choice. It is also possible for
an individual to store his data on multiple Butlers, either duplicated, or disseminated. For authentication,
the decentralized OpenID [64] management system is used. One of their main research goals was to
create an API that allows the same application to be hosted on multiple domains, while still using the
same, decentralized data. The data itself is stored in a format based on RDF (Resource Description
Framework2, see section 2.2) and is optionally encrypted. It can be queried by using their new database
query language SocialLite, which is an extension of Datalog. PrPl was a proof-of-concept and was not

1https://web.archive.org/web/20140409064653/http://pods.jasonrobinson.me:80/
2https://www.w3.org/RDF/

https://web.archive.org/web/20140409064653/http://pods.jasonrobinson.me:80/
https://www.w3.org/RDF/

2 Related literature 8

Figure 2.2: Components of Safebook (Source: Cutillo et al. [32])

optimized for speed, nor was it publicly deployed. Nevertheless, experiments proved that their approach
on decentralization is viable. The platform succeeds in all three pillars of decentralized social networks:
privacy, ownership and dissemination.

2.1.2 Peer-to-peer architecture

Previous models rely on trusted servers to host their data, but still abide to classic client-server techniques.
A fully decentralized platform should not provide an option for users to trust a third-party to store their data.
In a peer-to-peer (P2P) architecture, there are no servers, instead every user (or peer) hosts his own data
and possibly caches data for other users. Any architectural design for social networks comes with multiple
security requirements [32, 42, 61]:

• End-to-end confidentiality is required to make sure that only the requesting and responding parties
can access the exchanged data. Peers along the path should not be able to conduct a man-in-the-
middle attack.

• Access control requires proper authentication of members to avoid impersonation attacks.

• Privacy should be ensured to keep personal information confidential.

• Data integrity and availability are the other two rules in the CIA triad3. The former guarantees that
profile data cannot be tampered with. The latter ensures that the stored data is accessible at any
time.

Safebook is a P2P social network first described by Cutillo et al. [31] and meets the aforementioned
requirements by design. Safebook consists of three components (Figure 2.2) [32]. First, Matryoshkas
are layered structures composed of various nodes in the P2P network. Every user is the core node of
his own matryoshka, but can be part of other user’s matryoshkas. The first layer (inner shell) around the
core node corresponds with the nodes belonging to the trusted contacts of the core node’s user. The next
layer are all nodes that are trusted by the users in the previous layer, and so on. To provide availability,
nodes on the inner shell are able to cache the core node’s data, and provide it if the core node is offline.
A peer’s identity is only known by his trusted contacts, since they are the only ones that are directly linked
to his core node, and thus know his IP address. To join Safebook, you need to be invited by an existing
member in order to build up your own matryoshka. The peer-to-peer substrate is the second component
of Safebook and comprises all nodes and provides data lookup services such as a DHT4. Finally, the
trusted identification service (TIS) provides each node with a unique pseudonym and identifier, along with
related certificates, to protect against impersonation attacks. Data can either by private, protected or

3Confidentiality, integrity and availability. See http://resources.infosecinstitute.com/cia-triad/
4Distributed Hash Table

http://resources.infosecinstitute.com/cia-triad/

2 Related literature 9

Figure 2.3: Basic principles of the decentralized privacy model described by Zyskind et al. [91]. A service can be a
mobile application requesting user information for personalized ads. The information itself is stored in
a distributed hash table (DHT), while the (hashed) keys to this information are stored in the blockchain
itself. (Source: Zyskind et al. [91])

public. The core nodes will keep their private data, while duplicating protected and public data to the inner
shell’s nodes. Data can be retrieved from outside the inner shell by routing according to the standard
P2P protocol. Performance-wise, three to four shells is sufficient for a matryoshka. In this case, and
with 23 trusted contacts (i.e. nodes in his inner shell), an accessibility of 90% is obtained. Also, the data
lookup delay was simulated to be below 13.5 seconds for 90% of all requests. Unfortunately, the slow and
unreliable nature of this network is a major drawback.

2.1.3 Blockchain

Recently, Bitcoin has become increasingly popular. This cryptocurrency was built on blockchain tech-
nology, which can be described as a distributed database, or more commonly as a distributed ledger.
Besides cryptocurrencies, blockchain has enormous potential for anything that desires independence
from an authority. Indeed, thanks to blockchain’s design, a third party becomes unnecessary.

It can also be used in the context of decentralized social network applications. One question that is
immediately clear, is how to solve the problem of privacy. If everyone can see everything on the ledger,
our private messages would be visible to the world. An attempt to solve this problem was made by Zyskind
et al. [91] by using a combination of blockchain and off-blockchain storage. Data ownership is ensured by
storing the data in an off-blockchain database of your choice. Access rights to this information is stored
on the blockchain. Upon a data request by anyone (a user or a service), the blockchain checks if the
entity has access rights. If so, it returns an encrypted response to the requester containing the location of
the information. Only entities with access rights are able to decrypt the location. Figure 2.3 illustrates this
principle.

For blockchain technology to be tamper-free, a sufficiently large network of peers is required. Because
of the principal blockchain properties, it is not possible for adversaries to fake their identity or corrupt the
network. In this model, it is also not possible for an adversary to learn anything from the blockchain,
since the location of information is encrypted. Even when a node controls a database where the actual
information resides, the adversary is still unable to learn anything, since the information is encrypted as
well. Unfortunately, blockchain does come with drawbacks. By using the Proof-of-Work (PoW) consensus

2 Related literature 10

model [58], a node’s voting strength is solely based on computational resources. The consequences
of this are excessive energy consumption, high latency and potential sybil5 attacks. This drawbacks
show that running blockchain nodes is not cheap. Social networks that rely on blockchain technology
should thus come up with incentives for people to run these nodes. Also, to run a responsive social
network, blocks should be added to the blockchain at a high rate. Unfortunately, traditional blockchains
(e.g. Bitcoin and Ethereum) are limited to three transactions (not blocks!) per second [3]. Therefore,
different consensus models than PoW can be used. One algorithm is called Delegated Proof of Stake
(DPoS) [51]. Steem6 [52] is an example of a blockchain-based social network that uses DPoS instead of
PoW. In functionality, it is a message board comparable to Reddit7, which means that millions of changes
(or transactions) happen each hour. Thanks to DPoS, a new block is added to the blockchain every three
seconds, with each block containing many transactions. As the network is scalable to support 10.000
transactions per second, the Steem blockchain already contains more transactions than both Bitcoin and
Ethereum.

2.1.4 Solving the silo problem

All of the solutions stated above have one thing in common: the data is still only compatible with its
corresponding social network platform. The silos in Figure 1.3 remain a problem that we would like to
deal with. Information should only be stored once, and be usable by all social network platforms. Tramp
et al. [81] envisions this solution as an ocean, with big and small islands, and a tight network of bridges
and ferries connecting these islands. Linked Data technology can be used to solve this problem, and is
the main topic of this thesis. Therefore, the concept of linked data is explained in the next section, followed
by a section about recent advancements in building semantic social networks.

2.2 Linked Data

2.2.1 Semantic Web

To understand the concept of Linked Data, one should first become familiar with Berners-Lee’s vision
about the Semantic Web [15]. In this extension of the current web, the new Web 3.0 gives meaning to
information on the Internet such that not only humans, but also computers are able to understand it. This
requires a language that expresses structured collections of information and inference rules to enable
automated reasoning. The Resource Description Framework (RDF) is a fundamental component of the
Semantic Web. It expresses meaning by encoding triples of subject, predicate and object (see Figure 2.4).
For example, cats are fond of humans, so it could be structured as following triple:

• Subject: Cat

• Predicate: Likes

• Object: Human

However, good RDF triples require subject and object to be a Universal Resource Identifier (URI) [48].
This is similar to a link you would find on a web page. In fact, such links are called URLs (Uniform
Resource Locator) and are the most common type of URI. Predicates are always URIs, as they have to
express a clear relationship that can be used in multiple triples. A good RDF triple would thus be:

• Subject: http://dbpedia.org/ontology/Cat

5In a sybil attack, a peer majority is obtained by forging many identities. In the context of PoW blockchains, it means that an
attacker has over 50% of the computational power.

6https://steem.io/
7https://www.reddit.com/

http://dbpedia.org/ontology/Cat
https://steem.io/
https://www.reddit.com/

2 Related literature 11

Figure 2.4: Graphical representation of an RDF triple. (Source: Klyne and Carroll [48])

• Predicate: http://contextus.net/ontology/ontomedia/ext/common/trait#likes

• Object: http://purl.org/biotop/biotop.owl#Human

The main advantage of expressing nodes and their relationships as URIs is to make it easier for computers
to draw unambiguous conclusions. For instance, the word “break” has 75 different meanings8, such as
a pause from doing something, the act of breaking something, a separation, or even a score consisting
of winning a game when your opponent was serving in tennis. For each of these different meanings, a
different URI should be used. To demonstrate this problem of ambiguous terms, we could use “break” in a
triple (Prison guard, like, break). Prison guards do like breaks (as in a small pause from doing work), but
they also hate breaks (as in a prison break). Besides having the need to discriminate between meanings,
the URIs should also be chosen such that two terms with the same meaning use the same URI, such that
computers are able to reason about the data. Even more reasoning is possible when inference rules are
also added to the RDF document. For instance, if a person has two parents and a (full) brother, it can be
inferred that the parents of the brother are the same people. With these mechanisms in place, an algorithm
is able to read a web page without having to use advanced artificial intelligence techniques to understand
what is stated. This offers multiple advantages: web search results are improved by looking at concepts
instead of ambiguous keywords, and queries can be executed to quickly find answers to questions that
require some reasoning (e.g. knowing the address, what is its state code?). Even more complicated
questions can be tackled when pages are linked to each other. This way, an answer that does not reside
on just one page, can still be found by following links to other web pages, and reasoning on all the collected
data. However, unambiguous reasoning on different data sets (from various authors) is only possible if
the selected URIs for the same concepts are identical over all datasets. For this reason, the concept of
vocabularies910 was introduced. They define the concepts and relationships concerning a specific topic.
Multiple datasets can then use these standard terms to resolve ambiguities. To help in finding the right
URI (if any exist), Linked Open Vocabularies (LOV, http://lov.okfn.org/dataset/lov) provides a
search tool. A representation of the vocabularies in LOV is displayed in Figure 2.5. The most common
vocabulary is dcterms, which is short for Dublin Core Metadata Initiative (DCMI) Metadata terms [44]. It is
a set of terms that describe web resources (e.g. images, web pages, videos) and physical resources (e.g.
books, CDs). The initial version, the Dublin Core Metadata Element Set, contained just 15 terms, including
title, creator, subject, description, etc. Their broad suitability explain why these metadata elements are so
often used in RDF documents.

2.2.2 Web of Data

What we have today, is a web of HTML documents, interconnected by links. What we really want, is to
also have all data available in a standard format (RDF), with links between other data and documents,
creating a machine-readable Web of Data. This collection of interconnected datasets is also called Linked
Data11. To use another definition for Linked Data, it is a set of techniques for publication on the Web

8https://muse.dillfrog.com/meaning/word/break
9https://www.w3.org/standards/semanticweb/ontology

10The words vocabulary and ontology are often used to described the same concept.
11https://www.w3.org/standards/semanticweb/data

http://contextus.net/ontology/ontomedia/ext/common/trait#likes
http://purl.org/biotop/biotop.owl#Human
http://lov.okfn.org/dataset/lov
https://muse.dillfrog.com/meaning/word/break
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/data

2 Related literature 12

Figure 2.5: A representation of the importance of all the vocabularies in LOV (Linked Open Vocabularies). A big
surface means that the vocabulary terms are often used. (Source: http://lov.okfn.org/dataset/
lov)

using standard formats and interfaces, as well as data that conforms to those techniques [88]. The big
advantage of Linked Data is that it is easily combinable with other Linked Data to generate new knowledge.
This stands in sharp contrast with the traditional database systems, where data is stored on individual
silos, using different storage techniques. One problem that could occur when attempting to combine two
such databases, is the following. Let us assume these databases are simple Excel tables, with multiple
columns, all of them with their respective column title. If the first database uses Temp for its temperature
column, and another uses Temperature, you will have to manually intervene and state that they are the
same. But even then, it might not be clear if the temperature is in Kelvin, Celsius or in Fahrenheit. Linked
Data solves this problem by using unambiguous URIs. It is self-documenting, meaning that you can figure
out what a term means by resolving it on the Web. However, just like traditional database system, Linked
Data can still be of low quality and suffer from service failures. There are no inherent mechanisms in
Linked Data that will protect you from this.

An example of a good Linked Data application is the following. The BBC uses Linked Data from various
sources to enhance information presented about certain topics. Musical artist details are collected from
MusicBrainz12, an open music encyclopedia. The World Wildlife Fund and DBpedia are some other
sources that are consulted. The results can be seen in Figure 2.6. The BBC did not coordinate with its
sources, which is why Linked Data is said to enable cooperation without coordination.

The Web of Data is built on the general architecture of the Web [45] and can be seen as an extension on
the classic document Web. It shares many of its properties [18].

• The Web of Data is generic and can contain any type of data.

• It is also open for anyone to publish data.

• The publishers can choose which vocabularies to use.

12https://musicbrainz.org/

http://lov.okfn.org/dataset/lov
http://lov.okfn.org/dataset/lov
https://musicbrainz.org/

2 Related literature 13

Figure 2.6: DBpedia is generated by looking at the info boxes of Wikipedia articles. The BBC then uses content
from DBpedia (and other sources) to create beautiful webpages. (Source: Wood et al. [88])

• The data is connected through RDF links, which results in a global data graph, spanning all sources
and allowing discovery of new sources.

Analogous to hypertext links, RDF links are provided by RDF triples where the subject and object are
both URI references, but of different datasets [17]. Because URIs are used for resource identification,
it is possible to use the HTTP protocol as retrieval mechanism for URIs that use the http:// scheme (i.e.
URLs).

The result is a World Wide Web with structured data that can be combined with other people’s data. Note
that, just like on the actual World Wide Web, not all data is public. Linked Data techniques can still be
deployed from within a corporate private network. The Linked Open Data (LOD) project is a community
effort that started in 2007 to make data freely available to everyone. In more detail, the goal of the project
is to identify existing data sets that are available under open licenses, converting them to RDF while
staying true to the Linked Data principles, and publishing them on the Web. The result is a collection of
all kinds of data that can be reached by the same API, and it is called the LOD cloud. Nowadays, the
cloud is so big that generating a visual representation of this cloud is not easy. The latest attempt by
http://lod-cloud.net/ is shown in Figure 2.7b. For comparison, the visual representation from 2009
is shown as well in Figure 2.7a. As of November 2017, the cloud consists of 150 billion triples stored in
3000 datasets13.

Linked Data is not just RDF. It separates itself by four principles [13]:

• URIs are used to name things unambiguously.

• To allow people to look up these names, resolvable HTTP URIs are used.

• When looking up these URIs, useful information should be provided (in RDF standards).

• Links to other related resource URIs should be included, so that people can discover other things.

Only then is your data truly “linked” and are people able to surf the Web of Data. For instance, you
could open http://dbpedia.org/resource/Ghent_University with a browser of your choice (e.g.
Tabulator [14], Piggy bank [43] or simply your regular web browser), see that it is located in the dbo:

13http://stats.lod2.eu/

http://lod-cloud.net/
http://dbpedia.org/resource/Ghent_University
http://stats.lod2.eu/

2 Related literature 14

(a) Linking Open Data cloud diagram 2009
(Source: Bizer et al. [18]) (b) Linking Open Data cloud diagram 2017, by Andrejs

Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch
and Richard Cyganiak. http://lod-cloud.net/

Figure 2.7: The growth of the LOD cloud.

country Belgium (http://dbpedia.org/resource/Belgium), of which the motto (http://dbpedia.
org/property/englishmotto) is “Strength through unity”.

2.2.3 Publishing Linked Data

So far, we know there is a Web of Linked Data available to us. But how do we contribute to this? Sup-
pose we have a dataset that we want to share with the world as Linked Data, where do we get started?
According to Bizer et al. [18], preparing your Linked Data for publishing involves three steps.

The first step is to assign URIs to all entities that are described in your data set. These URIs should also
be dereferenceable over the HTTP protocol as to stay true to the design principles of Linked Data. As a
provider, you can choose between two HTTP URI usage patterns: hash URIs and 303 URIs [73], or even
combine them. Hash URIs contain a fragment, which is a part of the URI that is separated from the rest
by a hash symbol (“#”). This way, you can point to a resource that is not a self-contained document, but
rather a part of a document. An example would be http://www.example.com/about#alice, where
information about alice is stored. This information resides on the same document as information about
other things, such as http://www.example.com/about#bob. Upon requesting such a hash URI, the
HTTP protocol automatically strips the fragment and returns the document URI, which is http://www.
example.com/about in our example. The RDF framework can then use this document to identify the
information about Alice, as specified in the fragment. The second option is to use 303 URIs. The name
refers to the 303 See Other HTTP status code. It is used to indicate that a requested resource is not
a normal Web document, and a Location header can be added to provide the URL of the document
that represents the resource. Depending on the Content-Type header, a link to the matching document
will be provided. This is illustrated in Figure 2.8. Different URIs can be used to identify the same entity.
This is especially common when two providers do not know about each others datasets. One example
are the URIs uses to identify Berlin. DBpedia uses http://dbpedia.org/resource/Berlin, while
Geonames uses http://sws.geonames.org/2950159/. Both URIs refer to the same entity and are
therefore called URI aliases. To ensure that these providers describe the same entity, RDF triples with the
predicate owl:sameAs are used to link to known other URI aliases.

In the second step, RDF links to other related entities in different data sets should be included. This is not
straightforward, since your dataset might contain a large amount of information. Therefore, (semi-)automated

http://lod-cloud.net/
http://dbpedia.org/resource/Belgium
http://dbpedia.org/property/englishmotto
http://dbpedia.org/property/englishmotto
http://dbpedia.org/resource/Berlin
http://sws.geonames.org/2950159/

2 Related literature 15

Figure 2.8: Redirecting to the correct page by using 303 HTTP status codes. (Source: Sauermann et al. [73])

approaches are used to generate these links. When data is inherently connected by standardized naming
schemes, making connections may be easier. For instance, publications typically have an ISBN number.
If the target dataset also contains ISBN numbers, entities from your dataset and the target dataset can
be linked. Problems arise when no such naming schemes exist. In this case, the similarity of entities
within both datasets is used to determine whether two entities are the same. To compute this similarity
metric, many research papers have already been written. Winkler [86] gives an overview of record linkage
techniques, Elmagarmid et al. [34] is a survey about duplicate detection, and Euzenat et al. [35] is a book
about ontology matching. In the context of Linked Data, Raimond et al. [63] have developed an algorithm
to set RDF links between artists in the Jamendo and Musicbrainz data sets [18]. For this, they used a
similarity metric that uses the names of artists, songs and albums.

Finally, you have to provide metadata about your published data. Metadata includes information such
as its creator, creation date, creation method, and more. The Dublin Core terms (dcterms) provides
most of the basic provenance. Adding metadata is necessary for consumers to assess the quality of your
published data, and see if they trust it.

Optionally, you can use abbreviations for the namespace of common ontologies. This can significantly
decrease the size of triple files, while also making them more readable. For instance, when an RDF file
contains many links to entities on the http://www.example.com/ namespace, they can be abbreviated
by prefixing the entity-name by a defined prefix, such as ex:. <http://www.example.com/lion> and
<http://www.example.com/tiger> can then be written as ex:lion and ex:tiger respectively. In
this thesis, prefixes will often be used. An overview of the most common prefixes can be found in the list
of namespaces at the beginning of this thesis.

A great example of publishing process is the community effort to extract Linked Data from Wikipedia.
The result is a huge dataset with connections to many of the most popular open datasets. In 2014,
DBpedia consisted of just over 3 billion RDF triples14. To extract all this data, the dumps of the crucial
relational database tables are used [6, 7]. These are made public15 by Wikipedia on a regular basis.
Following the success of DBpedia, The Wikimedia Foundation gave the DBpedia project access to its live
feed which instantly reports all changes [19]. First, the relationships that are stored in this database are
mapped to RDF. Then, additional information is extracted directly from the article texts and their info boxes.
To link entities with entities in other data sets, many of the outgoing links are generated using simple
identification schemata, such as comparing ISBN numbers, although others were more difficult. Chemical
compounds are compared to entities in other bio-informatics data sets by looking at their gene, protein
and molecule identifiers. Links with GeoNames and MusicBrainz were found by respectively looking at
similarities in locations (similar name, coordinates, country, population, etc.) and bands (similar name,
albums, members, etc.).

14http://wiki.dbpedia.org/about/facts-figures
15http://download.wikimedia.org/

http://www.example.com/
http://wiki.dbpedia.org/about/facts-figures
http://download.wikimedia.org/

2 Related literature 16

2.2.4 RDF serialization formats

Tabular data is often serialized as CSV (comma separated values) or TSV (tab separated values) [82].
Here, every row is an entry in the database, with its properties separated by a comma, semicolon or tab.
The titles of these properties (or columns) are explicitly added to the first row, but this is optional. The
parser will have to be informed about this manually. Adding a new but sparsely used property to the table,
results in extra empty spaces. Since RDF is highly flexible, we need different formats. Some of the most
popular ones are discussed here. The main advantage of using RDF is that adding new data is as easy
as adding new triples. There is no need to alter any existing data (or structure).

