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Preface 

This master dissertation has been made possible by my promoter Prof. Dirk Van den Poel. First, I 

would like to thank twitter and their environment for letting tweets being easily extracted from their 

site. Special thanks go to my family and friends who have supported me during this long agony. 

Finally special thanks to my girlfriend Charlotte who supported me during this long journey.  Social 

media is getting more and more attention, it is interesting to discover what an impact has on your 

social status and your social network. We all want to be retweeted. Twitter and the corresponding 

retweet behavior is an excellent example how you can spread your message. The major challenge of 

my research was to come up with extra parameters that influence the number of retweets. Another 

challenge was to find underlying reasons why certain parameters were performing significant 

worse/better than predicted. Our final conclusion is that the user specific information is superior to the 

specific text information.  The size of your network is important; without followers you cannot be 

retweeted. 
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Abstract 

 

In a time where the amount of likes and retweets is more important than ever, we want to investigate 

what the ideal recipe is for a tweet to be recognized and retweeted. The purpose of this paper is to 

predict which parameters of a tweet are most important to be retweeted and what the ideal recipe is for 

a tweet. We use different models such as Random Forest, Logistic Regression and Decision Tree to 

increase the AUC of the prediction model. Further, we want to discover if the content of the text or the 

user information is the most important. Therefore, we do analyses about user specific data (followers, 

friends, number of tweets,…), but also on text specific data (hashtags, text, URL, …).  The global 

trend is that user specific information is more decisive than text content specific information to be 

retweeted. A few important new introduced parameters came to light such as the number of public lists 

that a user is a member of. To our knowledge, this study is the first that evaluates the parameters of 

retweeted tweets and the parameters of most retweeted tweets.   
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Dutch summary 

 

Omdat likes en retweets altijd maar belangrijker worden, willen we onderzoeken wat het ideale recept 

is om een tweet te laten retweeten, Het doel van deze paper is om te voorspellen welke parameters van 

een tweet de meest belangrijke zijn om het retweeten te triggeren. We gebruiken verschillende 

modellen zoal Random Forest, Logical Regression en Decision Tree om de AUC van de voorspelling 

van het model te verbeteren. Verder willen we onderzoeken of de content van de tekst of eerder de 

gebruikersinformatie de belangrijkste parameters zijn. Daarom doen we analyse van gebruiker 

specifieke data (volgers, vrienden, aantal tweets, ...), maar ook tekst specifieke data (hashtags, tekst, 

URLs, ...). De globale trend is dat gebruiker specifieke informatie meer bepalend is voor retweets dan 

tekstinhoud. Een paar belangrijke nieuwe parameters kwamen aan het licht, zoals het aantal lijsten 

waar de gebruiker deel van uitmaakt. Voor zover wij konden nagaan, is deze studie de eerste die de 

parameters van de tweets die worden geretweet en de tweets die meest worden geretweet evalueert.  
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1.  Introduction 

1.1. An introduction to social media 

Nowadays, online social networks such as Facebook, Instagram and Twitter, are very 

important and powerful communication tools. In our 21st society, people want more likes, more 

retweets and more followers. In this research paper we focus on the social network “Twitter”. Twitter 

is a very attractive tool for people who are looking to enlarge their network and influence. With more 

than 300 million active users, Twitter is an increasingly significant media context of empirical 

examination (Twitter, 2018). Twitter is unique among social media platforms as it is an intermediary 

for linking anonymous users to each other as well as a space to break and contextualize news 

(Hermida, 2010).  

Social media platforms allow rapid information diffusion and serve as a source of information 

to many of the users. Therefore, for all kinds of individuals and organizations using Twitter as a 

communication channel, it is important to know what they can do to diffuse their tweets. In a time 

where status in the form of likes and retweets is more important than ever, individuals want to know 

what the ideal recipe is to be recognized or retweeted. In addition, for marketing investors and 

organizations it is important to know which messages or tweets are being spread and which not.  

The popularity of tweets has resulted in information propagation becoming a prominent 

fundamental function of online social networks. From the perspective of information propagation, 

retweeting is viewed as an atomic behavior (Boyd, Golder & Lotan 2010). Specifically, retweeting 

action diffuses information carried in the original message. If a tweet gets a lot of retweets, the 

potential audience of a tweet enlarges significantly. Prior information propagation models treat the 

retweeting behavior as having constant retweet probability, or as following a certain probability 

distribution. Previous research demonstrated that the composition of Twitter users indicated a highly 

skewed composition, where the majority of users (90%) only send out a very few tweets and the 

minority of users (10%) are highly active (Bruns & Stieglitz, 2012). Moreover, statistics show that 1% 

of Twitter users produce 20-50% of its content and control 25% of its information diffusion (Tang et 

al., 2015).  

 A lot of Twitter research focus on which tweets are retweeted the most. Most of these studies 

are looking for features of a tweet that give the highest probability of being retweeted. First, some 

papers show a deeper insight of which tweets are retweeted the most. For example Hong, Dan and 

Davison (2011) examined which factors influence the spreading of Twitter tweets via a classification 

algorithm. These factors can be the content of the message, the hashtags, the metadata (i.e. has the 

message been retweeted before?) or the structural properties of the user. These findings are in line with 

the study conducted by Suh, Hong, Pirolli and Chi (2011) who built a predictive retweet model. They 

https://paperpile.com/c/OdUe8w/KVWLA
https://paperpile.com/c/OdUe8w/VLKY
https://paperpile.com/c/OdUe8w/VLKY
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found interesting content features in tweets that result in higher probability of being retweeted. Their 

most remarkable conclusion was that the number of past tweets does not predict retweet ability of a 

user’s tweet.  

To know how many times a tweet will be retweeted, it is important to investigate if the tweet 

will be retweeted in the first place. Earlier research don’t focus on both questions. Therefore, in this 

study we will first try to solve the binary classification problem before counting how many times a 

tweet will be retweeted. This focus doesn’t exist in earlier Twitter research. In addition, the retweeting 

research is stagnating over the last few years. Nevertheless, a lot has changed during the past few years 

and different extra tweet features are coming up like symbols, included media, extended URL’s and 

user lists. The behavior of twitterers also has changed as social media is more available for everyone 

and not only for professionals. Therefore, in this paper we want to predict which state-of-the-art tweets 

are the ones most likely to be retweeted. To answer this question, we first need to investigate if a tweet 

gets retweeted or not. In a second stage, we focus on the expected retweet count.  
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2. Theoretical framework 

2.1. Previous twitter research 

Twitter tweets provide information over the users through the diffusion of retweets. Hence, 

being able to predict the retweet count of a given tweet is important for understanding and controlling 

information diffusion on Twitter. As the length of a tweet is limited to 280 characters, extracting 

relevant features to predict the retweet count is a challenging task. Different authors report about the 

sentiment analysis and their influence on the retweetability of tweets (Rosenthal, 2017; Stieglitz & 

Dang-Xuan, 2012). More precisely, tweets convey related information about their author's sentiment. 

Tweets can be classified through sentiment analyses in positive, negative or neutral tweets. For 

example, Stieglitz and Dang-Xuan (2012) examined whether sentiment occurring in politically 

relevant tweets has an effect on their retweetability. The result was a positive relationship between the 

quantity of words indicating affective dimensions, including positive and negative emotions in a tweet 

and its retweet rate. Rosenthal (2017) declares that the sentiment analysis of a tweet could be classified 

on a two-point or a five-point ordinal scale.  

To analyze the retweetability of a tweet, there are two different kinds of features: user specific 

features and text specific features (Kupavskii, 2013). The category of user specific features includes 

all the variables in the user’s profile (e.g. the number of followers, the number of tweets or the number 

of favorites). The category of text specific features includes all the variables derived from the actual 

text of the tweet (e.g. the number of hashtags, positive/negative sentiment of the tweet and number of 

URLs in the tweet) (Kupavskii, 2013).  

In Table 1 you can find an overview of the different features used in our research in 

comparison to previous researches. Paper 1, the paper of Hong (2011) does not disclose the features 

used, so some features might be missing in the previous research binary column. 
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Features  Previous 

research 

binary (1) 

 

Previous 

research 

regression (2) 

Our research 

(binary + 

regression)  

Our research 

(binary + 

regression final 

model 

Number of followers x x x x 

Number of following x x x x 

Number of times the user was listed  x x  x x 

Favorites user x x x x 

Favorites tweet x x x  

PageRank   x   

URLs x x x x 

Positive and negative smileys,  x   

Number of posts x x x x 

The date of account creation  x   

Number of mentions x x x x 

Number of tweet words  x x  

Hashtags x x x x 

Exclamation and question marks  x   

Number of symbols   x x 

Number of media   x x 

Positive words used  ~ x x 

Negative words used  ~ x x 

Table 1: Overview of different features 

(1) Predicting Popular Messages in Twitter (Hong, 2011) 

(2) Predicting the Audience Size of a Tweet (Kupavskii, 2013) 

2.2 Program description 

 Research shows that JSONs are mostly downloaded in a python script and that the data 

cleaning and further analytics were done in databricks PySpark. Different authors such as Lekha and 

Sujala (2015) declared the use of Spark with twitter data. These authors examined the trendy Big Data 

processing engine which have gained tremendous interests over the past few years and offers faster 

solutions compared to a traditional Java-based programming framework like Hadoop. Lekha and 

Sujala (2015) experienced that Spark can be effectively utilized in finding patterns for companies who 

are advertising their job vacancies through tweets. In their study the numerous job advertisements 

were classified into various job categories, using Spark. Spark has many advantages:  
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1. Spark works with  “Resilient Distributed Datasets,” or RDDs. Using this simple extension, 

Spark can capture a wide range of processing workloads that previously needed separate 

engines, including SQL, streaming, machine learning, and graph processing (Zaharia et al. 