RDF/XML

The semantic web as envisioned by Berners-Lee was introduced in 2001. At that time, XML was really
popular, which is the reason why RDF was first serialized as RDF/XML. It can be parsed by any XML
parser, but unfortunately, its verbosity is a huge downside. To encode the graph in XML, the nodes and
predicates have to be represented in XML terms (element names, attribute names, element contents and
attribute values) [10]. This makes it quite hard for humans to read, so other serialization formats have
been proposed.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<rdf:Description rdf:about="http://me.lukasvanhoucke.be/">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:name>Lukas Vanhoucke</foaf:name>
<foaf:workplaceHomepage rdf:resource="http://www.ugent.be/"/>
<foaf:title xml:lang="nl">Ir.</foaf:title>
<foaf:title xml:lang="en">Msc.</foaf:title>

</rdf:Description>
</rdf:RDF>

Listing 2.1: Example of an RDF/XML document. (Based on Lanthaler and Gütl [50])

Turtle

When human inspection is required, Turtle [9] is a better choice. As an extension of N-Triples [28], it
is a compact and natural text form to write down an RDF graph. It is compatible with, and is a subset
of, Notation 3 [11] (N3) and can be used in systems that support N3. The triples are represented as a
sequence of subject, predicate and object, separated by whitespace and terminated by ‘.’ after each triple.
If multiple statements only differ in their object, the , symbol can be used to avoid repeating subject and
predicate. Similar, the ; symbol is useful when you only want to avoid repeating the subject. Listing 2.4
shows an example of an RDF document that was written in Turtle.

RDFa

In 2009, Google introduced rich snippets16. These enhanced search results are generated by looking
at structured data on a web page. The data is added to the page through a form of Linked Data called

16https://developers.google.com/search/docs/guides/intro-structured-data

https://developers.google.com/search/docs/guides/intro-structured-data

2 Related literature 17

RDFa, short for RDF in Attributes [1]. RDFa embeds triples into HTML. Most of the time, this structured
data was already present on the page, although the trip this data takes from its database (an information
silo) into HTML for display is often lossy. Usually, a human knows how to read the document and its
metadata, but the meaning is lost on machines [67]. On a shopping website, an example of this could
be a picture of a specific product. If you explicitly declare this picture as an image of the product, the
computer knows what to display in search results. RDFa also allows adding data that should not be
displayed on the webpage, but might be useful for computers. Using the example of pictures, you could
include details about the photo creator, camera setting information, resolution, location, etc. To make sure
that these machines understand the metadata terms, a shared language is needed. Fortunately, some of
the most popular search engines (Google, Bing, Yahoo!) have created Schema.org, a shared vocabulary
focusing on popular concepts. It cannot be an ontology for everything, but it is broad enough to not focus
on one specific area. However, there does seem to be a slight bias towards commercial and search
engine related terms17. Not everyone was happy with the Schema.org, since they fully defined their own
vocabulary (including already existing terms), resulting in vocabulary lock-in [77]. The rich snippets are
generated by providing markup for specific Schema.org terms. A product could for instance be marked up
with RDFa Lite, a minimal subset of RDFa that can be used for most simple markup tasks [78]), as shown
in listing 2.2.

Lastly, Although RDFa is most commonly used in HTML documents, it is a specification to express struc-
tured data in any markup language with attributes.

<div vocab="http://schema.org/" typeof="Product">

Dell UltraSharp 30" LCD Monitor

<div property="aggregateRating" typeof="AggregateRating">
87
out of 100
based on 24 user ratings

</div>
...
</div>

Listing 2.2: An example of HTML marked up with RDFa Lite and the Schema.org vocabulary. (Source: http:
//schema.org/docs/datamodel.html)

JSON-LD

Web developers often prefer working with JSON18 data. Just like RDFa can build on HTML, web develop-
ers want to use a successful syntax, JSON in this case, and add a semantic layer on top of it. The result
is JSON-LD, a lightweight serialization format for Linked Data documents that is fully compatible with all
traditional JSON tools[50]. For this reason, it is also commonly used to store Linked Data in JSON-based
storage engines [30]. JSON-LD was designed such that RDF and Semantic Web knowledge is not strictly
required. In fact, the keywords @context and @id are all a developer needs to know. With just these
keywords, meaning can be added to existing JSON documents without disrupting their operations. At the
same time, JSON-LD is sufficiently expressive to support all major RDF concepts. As graphs are sup-
ported, it is in fact more expressive than Turtle. The JSON-LD version of listing 2.1 is shown in listing 2.3.

17As can be seen in the full hierarchy of the vocabulary: http://schema.org/docs/full.html
18JSON is short for JavaScript Object Notation, which is a lightweight and language-independent format for data interchange.

http://schema.org/docs/datamodel.html
http://schema.org/docs/datamodel.html
http://schema.org/docs/full.html

2 Related literature 18

{
"@context": {

"foaf": "http://xmlns.com/foaf/0.1/",
"title": "foaf:title",
"name": "foaf:name",
"homepage": {

"@id": "foaf:workplaceHomepage",
"@type": "@id"

}
},
"@id": "http://me.lukasvanhoucke.be",
"@type": "foaf:Person",
"title": [

{"@value":"Ir.", "@language":"nl"},
{"@value":"Msc.", "@language": "en"}

],
"name": "Lukas Vanhoucke",
"homepage": "http://www.ugent.be/"

}

Listing 2.3: Example of a JSON-LD document. It is the JSON-LD version of listing 2.1. (Based on Lanthaler and
Gütl [50])

2.2.5 Querying RDF: SPARQL

Just like regular databases, RDF datasets can be queried using a specialized query language: SPARQL
[62]. An example of a SPARQL query is given in listing 2.5. The query consists of a set of triple patterns (or
basic graph patterns) that are just like RDF triples, with the exception that each of the subject, predicate
and object can be a variable (indicated by the question mark in front of the variable’s name). A subgraph
of the RDF data matches the basic graph pattern if valid terms of this subgraph can be used to substitute
the variables of the basic graph pattern. The result of executing this query will be a list of matching values
for the requested variables. For the data given in listing 2.4, two results are returned. These can be found
in table 2.1.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .

Listing 2.4: Sample RDF data in Turtle notation. (Source: [62])

2 Related literature 19

name mbox
“Johnny Lee Outlaw” <mailto:jlow@example.com>

“Peter Goodguy” <mailto:peter@example.org>

Table 2.1: Query results after executing the SPARQL query in listing 2.5 on the data in listing 2.4. (Source: [62])

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE

{ ?x foaf:name ?name .
?x foaf:mbox ?mbox }

Listing 2.5: SPARQL query to return the names and mailboxes of people that have a name AND a mailbox.
(Source: [62])

Querying the Linked Data Web

Instead of querying known RDF documents, we can also query the whole Linked Data Web. This Web
of RDF links can be understood as a single, globally distributed dataspace [41]. The main advantage
of querying this dataspace is the ability to combine data from various data sources to obtain a more
complete view. However, since the dataspace is open, it is impossible to know all relevant data sources
to answer the query. Hartig et al. [41] presented an approach to discover data that might be relevant
for the query. For this, they used asynchronous traversal of RDF links during the query execution. The
query engine then executes the query over a continuously growing set of relevant RDF documents. Note
however that we still cannot assume to find all relevant data to answer the query. An example SPARQL
query for “Return phone numbers of authors of ontology engineering papers at ESWC09” can be found in
listing 2.6. In general, their approach performs better when the Web of Linked Data contains more links,
since more relevant data might be discovered.

SELECT DISTINCT ?author ?phone WHERE {
<http://data.semanticweb.org/conference/eswc/2009/proceedings>

swc:hasPart ?pub .
?pub swc:hasTopic ?topic .
?topic rdfs:label ?topicLabel .
FILTER regex(str(?topicLabel), "ontology_engineering", "i") .

?pub swrc:author ?author .
{?author owl:sameAs ?authAlt} UNION {?authAlt owl:sameAs ?author}

?authAlt foaf:phone ?phone
}

Listing 2.6: SPARQL query to return the phone numbers of authors of ontology engineering papers at ESWC09
(Source: Hartig et al. [41])

2 Related literature 20

Figure 2.9: Architecture of a distributed semantic social network. The various components are explained in sec-
tion 2.3. (Source: Tramp et al. [81])

2.3 Semantic social networks

The previously mentioned decentralized social networking solutions were still lacking in certain aspects.
Preferably, the application logic of a social network should be fully decoupled from the data to avoid
a vendor lock-in [27]. Interoperability can only be maximized if well-defined protocols and standards
are developed. At this point, social platforms become views over your data instead of fully contained
applications [84]. Another desire is the principle of freedom of expression. In order to allow anyone to say
something about anything, we need a way of identifying everything. This could for example be realized by
linking content through dereferenceable URIs.

2.3.1 Designing a distributed semantic social network

An architecture of a distributed semantic social network (DSSN) was presented by Tramp et al. [81].
Everyone in the DSSN can set up their own DSSN node, or choose a trusted provider to host their data,
much like the pods presented in section 2.1.1. This allows a maximal amount of control over privacy and
ownership. Overall, the data is also more secure since it is difficult to steal large amounts of data when
the data resides all over the web. Similarly, all kinds of cyberterrorism (e.g. denial-of-service attacks) and
censorship become substantially harder in a decentralized context. Because the architecture describes
social networks that use semantic resources without requiring a specific schema, full extensibility and
interoperability is guaranteed.

The architecture is based on three principles:

• The Linked Data principles are followed for data publishing, retrieval and integration. Therefore, all
information is stored as RDF triples.

• User data is decoupled from services and applications. Your own data is stored in your own DSSN
node, while data generated by services, data you do not own, remains at the service’s servers.

• Protocols should focus on their main task: communicate RDF triples between nodes. A specific
workflow or an interpretation of the data should be avoided.

Figure 2.9 shows the architecture (without protocol layer) of which the components will be discussed in
the following sections.

2.3.2 Web ID

Crucial in a social network is the ability to represent yourself. In a semantic context, this is usually done
through a WebID [69]. It is a digital ID of the user, stored as a dereferenceable RDF document. Therefore,

2 Related literature 21

any agent can be uniquely identified by its URI. Apart from identification, it is also used to describe its
owner. For instance, many WebIDs contain links to the WebIDs of their friends. For this, the FOAF
(Friend of a Friend) vocabulary is most commonly used, but users are free to use any vocabulary they
want. FOAF is especially useful in a social context, since it describes basic information about people,
as well as offering specialized terms to describe Social Web internet accounts [23]. Rich social data can
be expressed using the SIOC (Semantically-Interlinked Online Communities) vocabulary [20], which is
an extension of FOAF. Authentication by means of SSL client certificates is also included in the WebID
platform [81]. The WebID document must be available in turtle serialization, but may also be offered in
other serialization formats (through content negotiation). An example of a WebID document is shown in
listing 2.7.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<> a foaf:PersonalProfileDocument ;
foaf:maker <#me> ;
foaf:primaryTopic <#me> .

<#me> a foaf:Person ;
foaf:name "Bob" ;
foaf:knows <https://example.edu/p/Alice#MSc> ;
foaf:img <https://bob.example.org/picture.jpg> .

Listing 2.7: WebID example (in Turtle representation) (Source: Sambra et al. [69])

2.3.3 Storage

A higher degree of decentralization is achieved when more people have access to a data space of their
own. Typically, servers are hosted in a computing center, and can be used for a small charge. Hosting
your RDF data on such a server is not 100% safe, since the computing center staff can still access the
data. Another option is to use software like FreedomBox19, which is able to run a personal server on a
low-end device in a trusted area (e.g. your own house) that runs 24 hours a day [81]. This is more secure,
but more expensive. In the future, smartphones have the potential to become your private data storage
host. If battery issues and connection stability can be solved, smartphones will be able to be connected
for 24 hours a day.

WebBox [83] is an example to realize the concept of “Socially-Aware Cloud Storage” [12], with the intention
to separate data from apps. It is a personal information management server (PIM) that either runs on the
user’s device (e.g. a smartphone), or on a virtual host (e.g. an Amazon S3 instance). It acts as a generic
data-storage layer, allowing the user to store and manage its own data instead of at cloud service silos. It
serves as a repository for data objects: structured data like tweets and Facebook likes, and unstructured
data such as photos and videos. To support both formats, an optimized RDF query store is used alongside
a filesystem-based linked data store. It offers multiple access control levels and can notify people when
shared entities are changed.

2.3.4 Services

In order to have a decentralized social network with the same capabilities as traditional social networks,
multiple services are required.

19http://freedomboxfoundation.org/

http://freedomboxfoundation.org/

2 Related literature 22

Update queries

First of all, there needs to be a service that allows queries to modify and create user resources. SPARQL
is by far the most popular choice.

Ping service

To facilitate friending between two users, or notifying the user when someone places a comment on his
blog post, a ping service is required.

Semantic Pingback Tramp et al. [80] developed the Semantic Pingback mechanism, which allows bidi-
rectional links between documents. A lightweight RPC20 service is advertised in the document using a
ping:to relation, allowing immediate feedback and therefore facilitating social interactions. For instance,
friending is a process of establishing symmetric foaf:knows relations between two users [81]. To ac-
complish this, following steps are taken:

• Alice adds a foaf:knows relation to her WebID. Bob’s WebID is the object of this relation.

• Using Bob’s ping:to endpoint for pingback, Alice informs Bob about this statement.

• Bob receives this message, and can now choose whether he wants to publish his own foaf:knows
relation to Alice.

• If Bob chooses to be friends, a ping is sent back to Alice, informing her about Bob’s updated WebID.

The content of these notifications are the source and destination URIs, indicating the relations between
web resources without containing information about the relation itself. For this reason, these suite of
protocols21 are often called linkbacks, and are only useful when used in the context of Web publishing
[26].

Linked Data Notifications According to Capadisli et al. [26], a Web notification protocol should ideally
conform to all Linked Data design principles. Therefore, they developed the Linked Data Notifications
(LDN) protocol, which allows the notifications to be shared and reused across applications. The notifica-
tions are considered resources and are identified with a unique dereferenceable URI. Any resource may
be the target of a notification: it can be addressed to a target, or contain information about a target. Target
resources are not required to have a receiving service, and can instead advertise an endpoint/inbox for its
incoming notifications. In other words, where Semantic Pingback had a receiver and a sender role, LDN
adds a consumer role to allow applications to read and use notifications without ever being concerned
about sending or storing them. Of course, the consumer can still take up the role of receiver. The inbox
stores a collection of notifications, which are retrievable resources that return RDF data. Because these
notifications are reusable and accessible by all applications, there needs to be a way for consumers to
autonomously find this inbox. Therefore, the inbox should announced by using a ldp:inbox triple. Using
the notifications across different applications also means that a shared vocabulary should be used, which
is not something that this protocol enforces. It is however in accordance with Linked Data principles to
use appropriate vocabularies. As the notifications are persistent, a RESTful architecture is used for CRUD
operations. It also includes a paging mechanism to support multiple page responses when the amount
of notifications becomes too large to handle. Although the notifications are reusable, this does not mean
that they may never be deleted. The receiver retains the right to manage the notifications in whatever way
it wants, for instance by removing notifications that are too old, or marking the notification as read (using
an update operation), or even filtering notification that match a specific pattern.

20Remote Procedure Calling
21Webmention and Provenance Pingback are similar protocols.

2 Related literature 23

Figure 2.10: Graphical representation of the Linked Data Notifications protocol. (Source: Capadisli et al. [26])

WebSub

Some applications request that notifications are sent to them immediately or at intervals. This push
mechanism is also known as publish/subscribe. Using the three actors from Linked Data Notifications,
the notifications are pushed from senders to receivers, and pulled from receivers by consumers [26]. An
example of a publish/subscribe protocol is WebSub (previously also known as PubSubHubbub before be-
ing adopted as a Candidate Recommendation by W3C) [37]. Establishing a connection requires multiple
steps. First, a feed advertises a hub service for anyone to subscribe to. If the feed changes, the hub
service is notified, which in turns broadcasts these changes to all of its subscribers. In the DSSN archi-
tecture, activity feeds and history feeds are the most important types of feeds [81]. Activity feeds publish
all activities with a specific user as the actor, and history feeds are used for resource synchronization (e.g.
keeping caches up-to-date).

Search and index services

In social networks, it is usually not difficult to find a friend’s profile since the servers are centralized.
However, in the context of a DSSN, you cannot simply query the whole Linked Data Web and expect to
find your friend in a reasonable amount of time. Instead, semantic search engines such as Swoogle22,
the first of its kind, can be used. These search engines use similar techniques as standard Web search
engines (e.g. Google, Bing) and are therefore a lot faster at finding relevant RDF documents. Similarly, a
private search service is often used as a fast resource cache for a user’s own private data [81].

2.4 Linked Data Platform

The W3C specification for Linked Data Platform23 (LDP) [4] describes HTTP as a means to implement
CRUD operations (Create, Read, Update, and Delete) on Linked Data resources. An important concept
in this specification is the definition of an LDP resource (LDPR). This can be an RDF or non-RDF HTTP
resource that conforms to certain patterns and conventions. A special kind of LDPR are LDP containers
(LDPCs), which are able to group LDPRs into a single collection. Since these containers are LDPRs
themselves, they can be grouped into another LPDC, resulting in a nested hierarchy. This is similar to
how a file system works [70]. Note that all LDP resources (including containers) have their own URI, as
the Linked Data standards prescribe. Resources can then be found by either advertising their URIs, or by
following links from other items. The main advantage of LDP is the ability to write resources in a generic,

22http://swoogle.umbc.edu/
23https://www.w3.org/TR/ldp/

http://swoogle.umbc.edu/
https://www.w3.org/TR/ldp/

2 Related literature 24

Figure 2.11: Solid architecture showing decentralized authentication and pod servers. (Source: Sambra et al. [70])

Figure 2.12: Pod architecture in Solid. (Source: Sambra et al. [70])

standard and RESTful way, without having to rely on APIs, which are less flexible. In this thesis, Solid will
be used extensively.

2.4.1 Solid

Overview

MIT has been working on a new project led by Tim Berners-Lee. It is called Solid24, an abbreviation
for “social linked data”, and it aims to be a set of conventions and tools to build decentralized social
applications based on Linked Data Principles. It is modular, easily extensible, and it attempts to rely only
on W3C standards and protocols, such as the Linked Data Platform standard. The resulting applications
have multiple advantages: a high degree of interoperability, portability of data between servers, and easy
sharing of data and social graphs between applications [55]. An important factor in realizing this is the
way data is stored. Just like Diaspora [16], it is stored in pods, short for personal online datastore.
The main difference between these pods is that Diaspora uses application-specific pods, while Solid is
application-agnostic and uses the LDP recommendation to store all kinds of data. Finally, authentication
is realized through WebID, although other solutions could potentially be used instead. An overview of
Solid’s architecture can be found in Figure 2.11.

2 Related literature 25

Solid pods

Pods distinguish between structured data (RDF) and unstructured data (images, videos, etc.), can store
data in a hierarchical manner (using directories), and supports authorization through access control lists
(ACLs). A user can have multiple pods. Note that Diaspora’s definition of “pod” corresponds with Solid’s
definition of a “pod server” [70]. Data can be accessed using basic LDP operations (HTTP GET, POST,
DELETE, OPTIONS and HEAD), but Solid also extends this recommendation with some extra features.
For instance, it is now possible to use “*” as a wildcard to find all resources that match the indicated
pattern. Note that this aggregation process is not recursive. SPARQL support can optionally be included
as well. There are two types of queries: local and link-following queries. The first type only accesses
predicates that are located in the user’s pod. The second type is able to follow links between a user’s
pod and other users’ pods. To store RDF data, there are multiple possible implementations. A first
option is to use the file system. All files (i.e. both RDF and non-RDF resources) will be stored as files,
which is sufficient for simple applications that rely on resource-level manipulations, such as reading or
writing a document. For more intensive RDF usage, various efficient RDF engines are available. For fine-
grained access control, the WebAccessControl25 (WAC) ontology is used. Each resource or container
can have its own access control list, otherwise the parent container’s ACL is used. To make apps more
responsive, notification support when a resource has been modified is also included. An overview of the
pod’s architecture can be found in Figure 2.12.

Development of applications

Solid provides multiple libraries to support development of decentralized social applications. To handle
RDF resources, the rdflib.js library (Tabulator’s core library [14]) is available. Specifically for solid,
solid.js abstracts some complex operations, which makes development of Solid application easier.
Modules for authentication and sign-up are also available. The number of libraries and Solid components
is still continuously increasing. Data created by one app could be used by another app, following the
Linked Data principles. Solid allows users to grant access rights to applications, such that for instance
one application can read your data, while another application can also edit and delete your data [68]. Data
can also be federated between applications by passing notifications using the personal data stores.

2.5 Annotation systems

Annotations are pieces of information that are attached to certain locations of interest. In the context
of this thesis, they concern comments of users (in any form) about a certain component of an Open
Webslide, e.g. the title of the third slide, or the video on the fifth slide. As a side-goal of this thesis
is to decentralize annotations on the Open Webslides platform, it is interesting to look at some of the
most relevant existing annotation systems. However, note that these are not the only annotation systems.
For instance, Google Docs, Medium.com and Authorea all offer a centralized annotation system with the
possibility of comment threads, but these systems are proprietary and limited in functionality. They are
called sticky note systems, because they are limited to annotating text.