2016) 

2. Dataframes are a common abstraction for tabular data in R and Python, with programmatic 

methods for filtering, computing new columns, and aggregation. In Spark, these operations 

map down to the Spark SQL engine and receive all its optimizations. A data frame is a set of 

records with a known schema, essentially equivalent to a database table that supports 

operations like filtering and aggregation using a restricted “expression” API. Unlike working 

in the SQL language, however, dataframe operations are invoked as function calls in a more 

general programming language (such as Python and R), allowing developers to easily structure 

their program using abstractions in the host language (such as functions and classes) (Zaharia 

et al. 2016) 

3. In the literature we see that, the big advantage of Spark is that it is a cluster computing system. 

In comparison with older programs, Spark is remarkable faster at both running as writing 

programs. Shoro and Soomro (2015) quoted: “It is really a big challenge to analyze the bulk 

amount of twits to get relevance and different patterns of information on timely manner.” 

Their paper explored the concept of Big Data Analysis and recognized interesting information 

from tweets, using one of industries emerging tool, known as Spark by Apache.   

2.3. Algorithm and model description 

During the modeling phase, we will make use of the following algorithms: logistic regression, 

decision tree learning and random forest. First, Logistic regression is a statistical model. Generally, 

logistic regression is well suited for describing and testing hypotheses about relationships between a 

categorical outcome variable and one or more categorical or continuous predictor variables. (Peng, 

2002). The two possible dependent variable values are often labelled as "0" and "1".  In this paper, 

these values will represent outcomes as respectively “not retweeted” and “retweeted”. 

Second, classification and regression trees are machine-learning methods for constructing 

prediction models from data. The models are obtained by recursively partitioning the data space and 

fitting a simple prediction model within each partition. As a result, the partitioning can be represented 

graphically as a decision tree. Classification trees are designed for dependent variables that take a 

finite number of unordered values, with prediction error measured in terms of misclassification cost. 

Regression trees are for dependent variables that take continuous or ordered discrete values, with 

prediction error typically measured by the squared difference between the observed and predicted 

values. ( Wiley et al. 2011)  

https://paperpile.com/c/OdUe8w/9Fm1
https://paperpile.com/c/OdUe8w/9Fm1
https://paperpile.com/c/OdUe8w/9Fm1
https://paperpile.com/c/OdUe8w/9Fm1


14 
 

Third, Random forests cope with the limited robustness and sub-optimal performance (Dudoit 

et al., 2002) of decision trees by building an ensemble of trees (e.g., a thousand trees) (Breiman, 

2001). Each individual tree is grown on a bootstrap sample using Binary Recursive Partitioning (BRP) 

(Breiman et al., 1984). In random forests, the BRP algorithm starts by randomly selecting a subset of 

candidate variables (Breiman, 2001) and evaluating all possible splits of all candidate variables. A 

binary partitioning of the data is then created using the best split. The algorithm proceeds recursively 

by, within each parent partition, again randomly selecting a subset of variables, evaluating all possible 

splits, and creating two child partitions based on the best split. In sum, random forests uses random 

feature selection at each node of each tree, and each tree is built on a bootstrap sample. 

Last but not least, we are aware that statistics can be used in a misleading way. We refer to 

John D. Cook (PhD and consultant in applied mathematics, statistics and technical computing) who 

states that “With four parameters I can fit an elephant, and with five I can make him wiggle his 

trunk.”, therefore we opt to try not to overfit our data. 

2.4. Privacy policy 

One of the reasons General Data Protection Regulation (GDPR) gets a lot of attention is the 

recent scandal around user data leaks at Facebook. GDPR came into effect on May 25th, 2018. The 

GDPR builds upon and modernizes existing EU Data Protection and Privacy rules and will replace 

them with one single set of rules that govern how personal information is collected and processed. It is 

a law that helps to protect and defend user privacy and informs the user of what is being done with 

their personal details. For future research there will become more restrictions about user streaming. It 

is not completely clear what will change on the Twitter API platform.  
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3. Research questions 

RO1: Which tweets will be retweeted? 

Before we want to know, how many times a tweet will be retweeted, we need to investigate if a tweet 

gets retweeted or not. To reach this goal, we make a difference between a retweeted and a non-

retweeted tweet and look at the differences between both.  

- Hypothesis 1: We predict that user related features would be more important than text related 

features. 

- Hypothesis 2: We predict that the most determinative parameter of the user is the number of 

followers. 

- Hypothesis 3: We predict that messages that score high on sentiment, positive or negative, will 

be retweeted more.   

 

RO2: Which tweets will be retweeted most? 

After figuring out what differentiate a retweeted tweet from a not retweeted tweet, we can formulate 

hypotheses 1 as in our first research question.  

- Hypothesis 1: The importance of the individual features for the binary classification model are 

similar but not the same as the importance of the features for the regression model.  
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4. Methodology 

In the following section we are deciding which features we are selecting for which problem. 

We used three different algorithms Logistic Regression, Decision Tree and Random forest to compare 

the impact of features within the different algorithms.  

4.1. Project overview 

The project starts from the assumption that certain determinants could influence the chance of being 

retweeted, either positive or negative. To answer our research questions we follow the different steps 

of the Cross-Industry Standard Process for Data Mining (CRISP-DM). The CRISP-DM is a data 

mining process model that describes commonly used approaches that data mining experts use to tackle 

problems (Chapman, 2000). Figure 1 illustrates the six phases of CRISP-DM.  

1. Business Understanding: Finding the features that influence retweetability as described in 

the problem statement and theoretical framework.  

2. Data Understanding: Downloading tweets in the form of JSON through the twitter API to 

the local hard disk. And examining this JSON structure with a JSON viewer is elaborated in 

section 4.2.  

3. Data Preparation: JSON structure manipulation in Python and Databricks as described in 

chapter 4.3 (Data Understanding and Data Preparation).  

4. Modeling: Selecting and building the most appropriate models in Databricks is elaborated in 

chapter 4.4 (Data Analysis).  

5. Evaluation: Using performance measurements as AUC to compare results can be found in 

addendum 2.  

6. Deployment: Deploying and summarize our final findings. Method and strategy can be found 

in addendum 2.  

https://paperpile.com/c/OdUe8w/8OuPV
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Figure 1: CRISP-DM 

4.2. Data Understanding 

We extracted our social media data from the website Twitter. Earlier research shows that 

social media data is often more subjective and personal. To answer our research question “Which 

tweets will be retweeted most?”, we need to filter this raw data. The first problem is to decide from 

whom we are we going to collect our data. As we want to create a dataset with both important and 

non-important twitterers, a logical solution is to select the twitterers using random Twitter id’s. The 

code that is used for downloading the dataset is available in addendum 1.  Most important is that we 

use randomly generated account numbers (nine numbers). To select a tweet from an account, two 

criteria are added. First, the tweets should be in English so we don’t have to take translations into 

account for the sensitivity analysis. We note that the language of the retweeted tweet is in English (not 

the original tweet that is retweeted). Therefore, it is possible that there are still non-English tweets in 

the dataset before data preparation. Second, the tweets should contribute to an equally divided dataset. 

More specifically, we want to have 50% tweets that are retweeted and 50% that are not retweeted, 

because literature shows that the results are best with equally divided samples.  

We used the twitter API_user_timeline command and the package tweepy for downloading 

tweets. Furthermore, we made use of personal keys: a consumer key, an access key and a consumer 

access. These items made it possible to set up a personal connection with twitter. In accordance with 

those keys we can extract tweets and user information for free. Nevertheless, twitter can track who is 

downloading their data and there is an upper limit to the amount of calls you can make in a period of 

time. For this reasons you need to build in sleeping periods in your program when extracting data. Pay 

attention that we downloaded this data locally.  
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After running the tweet downloader for many nights on the computer, we accumulated a dataset of 560 

000 tweets with 280 000 retweeted and 280 000 not retweeted. Due to the limitations of the download 

API, we never had more than 200 tweets per user. The number of unique users we used to extract the 

tweets is 17 730. The tweets downloaded originated from 93 999 different users. After the data was 

gathered, we cleaned and modified it on the databricks platform.  

 To prevent overfitting on the dataset we created the accounts that extracted the tweets 

completely random. The downloaded data is saved as a JSON as this is an easy way of saving social 

media data. Next, we applied a process called serialization to transform all these individual JSON files 

into one big table, called dataframe on our platform databricks. Keeping in mind that we store each 

tweet in an individual JSON, our final dataframe will be a collection of JSONs. For more information 

about tweets in JSON format, you can look on the developer site from twitter. In figure below there is 

a visualization of a sample tweet in JSON structure. This whole process provides us with the data to 

analyze what would be the impact of different tweets from different users on the retweetability of 

tweets. 

When we take a closer look at the different JSONs in attachment, we see a remarkable 

difference between the flattened and the normal shaped JSON. The big difference is that the normal 

JSON goes much deeper (multiple dimension). This gives us a lot of complication when we want to 

make a dataset of this deep JSON. Therefore we need to flatten this JSON first. The originally data 

contains concrete enumerations of concrete attributes where for our research we typically want only 

the number of attributes. In other places the data we want is deeply nested into the JSON structure and 

to fit in the dataframe model we don’t want nested JSONs. You can find an example in figure below. 

You can find the complete JSONs in attachment 1.  
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… 

 

After flattening becomes 

 

Figure 2: Example flattening JSON 

 

4.3. Data Preparation 

When we look at all different variables, we see that we have too many variables to start with. 

The goal is to make a model that includes the most predictive and most effective parameters. We 

include the variables as suggested in previous research (referred to as standard variables) and add the 

ones which we think could contribute (see above) .  