2.5.1 W3C Web Annotation Data Model

To support a standardized model for annotations, W3C created the Web Annotation Data Model rec-
ommendation [72]. It provides a JSON format for storing, sharing and consumption of annotations in a
software-independent manner. It is simple enough for the most basic annotation tasks (sticky notes), but
allow far more complex operations because of the rich vocabulary. Annotations consist of a body and a

24https://solid.mit.edu/
25https://github.com/solid/web-access-control-spec

https://solid.mit.edu/
https://github.com/solid/web-access-control-spec

2 Related literature 26

Figure 2.13: The Web Annotation Model visualized graphically. (Source: Sanderson et al. [72])

target that it relates to, as illustrated in Figure 2.13. The specification states that there should be zero
or more bodies26, and one or more targets per annotation. The body will often contain text (optionally
marked up, e.g. by HTML), but allows any content to be embedded (e.g. an external Web resource) and
can contain styling hints to help clients render the annotation correctly. The target and body contain a
type parameter (e.g. Text or Video), which helps determining whether downloading the body is useful
or not. Targets can often by referenced by using IRIs with a fragment component, but in other cases,
specific selectors are required. This W3C recommendation describes many additional selectors, such
as the CSS Selector, XPath Selector, Text Quote Selector, etc. An example of an annotation using the
XPathSelector is shown in listing 2.8.

{
"@context": "http://www.w3.org/ns/anno.jsonld",
"id": "http://example.org/anno22",
"type": "Annotation",
"body": {

"type": "TextualBody",
"value": "Comment text",
"format": "text/plain"

},
"target": {

"source": "http://example.org/page1.html",
"selector": {

"type": "XPathSelector",
"value": "/html/body/p[2]/table/tr[2]/td[3]/span"

}
}

}

Listing 2.8: Annotation in JSON-LD with XPathSelector (Source: Sanderson et al. [72])

An interesting property for this thesis is that annotations can be stored in a machine-readable format (i.e.
RDF) with a standardized vocabulary [90]. The standard includes the Annotation Protocol [71], which is a
use of the Linked Data Platform. This means that a Solid server can be used to store annotations. The

26Annotating without a body is usually called highlighting.

2 Related literature 27

Figure 2.14: Difference between architectures of centralized (left) and decentralized (right) authoring, annotation
and notification system. (Source: Capadisli et al. [27])

specific Annotation Containers are an extension of normal LDP Containers in the sense that they are also
ordered (i.e. they are a subclass of OrderedCollection27).

2.5.2 Hypothesis

Hypothesis28 is a free and open client-side annotation plugin that works on all Web pages, without needing
any code on the underlying site. On any page, you can open the browser plugin (or bookmarklet) and
view all annotations. After signing up, you can also highlight and annotate text yourself, or reply to an
existing annotation. The body of the annotations can contain links, images, videos and marked up text.
The annotations can be made public, private or a combination of both by posting them to a certain group
you belong to. It is built on top of Annotator.js29 and tries to follow the Web Annotation Data Model.
It is however limited to page and text annotations and is thus not able to annotate videos and images.
Hypothesis stores its annotations centralized30, which is something we want to change in this thesis.

2.5.3 dokieli

Currently, the closest related project is dokieli31, a decentralized tool to publish, author and annotate
articles [27]. It is a client-side application that is able to interact with Linked Data anywhere on the Web.
It is completely independent from server-side software. Therefore, it transforms the current “Read-only”
web into a “Read-Write Web”. To participate, users can use their WebID profile, and store annotations
in their own personal on-line storage (pod), which complies with the Solid protocol. By making use of
Linked Data Notifications (LDN), communication can happen in a fully decentralized manner. dokieli’s
architecture compared to a centralized architecture is made clear in Figure 2.14.

With a single click, a user can create a new dokieli document. Likewise, the reader of a dokieli document
can choose to save a copy in his own pod. Therefore, dokieli is said to be self-replicating. Semantics are
added to dokieli documents by embedding triples as RDFa, which avoids duplication of data and allows
the document to be parsed as a graph without needing dokieli as a dependency. The appearance of
the document can easily be changed, since it is simply a matter of applying a different CSS3 stylesheet.
Publishing a document is done in the same way as traditional Web pages, i.e. by using Web servers. The
documents can easily be edited, since dokieli uses the Linked Data Platform for its CRUD operations.

All users can interact with the document, for instance by liking or commenting on the document as a
whole. Furthermore, they can also interact with selections of the document, i.e. an annotation. These
interactions are stored in the user’s own personal storage, which ensures that the user effectively owns
their comments etc. For users that do not have their own pod, the document author can point to a storage

27https://www.w3.org/TR/activitystreams-core/#collections
28https://web.hypothes.is/
29http://annotatorjs.org/
30Their API can be found at https://hypothes.is/api/
31https://dokie.li/

https://www.w3.org/TR/activitystreams-core/#collections
https://web.hypothes.is/
http://annotatorjs.org/
https://hypothes.is/api/
https://dokie.li/

2 Related literature 28

service of his own, which can be used at the cost of less ownership. The author of the document is then
notified using the LDN protocol, and can optionally take action.

Chapter 3

Problem description

This thesis covers the differences between file-based and query-based access, specifically in the context
of annotations. The end results of this thesis may help the reader choose an access technique for his
decentralized social application.

3.1 Accessing Linked Data

The centralization of current-day’s social networks results in two large consequences: data cannot be
reused across applications, and the user loses ownership over the data. These problems can be solved
by making use of Linked Data technologies. As stated before, Linked Data allows different applications to
work with the same data. By storing this data in a personal data pod, the end users can choose where
their data is kept.

Although Linked Data uses the same syntax (i.e. RDF), triples can be accessed in multiple ways. A first
option is to store each set of coherent triples as a file, resulting in multiple files. Accessing a triple then
requires collecting the whole file in which the triple resides. This is a file-based access technique. Such
a file contains triples that describe an entity or concept. A hierarchic directory structure allows closely
related and similar files to be placed in the same directory, which is useful for applications that want to
find all similar files. For instance, a messaging application could store all its messages in the /messages/
directory, allowing a different messaging application to easily find all the messages without having to look
at every single file in the user’s datapod. At the time of writing, Solid uses this access technique by default
and will therefore be used as this technique’s implementation during the course of this thesis.

A second option is to store all triples in the same graph on a SPARQL endpoint, and use queries to
collect the relevant triples. To achieve the same basic functionality as Solid, custom middleware needs to
be inserted between the data store and the data-requesting user. The user should not be able to write
SPARQL queries himself, but instead let the middleware generate these. The query is determined by
the endpoint of the user’s request. For instance, when a user wants to request all information about his
friends, he would send a GET request to the RESTful /friends endpoint. In this thesis, this type of
access will be referred to as graph- or query-based access.

Alternatively, a combination of the two techniques is another possibility. Here, all triples that would belong
to a file when using file-based access techniques, are instead stored in their own graph. In other words,
instead of storing all data in a single graph, a graph is created per file. To access the triples, queries
can be executed to return specific data or to send the whole graph. This type of access technique is not
covered in this thesis, as it is very similar to file-based access.

29

3 Problem description 30

3.2 Goal of the thesis

All of these techniques can be used to implement the Linked Data Platform (LDP) specification. Solid
implements this by design, but is only available for file-based access at the time of writing. In the future,
Solid should also be able to work with other access techniques (e.g. SPARQL endpoints). The custom
middleware for query-based access will implement the LDP features that are necessary to demonstrate
the differences between file-based and query-based access techniques, along with more features that are
not LDP-spec compliant.

During this dissertation, the goal is to find a comprehensive answer to all of the following research ques-
tions:

• Q1: What are the advantages and limitations of using graph-based techniques over file-based
techniques in the context of decentralized collection of annotations?

• Q2: How does the number of annotations influence their collection time when using graph-based
and file-based access techniques?

• Q3: How do these access techniques compare on user-friendliness and difficulty of implementa-
tion?

• Q4: How are these techniques reusable in social application contexts other than annotations?

Using the gathered knowledge, following hypotheses can then either be confirmed or falsified:

• H1: In the context of annotations, query-based access has faster retrieval of annotations

• H2: File-based access techniques can reuse existing filesystem-based techniques to make certain
tasks easier, such as watching for updates using directory watchers or changing data using common
text editors.

• H3: File-based access techniques can easily be reused in other social contexts, while this is harder
for query-based access techniques.

• H4: The differences between file-based and query-based access techniques are still present when
they are used for decentralized social applications other than annotations.

To test these hypotheses, we implemented decentralized annotations, as they are considered to be social
applications. Here, annotations have to be stored on the datapod of the user instead of a central server.
By providing the link to the annotation to, for instance, the website, the annotation data can be collected.
To assure compatibility between different applications, annotations should be stored as Linked Data. This
decentralized annotation system should be able to work on top of the Open Webslides platform. It should
also be possible to effortlessly adapt the system to work with other Web-based platforms.

Chapter 4

Analysis

In this chapter, file-based and query-based access are compared in a theoretical manner in order to as-
sess their differences and similarities. In most cases, decentralized annotations will be used in examples.
In some cases, a test setup was implemented in order to showcase the possibilities. These setups are
discussed in chapter 5.

4.1 Decentralized Annotations

4.1.1 Annotations as Linked Data

Most websites that implement some sort of annotation system, store annotations on their own servers.
In this thesis, they have to be stored in the user’s datapod instead. To allow interoperability between
different applications, the annotations will be stored as Linked Data. Fortunately, the Web Annotation
Data Model, a W3C recommendation for annotations as was discussed in section 2.5.1, also includes a
vocabulary to use annotations in a Linked Data context. The vocabulary has its namespace at http:
//www.w3.org/ns/oa# and is commonly prefixed as oa:. This model defines many ways to select
annotations, and allows multiple properties. Implementing an annotation system that is able to deal with
the whole specification would take a long time and is not part of this thesis. Instead, a basic structure
is extracted that can be used in many occasions. At its core, it uses the TextQuoteSelector to select
the highlighted text and its prefix and suffix. The basic structure of such an annotation is displayed in
Figure 4.1. The body of the annotation can be left empty to represent a simple highlight of some text. It
can also have a TextualBody for which the value represents a comment that is linked to the highlighted
text, e.g. a sticky note. In the end, an annotation should look like the one found in Listing 4.1. In popular
annotation systems, it is often possible to attach additional comments to annotations. In this case, the
selector would point to an existing annotation. This has not been implemented for this thesis, since
comments are conceptually very close to annotations.

31

http://www.w3.org/ns/oa#
http://www.w3.org/ns/oa#

4 Analysis 32

Figure 4.1: Basic annotation structure using the TextQuoteSelector. Here, the word “annotation” would be high-
lighted. (Source: https://www.w3.org/TR/annotation-vocab/#textquoteselector)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix oa: <http://www.w3.org/ns/oa#>.
@prefix terms: <http://purl.org/dc/terms/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

<> a oa:Annotation;
terms:created "Thu, 13 Feb 2018 10:00:00 GMT";
terms:creator <https://lukas.vanhoucke.me/profile/card#me>;
rdfs:label "Lukas Vanhoucke created an annotation"@en;
oa:hasBody <#comment1>;
oa:hasTarget <#target>;
oa:motivatedBy oa:commenting.

<#comment1>
a oa:TextualBody;
rdf:value "tl;dr"@en.

<#target>
a oa:SpecificResource;
oa:hasSelector <#fragment-selector>;
oa:hasSource <http://www.example.com/blog/page1> .

<#fragment-selector> a oa:FragmentSelector;
oa:refinedBy <#text-quote-selector> .

<#text-quote-selector>
a oa:TextQuoteSelector;
oa:exact "annotation"@en;
oa:prefix "this is an "@en;
oa:suffix " that has some"@en.

Listing 4.1: Example Turtle file containing the data for an annotation.

https://www.w3.org/TR/annotation-vocab/#textquoteselector

4 Analysis 33

4.1.2 Writing and reading annotations

Annotations will typically be generated by some kind of annotation system/application, which can be
provided by the website or by a client-side plugin. The annotation is always stored in a data pod of the
user’s choice. This can either by his/her own datapod, a shared datapod or a datapod that is announced
by the website1. If the user’s datapod has a hierarchical structure, the annotations should be saved in
the same directory, which exclusively holds annotations. This directory is usually announced by using
the oa:annotationService predicate. This could for example be added to the user’s WebID, or to the
website by embedding it as RDFa.

To “upload” an annotation, the website needs to be notified that an annotation for the website was created.
This can be accomplished by sending a Linked Data Notification to website’s ldp:inbox. This inbox
should be announced by the website (again, preferably through the use of RDFa). Upon receiving the
notification, the website will first check whether the target source is indeed a URL that resides on the
websites domain. If this is the case, the annotation is NOT stored on the website’s server but instead a
link is added to the website’s list of annotations.

Annotation applications could also offer the option to keep an annotation private. For instance, a discus-
sion group could exchange annotations with each other, without anyone else being able to see them. In
this case, the notification should not be send to the server’s inbox, but to an inbox of the server where the
discussion group’s list of annotations (i.e. oa:annotationService) resides.

To display the annotations, they first have to be collected. For this, two options are available. The first
option is to let the website collect the annotations and dynamically generate HTML code to display the
annotations. This is especially useful because it allows caching, as will be discussed in section 4.7.
The second option is to expose a list of relevant annotations and let the users collect the annotations by
themselves. This option could be more useful for third-party client-side annotation plugins such that the
website does not have the need to implement an annotation system of their own. A website could also
implement the two options to give users a choice between the website’s own annotation system and any
third-party annotation system the user would like to use instead. When collecting private annotations, only
the second option is viable, since the website does not have access to the annotations. In the case of
discussion groups, the list of annotations should be requested from the owner of the discussion groups.
Ideally, the third-party annotation system should allow multiple URLs to such lists to be stored, and collect
all annotations at once.

When a user decides to react to an annotation, he creates his own annotation and targets the annotation
he wants to react to. Optionally, a Linked Data Notification can be sent to the owner of the targeted
annotation, or even to all users that have reacted to this annotation, notifying them of a new comment.
As this notification is sent to the user’s inbox, the datapod server can process the notification and take
actions. It could for instance send an e-mail to the owner notifying them of a comment, or it could update
the original annotation so that it includes links to all comments.

To demonstrate the effectiveness of the theory above, an annotation plugin was created. Since the imple-
mentation relies on items that will be discussed in the following sections, the plugin’s implementation is
explained later in section 5.5.

4.2 Data manipulation

Both the file-based and query-based setup expose data in a RESTful way, although they are fundamentally
different in the way data is manipulated. In the following sections, some of the largest differences related
to data manipulation are discussed.

1Note that in the last case, the user is no longer guaranteed to be the rightful owner of the annotation.

4 Analysis 34

4.2.1 Retrieval of data

File-based access techniques are only able to collect whole files. Querying the data usually happens
client-side, after collecting the files. There are some exceptions to this rule, with the most common one
being ACL, as this is often stored as a WebAccessControl RDF file. To interpret it, the server will have
to query this RDF file. ACL will be extensively discussed in section 4.6. File-level granularity has both
advantages and disadvantages. The most important drawback is the fact that if files are large, the whole
file still needs to be sent over the network, which might lead to network congestion in extreme cases.
This is especially cumbersome when only a few fields are required by the application. Some applications
require collection of multiple files, which often takes a couple seconds if the number of files is large. In
some cases, the client-side querying process may take some time, depending on what query needs to
be executed. Client-side query engines (such as rdflib.js) may be less efficient at querying compared
to specialized SPARQL endpoints. However, client-side querying is also an advantage, since it reduces
stress on the server, resulting in better availability and lower server costs. Public SPARQL endpoints suffer
from frequent downtimes [24]. This is caused by clients requesting the server to run complex queries, for
instance by including multiple OPTIONAL statements. Not having to run these queries server-side is a
good argument towards using a file-based access technique. However, note that query-based access
does not allow the users to write their own queries, so the back-end can be configured to use more
optimal queries [66]. Also note that there are other alternatives that solve this problem but are out of
scope for this thesis. Triple Pattern Fragments [85] is for instance a good middle ground between server-
side and client-side complexity. Another strong point for file-based techniques is that social applications
often make use of self-contained RDF resources, and use most of the information a file provides. In the
case of annotations, each annotation is represented as a single file, and contains practical information so
that an annotation system can use this information to dynamically generate corresponding HTML code.
Not all information in the annotation’s RDF file might be used. However, as Linked Data is meant to be
usable for multiple end-applications, providing all fields gives developers the opportunity to choose which
fields to use.

In contrast, query-based techniques use SPARQL SELECT queries to retrieve certain predefined fields.
An example of such a query is given in Listing B.2, where it is stored in variable show all annota-
tions query. Since only field values are returned, less information is available compared to file-based
techniques. However, application will only use these relevant fields anyway, so more information is not
necessary. An example of the server’s response is shown in Listing 4.3. Retrieving complete files (i.e. file-
based access) is simple as it requires the exact same process for each file (e.g. check ACL and send file if
authorized), while requesting a query-based resource (i.e. query-based access) requires a specific query
for each request. This query is determined by the server, the end-user will never have to write queries
himself. This means that the server code has to be aware of what the files look like in order to expose an
interface to the data. In other words, the server needs application knowledge in order to have meaningful
queries. Some resources are more complex than others and will therefore also require more complex
server code. For instance, annotations are composed of a tree-like structure as shown in Figure 4.1. A
query to retrieve all annotations on a specific website would then look like the one shown in Listing 4.2.
Since only fields are returned, the structure is lost in the response, i.e. the client will not be able to recon-
struct the structure in Figure 4.1 without knowing in advance how the server stores annotations. If triples
are really required, CONSTRUCT statements could be executed instead, but this requires an additional
server interface. Sending only the relevant fields will result in less network traffic. The largest advantages
of using query-based techniques, is having the possibility of executing complex queries (e.g. unions) and
easily applying filters. This will become clear in the following sections. It does come with the price of more
stress on the server, which is more expensive and may result in less availability. However, as clients are
not able to write (potentially extremely complex) queries themselves, the risk of overloading the server is
reduced.

4 Analysis 35

prefix oa: <http://www.w3.org/ns/oa#>
prefix dcterms: <http://purl.org/dc/terms/>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select DISTINCT ?annotation ?target ?text ?creator ?date ?exact ?prefix ?suffix
where {

?annotation a oa:Annotation .
?annotation oa:hasTarget ?target .
?target oa:hasSource <{{URL}}> .

?annotation dcterms:creator ?creator .
?annotation dcterms:created ?date .
?annotation dcterms:created ?date .

OPTIONAL {
?target oa:hasSelector ?selector .
?selector a oa:FragmentSelector .
?selecter oa:refinedBy ?refinedselector .
?refinedselector a oa:TextQuoteSelector .
?refinedSelector oa:exact ?exact .
?refinedSelector oa:prefix ?prefix .
?refinedSelector oa:suffix ?suffix .

}

OPTIONAL {
?annotation oa:hasBody ?body .
?body a oa:TextualBody .
?body rdf:value ?text .

}
}

Listing 4.2: Query to retrieve all annotations on a specific website. The {{URL}} tag is replaced by the actual URL
of the website.

4 Analysis 36

{
”head”: {

”vars”: [”source”, ”text” , ”creator” , ”date” , ”exact” , ”prefix” , ”suffix”]
} ,
”results”: {

”bindings”: [
{

”source”: { ”type”: ”uri” , ”value”: ”https://example.com/blog/42.html” } ,
”text”: { ”type”: ”literal” , ”xml:lang”: ”en” , ”value”: ”This is a simple annotation.” } ,
”creator”: { ”type”: ”uri” , ”value”: ”https://lukas.vanhoucke.me/profile/card#me” } ,
”date”: { ”type”: ”literal” , ”value”: ”Fri, 13 Apr 2018 12:49:31 GMT” } ,
”exact”: { ”type”: ”literal” , ”xml:lang”: ”en” , ”value”: ”text to highlight” } ,
”prefix”: { ”type”: ”literal” , ”xml:lang”: ”en” , ”value”: ”text before highlighted text” } ,
”suffix”: { ”type”: ”literal” , ”xml:lang”: ”en” , ”value”: ”text after highlighted text” }
}

]
}
}

Listing 4.3: JSON response that is received by the client after querying for a specific annotation that resides in the
single-graph SPARQL endpoint. Only selected fields are returned.

Although the responses are different, both server types’ resources are accessed in the same way, i.e. with
a standard GET request. However, when query-based access is used, more than one annotation can be
returned at once.

Some resources may have links to resources on other servers that have to be collected, or an application
might request resources from multiple locations. For instance, a website might provide the user with a list
of annotations URLs, expecting the user to collect the annotations by himself. In this case, the annotations
could reside in many different datapods all over the world. In a scenario where some datapods may be
offline, or some are slower than others, data should be collected and processed asynchronously in order
to prevent a bottleneck.

4.2.2 Manually manipulating data

Sometimes, it can be useful to manually edit some information. For instance, you’ve been using a contact-
list application, but it does not offer editing functionality. If you want to edit a contact’s information, you will
have to manually edit the RDF triples in your datapod. If your datapod stores data as files, changing the
triple is really easy. If the datapod is hosted on your local computer, you can simply browse to the location
of the triple file, and edit the triples using any text editor. If it’s hosted on a remote computer and you can
remotely log in, the same steps have to be followed. If it’s hosted remotely and the server does not provide
a login, you will have to rely on the file-based access technique’s data editing interface. This interface may
offer the same basic functionality as the file-system itself, while simplifying more difficult tasks, such as
changing the ACL of a file. Some capabilities of Solid’s interface are demonstrated in Figure 4.2.