For the classification problem, the dependent variable is retweeted_dummy. This is a boolean, 

which takes the value 1 if the tweet is retweeted, 0 otherwise. For the regression problem the 

dependent variable is retweet_count. This is the number of times that the original tweet/message is 

retweeted. The standard independent variables are the same for the classification and the linear 

problem. Table 2 summarizes the standard variables. 
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Independent 

variable 

Explanation 

followers_count current number of followers of the user. A follower is a person who follows 

you on twitter. You don’t need to follow him/her back. It is just a follower.  

friends_count The number of users this account is following (AKA their “followings”).  

favourites_count The number of Tweets this user has liked in the account’s lifetime. 

n_user_mentions The number of users that are mentioned in the tweet. There is a list of which 

users are mentioned but we are only interested in how much users are 

included in the tweet 

n_urls The number of urls that are mentioned in the tweet. There is a list of which 

urls are mentioned but we are only interested in how much urls are included 

in the tweet 

n_hashtags Represents the number of hashtags which have been parsed out of the Tweet 

text. 

n_listed The number of public lists that this user is a member of. * 

n_statuses The number of Tweets (including retweets) issued by the user 

** 
 

Table 2: The list of independent variables 

 

*A List is a curated group of Twitter accounts. You can create your own Lists or subscribe to Lists created by others. 

Viewing a List timeline will show you a stream of Tweets from only the accounts on that List (google) 

** Remark: n_favorited (= the number of times that the tweet is favorited) is not put in the list of independent variables. 

Because we won’t have that information if we have to predict the retweets of a tweet. Another research question could be: 

“Predicting which tweets will be favorited most”?  
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Next to these variables we have created additional variables that hopefully will add predictive value to 

this model. Table 3 summarizes these additional variables.  

 

Extra Independent 

Variables 

Explanation 

count_positive The number of positive words that are included in the text of the tweet. * 

count_negative The number of negative words that are included in the text of the tweet. * 

n_symbols The number of symbols that are mentioned in the tweet. There is a list of 

which symbols are mentioned but we are only interested in how much 

symbols are included in the tweet 

n_media Represents the number of media elements uploaded with the Tweet. A 

media element is a photo, an url, an expanded url,... 

Table 3: The list of extra independent variables 

*To get a sentiment score for each tweet, we use a lexicon-based approach. Before we are able to execute sentiment analysis, 

we need to clean the text and tokenize the tweets into English words.  We make multiple strings from one large string. This 

means per tweet we filter out all irrelevant characters, remove RT, convert everything to lower case, tokenize the result and 

count how many positive and negative words appear in the resulting vector. The lists of words we used consist of more than 2 

000 words (Ding, Liu, and Zhang 2009). For an example see Table 4. 

Different steps Text 

Original text from retweet RT @xfl2020: This is great football reimagined. This is 

the XFL. Watch the official announcement — LIVE 

NOW! #XFL2020 https://t.co/KFX5oLmkHw 

Convert to lower case rt @xfl2020: this is great football reimagined. this is the 

xfl. watch the official announcement — live now! 

#xfl2020 https://t.co/kfx5olmkhw 

Remove rt, http and all special characters this is great football reimagined this is the xfl watch the 

official announcement live now xfl2020 

Remove stopwords great football reimagined xfl watch official 

announcement live xfl2020 

Tokenize [“great”,"football","reimagined","xfl","watch","official", 

"announcement","live","xfl2020"] 

Count positive words 1 

Count negative words 0 

Table 4:Example of steps to calculate count positive and negative words 

https://paperpile.com/c/OdUe8w/Skel
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It is important to mention that retweeted tweets and non-retweeted tweets have a different 

structure (JSON). If a tweet is retweeted we are interested in the data of the original tweeter, and not of 

the re-tweeter. So we create new variables that indicate whether the data is retweeted from another 

account or whether the data is purely user-generated. An example will make this clearer. For example, 

I as a student see a tweet that I want to share from prof. Dirk Van den Poel, and then I can retweet his 

original tweet. On that same evening there is a soccer game going about which I tweet. When we want 

to collect this information, we want to assemble for the first tweet the user and text data from the 

original tweeter prof. Dirk Van den Poel. For the second tweet, we want to collect user and text data 

from Jolan Bourdeaud’hui. Hence, we always want the data from the original tweet.  

First we make a dataset for our classification problem. Is a tweet retweeted or not? For this 

more appropriate shaped JSON, we make sure that there are no variables present in the dataframe 

from retweeted tweets, because these variables are the consequence of a retweet and thus cannot be 

used to predict a retweet.  

In Attachment 2 you see an example of a flattened JSON for a tweet for which the usage in our 

model is indicated.   

 

First we look at the distribution number of tweets per user. We have 560 000 tweets in total 

and 17 730 unique users. Each user has an average of 31.5 tweets. When we look at the distribution of 

the number of tweets per user we see that this is not normally distributed. This is because there are a 

lot of users that tweet very rarely and only a small percentage of the twitter network is responsible for 

the most diffusion on twitter. Figure 3 shows that only 10 percent of the users are responsible for 90 

percent of the total tweets. When we generate our user-id randomly, there is a bigger chance to take an 

account with fewer tweets. The maximum number of tweets per user we can fetch through the twitter 

api is 200. 50% of the unique users have 5 tweets or less that meet the requirements. 