Editing information that is stored in a single SPARQL endpoint’s graph can be more difficult. There is no
inherent mechanism (such as a file-system) to easily change a triple. However, an interface like the one
Solid provides, is still a valid option. Implementing the interface might require some extra work, since
SPARQL queries have to be generated for all of its functionality. For instance, deleting a file by making
use of the operating system’s file system, is simpler than deleting it using SPARQL. Indeed, SPARQL
requires you to specify exactly which triples to delete, and therefore you will first have to collect all the
relevant triples that would otherwise be bundled in the same file.

4 Analysis 37

Figure 4.2: Solid’s editing interface. The first file in the Public directory can easily be removed, the third file demon-
strates editing capabilities.

4.2.3 Hosting public resources

It can occur that a user wants to host RDF data without having access to a datapod. With file-based
access, this is easy. Files that are uploaded and stored on Dropbox, or any other file storage cloud
platform, can just as easily be accessed as files in a datapod. This is very useful for public resources,
since cloud platforms (as opposed to datapods like Solid) do not offer access control functionality, as they
are unable to process ACL RDF files. There is also no certainty about the data’s origin or author, whereas
data that resides in a user’s public datapod implicitly indicates that the owner of the datapod is the author
of the file.

Hosting resources as RDF data in a public SPARQL endpoint’s graph is not a possibility, since there
simply are no public SPARQL endpoints that you can write to. Even if they would exist, they would need
to expose an interface to the data through application-specific queries. In conclusion, hosting the data as
files is a lot easier.

4.2.4 Non-RDF data

Some of the most popular social media platforms are Facebook, Instagram and Snapchat. These three
networks are largely driven by photos and videos, which cannot be represented as RDF resources. LDP
allows both RDF and non-RDF resources and treats them in the same way, except for the fact that non-
RDF resources cannot express their state as RDF. Therefore, HTTP methods such as GET, PUT, etc.,
have different requirements. For instance, a GET request’s response headers may include different rep-
resentation formats (e.g. turtle, RDF/XML), while non-RDF resources only have a single representation
format. Storing non-RDF data is easy on file-based setups such as Solid. Since they can also be re-
quested by the usual HTTP methods, they are treated as regular LDP resources (if LDP is used) and can
be stored in the same directory as RDF resources. A unique URI is generated for the file, so it can be
included in other RDF documents.

Storing non-RDF data in a SPARQL endpoint’s graph is harder. It’s not possible to store these resources in
the graph without for instance transforming them by using Base64 encoding. This is not optimal. It is better
to include links to non-RDF resources, which means that the resources have to be hosted somewhere
else. A hybrid architecture where non-RDF data is stored as files, and RDF data is stored inside the
graph, could be a practical solution.

4 Analysis 38

4.2.5 Current Web

Both the file-based and the query-based access setups are implemented in a RESTful way, meaning that
all resources are accessed with their own URI, and accessing them twice in a row will always result in
two identical responses. Therefore, they are both equally compatible with many current Web servers. For
instance, caching2 requests is possible for both access types. However, file-based access follows the
same paradigm of simple file-servers (e.g. Apache, NGINX). Although there exist more types of servers,
file-servers are the most common case, i.e. they mirror the file system over HTTP. Due to the vast amount
of knowledge surrounding this type of server, implementing a new file-based access server is easier
compared to setting up a query-based access server.

4.3 Detecting updates

In some cases, it can be useful to have a way of knowing when a resource is updated. In particular,
the Linked Data Notifications specification (LDN) [26] would benefit from being able to process new or
updated resources as they enter the server’s inbox. This inbox can be discovered by looking for a website’s
or profile’s ldp:inbox predicate. For instance, when someone sends a friend request to some user, a
Linked Data Notification is sent to this user. This in turn could trigger an app notification on the user’s
phone. However, this requires knowing that a notification was added to the inbox. Detecting this can be
accomplished in 3 ways. First, the state of the inbox can periodically be polled, which is a possibility for
both server types. Depending on the polling rate, processing updates might happen with a significant
delay. A better option would be to use a subscription model. The server can inspect all incoming packets
and see whether they are being watched by the user, for instance when the target directory is the user’s
inbox. In this case, the corresponding event handler is called. This is possible for both access techniques.
The query-based test setup uses Jena, which can capture updates using the SparqlUpdate module3.
File-based servers can use mechanisms such as ActivityPub or WebSub. The Solid specification supports
live updates through WebSockets4, to which clients can subscribe and receive changes in real-time. The
final option is to attach a file or directory watcher to the resource you want to track. This is only possible
for file-based servers. This option is perhaps easier for users that use a server without support for the
other options. It could also potentially offer more flexibility/granularity to the end user, again depending on
the server’s implementation. It is showcased later in Section 5.2.

4.4 Directories

4.4.1 Hierarchic structure

A user’s datapod can contain large amounts of data. To avoid losing track of what data belongs together,
some kind of structure is necessary. That is why modern operating systems implement a hierarchical file
system. Linked Data is machine readable, which implies that a machine should also know where to find
the data. That is why related data is usually stored in the same (nested) directory. The exact location
can be set in stone by some protocol (e.g. all messages have to be stored in the ˜/messages/ location),
which is not flexible, and is problematic when the same directory is used for two different protocols. A
better option is to announce a link to the relevant directory. This principle is used for LDN’s inbox and
for WebAnnotationModel’s annotation service. These two specifications require triples with respective
predicates ldp:inbox and oa:annotationService to be added to a user’s profile, or to be announced
by a web page (e.g. embedded as RDFa). The objects of the triples then point to the correct location where
respectively notifications and annotations have to be stored. Some additional metadata information can be

2More information about caching can be found in section 4.7.
3https://github.com/SmartDataAnalytics/jena-sparql-api/blob/master/doc/SparqlUpdate.md
4https://github.com/solid/solid-spec/blob/master/api-websockets.md

https://github.com/SmartDataAnalytics/jena-sparql-api/blob/master/doc/SparqlUpdate.md
https://github.com/solid/solid-spec/blob/master/api-websockets.md

4 Analysis 39

added to the directories, such as only allowing a specific type of resource to be added to the directory (e.g.
ldp:constrainedBy when LDP is used), or what access control rules to apply. An additional advantage
of using explicit structure is the ability to use relative URIs in your triples. The LDP Best Practices and
Guidelines [57] recommend this, because relative URIs are shorter than absolute URIs. They also make
the resource more portable, since the hostname is omitted. This is especially convenient in development,
where a development (with localhost) and production (with the actual domain name) setup is often used.
The difference between relative and absolute URIs is demonstrated in Listing 4.4 and Listing 4.4.

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.

<http://example.org/container1/>
a ldp:Container, ldp:BasicContainer;
dcterms:title "A very simple container";
ldp:contains

<http://example.org/container1/member1>,
<http://example.org/container1/member2>,
<http://example.org/container1/member3>.

Listing 4.4: Using LDP to achieve a directory structure. (Source: [57])

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.

<> a ldp:Container, ldp:BasicContainer;
dcterms:title "A very simple container";
ldp:contains <member1>, <member2>, <member3> .

Listing 4.5: Using relative URIs to represent the same data as in Listing 4.4. (Source: [57])

4.4.2 Directories in file-based and query-based servers

Servers that implement their Linked Data as files can use the operating system’s file system for organi-
zation. Here, query-based servers are at a disadvantage, since they initially do not have any inherent
structure. All data is stored in the same graph as an ocean of triples. Still, through queries, relevant triples
can be retrieved. For instance, finding all annotations for a specific URL in this unstructured graph can
be done by using the query in Listing 4.2. This is not possible in a file-based scenario, since you cannot
efficiently query all files at once. These query types make it so that a directory structure is not strictly
necessary. However, sometimes it can be a requirement, like when trying to implement the interface of
section 4.2.2. If you want this interface to mimic Solid’s interface – a directory structure with hierarchic
ACL – an artificial directory structure inside the graph will be necessary. Where Solid already implements
LDP’s directory specification by design, a query-based server can also implement this manually. In this
case, collections of triples should be stored as Linked Data Platform Resources (LDPRs). This is the
equivalent of Solid’s files. Each LDPR is then stored inside an LDP container, which is the equivalent of
solid’s directories. Again, to obtain a hierarchic structure, LDP containers can contain other LDP contain-
ers. The container stores its content by keeping links to its LDP resources and containers by using the

4 Analysis 40

ldp:contains predicate. This is shown in Listing 4.4. An implementation of a directory structure for the
single-graph server will be discussed later in Section 5.3.

4.5 Intersections

4.5.1 File-based intersections

When a file-based server is used, each annotation is stored in a separate file. This allows ACL at
annotation-level granularity, makes it easier for the user to modify specific annotations, and a single link
per annotation results in only collecting annotations that are relevant (as seen in section 4.1.2). Once
an annotation is created for a certain webpage, the webpage should add the annotation URI to its list of
annotations. In this case, collecting all relevant annotations is the simple and efficient process of request-
ing a list of annotations that are linked to the webpage, and collecting them. But what if an application
wants to find annotations that have a specific field value? For instance, finding annotations for which the
comment value contains certain words. In this case, all annotations will have to be collected and queried.
In case the number of annotations is large, collecting all of them takes a long time (typically over 50ms per
annotation5. After the collection process, the annotations still have to be queried. There are two possibili-
ties. For simple queries like the “searching” example, querying each annotation separately is an option. If
this happens frequently, indexing can be a solution, but is not always applicable. In short, indexing uses
an additional file which contains links to all annotations, along with their specific field value, allowing the
user to query this single file instead. As annotations are self-contained (i.e. they do not contain links to
other annotations), simple queries are often sufficient. However, sometimes complex intersections have to
performed. Assume for example that someone wishes to collect all annotations for which the creator’s age
is over fifty years. In such cases, it is more efficient to collect all relevant information (e.g. all annotations
and all WebID profiles), aggregate them into a single graph, and run a query over this graph. Although
client-side querying is slower than using specialized SPARQL endpoints, collecting the information is still
the bottleneck.

4.5.2 Intersections over a single graph

When all information is stored in a single graph on a SPARQL endpoint, executing intersecting queries be-
comes a lot easier. First of all, there is no need to send many different files over the network, since queries
are executed server-side. More importantly, having all data in the same graph means that SPARQL can
be used to easily query ALL data without having to construct a new graph. For instance, using the same
“searching” example of previous section, all results can be collected using the query in Listing 4.6. This
query needs only a couple milliseconds to find all results.

5Using a remote server and a 50 Mbps connection. See also section 6.1.2.

4 Analysis 41

prefix oa: <http://www.w3.org/ns/oa#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?annotation ?text where {
?annotation a oa:Annotation .
?annotation oa:hasBody ?body .
?body a oa:TextualBody .
?body rdf:value ?text .
FILTER regex(?text, "{{CONTAINS}}") .

}

Listing 4.6: Query to find annotations of which the body value contains a specific word or sentence. {{CONTAINS}}
is replaced by the search terms.

The implementation of a test-setup for intersections over file-based and query-based graphs is further
discussed in Section 5.4.

4.6 Access control

4.6.1 File-based ACL

File-based querying is less flexible than querying a single SPARQL endpoint. A great example of this
is the way access control can be implemented. Solid uses WebAccessControl (WAC) to allow or deny
access to resources. This uses an ontology with simple rules to determine whether users or groups,
identified by their WebID, can read a resource, write or append to it, or a combination of the three. Admins
or resource-owners also have control rights, which means that they can edit Access Control List (ACL)
resources. Although each file is bounded by an access control list, it is not required to generate a new ACL
file for each resource. Instead, WAC uses a hierarchic access control structure, which requires at least
a root ACL. The corresponding ACL will be the most specific ACL, e.g. if such a resource was created
for a single file, it will take have priority over any other ACL. If it was created for a specific directory, all
resources in this directory will use this ACL instead of the root ACL (except if there are more specific
ACLs). An example of such a resource can be found in Listing 4.7. It affects all files in a user’s Solid
inbox. Just like an e-mail inbox, all users except for the owner can only send new files to the inbox.
Clearly, the granularity of WAC is one file. Sometimes, it can be useful to have an even finer-grained ACL
where access to specific fields can also be controlled. For instance, logged in users could be able to see
the textual content of an annotation, while guests would only see highlighted text.

4 Analysis 42

@prefix acl: <http://www.w3.org/ns/auth/acl#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.

<#owner>
a acl:Authorization;
acl:agent

<https://lukas.vanhoucke.me/profile/card#me>;
acl:accessTo <./>;
acl:defaultForNew <./>;
acl:mode

acl:Read, acl:Write, acl:Control.

Public-appendable but NOT public-readable
<#public>

a acl:Authorization;
acl:agentClass foaf:Agent; # everyone
acl:accessTo <./>;
acl:mode acl:Append.

Listing 4.7: WebAccessControl ACL file for a typical Solid inbox.

4.6.2 Graph-based ACL

WebAccessControl can also be implemented within a single graph on a SPARQL endpoint that stores all
relevant data. For hierarchical ACL to work, a directory structure needs to be present. An implementation
of this can be found in section 5.3. Otherwise, a single root ACL controls access to all resources in the
graph. Therefore, using a SPARQL endpoint has no disadvantages concerning ACL compared to using
Solid. However, having all data in a single graph allows more complex queries, which can be used to
implement more complex ACL rules as well. For instance, one could request all annotations except for
annotations that have a specific admins-only page as target. When the WebID content of users is also
cached in the graph, even more is possible, such as disallowing people to see your annotations when they
are friends with someone you dislike.

4.6.3 Development of an ACL extension

For this thesis, an experimental extension to WebAccessControl was developed to demonstrate these
two types of additional ACL rules. In the first phase, the ACL is tested on a graph which contains
user information and relations between users. In the second phase, the new ACL is adapted to work with
annotations, which is more complex. In the experimental implementation, a single ACL for the whole graph
is used. In future work, this could be extended by, for instance, implementing a directory structure or by
adding triples that point to the correct ACL. In the examples, two different ontologies and their respective
prefixes will be used. The first one is acl, which is the well known WebAccessControl ontology. The
second one is new-acl, which is a new, custom ACL ontology that extends the WAC ontology.

Filtering fields

A graph consists of many triples, each of which is considered a field. The type of field is determined
by the predicate, which defines a relation between the subject and the object. With file-based access
techniques, files are returned as a whole. The content inside this file is not modified when sending it

4 Analysis 43

to the user, i.e. all fields are accessible by anyone with access to the file. With query-based access
techniques, a selection has to be made. One could argue that querying for all (?s, ?p, ?o) triples
returns all data, but this quickly becomes unmaintainable when the graph grows and contains data of
multiple applications. Therefore, endpoints such as /user-information usually generate a query to
collect all users and return the relevant fields. In some cases, it can be useful to determine which fields
can be accessed by the user or application. For instance, a phonebook application should only be able
to see the names and phone numbers of your friends, and a birthday reminder app should only see the
names and the birthdays of your friends.

In the graph of the first phase (Listing 4.8), simple relations with mostly literal field values are used. The
graph contains the data of four different people that are all related to the first person (Lukas). A query
to receive the information about these persons would then return a name, address, phone number and
birth date. To show the server that these are the fields that need to be returned, the corresponding ACL
(Listing 4.9) lists each of them as a new-acl:possibleField. Since these fields are explicitly mentioned,
it is easy to determine which fields specific users may access. For this, there are two approaches: either
all fields can be accessed by default, except for some blocked fields that are mentioned in the ACL, or no
fields can be accessed by default, except for the fields that were mentioned in the ACL. The first option
is more useful when all users can access most of the fields, while the latter option is more restrictive and
assumes that users do not have a lot of access by default, which is also the case in this example. In
this thesis, it was opted to use the latter option as explicitly giving permission to see fields is easier to
implement. In the example, the owner can see all fields, which is shown as following triple in the ACL:
#owner new-acl:allowsField new-acl:allFields. Other users can only see the :hasName field
by default, and the person with WebID https://random.person.me/profile/card#me can see both
names and birth dates. The server will generate different queries for each type of user, selecting only the
user’s allowed fields. The query for default users is displayed in Listing 4.10, which clearly selects nothing
but the names of all persons.

Filtering records

Entire results can also be filtered. For instance, instead of sending the information of Lukas, Sarah and
Anne-Laure, only the information of Lukas and Anne-Laure is sent. This is horizontal filtering, whereas in
the previous case vertical filtering was used. Using the graph of the first scenario, one could for instance
disallow a certain user to see persons who have Sarah as name. Things really start to get complex when
this user is also not able to see people that are a Tinder date of Lukas. This truly shows the advantage
of using query-based access over file-based access, since in the latter case, all persons have a file of
their own, and filtering out the Tinder dates would require accessing the file of Lukas beforehand. Even
more complex rules might be very impractical when using file-based querying, for example all persons that
share their name with another person are filtered when some user requests the information of all people.
This would require collecting all persons to determine the persons that should be filtered. In contract,
using SPARQL to query a single graph is straight-forward and efficient. Very complex rules like the last
one are not supported by the ACL extension shown in this thesis, but serves merely as an example of
what is possible with future ACLs.

Again, the choice between inclusive and exclusive filtering needs to be made. For this thesis, the assump-
tion is made that the number of returned results is usually close to the total number of possible results,
and only few records are filtered away. In other words, exclusive filtering will be used. This is realized
by adding restrictions to the ACL. In the first phase, these are rather simple and consist of a predicate
(new-acl:restrictPredicate) and either a subject (new-acl:restrictSubject) or an object (new-
acl:restrictObject). For instance, say we want to exclude persons of which the name is Sarah. In this
case, the predicate will be :hasName and the object will be "Sarah". When the server generates a query,
following rule will be added to the query: FILTER NOT EXISTS { ?s :hasName "Sarah"}. Similarly, a
restriction that is defined by predicate and subject is also added to the default ACL in Listing 4.9, and re-
sults in filtering out all subjects that are a Tinder date of Lukas (i.e. :tinderGirl). In the future, this ACL

https://random.person.me/profile/card#me

4 Analysis 44

could be extended to also allow a restriction to have just a single restrictSubject, restrictPredi-
cate or restrictObject, in which case two new rules would be added. For instance, if a restriction has
a restrictPredicate of :hasTinderDate, the following two rules would be added: FILTER NOT EX-
ISTS { ?s :hasTinderDate []} and FILTER NOT EXISTS { [] :hasTinderDate ?s}, where []
is a blank node.

PREFIX : <http://example.org/#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX acl: <http://www.w3.org/ns/auth/acl#>
PREFIX new-acl: <https://vanhoucke.me/ontology/new-acl#>

<https://lukas.vanhoucke.me/profile/card#me> a foaf:person, foaf:agent ;
:hasName ”Lukas” ;
:hasAddress ”Some Address”;
:hasPhoneNumber ”0800-SOME-PHONE”;
:hasBirthday ”05-July-1994”;
:hasFamily :sarah ;
:hasFamily :laure ;
:hasTinderDate :tinderGirl .

:sarah a foaf:person, foaf:agent ;
:hasName ”Sarah” ;
:hasAddress ”Some Address”;
:hasPhoneNumber ”0800-SOME-PHONE”;
:hasBirthday ”30-April-1992” .

:laure a foaf:person, foaf:agent ;
:hasName ”Anne-Laure” ;
:hasAddress ”Some Address”;
:hasPhoneNumber ”0800-SOME-PHONE”;
:hasBirthday ”27-May-1996” .

:tinderGirl a foaf:person, foaf:agent ;
:hasName ”Tinder-Date” ;
:hasAddress ”Some Address”;
:hasPhoneNumber ”0800-SOME-PHONE”;
:hasBirthday ”01-January-1970” .

Listing 4.8: Graph content in the first scenario: data of four persons excluding ACL.

4 Analysis 45

<#this> new-acl:possibleField
[new-acl:predicate :hasName; new-acl:label ”name”],
[new-acl:predicate :hasAddress; new-acl:label ”address”],
[new-acl:predicate :hasPhoneNumber; new-acl:label ”phone”],
[new-acl:predicate :hasBirthday; new-acl:label ”birthday”] .

<#owner> a acl:Authorization;
acl:agent <https://lukas.vanhoucke.me/profile/card#me>;
new-acl:allowsField new-acl:allFields .

<> a acl:Authorization; # Blank nodes for new users.
acl:agent <https://random.person.me/profile/card#me>;
new-acl:allowsField :hasName, :hasBirthday ;
Restrictions:
new-acl:hasRestriction [

new-acl:restrictPredicate :hasName ;
new-acl:restrictObject ”Anne-Laure” ;

].

<#default> a acl:Authorization;
acl:agentClass foaf:Agent;
new-acl:allowsField :hasName;
Restrictions:
new-acl:hasRestriction [

new-acl:restrictPredicate :hasName ;
new-acl:restrictObject ”Sarah” ;

];
new-acl:hasRestriction [

new-acl:restrictSubject <https://lukas.vanhoucke.me/profile/card#me> ;
new-acl:restrictPredicate :hasTinderDate ;

].

Listing 4.9: Graph content in the first scenario: corresponding ACL.

SELECT ?name
WHERE {

?s a foaf:person .
OPTIONAL { ?s :hasName ?name }
FILTER NOT EXISTS {

<https://lukas.vanhoucke.me/profile/card#me> :hasTinderDate> ?s }
FILTER NOT EXISTS { ?s :hasName "Sarah" }

}

Listing 4.10: The query for default users that was generated by the server. It will return the names of Lukas and
Anne-Laure when provided the graph content of the first scenario.

4.6.4 Adding advanced ACL to the SPARQL server

This ACL was implemented to demonstrate how the SPARQL server should create personalized queries.
The actual code is written in JavaScript (using the same Express based back-end as in the test setups of

4 Analysis 46

Chapter 5) and can be found at https://gist.github.com/Lukkie/83e5d25fe2dbce8c66199a74a7eb6b2d.
A reader-friendly pseudocode version is found in Algorithm 1. It consists of four steps.

First, all queryable predicates are collected, along with suggested labels. For instance, the ACL of List-
ing 4.9 contains four possible fields, one of which has :hasName as predicate and name as label. In
the final query, this label is used to define an output variable ?name, as seen in the generated query in
Listing 4.10.

The second step is to collect all the predicates that the user is allowed to see. This process starts at line
5. If the ACL does not contain any specific rules for this user, the default predicates are used. Collecting
these requires executing another query. If the ACL does contain rules for the user, there are two options.
Either the user can access all fields (indicated by a new-acl:allFields triple), and the same predicates
as the ones collected in step 1 are used. Otherwise, the user can only access the fields that are specified
in the ACL.

Then, the restrictions are collected at line 14. If in the previous step the default predicates were collected,
the default restrictions will now also be used. Otherwise, restrictions that are specific for this WebID are
collected instead. In both cases, an additional query has to be performed.

Finally, using the data of the previous three steps, a personalized query can be composed at line 20 of
the pseudocode. The labels are used to generate variables (e.g. ?name), the allowed fields are used to
determine which variables will be added to the query along with the OPTIONAL lines of Listing 4.10. Lastly,
the restrictions are applied in the form of FILTER NOT EXISTS lines, as can again be seen in Listing 4.10.
This query is then executed by the SPARQL endpoint, and the results are returned to the user.

Algorithm 1: Pseudocode to apply advanced ACL. Here, query() executes a query at the SPARQL
endpoint.
Input : WebID

1 possible fields← query(get all possible fields)
2 labels← getLabels(possible fields)
3 all predicates← getPredicates(possible fields)
4

5 personalized predicates← query(get allowed fields for this WebID)
6 if personalized predicates is empty then
7 allowed predicates← query(get default allowed fields) . Default scenario
8 else if personalized predicates contains new-acl:allFields then
9 allowed predicates← all predicates

10 else
11 allowed predicates← personalized predicates
12 end
13

14 if personalized predicates is empty then
15 restrictions← query(get default restrictions) . Default fields and restrictions
16 else
17 restrictions← query(get restrictions for this WebID) . Restrictions can be empty
18 end
19

20 personalized query← composeQuery(allowed predicates, restrictions, labels)
21 results← query(personalized query)

Output: Personalized results of query

https://gist.github.com/Lukkie/83e5d25fe2dbce8c66199a74a7eb6b2d

4 Analysis 47

4.6.5 Adapting the ACL extension for annotations

The ACL extension works great for simple scenarios, such as the first one. The next scenario is a case
study in which the ACL will be applied for annotations. In this use case, an endpoint returns the information
of all annotations, but filters may be applied for certain users. Some example filters are: basic users cannot
see annotations for an admins-only page, or they are not able to see the text values of the annotations.

Here, the endpoint will again generate a query to collect all annotations and return the relevant fields. An
annotation contains hierarchic links and therefore requires complexer server-side code that implements
application-specific knowledge. Querying annotations will for example require knowing that a resource
has an rdf:type of oa:Annotation, and that annotations can have a target (oa:hasTarget), and the
target then usually has a selector (oa:hasSelector), etc. This raises a first problem with the new ACL’s
initial implementation. The current ontology only supports predicates that have ?s as subject to be a
possibleField. For instance, when dc:creator and rdf:value are the two possibleFields, then
a query to return all values of the possible fields would look like Listing 4.11:

SELECT ?creator ?text WHERE {
?s a oa:Annotation .
OPTIONAL { ?s dc:creator ?creator } .
OPTIONAL { ?s rdf:value ?text} .

}

Listing 4.11: Query to demonstrate the problem with possibleField. Prefixes are hidden for conciseness. It
should return the creator and the textual content of all annotations. Due to the complex structure of
an annotation, the textual content is always empty.

For a valid annotation, this will never return a value for ?text, since the rdf:value is coupled to an
annotation’s body, and not to the annotation directly. In order to get this value, the query should instead
look like Listing 4.12:

SELECT ?creator ?text WHERE {
?s a oa:Annotation .
OPTIONAL { ?s dc:creator ?creator } .
OPTIONAL {

?s oa:hasBody ?body .
?body rdf:value ?text .

} .
}

Listing 4.12: Query showing the solution to the problem with possibleField. Prefixes are hidden for conciseness.

In other words, in order to allow filtering on fields, the server needs to know how an annotation is struc-
tured, and how the possible fields are related to this structure. This is a large drawback, since it cannot
easily be extended to applications other than annotations. Arguably, one could make an ACL for each
possible subject, i.e. an ACL for the annotation, and another ACL for its body, etc. An additional triple
for each of these subjects would then point to the corresponding ACL. This solution requires less server
knowledge, but it might bloat the graph with numerous complex ACL triples. The proposed solution in this
thesis uses just one ACL for all annotations as this improves query performance.

The ACL extension also allows horizontal filtering. This again raises a problem when applied to annota-
tions. In fact, the reason why it does not work is the same as for the previous problem. When a restriction
has specified a restrictPredicate and a restrictObject, the generated query cannot always use
?s to fill in the subject field of the corresponding FILTER NOT EXISTS clause. The query in Listing 4.13
demonstrates this problem.

4 Analysis 48

SELECT ?text WHERE {
?s a oa:Annotation .
?s oa:hasBody ?body .
?body rdf:value ?text .
FILTER NOT EXISTS { ?s rdf:value "SPAM" } .

}

Listing 4.13: Query to demonstrate the problem with restrictions. Prefixes are hidden for conciseness. It should
return the textual content of all annotations in the graph for which this content does not equal “SPAM”.
Due to the complex structure of an annotation, this restriction does not work.

Annotations do not have an rdf:value field by default, and more importantly, the rdf:value field is
located in the annotation’s body. Therefore, no annotations will be filtered away. Successful filtering
requires the subject to be ?body, as shown at the bottom of Listing 4.14.

SELECT ?text WHERE {
?s a oa:Annotation .
?s oa:hasBody ?body .
?body rdf:value ?text .
FILTER NOT EXISTS { ?body rdf:value "SPAM" } .

}

Listing 4.14: Query showing the solution to the problem with restrictions. Prefixes are hidden for conciseness.

This can again be solved in two ways: either the server is intelligent enough to know which subject or
object to use, or the ACL gives a hint to the server by providing the variable name (e.g. ?body) which
would be used in the server’s generated query. Unfortunately, both options are tightly coupled to the
application and how the server generates the queries. In this thesis, the second option was implemented
since it requires less server-side coding. The ACL is however not comprehensible for other servers that
generate the queries in a different way. Here, the hints are provided by adding two new terms to the
ontology: restrictSubjectField and restrictObjectField. These define the variable to be used
in generating the restriction’s corresponding FILTER NOT EXISTS clause. To show how this works in
practice, an example graph content and query is attached in Appendix A.

As the solution is application-dependent and not easily reusable, it is not useful in practice. However,
it would be more effective when an annotation’s structure is set in stone and included in the graph, so
that applications know exactly what the annotation looks like. Restrictions could then reference a specific
node in this structure, so that the application knows which variable to use. A current standard of applying
a constrained structure to entities is through the use of SHACL [49]. It uses RDF to represent shapes,
which are conditions that the data structure has to confirm to. Each node is then described by such a
shape, which can be referenced by the ACL to specify the subject or object of the restriction.

Since annotations are self-contained (i.e. the annotation file contains all of its information6), there is usu-
ally no need for a complex ACL such as the demonstrated one. If some fields do need to be filtered,
it would also be better to use an ACL on a per-annotation basis, preferably by allowing inheritable ACL
through the use of some directory structure. Although vertical filtering is not possible in file-based access
techniques (i.e. the server can only send whole RDF files), WebAccessControl is sufficient in almost all
situations.

6Comments on annotations might be an exception, as a link to this comment can be added to the original annotation. This
is however irrelevant, since the presented ACL is for a single datapod, i.e. comments (which are annotations as well) in other
user’s datapods will have their own ACL.

4 Analysis 49

4.7 Caching

Caching is the act of keeping copies in order to speed up the system. A drawback of decentralization is
that resources have to be collected from all around the globe, which takes a long time and also stresses
the network. Instead, some entity could keep copies from multiple sources and send all copies at once.
Doing so is possible for both file-based and query-based access, since both servers are implemented as
RESTful endpoints. This implies that successive7 GET requests with the same parameters and URLs
always return the same result, which is the only requirement for caching. The file-based cache holds files,
while the query-based cache holds field values.

Specifically for annotations, the server that is announced by the website’s as:annotationService could
make a copy of all foreign annotations that are listed in its annotation list. The link of the cached version
would then be sent to the clients, so that only one server has to be accessed during the collection process.
Each cached annotation needs to be refreshed periodically, which can be realized by using a “valid-until”
time stamp. Manual refreshes can be announced by sending a Linked Data Notification to the server’s
inbox, announcing an update. Alternatively, the server could also send all relevant annotations at once so
that the client does not have to collect them one by one. This however requires complexer server-code,
and is further discussed in section 5.5.5.

The corresponding ACL files have to be included in the cache, otherwise plenty of requests still have to
be sent. The query-based ACL (including the advanced ACL from section 4.6.3) is a lot harder to cache.
When the ACL is stored inside the foreign server’s graph (and not as a file), it cannot be sent to a different
server. Especially in cases where advanced ACL is used, the ACL might depend on lots of information
that is only stored on the foreign server. When simple ACL is used, caching can still be possible. The ACL
is then transmitted in the form of several fields, containing enough information for the receiving server to
reproduce the ACL statements internally. Caching ACL implies that the data owners allow their ACL files
to be public, which is definitely not always the case! A possible solution would be to cache all annotations
that are announced to be public by the creator, and only keep a link to the annotation’s location when the
creator announces it not to be public.

4.8 Versioning

In some cases, it can be useful to keep a history of your data’s content. For this, version control systems
are used. Git and Subversion are some of the most popular technologies. They keep track of changes in
files, which makes them immediately applicable for file-based datapods. In theory, it should be possible
to request old versions of Linked Data Resources by specifying a date. These technologies cannot be
used in combination with query-based access techniques, since they’re simply not available for SPARQL
endpoints. Instead, custom middleware could be written to keep track of changes to the graph, and to
recreate the content at any point in time. This is however very complex and is still an active topic of
research. OSTRICH [79] is an example of such a system. It stores the initial version of the graph as an
immutable snapshot, while all future versions are stored as time-stamped lists of triples that need to be
removed or added relative to the initial version or intermediate snapshots.

7No data modifications (e.g. POST or PUT requests) in between the successive GET requests.

Chapter 5

Implementation

In order to objectively compare file-based and query-based access, we have developed multiple tools.
Most of these tools are aimed at decentralized annotations. This chapter starts with setting up the servers
and ends with our implementation of a decentralized annotation plugin.

The code used in the implementations is available in the following UGent GitHub repositories:

• https://github.ugent.be/lbvhouck/vanhoucke.me

• https://github.ugent.be/lbvhouck/DecentralizedAnnotations

• https://github.ugent.be/lbvhouck/QuickSPARQLEndpoint

• https://github.ugent.be/lbvhouck/LinkedDataNotificationsWatcher

5.1 Test setup

Multiple test setups have been developed in order to support the theoretical differences between file-
based and query-based access techniques. In general, most setups are backed by a demonstrative
website. Because Solid is written in JavaScript (both server and client libraries), and it is easier to use
the same language for both front-end and back-end, the programming language of choice is JavaScript.
Annotations are often used to add comments to a website, e.g. the Open Webslides platform, which
again is an argument in favor of JavaScript. The demonstrative web pages are hosted on the https:
//vanhoucke.me domain, to be able to show the results to anyone and anywhere.

5.1.1 Setup with file-based access

As mentioned before, file-based access will use Solid as the reference implementation. First of all, a Solid
server needs to be set up. This implements the LDP specification on top of the operating system’s file
system. Technically, Solid can also implement LDP over other data storage techniques, such as SPARQL
endpoints, but this is not the default setting. Although Solid does not yet have a large documentation
to rely on, setting up a server is easy when following the steps on solid-server’s GitHub page. The
hardest part is to configure a WebID with which you are able to authenticate on other servers over TLS.
This requires a valid certificate which originally had to be generated by making use of HTML’s <keygen>
element, but this has been deprecated by major browsers. Instead, manually creating this certificate
requires following steps1:

1. Create an asymmetric key pair (e.g. use the ssh-keygen tool)

1Steps are taken from https://github.com/dindy/solid-resources/blob/master/webid-tls.md, which documents
the process of manually creating a certificate in detail.

50

https://github.ugent.be/lbvhouck/vanhoucke.me
https://github.ugent.be/lbvhouck/DecentralizedAnnotations
https://github.ugent.be/lbvhouck/QuickSPARQLEndpoint
https://github.ugent.be/lbvhouck/LinkedDataNotificationsWatcher
https://vanhoucke.me
https://vanhoucke.me
https://github.com/dindy/solid-resources/blob/master/webid-tls.md

5 Implementation 51

2. Create a certificate (e.g. use the openssl tool)

3. Import the certificate in your browser

4. Add the certificate to your WebID profile

The datapod that was used for this thesis can be accessed at https://lukas.vanhoucke.me, and the
WebID profile at https://lukas.vanhoucke.me/profile/card#me.

To use data that resides on a Solid server, the client-side JavaScript library solid-client2 can be used,
often in combination with rdflib.js3 to manipulate and query data.

5.1.2 Setup with query-based access

While the setup for file-based access already has an implementation ready to be used, there is no equiv-
alent setup for query-based access. Therefore, an experimental setup with only the necessary features
was developed. Just like Solid, it exposes resources in a RESTful way. Solid uses LDP by design, and
in a way, the query-based setup is similar to LDP (HTTP, RESTful), but still differs in many ways (no
directory structure, no LDP resources). All data is stored in the same graph. To store triples, Apache
Jena Fuseki is used. This is a simple SPARQL endpoint accessible over HTTP. The server runs behind a
closed firewall so as not to expose the raw data to the users. Instead, the data is queried by a middleware
application. For this, Express is used for routing, and Node.js to implement the necessary middleware
code, which uses either a dynamically generated SPARQL query, or a static query, to send a query re-
quest to the SPARQL endpoint. To demonstrate this, we provide a simple pseudocode example, shown
in Algorithm 2. The actual Express and Node.js implementations have been added to Appendix B. There,
the Express routing code is shown in Listing B.1, and the corresponding Node.js server code to handle
the GET request to /annotations is shown in Listing B.2.

Algorithm 2: Pseudocode to apply advanced ACL. Here, query() executes a query at the SPARQL
endpoint.
parameter: SPARQL endpoint URL
parameter: One or more routes with a corresponding query Routes
Input : Request

1 foreach route R ∈ Routes do
2 if R matches request URL then
3 Send query associated with R to SPARQL endpoint
4 if Response Res retrieved then
5 return Response(status: 200, body: Res.body)
6 else
7 return Response(status: 500)
8 end
9 end

10 end
11 if No routes matched then
12 return Response(status: 404)
13 end

Output : Response

The middleware supports two types of query-based access. As explained in chapter 3, annotations can
all be stored in the same graph, or they can each be stored in a separate graph representing different

2https://github.com/solid/solid-client
3https://github.com/linkeddata/rdflib.js

https://lukas.vanhoucke.me
https://lukas.vanhoucke.me/profile/card#me
https://github.com/solid/solid-client
https://github.com/linkeddata/rdflib.js

5 Implementation 52

Figure 5.1: The annotation generator found at https://vanhoucke.me/browser-tests/solid-generator/
generator.html.

files, just like file-based access. Both options have been implemented and will respectively be referred
to as the single-graph SPARQL server and the multi-graph SPARQL server. When not explicitly stated,
the single-graph SPARQL server will be assumed. Why “SPARQL” server? Because it uses a SPARQL
endpoint internally.

5.1.3 Generator

Since creating many annotations manually is a tedious task, an annotation generator was developed. First
of all, the user has the option to either save all annotations in his own annotation directory, which requires
an oa:annotationService triple in his profile. If this is not the case, the generator also facilitates
a button to create an annotation directory and add this triple to his profile automatically. In the other
case, if the user does not want the annotations to be stored in his own annotation directory, fake users
are created, each of them having their own annotation directory. These fake users are implemented as
directories in the standard annotations directory. The number of users is configurable. Annotations are
linked to websites, so the generator generates fake URLs and randomly selects one of these URLs per
annotation. The number of fake URLs can also be configured, as well as the the number of annotations.
Finally, some performance measuring tools are included in the code, such as timing benchmarks, and a
button to load all annotations just to see how long it would take. The generated annotations are then stored
in the logged-in user’s Solid datapod, the single-graph SPARQL server and in the multi-graph SPARQL
server.

The generator can publicly be accessed at https://vanhoucke.me/browser-tests/solid-generator/
generator.html. In case the page is offline, a screenshot is provided in Figure 5.1

https://vanhoucke.me/browser-tests/solid-generator/generator.html
https://vanhoucke.me/browser-tests/solid-generator/generator.html
https://vanhoucke.me/browser-tests/solid-generator/generator.html
https://vanhoucke.me/browser-tests/solid-generator/generator.html

5 Implementation 53

5.2 Implementation of an inbox listener for file-based access

When an annotation is added to a site, a Linked Data Notification should be sent to the site’s inbox in
order to announce the location of this new annotation. We decided that this notification file requires just
a single triple: <> as:Announce <annotation URL> . Here, as is the prefix for the activity streams
ontology4. To process these notifications server-side, a Node.js script was used. A listener is attached
to the server’s inbox directory, and each added file triggers a mechanism to analyze the file. First, the
file needs to contain an as:Announce triple, to make sure that it is a notification. Then, the annotation at
<annotation URL> is collected in order to get its source URL. Finally, a triple of the form <source URL>
as:items <annotation URL> is added to the list of annotations that is stored in the server’s public
directory. Now, all users can collect and query this list to retrieve all annotations that are targeted at the
user’s current website.

5.3 Implementation of a directory structure for the single-graph query-
based server

We created a simple additional test setup to provide a basis for future query-based servers that would like
to implement directories. The API allows the creation of an annotation inside the annotations directory.
Any directory can be queried to request its content. Finally, information about files in the annotation
directory can be retrieved. The setup’s capabilities are rather minimal, but it was developed only to prove
the point that directories can easily be supported.

To store a resource, first it needs to be checked that the directory exists. This can be accomplished
using the query in Listing 5.1. Optionally, if the directory does not exist, a new directory can be created
(or multiple directories, in which case this process is recursively repeated). Then, the resource can be
added to this directory by creating the resource and adding its URI to the directory’s ldp:contains
triples. This is demonstrated in Listing 5.2. To get the contents of a directory, all subjects of the directories
ldp:contains triples are requested. This is shown in Listing 5.3. To request a file inside a directory, first
the existence of this directory has to be confirmed. The same process is followed to see if the file is indeed
part of this directory. Therefore, the triple pattern of Listing 5.1 is replaced with {{directory name}}
ldp:contains {{file name}}. Once it is known that the resource exists, it can be queried in the usual
way.

ASK WHERE {
{{directory_name}} a ldp:BasicContainer .

}

Listing 5.1: Query to check if a directory exists. {{directory name}} is replaced by the actual directory’s name.
Prefixes are hidden for conciseness.

4http://www.w3.org/ns/activitystreams

http://www.w3.org/ns/activitystreams

5 Implementation 54

INSERT DATA {

<annotations> ldp:contains <annotations/{{annotation_id}}> .

<annotations/{{annotation_id}}> a oa:Annotation;
oa:hasBody [

a oa:TextualBody ;
rdf:value "Sample comment with id {{annotation_id}}"@en ;

] ;
oa:hasTarget [

a oa:SpecificResource ;
oa:hasSource <www.example.com/some_page.html> ;

] ;
rdfs:label "A sample comment for demonstrational purposes"@en .

};

Listing 5.2: Query to insert a sample annotation into the annotations directory. {{annotation id}} is replaced
by an ID provided by the user. Using a different query, it is first asserted that an annotation with this ID
does not already exists. Prefixes are hidden for conciseness.

SELECT ?item {
<annotations/{{directory_name}}> a ldp:BasicContainer ;
ldp:contains ?item .

}

Listing 5.3: Query to retrieve the contents of a directory. {{directory name}} is replaced by the name of the
directory. First, it is checked whether the directory exists by executing the query in Listing 5.1. Prefixes
are hidden for conciseness.

5.4 Demonstrative setup for intersections

A demonstrative setup was developed in order to show the impact of intersections on both the file-based
and query-based techniques. Just like in Section 4.5, the use case is to search for certain words in
all annotation bodies. The file-based setup5 uses Solid. After logging in, all annotations in the user’s
oa:AnnotationService directory are collected and stored into a single graph. The JavaScript code to
collect annotations is shown in Listing 5.4. Since rdflib.js does not have regex functionality as far
as we know, the querying code in Listing 5.4 has to rely on JavaScript’s indexOf to manually look for
occurrences of the words. Clearly, a lot of client-side processing is necessary, along with a separate GET
request for each annotation.