 
Figure 3: Overview tweets per user 
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Figure 4 shows that 50% is retweeted and 50% is not retweeted. Of the 560 000 there were 280 000 

tweets retweeted and 280 000 not retweeted. We have retweeted tweets from original tweeters and 

retweeted tweets from the user timeline we scraped.  230 000 Of the retweets (or 83%) come from 

tweets from other tweeters.  47 678 Of the retweets (or 17%) are written by the users we scraped and 

are retweeted by others..  

 

 

Figure 4: Overview distribution tweets (rounded numbers) 

 

4.4. MODELING  

4.4.1 Pipeline 

To implement our predictive models we use databricks python spark (pyspark). This is a 

pretty new programming language. Python allows us to run functions over collections on multiple 

processors in parallel.  Spark allows us to run functions over multiple servers in parallel (Odersky, 

2017). This should allow us to analyze massive amounts of tweets in a reasonable time. Working 

locally on python would be limited because we are tied to a single compute node (computer). To 

model everything in PySpark, we need to put our data in the right format. First of all we considers null 

values being the integer 0.  

Most of the operations will be done on either the categorical values, the continuous values or 

the label. Therefore, a split-up in a label, the categorical features and the continuous features is the 

most efficient. The conversion is the easiest with RDD's, therefore we will transform the DataFrame 

to an RDD and afterwards use a map function to transform each of the rows. 
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After putting it in the right format we convert the RDD back to a DataFrame and we split the  

base table up in a train and test set. 70% of the data is used for training and 30% is used for testing. 

The splitting of the data is executed randomly to save computation time. Cross validation is not used 

because we have limited Databricks resources. 

Now we have our basetable ready for a Machine Learning Pipeline. So now, we need to construct a 

pipeline. 

The pipeline will consist out of five stages: 

1. StringIndexer: A label indexer that maps a string column of labels to an ML column of label 

indices. So this makes category indices of the strings in a column. 

2. VectorIndexer: Class for indexing categorical feature columns in a dataset of Vector. 

3. StandardScaler: Standardizes features by removing the mean and scaling to unit variance 

using column summary statistics on the samples in the training set. 

4. VectorAssembler: A feature transformer that merges multiple columns into a vector column. 

5. Decide on the machine learning algorithm that we will be using. We will give an example of 

Logistic Regression, Decision Tree learning, Random Forest 

 

The next step in our model is training the pipeline, the number of iterations we trained differs for the 

models we used. 

• For logistic regression the number of iterations is 1000.  

• For the decision tree classification our model came up with the solution  of depth 5 with 63 

nodes. Each node represent a test or decision.   

• For random forest 500 number of trees were used. This is a good trade-off between 

computation time and error. 

 

We made use of machine learning techniques classification and regression. There is an 

important difference between classification and regression problems. Fundamentally, classification is 

about predicting a label and regression is about predicting a quantity. 

For the first research question we use classification. Classification gives answers to a binary problem: 

Is a tweet retweeted or not? We use logistic regression, random forest and decision tree learning in this 

scenario. We make a subdivision. Classification retweeter is using the new user specific data. 

Classification original tweeter is using the original user specific data 
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For the second research question we have to make use of regression. Regression gives answers to 

continuous problems: How many times is a tweet retweeted? We use linear regression, random forest 

and decision tree in this scenario. 

4.4.2 Evaluation 

4.4.2.1 Classification retweeter. Table 5 shows the results for the three previous discussed models. We 

first made our basetable with the data from the last person that tweeted, not the original. We had 12 

independent variables and 1 dependent variable.  

Model Performance Total_accuracy Accuracy_not_retweeted Accuracy_retweeted 

Logistic 

regression 
0.82 0.747 0.76 0.733 

Decision 

tree 
0.755 0.776 0.811 0.741 

Random 

forest 
0.853 0.782 0.836 0.727 

Table 5: Results classification retweeter 

 

The performance measure is AUC (i.e. Area Under Curve). For binary classification we will 

use one performance measure in this section called Area Under the Receiver Operating Characteristics 

curve (AUC). AUC is a measure between 0.5 (if the model is not doing better than random selection) 

and 1 (if the model makes perfect predictions). The area under the ROC curve (AUC) is a well-known 

measure of ranking performance, estimating the probability that a random positive is ranked higher 

than a random negative, without committing to a particular decision threshold. (book predictive and 

prescriptive analytics) 

  



26 
 

 

Figure 5 tells us that random forest performs best. We see that the AUC is quite high,, but there is 

definitely still room for improvement. 

 

 

Figure 5: Performance (AUC) classification problem retweeter 

 

4.4.2.2 Classification original tweeter 

 

Model Performance Total_accuracy Accuracy_not_retweeted Accuracy_retweeted 

Logistic 

regression 
0.888 0.81 0.672 0.949 

Decision 

tree 
0.826 0.91 0.891 0.93 

Random 

forest 
0.969 0.916 0.88 0.953 

Table 6: Results classification original tweeter 

 

 

Figure 6: Performance (AUC) classification original tweeter 
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The performance from classification problem 2 is remarkably higher than the performance of 

classification problem 1. Replacing the user parameters of the new tweeter in the original tweeter has a 

positive influence on performance. We see that Random forest is our best model with an AUC of 

0.969. When we want to predict which tweets will be retweeted most, we must change from a 

classification problem to a linear problem. The independent variable is no longer retweeted_dummy 

but retweeted_count. We don’t change the dependent variables. They stay the same as the variables in 

classification problem original tweeter. We remove all data that is not retweeted from the dataset, 

because we are interested in how much a tweet get retweeted. So all observations must be retweeted at 

least 1 time. 

 

4.4.2.3 Regression original tweeter. Note that the dependent variable is now changed to retweet count. 

The independent variables remain the same. 

 

Model Performance MeanAbsoluteError 

Logistic regression 0.046 0.81 

Decision tree 0.529 0.91 

Random forest 0.408 0.916 

Table 7 : Mean Absolute Error regression original tweeter 

 

Figure 7: Mean Absolute Error regression original tweeter  

Figure 8 shows that decision tree is outperforming random forest, which is at least remarkable. When 

we look at the figure 7 of the Mean Absolute Error, we see that the MAE has risen significantly. It is a 

lot harder to predict how many times a tweet is going to be retweeted than the classification if a tweet 

is going to be retweeted. 
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Figure 8: Accuracy (R²) regression original tweeter  

 

The performance of the models is being expressed in R². This is the proportion of the variance in the 

dependent variable that is predictable from the independent variables. We see that it dropped relative 

to the classification problems. There is a lot of uncertainty how much a tweet is going to be retweeted.  
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5. Data Analysis 

5.1. Classification retweeter 

The total accuracy is the percentage of tweets that is actually correctly predicted. If all 

retweeted tweets are predicted as retweeted tweets and all not retweeted tweets are retweeted as not 

retweeted tweets. This would result in an accuracy of 100%. The total accuracy in classification 

problem 1 is quite high, but as said before there is still room for improvement. We can see in Figure 9 

that Random forest is our best model with a performance of 0.853. 

 

Figure 9: Total accuracy classification retweeter 

 

Figure 10: Specific accuracy classification retweeter 

 

Remark that the accuracy of the not retweeted tweets is higher than the accuracy of the 

retweeted tweets (Figure 10). This is very surprising. Our model predicts more that a tweet will not be 

retweeted. A possible explanation for this phenomenon is that we have a lot of not famous people who 

don’t get retweeted so much. Because we don’t use - in this classification problem - the data from the 

original tweeter, we get a lot of  user data from ordinary people.  
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5.2 Classification original tweeter 

 

Figure 11: Total accuracy classification problem original retweeter 

 

Replacing the user parameters of the new tweeter in the original tweeter also has a positive influence 

on the accuracy. 

 

Figure 12: Specific accuracy classification problem original retweeter 

 

Just as in classification problem 1, the accuracy of the not retweeted tweets is higher than the accuracy 

of the retweeted tweets.  

5.3 Regression original tweeter  

For the regression problem we don’t have meaningful results concerning accuracy and residuals. We 

refer to attachment 3 for the residuals.  
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6. Results  

 

6.1. Variable importance vector 

Table 9 shows the variable importance vector for the best model (2 times Random Forest , 1 

time Decision Tree). The total of the sum of the feature importance vector is 1. The (absolute) 

magnitude of each non-zero weights can give an idea about the importance of the corresponding 

attribute. Irrelevant variables are set to zero. Many variable selection algorithms include variable 

ranking as a principal or auxiliary selection mechanism because of its simplicity, scalability, and good 

empirical success (Guyon & Elisseeff, 2003). 

Table 8 is ordered from most important features above to least important features below. 

When we look at Table 8, we see variables changing position when we change classification into 

regression problem. We also see a remarkably difference in the variable importance between the two 

classification problems. In classification problem 1 (with the new user retweeted data) the number of 

users mentioned is the most important variable. In contrary with classification problem 2 (with the 

original user retweeted data) and the linear problem (with the number of retweets as dependent 

variable), the number of statuses of the user makes the reserve movement. At classification problem 

number 1 it is less important, than in problem 2 and 3. However, the most special perception of the 

table is that the number of followers is not that important in problem 1 and 3. In problem 2 - this is 

also the problem with the best results in terms of performance - the number of followers is the most 

important feature. We see a global trend that the user specific data (followers, friends, statuses,.. ) are 

more important than tweet specific data like number of hashtags, urls or positive/negative words. This 

confirms our hypotheses that user related features are more important than content related features.  