5https://vanhoucke.me/browser-tests/solid-intersection/demonstrator.html

https://vanhoucke.me/browser-tests/solid-intersection/demonstrator.html

5 Implementation 55

1 function collectAnnotationLocations(profile) {
2 let save_location = profile.find(vocab.oa(’annotationService’));
3 return new Promise(function(resolve, reject) {
4 // Get all annotation locations
5 solid.web.get(save_location)
6 .then(function (container) {
7 resolve(Object.keys(container.resource.resources));
8 })
9 });

10 }
11
12 function collectAnnotations(locations) {
13 return new Promise(function(resolve, reject) {
14 let graph = null;
15 // Collect the annotations and store in graph
16 let counter = 0;
17 for (let i = 0; i < locations.length; i++) {
18 let location = locations[i];
19 solid.web.get(location)
20 .then(function (response) {
21 // Merge graph with current graph
22 if (graph === null) graph = response.parsedGraph();
23 else graph.add(response.parsedGraph());
24 // If last location: Return the graph
25 counter++;
26 if (counter == locations.length) resolve(graph);
27 }).catch(function(err) {
28 reject(err);
29 });
30 }
31 });
32 }
33
34 function queryAnnotations(graph, stringToBeContained) {
35 return new Promise(function(resolve, reject) {
36 let results = [];
37 if (graph === null) {
38 resolve(results);
39 }
40 // example query: Find all strings that contain ’Lorem ipsum dolor’
41 let comments = graph.statementsMatching(undefined, vocab.rdf(’value’), undefined);
42 comments.forEach(function(comment) {
43 let value = comment.object.value;
44 if (value.indexOf(stringToBeContained) !== -1) results.push(comment);
45 })
46 resolve(results);
47 });
48 }

Listing 5.4: Three client-side JavaScript functions that are necessary to collect and query all annotations when
using file-based access. The first returns a list of all annotations in the user’s annotation directory. The
second function collects each annotation and stores it in a single graph. The third function finds all
annotations for which the comment value contains specific words.

Collecting the search results when a SPARQL endpoint is used, requires less client-side processing. In
fact, just a single GET request is all that is needed. The equivalent JavaScript code is given in Listing 5.5.
At the server’s side, the query in Listing 4.6 is executed and the results are sent back.

Clearly, file-based intersecting queries are more complex and take longer to execute. When many inter-
sections are required, it is best to switch to query-based storage. Alternatively, solutions such as indexing

5 Implementation 56

Figure 5.2: Architectural diagram showing the connections between the annotation plugin and the datapods. Note
that the website, the user’s datapod and the website’s datapod may reside on different servers.

can be applied, but this is not always a possibility.

1 function collectFilteredAnnotations(filter) {
2 return new Promise(function(resolve, reject) {
3 let sparql_endpoint = ’https://vanhoucke.me/sparql-2/annotations/filter’;
4 request
5 .get(sparql_endpoint)
6 .query({filter: filter})
7 .end((err, res) => {
8 if (!err) resolve(JSON.parse(res.text));
9 else { reject(err); }

10 });
11 });
12 }

Listing 5.5: Client-side JavaScript code to collect the filtered annotations. This is the query-based variant of
Listing 5.4.

5.5 Annotation Plugin

The theory behind decentralized annotations was put to the test by implementing it. To be able to test it
on any web page, a bookmarklet was used to inject the necessary Javascript code. The initial version
was written to make use of Solid (i.e. file-based access). The plugin should first read the website’s
oa:AnnotationService field, which is able to list all the (public) annotations for this page. Since few
sites actually have such a service, the plugin uses its own service instead. Similarly, a link to the website’s
ldp:inbox should also be present, but was instead replaced by the plugin’s hard-coded inbox due to the
fact that there’s no point in sending notifications to someones inbox when they have no idea what to do
with it. An ideal architecture is shown in Figure 5.2.

5 Implementation 57

(a) Menu to highlight and comment. (b) Writing the comment. (c) Displaying the comment.

Figure 5.3: GUI of the annotation plugin. MediumEditor is used to show the buttons, FontAwesome provides the
button icons and Rangy is used to highlight text.

5.5.1 Inspiration

The decentralized editor dokieli (see section 2.5.3) was an inspiration for this annotation plugin. Although
dokieli offers annotation functionality, it does not fully use Solid’s capabilities (e.g. dokieli manually checks
whether the user’s WebID certificate is valid.) and the code is bloated with other functionality. The pre-
sented annotation plugin aims to be a clean and easy-to-comprehend alternative to dokieli, especially for
cases where only annotations are required.

5.5.2 User interface

For the UI, MediumEditor6 was used. This clone of Medium.com’s editor is mainly used as an editor (e.g.
apply bold or underline tags to text), but can be edited to suit your needs, like doing non-editor actions.
The editor pops up when text is selected, but the creator of the plugin has to define what text is selectable.
In the case of Open Webslides, any text within a container of the slide class, is considered selectable
text. In this case, upon selecting some text, two buttons appear: one to highlight text and one to comment.
Text is highlighted by the use of Rangy’s Classapplier module7. The buttons and rangy’s highlights are
demonstrated in Figure 5.3. At the top right, a button can be clicked to retrieve all annotations.

5.5.3 Highlighter

When the highlight button is clicked, the currently selected text is highlighted by Rangy. It also attempts
to store an annotation to the user’s annotation directory. Note that this annotation only requires a target
but not a body. To specify what has to be selected, the oa:TextQuoteSelector is used, which defines
the exact text that has to be highlighted, as well as the text immediately before and after this highlighted
text. In some cases, the combination of exact text, prefix and suffix is not unique (e.g. when an article
contains the same sentence twice). This is a weakness of this type of selector and can be solved by using
a different kind of selector, such as the TextPositionSelector, which uses integer values (offsets) to
define the exact position in the text. However, the TextQuoteSelector is often more reliable since it can
deal with small changes to the website, which is preferred in the case of Open Webslides. The annotation
contains more fields, such as the author (i.e. his WebID which can easily be retrieved by Solid), a title, a
date and the URL of the targeted website. All of these fields are added to a graph similar to the one shown
in Figure 4.1. The graph is then converted into Turtle serialization. Since only RDF data is included in the
graph, the output will actually conform to the Turtle format as well. The annotation is then posted to the
user’s annotation directory, which is announced in his profile as oa:AnnotationService. Upon success,
the inbox of the website is notified about this new annotation (using the mechanism of section 5.2), so
that it can add the annotation URL to its list of annotations. This is depicted in Figure 5.4.

6https://github.com/yabwe/medium-editor
7https://github.com/timdown/rangy/wiki/Class-Applier-Module

Medium.com
https://github.com/yabwe/medium-editor
https://github.com/timdown/rangy/wiki/Class-Applier-Module

5 Implementation 58

Figure 5.4: Diagram showing how an annotation is posted on the user’s datapod, and then added to the website’s
datapod’s list of annotations.

5.5.4 Comments

The comment button is functionally very close to the highlight button. The only difference is that upon
clicking the button, the MediumEditor changes into a prompt for the comment’s text. Here, the annotation
does have a body, specifically a oa:TextualBody with an rdf:value equal to the inputed text. The
comment annotation is saved in the exact same way as for highlight annotations.

5.5.5 Loading annotations

The load button in the top-right will collect all highlights and comments. In reality, this button is not
required since annotations are usually loaded from the moment you open the page. As this is a demon-
strative plugin, the annotations are loaded on-demand because it is easier to show the process of loading
annotations. Specifically, there are two options to load annotations: either let the client collect a list of
annotations and generate the corresponding HTML code client-side, or let the server collect his own list
of (potentially cached) annotations and generate the HTML code upon loading of the page.

Client-side collection of annotations

For the first option, the client will first request the list of annotations to the server’s annotationService.
Note that private annotations can also be collected in the same way by contacting the private annota-
tionService instead. If the server’s annotationService returns a list of all annotations (instead of just
the annotations that have the current page as target), the relevant annotations might have to be looked
for first. This does not scale well, especially not when the list of annotations covers many pages. In
this case, all annotations have to be collected when in reality, only a few are relevant. A more complex
service is then preferred. All annotations on the (filtered) list are then collected, and the necessary fields
are queried. In Solid, this can be accomplished by the graph.any(subject, predicate, object)
function, in which an unknown field is indicated by assigning undefined to the field’s value. The result of
the query can then be stored in a variable. Since highlights and comments differ only in the presence of a
oa:hasBody triple, the type of the annotation can easily be determined and the appropriate HTML code
can be generated. This process is demonstrated in the JavaScript code in Listing 5.6. Graphically, it is
shown in Figure 5.4.

5 Implementation 59

Figure 5.5: Graphical representation of how annotations are loaded. First, the list of remote annotations is col-
lected. Then, for each annotation on the list, a request to collect the annotation is sent to the corre-
sponding datapod. When using query-based access, only a single request per datapod is required.

1 solid.web.get(annotationService).then(function(response) {
2 graph = response.parsedGraph();
3
4 current_url = window.location.href.split(’#’)[0];
5 graph.each(rdf.sym(current_url), vocab.as(’items’), undefined)
6 .forEach(function(annotation_url) {
7
8 solid.web.get(annotation_url.value).then(function(response) {
9 let annotation_graph = response.parsedGraph();

10 let target = annotation_graph.any(annotation_url, vocab.oa(’hasTarget’), undefined);
11 let selector = annotation_graph.any(target, vocab.oa(’hasSelector’), undefined);
12 let text_quote = annotation_graph.any(selector, vocab.oa(’refinedBy’), undefined);
13
14 let prefix = annotation_graph.any(text_quote, vocab.oa(’prefix’), undefined).value;
15 let exact = annotation_graph.any(text_quote, vocab.oa(’exact’), undefined).value;
16 let suffix = annotation_graph.any(text_quote, vocab.oa(’suffix’), undefined).value;
17
18 // See if annotation is highlight or comment
19 let body = annotation_graph.any(annotation_url, vocab.oa(’hasBody’), undefined);
20 if (body) {
21 // comment
22 let comment_value = annotation_graph.any(body, vocab.rdf(’value’), undefined);
23 showComment(prefix, exact, suffix, comment_value);
24 } else {
25 // highlight
26 applyHighlight(prefix, exact, suffix);
27 }
28 });
29 });
30 }).catch(function(err) { /* Process error */ });

Listing 5.6: Client-side collection of annotations using Solid’s JavaScript library.

5 Implementation 60

Server-side collection of annotations

The second option is to let the server collect all annotations. Doing so, the server will need to look at
its local list of annotations, and then request all foreign annotations. A list of (potentially formatted) an-
notations can then be sent in a single packet to the client. This increases server-side complexity and
processing time. However, the biggest advantage over client-side collection is the fact that the server can
cache annotations of other users. Implementing this would significantly improve the performance of col-
lecting annotations, which was one of the main disadvantages of using file-based servers for annotations.
It also reduces overall network load. ACL is unchanged: each annotation’s ACL still needs to be checked
by the server, as was also the case for client-side collection. Solid was used for the file-based server,
but it does not yet support advanced application-specific caching mechanisms. Different file-based LDP
servers would also need to implement such mechanisms, which is against the purpose of being applica-
tion independent. Implementing this was therefore skipped for now, but should definitely be considered in
future research.

5.5.6 Query-based annotation plugin

The original file-based version (using Solid) was adapted to now use queries for data retrieval. For this,
the single-graph back-end is used.

To create an annotation, a request is sent to a specific endpoint for annotations. The annotation’s details
are passed as body parameters. Following body keys are required: creator, title, exact, prefix,
suffix and source. Optionally, a body key can also be attached to represent a comment’s text. In the
query-based server, a query is then generated by using the values of these fields. For this, the template
in Listing 5.7 is used. Note that the server needs to replace newline and tab characters by explicit \n and
\t characters to obtain a valid UPDATE statement.

Loading all annotations requires the same steps as in the file-based version, but there is one major
difference: all annotations for the same webpage that reside in a single datapod can be queried at once,
i.e. in a single request. This has several implications. First, after storing an annotation, its location should
be announced to the server (or any private annotation listing). Instead of storing a link per annotation, now
a link per datapod (typically one per user) is stored. Collection of all annotations typically requires less
requests, significantly reducing the required time. The results are given as JSON, which requires minimal
processing to extract the annotation’s information. Where the file-based version takes a couple seconds
to retrieve all annotations and apply the highlights, the query-based version is able to do the same in the
blink of an eye.

As the query-based server does not yet support authentication, a user can fake its identity, and all anno-
tations are public. This is however something that can be realized in future versions, and is not a limitation
of query-based access techniques.

5 Implementation 61

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX oa: <http://www.w3.org/ns/oa#>
PREFIX dc: <http://purl.org/dc/terms/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT DATA {
<{{annotation_identifier}}>

a oa:Annotation;
dc:created "{{date}}";
dc:creator <{{creator}}>;
rdfs:label "{{title}}"@en;
oa:hasBody <{{annotation_identifier}}#body>;
oa:hasTarget <{{annotation_identifier}}#target>;
oa:motivatedBy oa:commenting.

<{{annotation_identifier}}#body>
a oa:TextualBody;
rdf:value

"{{body}}"@en.

<{{annotation_identifier}}#fragment-selector>
a oa:FragmentSelector;
oa:refinedBy <{{annotation_identifier}}#text-quote-selector>.

<{{annotation_identifier}}#text-quote-selector>
a oa:TextQuoteSelector;
oa:exact "{{exact}}"@en;
oa:prefix "{{prefix}}"@en;
oa:suffix "{{suffix}}"@en.

<{{annotation_identifier}}#target>
a oa:SpecificResource;
oa:hasSelector <{{annotation_identifier}}#fragment-selector>;
oa:hasSource <{{source}}>.

}

Listing 5.7: Template to store an annotation using SPARQL.

5.5.7 Possible extensions

The annotation plugin was developed in scope of a Master’s thesis in order to demonstrate the workings of
decentralized annotations. If the plugin were to be used in a production environment, and the developers
aim to offer complete Annotation Data Model support, all five default selectors have to be implemented,
among other requirements such as multi-language support, right-to-left text direction, etc.

The vocabulary can easily be extended. For instance, instead of only being able to annotate text, it could
also be able to annotate images or even selected frames of a video. The Web Annotations Vocabulary
can easily be extended to, for example, include 3D coordinates [90].

Besides extending the vocabulary, the plugin can be extended to allow editing annotations, allow multiple
annotationService providers, show or hide annotations, have comment thread functionality, provide
administration tools, and so on.

Chapter 6

Evaluation

In this chapter, the implementation of decentralized annotations is evaluated. First, some performance
tests are performed to measure the timing differences between manipulating annotations on file-based
and query-based servers. Then, the annotation plugin is tested by applying it to the Open Webslides plat-
form and the pros and cons of the access techniques for annotations are assessed. Finally, decentralized
social applications in general are discussed.

6.1 Performance

File-based and query-based access may potentially differ in performance. To assess these differences,
we have created a test setup. It is able to collect every single annotation in the data pod, or only the ones
that have a specific website as target. It can do this for both file-based and query-based techniques. Note
that all tests are performed on the same datapod. This is not entirely realistic, as usually annotations from
multiple users (and thus multiple datapods) have to be collected. However, the results are still meaningful,
since caching techniques (see section 4.7) can be used such that the data is stored in a single datapod.
The annotation generator of section 5.1.3 was also adapted to include timing measurements of storing
annotations. All tests are executed on a laptop with 8 GB RAM and an Intel® Core™ i7-7500U CPU
@ 2.70GHz. The annotations are stored on a remote server, for which a DigitalOcean droplet with a
single vCPU and 2 GB RAM is used. Disk speed was not a bottleneck. The local laptop is connected to
the Internet by a 50 Mbps connection. The results are available at https://github.ugent.be/gist/
lbvhouck/b6131e9f25ace00ce6b0bec00de34af5.

6.1.1 Storing annotations

In the first scenario, a number of annotations is stored on the server. The time between sending the
first request and receiving the last confirmation is divided by the number of annotations to calculate the
average storage time. Since requests happen asynchronously, the average time should decrease as the
number of annotations increases. The test was performed for 1, 10, 100 and 500 annotations, and was
executed 5 times each. It was attempted to do this test for 1000 annotations, but the Solid server could not
handle this many requests. The SPARQL server however had no problem dealing with this. All previous
data is cleared before running the test, and then a dry-run with a single annotation is performed. The
results of this test can be found in Table 6.1 and is visualized in Figure 6.1. Clearly, storing annotations is
slightly faster when using query-based techniques. However, the storage times for both access techniques
are within the same order of magnitude. This is because each annotation is sent as a single request,
and these communication delays are bottlenecking the system. Since the storage times for a single
annotations are not very different, it can still be concluded that there are no extreme differences between
the two techniques concerning storage.

62

https://github.ugent.be/gist/lbvhouck/b6131e9f25ace00ce6b0bec00de34af5
https://github.ugent.be/gist/lbvhouck/b6131e9f25ace00ce6b0bec00de34af5

6 Evaluation 63

Table 6.1: Time required to store a number of annotations using the file-based and query-based test setups.

Number of annotations
Average time per
file-based annotation (ms)

Average time per
query-based annotation (ms)

1 117.3799589 95.26691644
10 65.93104481 66.75438742
100 56.21330136 42.57094193
500 55.40218087 36.62920585
1000 No results 19.76281547

0

20

40

60

80

100

120

140

160

1 10 100 1000

A
ve

ra
ge

 s
to

ra
ge

 t
im

e
p

er
 a

n
n

o
ta

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

Number of annotations stored in a row

Average storage time in function of number of annotations
stored at once

Series1 Series2

Figure 6.1: Results of the storage test visualized using a graph with corresponding standard deviations over 5 runs.
The x-axis uses log-scale.

6 Evaluation 64

Table 6.2: Time required to collect a number of annotations using the file-based and query-based test setups.

Number of annotations
Total file-based
collection time
(ms)

Average time per
file-based annotation
(ms)

Total query-based
collection time
(ms)

Average time per
query-based annotation
(ms)

1 466.9363043 466.9363043 71.39485892 71.39485892
10 1181.116469 118.1116469 78.77931478 7.877931478
100 7229.702002 72.29702002 212.9854295 2.129854295
500 28647.38246 57.29476492 253.2886921 0.506577384

Table 6.3: Time required to collect a specific number of annotations out of a total of 200 annotations using the
file-based and query-based test setups.

Total number of annotations
Number of annotations
for specific page

Average time per
file-based annotation
(ms)

Average time per
query-based annotation
(ms)

200 1 11974.45299 82.37654375
200 10 1195.653798 15.39008294
200 50 241.8082521 3.701904918
200 100 117.0484017 2.524178083

6.1.2 Loading annotations

After having stored these annotations, they can now be loaded. In this test, all annotations for all websites
are collected at once. This scenario happens when the server’s annotationService contains links to
annotations that are cached on the server’s datapod, and there is a different annotation directory for every
single page on the website. Again, the test is executed for 1, 10, 100 and 500 annotations. The time
includes client-side parsing into a readable format. The results are shown in Table 6.2. Clearly, there
is now a large difference between file-based and query-based retrieval. This time, the communication
delay is less of a bottleneck for query-based access, since all annotations can be retrieved using a single
request. Meanwhile, the number of requests that has to be sent when using a file-based server is equal to
the number of annotations. When a website contains tens of annotations, loading these annotations starts
taking a long time, which drastically worsens the user experience. Columns with the total retrieval times
were added to show that the query-based collection is still dependent on the number of annotations, but
scales considerably better than file-based collection. The results are visualized in Figure 6.2. SPARQL
endpoints typically use database storage techniques and querying happens server-side using specialized
query engines. This is not the case for file-based servers, which results in slower data retrieval and query
performance.

6.1.3 Loading specific annotations

This final scenario assumes a datapod with 200 annotations, out of which a specific number of annotations
have to be collected (including client-side parsing). This scenario occurs when a webserver uses the
same annotationService (i.e. same annotation directory) for multiple of its independent webpages.
Since the server does not query annotation files, and the files are located in the same directory without
any structure, collecting the annotations that correspond to the page you are on requires collecting all
annotations and querying them individually. Meanwhile, the query-based server exposes an endpoint to
collect all relevant annotations using a single query. The test is executed for 1, 10, 50 and 100 specific
annotations, and each test is executed five times. The results in Table 6.3 confirm again that query-based
access vastly outperforms file-based access. It is visually shown in Figure 6.3.

6 Evaluation 65

0.1

1

10

100

1000

1 10 100 1000

A
ve

ra
ge

 c
o

lle
ct

io
n

 t
im

e
p

er
 a

n
n

o
ta

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

Number of annotations collected at once

Average collection time in function of number of annotations
collected at once

File-based collection Query-based collection

Figure 6.2: Results of the loading test visualized using a graph with corresponding standard deviations over 5 runs.
Both axes use log-scale.

1

10

100

1000

10000

100000

1 10 100

A
ve

ra
ge

 c
o

lle
ct

io
n

 t
im

e
p

er
 a

n
n

o
ta

ti
o

n
 in

 m
ill

is
ec

o
n

d
s

Number of annotations that need to be collected (out of a total of 200)

Average collection time of website-specific annotations in
function of number of website-specific annotations in datapod.

This datapod contains 200 annotations in total.

File-based collection Query-based collection

Figure 6.3: Results of the specific loading test visualized using a graph with corresponding standard deviations
over 5 runs. Both axes use log-scale.

6 Evaluation 66

Figure 6.4: A highlight preceded by its prefix and succeeded by its suffix.

6.1.4 Conclusion

A SPARQL endpoint in combination with query-based access is easily able to outperform file-based ac-
cess techniques such as Solid. The fact that SPARQL endpoints typically use more advanced database
storage techniques than a file-system could explain this. The most important reason is however that
queries are able to collect all annotations at once, reducing communication delays tremendously. Col-
lecting 100 annotations in over 7 seconds is really bad for the user experience. In the storage test, each
annotation was sent as a separate message in both setups. Storing multiple RDF files at once is usually
not something that happens in the context of annotations, but might happen in other social contexts, such
as uploading a photo album with tags and other metadata. The query-based setup could then be adapted
to allow a list of photo metadata to be sent in a single message, again reducing the communication delays.
The same could theoretically be done for a file-based setup, although Solid implements LDP so only a
single resource can be created at once.

6.2 Annotation plugin for Open Webslides

The annotation plugin described in section 5.5 was tested on the Open Webslides platform. As mentioned,
the annotation was implemented as a bookmarklet. In order to use it as an actual annotation plugin
supported by the website itself, some changes have to be made. First of all, instead of injecting the code,
it should be loaded by default by including the JavaScript code and CSS stylesheets in the source of
each Open Webslides document. Users should then be able to load annotations, but since the platform
currently does not announce an oa:AnnotationService tag, users are unable to find where annotations
are stored. Therefore, the source should have a working back-end (either file-based or query-based) and
link towards the list of annotations by including the AnnotationService triple as RDFa. At the moment
of writing, the bookmarklet does not yet parse RDFa, but rdflib.js, a library that is already included in
the code, can be used to easily collect the location of the list of annotations. Preferably, there is a unique
AnnotationService for each document. All annotations for all slides are then loaded at once. A triple
pointing to the server’s inbox should also be present in order to allow users to send a notification when a
new annotation is added. The back-end should be able to deal with this. Note that an inbox can be shared
among all Open Webslides on a domain if they all use the same back-end. When these two triples are
present, the Linked Data infrastructure should work.

The plugin uses MediumEditor to select text and add annotations. This framework allows specifying a
selector to make sure that only specific parts of the text can be selected. In the case of Open Webslides,
we decided to allow selecting all elements that inherit the .slide class, as this is the actual content of the
slides. When implementing this annotation plugin on a different platform, a different selector is probably
required. Another design choice is the context length, which determines the length of the highlight’s
prefix and suffix. In other words, all highlights are preceded and succeeded by some extra text to put
the highlight in the correct context. This is demonstrated in Figure 6.4. This context is also required for
the TextQuoteSelector (see section 4.1.1), which is then used to highlight the correct words when the
annotation is loaded. Dokieli uses a context length of 32 characters, which seems to work well.

6.3 Comparing the access techniques in the context of annotations

With all the knowledge that was obtained in this thesis, it is time to determine whether the two access
methods are well suited for annotations.

6 Evaluation 67

6.3.1 Difficulty of implementation

First, implementation should be easy. File-based access is able to use the file system which is available on
all modern operating systems, while query-based servers have to set up a SPARQL server to store data.
File-based access makes use of simple retrieval of files, while query-based access techniques require
custom queries for each type of request. Both of these reasons are arguments for using file-based access
when implementation difficulty is important. It is especially relevant when a user’s datapod should also be
used for other decentralized applications. File-based implementations such as Solid are able to deal with
all kinds of RDF documents due to its simplicity of only manipulating at file-level granularity. Meanwhile, in
order to implement query-based access to new types of data, one or multiple new access endpoints have
to be programmed since each request requires a new custom SPARQL query. This confirms hypothesis
H3.

6.3.2 Retrieval performance

Another important aspect of a good access technique in the context of annotations is retrieval perfor-
mance. When loading annotations, users prefer to have them show up as fast as possible. By using a
query to retrieve all annotations with a specific source at once, it is possible to load 100 annotations in
about 200 milliseconds, provided that they are stored on the same datapod. This is a negligible delay. The
user perceives this as if it was loaded instantly. By contrast, collecting this number of annotations takes
over 7 seconds when a file-based access technique is used. This is a huge difference and is definitely
noticeable by the users. Query-based access has the same delays when the annotations are stored on
many different datapods since these separate graphs cannot be queried together. Clearly, file-based ac-
cess has user experience flaws when a large amount of annotations have to be collected. It is possible to
reduce this delay by implementing application-specific caching mechanisms, such as caching all annota-
tions for a web page in the same file and returning this file upon a request to the AnnotationService.
This is however not something Solid supports by default. In the case of a realistic amount of annotations,
say between 1 and 10 annotations per page, and a separate AnnotationService is used for every page,
the delay of about 1 second is still noticeable but is less of a problem. Another potential solution to this
problem is to order the list of annotations that is provided by the AnnotationService so that annotations
that appear at the top of the page are loaded before the ones at the bottom. In conclusion, hypothesis H1
can be confirmed, although file-based access can negate performance differences in some scenarios.

6.3.3 State of research

At the moment of writing, file-based access technologies have been researched thoroughly and have
ready-to-use implementations such as Solid’s server and client. Field-tested authentication (using WebID)
and ACL (using WAC) technologies are included in these implementations. SPARQL endpoints have
existed for a long time, but using them as an interface to a datapod is rather new. To the best of our
knowledge, query-based access implementations for datapods are not yet being developed, so one will
have a harder time setting up a query-based back-end.

6.3.4 Implementing update detection

Detecting updates is easier when using file-based access, since you can simply attach a listener to the
directory you would like to watch. This can be done independent from what file-based back-end imple-
mentation you use. Doing the same on top of a SPARQL endpoint requires inspecting packets upon
retrieval, which needs to be implemented in the query-based back-end (e.g. by the use of an additional
Express layer). Detecting updates is something that is used in the context of annotations, so the simplicity
of directory watchers is an argument for file-based access.

6 Evaluation 68

Just like how Linked Data Notification watchers for file-based notifications can easily be implemented
using standard directory watcher APIs, versioning can be made easy by using versioning systems such
as Git, and raw graph data can be edited with your standard text editor, or any file-based API. These are
all examples of technologies that already exist and can be reused in the context of file-based access, but
not when using query-based access, confirming hypothesis H2.

6.3.5 Weighing the pros and cons

So which one should be used? Query-based access outperforms file-based access by a large margin.
However, these delays may become less and less noticeable in certain scenarios. First, if all annotations
are cached within the AnnotationService’s datapod, query-based access seems to be faster. However,
file-based access endpoints can be adapted to return all annotations on a list with just a single request.
This requires modifying server-side code, and goes against the rules of the LDP standard. The Solid
specification includes this as an extension to LDP. It allows wildcards (*) to be placed in a request, upon
which a Solid-compliant server will return all resources that match the pattern. Officially, this is called
“globbing”1. An even better solution is to cache all annotations for a webpage in the same file, and this
file is then returned when requesting annotations from the AnnotationService. This can be done in
a single request and is fully LDP-compliant. A second scenario is the following. When a small number
of annotations per user are stored, and the annotations’ ACL states that they are not publicly viewable
by all users, and the ACL itself is not public either, the annotations cannot be cached! In this case, the
performance is determined by communication delays, and thus the number of users. A last scenario oc-
curs when each user stores a large amount of annotations with the same ACL rules as previous scenario.
In this case, query-based access easily outperforms file-based access. However, note that the users’
datapods can still implement good caching mechanisms, in which case the performance differences will
again become negligible.

Clearly, performance is initially a reason to choose for query-based access, but file-based access can
compete by using an efficient caching design. Meanwhile, file-based access techniques are further devel-
oped, are easily reusable in other contexts, and are very easy to set up compared to query-based access
techniques. Therefore, it is recommended to use file-based access techniques when implementing a
decentralized annotation system.

6.4 Decentralized social applications in general

During this dissertation, most experiments and analyses used decentralized annotations to compare file-
based and query-based access techniques. It was assumed that decentralized annotations are represen-
tative for all decentralized social applications, as stated by hypothesis H4. Now that most differences have
been examined, it becomes clear that annotations were indeed representative. For instance, assume a
social network application where images are shared between people. Conceptually, this is still similar to
annotations: adding an annotation to a specific website becomes posting an image and a description to
the application’s website. The image and its metadata are still stored on your own server, while the web-
site keeps track of all URIs. It can still use advanced caching mechanisms, but the usefulness depends
entirely on the application. Caching all annotations so that many of them are loaded at the same time, is
for instance much more useful than caching all photos and their description, as applications like Instagram
only display one or two photos at a time, making delays less noticeable. Now, imagine a decentralized
version of Reddit where tens of thousands of comments are added to a single post. Loading all comments
one by one is still unfeasible, and caching mechanisms should be used to improve the user experience.
Restrictive ACL is however still a bottleneck, as this means only the URI can be cached, and not the
content of the graph(s).

1https://github.com/solid/solid-spec/blob/master/api-rest.md#globbing-inlining-on-get

https://github.com/solid/solid-spec/blob/master/api-rest.md#globbing-inlining-on-get

Chapter 7

Conclusions

7.1 SWOT analysis for decentralization using Linked Data

Now that decentralized annotations, and social network applications in general, have been excessively
analyzed, a SWOT analysis is presented to demonstrate what exactly decentralization by means of Linked
Data can offer us, and what it cannot.

7.1.1 Strengths

The biggest motivation for decentralization of social network applications is data ownership. People
choose where they store their data, who can access it, and who can purchase their data. Data is readable
by all applications, which stops people from being bound to a single application because they do not want
to lose their photos, tweets, etc. In fact, they only have to create their data once, even when multiple
applications use it. Advanced ACL opens up many privacy opportunities, and there is usually no single
point of failure.

7.1.2 Weaknesses

Collection of data across multiple sources can still be quite slow, which may drastically worsen the user
experience while increasing network load. All users need to store their data in a user pod of their own
choice, which will probably cost money. Users also need to be more tech-savvy in order to maintain their
data, although good interfaces will only make this easier as time passes by. Finally, file-based storage is
intuitive to the user, but is also considerably slower compared to using specialized database technologies.

7.1.3 Opportunities

Linked Data incentives like Solid makes implementing decentralized applications relatively easy, although
it is still very much a work in progress. When such a decentralized application breaks through, and many
people decide to create their data pod, the number of other decentralized applications will increase rapidly
thanks to the open-source community.

7.1.4 Threats

People will likely remain using centralized applications, as they come free and people will have trouble
letting loose of their current data. Setting up a datapod, and working with tools like Solid, is still a barrier
that cannot easily be overcome. People also do not yet care enough about their privacy, although the

69

7 Conclusions 70

recent Facebook allegations made people more aware of the issue1. People are free to hire datapods
wherever they want, however there is a significant chance that free datapod providers will surface who
compensate their costs by selling their users’ data. Finally, for an application creator, there are less
financial incentives to create a decentralized app over a centralized one.

7.2 Relevance

The Cambridge Analytica scandal has recently sparked conversation about what social networks are
allowed to do with your data. This company used the data of about 87 million Facebook profiles to
manipulate elections2. Although Facebook did not explicitly sell this data, it allowed an app to harvest
this data by not offering enough protection for the users. The app requests the permission of the users
to acquire their data, but at that time, this included all data of their friends as well. The ability to easily
access such a large amount of data, is inherent to centralization. When a decentralized datapod with
WebAccessControl would have been used, each user would have had to give the app permission to
access their data. This would have reduced the number of victims to about 270,000 Facebook users.
While currently many social applications offer the ability to only share a specific part of your data, you are
still dependent on the platform’s integrity to not share anything else. Also, the granularity of these access
rights is usually fixed. For instance, you can only give an application access to all of your photos, not
a specific subset of photos. These problems are solved by using your own datapod, granted you use a
sufficient ACL system. Note that using a SPARQL endpoint with query-based access is probably the best
choice, since it allows the most control over your data. File-based access can for instance not filter out
certain fields, as it operates at file-level granularity.

With the arrival of the General Data Protection Regulation (GDPR)3, which was enforced on 25 May 2018,
some of the privacy issues concerning traditional centralized social networks have been resolved. The
legislation applies to all companies that process EU citizens’ information. They risk a large fine when they
do not obey to the following rules. First, the users have the right to know exactly what is done with their
data, and they have to agree with it. Therefore, the terms of use have to be readable for people without a
law degree. Nevertheless, often people still cannot continue to use the social platform without accepting
their (more readable) terms of use, and the platforms may still process your data for various reasons.
People also have the right to access their data (i.e. data transparency) or remove all their data from the
database. In the context of this thesis, data portability is the most important right given to the users. This
allows people to request data in a machine readable format which can be used in other contexts, such as
a competing social media website. However, only the data that was provided by the data subject can be
retrieved, not the data that was additionally generated by the platform. Also, there is no incentive for the
companies to represent this data as something that is easily reusable by a competitor.

7.3 Conclusion

During this thesis, both file-based and query-based access was explored by using a decentralized an-
notations set-up. We proved that annotations are easily decentralizable. While query-based access
outperforms file-based access when collecting many annotations, this difference can sometimes be ne-
glected through a good caching design. File-based access techniques are able to reuse existing file-based
technologies such as Git and directory watchers. It also makes manually manipulating data easier, and
implementing a directory structure is straightforward since it is inherent to a file-system. File-based ac-
cess relies on a simple API (e.g. the LDP specification) which allows easy reusability in other contexts.
Meanwhile, the back-end to handle query-based access currently requires a new specific implementation

1https://www.cmo.com.au/article/640531/facebook-ad-revenues-up-year-on-year-despite-data-
privacy-scandals

2https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
3https://gdpr-info.eu/

https://www.cmo.com.au/article/640531/facebook-ad-revenues-up-year-on-year-despite-data-privacy-scandals
https://www.cmo.com.au/article/640531/facebook-ad-revenues-up-year-on-year-despite-data-privacy-scandals
https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
https://gdpr-info.eu/

7 Conclusions 71

for each endpoint. As there is already a file-based LDP implementation, Solid, it is easier for a devel-
oper to set up a decentralized application. To the best of our knowledge, there are no existing datapod
technologies that allow query-based access. While there are many advantages to using file-based ac-
cess, there is one feature that is exclusive to query-based access: performing complex intersections in
a single query. This may, depending on the application, be a good reason to use query-based access
over file-based access. In fact, through its better performance, query-based access can still compete with
file-based access, especially when it is supported by easy-to-use user interfaces that abstract away the
differences for end users.

Some of the topics that were handled during this thesis can still require some additional research. First,
while advanced caching may solve some performance issues that occur with file-based access, it lacks an
actual implementation. Furthermore, when a datapod’s ACL is not publicly visible, it is not always possible
to cache the datapod’s contents. This is a problem for both file-based and query-based access techniques.
Future work can explore ways to increase performance without having to share the datapod’s ACL. Also,
the advanced ACL for query-based access to annotations currently has the flaw of being application
dependent. We proposed to use SHACL to solve this problem, but this was not implemented. Future
research may explore other options, or implement SHACL in order to prove that it solved this problem.
Finally, one of the biggest flaws of query-based access is the fact that each new endpoint requires some
new endpoint-specific code. There may be ways to simplify this task, potentially even automating it.

This thesis proves that decentralization of social applications is perfectly feasible. In the future, a utopian
internet in which everyone has their own datapod and where applications are reduced to interfaces of our
data [84] may become reality. Nevertheless, some bridges still need to be crossed. Potentially the biggest
reason why people will hesitate to make the switch, is because decentralization does not come for free.
Applications may charge the users to use their interface, and hosting your own datapod consumes power.
As not everyone is willing or is competent to set up their own datapod, there will be a need for good
service providers who will host your data for a small fee. However, once most people grasp the potential
of a decentralized social ecosystem, and decide to switch, the application developers will follow. In the
end, the competition for the best interfaces – now based on service quality instead of data ownership –
will result in something that is essentially not very different from what we have now, but without many of
its disadvantages.

Bibliography

[1] Adida, B., Birbeck, M., McCarron, S., and Pemberton, S. (2008). Rdfa in xhtml: Syntax and process-
ing. Recommendation, W3C, 7.

[2] Anderson, C., Wolff, M., et al. (2010). The web is dead. long live the internet. Wired Magazine, 18.

[3] Antonopoulos, A. M. (2014). Mastering Bitcoin: unlocking digital cryptocurrencies. ” O’Reilly Media,
Inc.”.

[4] Arwe, J., Malhotra, A., and Speicher, S. (2015). Linked data platform 1.0. W3C recommendation,
W3C. http://www.w3.org/TR/2015/REC-ldp-20150226/.

[5] Aspan, M. (2008). How sticky is membership on facebook? just try breaking free. The New York
Times, 11:2008.

[6] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007). Dbpedia: A nucleus
for a web of open data. The semantic web, pages 722–735.

[7] Auer, S. and Lehmann, J. (2007). What have innsbruck and leipzig in common? extracting semantics
from wiki content. In European Semantic Web Conference, pages 503–517. Springer.

[8] Backstrom, L., Dwork, C., and Kleinberg, J. (2007). Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganography. In Proceedings of the 16th international
conference on World Wide Web, pages 181–190. ACM.

[9] Beckett, D., Berners-Lee, T., and Prud’hommeaux, E. (2008). Turtle-terse rdf triple language. W3C
Team Submission, 14(7).

[10] Beckett, D. and McBride, B. (2004). Rdf/xml syntax specification (revised). W3C recommendation,
10(2.3).

[11] Berners-Lee, T. (2005). Notation 3 logic. https://www.w3.org/DesignIssues/Notation3.
html.

[12] Berners-Lee, T. (2009). Socially aware cloud storage. Notes on web design, Aug, 17. https:
//www.w3.org/DesignIssues/CloudStorage.html (visited: 27-11-2017).

[13] Berners-Lee, T. (2016). Linked data design issues. https://www.w3.org/DesignIssues/
LinkedData.html.

[14] Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., and
Sheets, D. (2006). Tabulator: Exploring and analyzing linked data on the semantic web. In Proceedings
of the 3rd international semantic web user interaction workshop, volume 2006, page 159. Athens,
Georgia.

[15] Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific american,
284(5):28–37.

72

https://www.w3.org/DesignIssues/Notation3.html
https://www.w3.org/DesignIssues/Notation3.html
https://www.w3.org/DesignIssues/CloudStorage.html
https://www.w3.org/DesignIssues/CloudStorage.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

BIBLIOGRAPHY 73

[16] Bielenberg, A., Helm, L., Gentilucci, A., Stefanescu, D., and Zhang, H. (2012). The growth of
diaspora-a decentralized online social network in the wild. In Computer Communications Workshops
(INFOCOM WKSHPS), 2012 IEEE Conference on, pages 13–18. IEEE.

[17] Bizer, C., Cyganiak, R., and Gauß, T. (2007). The rdf book mashup: from web apis to a web of data.
In Proceedings, volume 1.

[18] Bizer, C., Heath, T., and Berners-Lee, T. (2009a). Linked data-the story so far. Semantic services,
interoperability and web applications: emerging concepts, pages 205–227.

[19] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S. (2009b).
Dbpedia-a crystallization point for the web of data. Web Semantics: science, services and agents on
the world wide web, 7(3):154–165.

[20] Bojars, U. and Breslin, J. G. (2007). Sioc core ontology specification. Member Submission, W3C.
https://www.w3.org/Submission/sioc-spec/ (visited: 27-11-2017).

[21] Bonneau, J., Anderson, J., Anderson, R., and Stajano, F. (2009a). Eight friends are enough: social
graph approximation via public listings. In Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems, pages 13–18. ACM.

[22] Bonneau, J., Anderson, J., and Danezis, G. (2009b). Prying data out of a social network. In Social
Network Analysis and Mining, 2009. ASONAM’09. International Conference on Advances in, pages
249–254. IEEE.

[23] Brickley, D. and Miller, L. (2014). Foaf vocabulary specification 0.99. http://xmlns.com/foaf/
spec/ (visited: 27-11-2017).

[24] Buil-Aranda, C., Hogan, A., Umbrich, J., and Vandenbussche, P.-Y. (2013). Sparql web-querying
infrastructure: Ready for action? In International Semantic Web Conference, pages 277–293. Springer.

[25] Campbell, S. (2010). How do social networks make money. http://www.makeuseof.com/tag/
how-do-social-networks-make-money-case-wondering/.

[26] Capadisli, S., Guy, A., Lange, C., Auer, S., Sambra, A., and Berners-Lee, T. (2017a). Linked data
notifications: a resource-centric communication protocol. In European Semantic Web Conference,
pages 537–553. Springer.

[27] Capadisli, S., Guy, A., Verborgh, R., Lange, C., Auer, S., and Berners-Lee, T. (2017b). Decentralised
authoring, annotations and notifications for a read-write web with dokieli. In International Conference
on Web Engineering, pages 469–481. Springer.

[28] Carothers, G. and Seabourne, A. (2014). Rdf 1.1 n-triples. W3C Recommendation, 25(2).

[29] Casteleyn, J., Mottart, A., and Rutten, K. (2009). How to use data from facebook in your market
research. International Journal of Market Research, 51(4):439–447.

[30] Consortium, W. W. W. et al. (2014). Json-ld 1.0: a json-based serialization for linked data.

[31] Cutillo, L. A., Molva, R., and Strufe, T. (2009a). Safebook: A privacy-preserving online social network
leveraging on real-life trust. IEEE Communications Magazine, 47(12).

[32] Cutillo, L. A., Molva, R., and Strufe, T. (2009b). Safebook: Feasibility of transitive cooperation for
privacy on a decentralized social network. In World of Wireless, Mobile and Multimedia Networks &
Workshops, 2009. WoWMoM 2009. IEEE International Symposium on a, pages 1–6. IEEE.

[33] Dumon, P. (2008). Facebook groter dan myspace. De Morgen, (24 June):25.

https://www.w3.org/Submission/sioc-spec/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://www.makeuseof.com/tag/how-do-social-networks-make-money-case-wondering/
http://www.makeuseof.com/tag/how-do-social-networks-make-money-case-wondering/

BIBLIOGRAPHY 74

[34] Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate record detection: A survey.
IEEE Transactions on knowledge and data engineering, 19(1):1–16.

[35] Euzenat, J., Shvaiko, P., et al. (2007). Ontology matching, volume 18. Springer.

[36] Fitzpatrick, B. and Recordon, D. (2007). Thoughts on the social graph. bradfitz. com, 17.

[37] Genestoux, J., Fitzpatrick, B., Slatkin, B., and Atkins, M. (2017). Websub. Editor’s draft, W3C.
https://w3c.github.io/websub/#title (visited: 27-11-2017).

[38] Guy, A. (2017). The Presentation of Self on a Decentralised Web. PhD thesis, University of Edin-
burgh. https://rhiaro.github.io/thesis/ (accessed: 16-12-2017).

[39] Hajli, N. and Lin, X. (2016). Exploring the security of information sharing on social networking sites:
The role of perceived control of information. Journal of Business Ethics, 133(1):111–123.

[40] Harris, R. (2009). Social media ecosystem mapped as a wiring diagram.

[41] Hartig, O., Bizer, C., and Freytag, J.-C. (2009). Executing sparql queries over the web of linked data.
The Semantic Web-ISWC 2009, pages 293–309.

[42] Hogben, G. (2007). Security issues and recommendations for online social networks. ENISA position
paper, 1:1–36.

[43] Huynh, D., Mazzocchi, S., and Karger, D. (2005). Piggy bank: Experience the semantic web inside
your web browser. The Semantic Web–ISWC 2005, pages 413–430.

[44] Initiative, D. C. M. et al. (2004). Dcmi metadata terms. http://dublincore. org/documents/dcmi-terms/.

[45] Jacobs, I. and Walsh, N. (2004). Architecture of the world wide web.

[46] Khare, R. (2006). Definition of decentralization. http://isr.uci.edu/projects/pace/
decentralization.html (accessed: 11-12-2017).

[47] Klerks, P. (2001). The network paradigm applied to criminal organizations: Theoretical nitpicking or a
relevant doctrine for investigators? recent developments in the netherlands. Connections, 24(3):53–65.

[48] Klyne, G. and Carroll, J. J. (2004). Resource description framework (rdf): Concepts and abstract
syntax. w3c recommendation, 2004. World Wide Web Consortium, http://w3c. org/TR/rdf-concepts.

[49] Kontokostas, D. and Knublauch, H. (2017). Shapes constraint language (SHACL). W3C recommen-
dation, W3C. https://www.w3.org/TR/2017/REC-shacl-20170720/.

[50] Lanthaler, M. and Gütl, C. (2012). On using json-ld to create evolvable restful services. In Proceed-
ings of the Third International Workshop on RESTful Design, pages 25–32. ACM.

[51] Larimer, D. (2014). Delegated proof-of-stake (dpos). Bitshare whitepaper.

[52] Larimer, D., Scott, N., Zavgorodnev, V., Johnson, B., Calfee, J., and Vandeberg, M. (2016). Steem
an incentivized, blockchain-based social media platform. March. Self-published.

[53] Lee, J., Lee, M., and Choi, I. H. (2012). Social network games uncovered: Motivations and their
attitudinal and behavioral outcomes. Cyberpsychology, Behavior, and Social Networking, 15(12):643–
648.

[54] Liu, Y., Gummadi, K. P., Krishnamurthy, B., and Mislove, A. (2011). Analyzing facebook privacy
settings: user expectations vs. reality. In Proceedings of the 2011 ACM SIGCOMM conference on
Internet measurement conference, pages 61–70. ACM.

https://w3c.github.io/websub/#title
https://rhiaro.github.io/thesis/
http://isr.uci.edu/projects/pace/decentralization.html
http://isr.uci.edu/projects/pace/decentralization.html

BIBLIOGRAPHY 75

[55] Mansour, E., Sambra, A. V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A., Aboulnaga, A.,
and Berners-Lee, T. (2016). A demonstration of the solid platform for social web applications. In
Proceedings of the 25th International Conference Companion on World Wide Web, pages 223–226.
International World Wide Web Conferences Steering Committee.

[56] Martinez, A. G. (2017). Facebook’s not listening through your phone. it doesn’t have to. https:
//www.wired.com/story/facebooks-listening-smartphone-microphone/.

[57] Mihindukulasooriya, N., Gutiérrez, M. E., and Burleson, C. (2014). Linked data platform best prac-
tices and guidelines. W3C note, W3C. http://www.w3.org/TR/2014/NOTE-ldp-bp-20140828/.

[58] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

[59] Narayanan, A. and Shmatikov, V. (2006). How to break anonymity of the netflix prize dataset. arXiv
preprint cs/0610105.

[60] Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin UK.

[61] Poller, A. (2008). Privatsphärenschutz in soziale-netzwerke-plattformen. Fraunhofer SIT Survey,
www. sit. fraunhofer. de.

[62] Prud, E., Seaborne, A., et al. (2006). Sparql query language for rdf.

[63] Raimond, Y., Sutton, C., and Sandler, M. B. (2008). Automatic interlinking of music datasets on the
semantic web. LDOW, 369.

[64] Recordon, D. and Reed, D. (2006). Openid 2.0: a platform for user-centric identity management. In
Proceedings of the second ACM workshop on Digital identity management, pages 11–16. ACM.

[65] Roberts, J. J. (2016). Twitter, surveillance, and the challenges of selling social data. http://www.
fortune.com/2016/12/09/twitter-social-media-data-surveillance/.

[66] Rogers, D. (2013). The enduring myth of the sparql endpoint. https://daverog.wordpress.com/
2013/06/04/the-enduring-myth-of-the-sparql-endpoint/.

[67] Ronallo, J. (2012). Html5 microdata and schema.org. Code4Lib Journal, 16.

[68] Sambra, A., Guy, A., Capadisli, S., and Greco, N. (2016a). Building decentralized applications for
the social web. In Proceedings of the 25th International Conference Companion on World Wide Web,
pages 1033–1034. International World Wide Web Conferences Steering Committee.

[69] Sambra, A., Story, H., and Berners-Lee, T. (2017). Webid 1.0: Web identity and discovery.
Editor’s draft, W3C. https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.
html (visited: 27-11-2017).

[70] Sambra, A. V., Mansour, E., Hawke, S., Zereba, M., Greco, N., Ghanem, A., Zagidulin, D., Aboul-
naga, A., and Berners-Lee, T. (2016b). Solid: A platform for decentralized social applications based on
linked data. http://emansour.com/research/meccano/solid_protocols.pdf (accessed: 28-
11-2017).

[71] Sanderson, R. (2017). Web annotation protocol. W3C recommendation, W3C.
https://www.w3.org/TR/2017/REC-annotation-protocol-20170223/.

[72] Sanderson, R., Young, B., and Ciccarese, P. (2017). Web annotation data model. W3C recommen-
dation, W3C. https://www.w3.org/TR/2017/REC-annotation-model-20170223/.

[73] Sauermann, L., Cyganiak, R., and Völkel, M. (2007). Cool uris for the semantic web.

https://www.wired.com/story/facebooks-listening-smartphone-microphone/
https://www.wired.com/story/facebooks-listening-smartphone-microphone/
http://www.fortune.com/2016/12/09/twitter-social-media-data-surveillance/
http://www.fortune.com/2016/12/09/twitter-social-media-data-surveillance/
https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/
https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
http://emansour.com/research/meccano/solid_protocols.pdf

BIBLIOGRAPHY 76

[74] Scott, J. (2017). Social network analysis. Sage.

[75] Seong, S.-W., Seo, J., Nasielski, M., Sengupta, D., Hangal, S., Teh, S. K., Chu, R., Dodson, B., and
Lam, M. S. (2010). Prpl: a decentralized social networking infrastructure. In Proceedings of the 1st
ACM Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond, page 8. ACM.

[76] Shirky, C. (2011). The political power of social media: Technology, the public sphere, and political
change. Foreign affairs, pages 28–41.

[77] Sporny, M. (2011). The false choice of schema. org. The Beautiful, Tormented Machine. http:
//manu.sporny.org/2011/false-choice/ (accessed: 12-12-2017).

[78] Sporny, M. (2015). RDFa lite 1.1 - second edition. W3C recommendation, W3C.
http://www.w3.org/TR/2015/REC-rdfa-lite-20150317/.

[79] Taelman, R., Vander Sande, M., and Verborgh, R. (2018). Ostrich: Versioned random-access triple
store. In Companion of the The Web Conference 2018 on The Web Conference 2018, pages 127–130.
International World Wide Web Conferences Steering Committee.

[80] Tramp, S., Frischmuth, P., Ermilov, T., and Auer, S. (2010). Weaving a social data web with semantic
pingback. Knowledge Engineering and Management by the Masses, pages 135–149.

[81] Tramp, S., Frischmuth, P., Ermilov, T., Shekarpour, S., and Auer, S. (2014). An architecture of a
distributed semantic social network. Semantic Web, 5(1):77–95.

[82] Van Hooland, S. and Verborgh, R. (2014). Linked Data for Libraries, Archives and Museums: How
to clean, link and publish your metadata. Facet publishing.

[83] Van Kleek, M., Smith, D. A., Shadbolt, N., et al. (2012). A decentralized architecture for consolidating
personal information ecosystems: The webbox.

[84] Verborgh, R. (2017). Paradigm shifts for the decentralized web. https://ruben.verborgh.org/
blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/.

[85] Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester, B., Hae-
sendonck, G., and Colpaert, P. (2016). Triple Pattern Fragments: a low-cost knowledge graph interface
for the Web. Journal of Web Semantics, 37–38:184–206.

[86] Winkler, W. E. (2006). Overview of record linkage and current research directions. In Bureau of the
Census. Citeseer.

[87] Wolf, M. (2009). Will social networks on the web ever make money? https:
//www.forbes.com/2009/02/19/facebook-myspace-twitter-linkedin-opinions-
contributors_zuckerberg_internet.html#7d7641291774.

[88] Wood, D., Zaidman, M., Ruth, L., and Hausenblas, M. (2014). Linked Data. Manning Publications
Co., Greenwich, CT, USA, 1st edition.

[89] Yeung, C.-m. A., Liccardi, I., Lu, K., Seneviratne, O., and Berners-Lee, T. (2009). Decentralization:
The future of online social networking. In W3C Workshop on the Future of Social Networking Position
Papers, volume 2, pages 2–7.

[90] Young, B., Ciccarese, P., and Sanderson, R. (2017). Web annotation vocabulary. W3C recommen-
dation, W3C. https://www.w3.org/TR/2017/REC-annotation-vocab-20170223/.

[91] Zyskind, G., Nathan, O., et al. (2015). Decentralizing privacy: Using blockchain to protect personal
data. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 180–184. IEEE.

http://manu.sporny.org/2011/false-choice/
http://manu.sporny.org/2011/false-choice/
https://ruben.verborgh.org/blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/
https://ruben.verborgh.org/blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/
https://www.forbes.com/2009/02/19/facebook-myspace-twitter-linkedin-opinions-contributors_zuckerberg_internet.html#7d7641291774
https://www.forbes.com/2009/02/19/facebook-myspace-twitter-linkedin-opinions-contributors_zuckerberg_internet.html#7d7641291774
https://www.forbes.com/2009/02/19/facebook-myspace-twitter-linkedin-opinions-contributors_zuckerberg_internet.html#7d7641291774

Appendix A

Using advanced ACL for annotations

PREFIX : <http://example.org/#>
PREFIX acl: <http://www.w3.org/ns/auth/acl#>
PREFIX new-acl: <https://vanhoucke.me/ontology/new-acl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX oa: <http://www.w3.org/ns/oa#>
PREFIX dc: <http://purl.org/dc/terms/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

<https://lukas.vanhoucke.me/public/annotations/annotation-1>
a oa:Annotation;
dc:created ”Thu, 29 Mar 2018 08:55:56 GMT”;
dc:creator <https://lukas.vanhoucke.me/profile/card#me>;
rdfs:label ”Lukas Vanhoucke created an annotation”@en;
oa:hasBody <https://lukas.vanhoucke.me/public/annotations/annotation-1#body>;
oa:hasTarget <https://lukas.vanhoucke.me/public/annotations/annotation-1#target>;
oa:motivatedBy oa:commenting.

<https://lukas.vanhoucke.me/public/annotations/annotation-1#body>
a oa:TextualBody;
rdf:value

”Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut”@en.

<https://lukas.vanhoucke.me/public/annotations/annotation-1#fragment-selector>
a oa:FragmentSelector;
oa:refinedBy <https://lukas.vanhoucke.me/public/annotations/annotation-1#text-quote-selector>.

<https://lukas.vanhoucke.me/public/annotations/annotation-1#text-quote-selector>
a oa:TextQuoteSelector;
oa:exact ”text to highlight”@en;
oa:prefix ”text before highlighted text”@en;
oa:suffix ”text after highlighted text”@en.

<https://lukas.vanhoucke.me/public/annotations/annotation-1#target>
a oa:SpecificResource;
oa:hasSelector <https://lukas.vanhoucke.me/public/annotations/annotation-1#fragment-selector>;
oa:hasSource <https://www.somesite.com/index#introduction>.

Listing A.1: Graph content in the second scenario (annotations): the first annotation.

77

A Using advanced ACL for annotations 78

<https://lukas.vanhoucke.me/public/annotations/annotation-2>
a oa:Annotation;
dc:created ”Thu, 30 Mar 2018 11:10:42 GMT”;
dc:creator <https://lukas.vanhoucke.me/profile/card#me>;
rdf:label ”Lukas Vanhoucke created an annotation”@en;
oa:hasBody <https://lukas.vanhoucke.me/public/annotations/annotation-2#body>;
oa:hasTarget <https://lukas.vanhoucke.me/public/annotations/annotation-2#target>;
oa:motivatedBy oa:commenting.

<https://lukas.vanhoucke.me/public/annotations/annotation-2#body>
a oa:TextualBody;
rdf:value ”consectetur adipiscing elit, sed do eiusmod”@en.

<https://lukas.vanhoucke.me/public/annotations/annotation-2#fragment-selector>
a oa:FragmentSelector;
oa:refinedBy <https://lukas.vanhoucke.me/public/annotations/annotation-2#text-quote-selector>.

<https://lukas.vanhoucke.me/public/annotations/annotation-2#text-quote-selector>
a oa:TextQuoteSelector;
oa:exact ”text to highlight”@en;
oa:prefix ”text before highlighted text”@en;
oa:suffix ”text after highlighted text”@en.

<https://lukas.vanhoucke.me/public/annotations/annotation-2#target>
a oa:SpecificResource;
oa:hasSelector <https://lukas.vanhoucke.me/public/annotations/annotation-2#fragment-selector>;
oa:hasSource <https://www.somesite.com/index#admins-only>.

Listing A.2: Graph content in the second scenario (annotations): the second annotation.

A Using advanced ACL for annotations 79

<> new-acl:possibleField
[new-acl:predicate dc:created; new-acl:label ”created”],
[new-acl:predicate dc:creator; new-acl:label ”creator”],
[new-acl:predicate rdf:value; new-acl:label ”text”],
[new-acl:predicate oa:exact; new-acl:label ”exact”],
[new-acl:predicate oa:prefix; new-acl:label ”prefix”],
[new-acl:predicate oa:suffix; new-acl:label ”suffix”],
[new-acl:predicate oa:hasSource; new-acl:label ”source”] .

<#owner> a acl:Authorization;
acl:agent <https://lukas.vanhoucke.me/profile/card#me>;
new-acl:allowsField new-acl:allFields .

<> a acl:Authorization; # Blank nodes for new users.
acl:agent <https://random.person.me/profile/card#me>;

Cannot see the creator
new-acl:allowsField new-acl:allFields ;

Cannot see any annotations for admins-only
new-acl:hasRestriction [

new-acl:restrictSubjectField ’?target’ ;
new-acl:restrictPredicate oa:hasSource ;
new-acl:restrictObject <https://www.somesite.com/index#admins-only> ;

].

<#default> a acl:Authorization;
acl:agentClass foaf:Agent;
Cannot see the creator
new-acl:allowsField dc:created, rdf:value, oa:exact, oa:prefix, oa:suffix, oa:hasSource ;

Cannot see any annotations for admins-only
new-acl:hasRestriction [

new-acl:restrictSubjectField ’?target’ ;
new-acl:restrictPredicate oa:hasSource ;
new-acl:restrictObject <https://www.somesite.com/index#admins-only> ;

].

Listing A.3: Graph content in the second scenario (annotations): corresponding ACL.

A Using advanced ACL for annotations 80

SELECT ?source ?suffix ?prefix ?exact ?text ?created
WHERE {

?s a oa:Annotation .
?s oa:hasTarget ?target .
?target oa:hasSelector ?selector .
?selector oa:refinedBy ?quoteselector .
?s oa:hasBody ?body .
OPTIONAL { ?target oa:hasSource ?source }
OPTIONAL { ?quoteselector oa:suffix ?suffix }
OPTIONAL { ?quoteselector oa:prefix ?prefix }
OPTIONAL { ?quoteselector oa:exact ?exact }
OPTIONAL { ?body rdf:value ?text }
OPTIONAL { ?s dc:created ?created }
FILTER NOT EXISTS {

?target oa:hasSource <https://www.somesite.com/index#admins-only>
}

}

Listing A.4: The query for default users that was generated by the server. Prefixes are hidden for conciseness.

Appendix B

JavaScript code for routing and handling
requests

1 var sparqlAnnotationsController = require(’../controllers/sparqlAnnotations.server.controller’);
2
3 module.exports = function (app) {
4 app.route(’/annotations’).post(sparqlAnnotationsController.storeAnnotation)
5 .get(sparqlAnnotationsController.getAllAnnotations);
6 app.route(’/annotations/:user’).get(sparqlAnnotationsController.getUserAnnotations);
7 };

Listing B.1: Demonstrational Express code which routes POST requests to /sparql to a function that stores an
annotation, routes GET requests to /sparql to a function that returns all stored annotations, and
routes GET requests to /sparql/<username> to a function that retrieves all annotations that were
posted by a specific user.

1 var rp = require(’request-promise’);
2 const sparqlEndpoint = ’http://localhost:3000/dataset/’;
3 const showAllAnnotationsQuery = ’
4 prefix oa: <http://www.w3.org/ns/oa#>
5 select ?annotation ?source where {
6 ?annotation a oa:Annotation .
7 ?annotation oa:hasTarget ?target .
8 ?target oa:hasSource ?source .
9 }

10 ’
11 exports.getAllAnnotations = function (req, res) {
12 let query = showAllAnnotationsQuery;
13 query = encodeURIComponent(query);
14 let queryUrl = sparqlEndpoint + ’sparql?query=’ + query;
15 rp(queryUrl)
16 .then(function (body) {
17 res.send(body);
18 }).catch(function (err) {
19 res.status(400).send({ message: err });
20 });
21 };

Listing B.2: Demonstrational server code which implements the getAllAnnotations function that is used to
retrieve all annotations.

81

	Introduction
	Social networks
	Criticism of traditional social networking platforms
	Open Webslides
	Structure of the thesis

	Related literature
	Decentralized social networking platforms
	Trusted personal server
	Peer-to-peer architecture
	Blockchain
	Solving the silo problem

	Linked Data
	Semantic Web
	Web of Data
	Publishing Linked Data
	RDF serialization formats
	Querying RDF: SPARQL

	Semantic social networks
	Designing a distributed semantic social network
	Web ID
	Storage
	Services

	Linked Data Platform
	Solid

	Annotation systems
	W3C Web Annotation Data Model
	Hypothesis
	dokieli

	Problem description
	Accessing Linked Data
	Goal of the thesis

	Analysis
	Decentralized Annotations
	Annotations as Linked Data
	Writing and reading annotations

	Data manipulation
	Retrieval of data
	Manually manipulating data
	Hosting public resources
	Non-RDF data
	Current Web

	Detecting updates
	Directories
	Hierarchic structure
	Directories in file-based and query-based servers

	Intersections
	File-based intersections
	Intersections over a single graph

	Access control
	File-based ACL
	Graph-based ACL
	Development of an ACL extension
	Adding advanced ACL to the SPARQL server
	Adapting the ACL extension for annotations

	Caching
	Versioning

	Implementation
	Test setup
	Setup with file-based access
	Setup with query-based access
	Generator

	Implementation of an inbox listener for file-based access
	Implementation of a directory structure for the single-graph query-based server
	Demonstrative setup for intersections
	Annotation Plugin
	Inspiration
	User interface
	Highlighter
	Comments
	Loading annotations
	Query-based annotation plugin
	Possible extensions

	Evaluation
	Performance
	Storing annotations
	Loading annotations
	Loading specific annotations
	Conclusion

	Annotation plugin for Open Webslides
	Comparing the access techniques in the context of annotations
	Difficulty of implementation
	Retrieval performance
	State of research
	Implementing update detection
	Weighing the pros and cons

	Decentralized social applications in general

	Conclusions
	SWOT analysis for decentralization using Linked Data
	Strengths
	Weaknesses
	Opportunities
	Threats

	Relevance
	Conclusion

	Bibliography
	Appendix Using advanced ACL for annotations
	Appendix JavaScript code for routing and handling requests