In the past, a lot of research has been done to find out which parameters of the tweet correlate 

with the number of times a tweet is retweeted. Luckily there is always room for improvement and 

twitter provides us with extra parameters. For instance, there are the number of the memberships of 

lists and the different types of media attached to the tweet. The results of these parameters are 

particularly interesting. 
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Place (variable 

importance) 

Classification  

retweeter 
Classification   

original tweeter 
Regression 

1. n_user_mentions followers_count n_statuses 

2. n_media n_statuses friends_count 

3. followers_count n_listed favourites_count 

4. friends_count, friends_count n_listed 

5. favourites_count favourites_count followers_count 

6. n_urls n_media n_media 

7. n_listed n_urls n_hashtags 

8. n_statuses n_user_mentions count_positive 

9. n_hashtags n_hashtags n_urls 

10. count_negative count_negative n_user_mentions 

11. count_positive count_positive count_negative 

12. n_symbols n_symbols n_symbols 

Table 8: Overview features variable importance vector (3 models: 2 times Random Forest, 1 time Decision Tree) 

 

Classification  

retweeter 
Classification   

original tweeter 
Classification  

retweeter  
Regression 

favourites_count  0.154 0.059 0.142 

followers_count 0.042 0.399 0.114 

friends_count, 0.038 0.090 0.200 

n_hashtags 0.010 0.002 0.044 

n_urls 0.012 0.008 0.011 

n_user_mentions  0.629 0.007 0.006 

n_listed  0.011 0.203 0.117 

n_symbols  0.0 0.0 0.0 

n_media 0.085 0.014 0.107 

count_positive 0.001 0.0 0.022 

count_negative 0.001 0.0 0.004 

n_statuses  0.010 0.217 0.231 

Table 9: Overview values of the features variable importance vector (3 models: 2 times Random Forest, 1 time Decision 
Tree 
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6.2. Correlation matrix 

6.2.1 Classification original tweeter 

An interesting result is the correlation matrix. Correlation is a scaled measure of how two 

variables change with respect to each other. We knew already which variables were more important 

than others (see tables 8 and 9), but the correlation matrix learns us how the variables influence the 

dependent variable. In table 10 we see that there are only two negative variables namely the number of 

urls in the tweet and the number of users mentioned in the tweet. This means that if you add one (or 

more) url or users in your tweet, the number of times that you are going to be retweeted drops. All 

other parameters are positive. This means that, for example, the more followers you have, the more 

chance you have to be retweeted. The variables with the highest correlation values are numbers of 

media elements that are uploaded with the tweet, the number of favorites of the user and the number of 

followers of the user. Adding media to your tweet helps to get your message retweeted.  

 

Features Correlation with feature retweeted 

Retweeted 1 

favourites_count 0.188 

followers_count 0.155 

friends_count 0.114 

n_hashtags 0.017 

n_urls -0.059 

n_user_mentions -0.129 

n_listed 0.112 

n_symbols 0.008 

n_media 0.282 

count_positive 0.055 

count_negative 0.051 

n_statuses 0.289 

 

Table 10: Correlation matrix classification original retweeter for random forest (the corresponding line of the dependent 
variable retweeted) 
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6.2.2 Regression problem 

Table 11 shows the corresponding line of the dependent variable (retweet_count) for the 

regression problem. When we look at the correlation between the retweeted count and all the variables 

in Table 11, we see similar results as before. There are two extra variables that have a negative impact 

on the retweet count, namely the number of hashtags and the number of symbols. But the correlation 

values are relatively low. The number of public lists that a user is member of, the number of followers 

and the number of statuses has the biggest correlation values with the retweet count.  

 

Features Correlation with feature retweet_count 

favourites_count 0.044 

followers_count 0.187 

friends_count 0.055 

n_hashtags -0.011 

n_urls -0.001 

n_user_mentions -0.027 

n_listed 0.118 

n_symbols -0.001 

n_media 0.071 

count_positive 0.004 

count_negative 0.007 

n_statuses 0.127 

retweet_count 1 

 

Table 11 : Correlation matrix regression problem for decision tree (the corresponding line of the dependent variable 
retweet_count) 
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7. Discussion 

The results are in line with the expectations. The global trend is that most of the time user 

specific information is more decisive than text content specific information to be retweeted. This 

confirms our first hypothesis that user related features are more important than content related 

features. The most remarkable and maybe surprising result is the relatively high positive correlation 

between the variables “memberships lists” and “number of retweets”. Further, the negative correlation 

between “number of urls” and the variable “retweeted” is at least equally interesting.  

The answer on the second hypothesis “the most important feature of the original tweeter is the 

number of followers” can be confirmed from the variable importance vector from the classification 

model. This is in contradiction to the regression model. Note that the classification has proven to be 

much more reliable than the regression model so we can confirm the hypothesis.  

The answer on the third hypothesis “messages that score high on sentiment, positive or 

negative, will be retweeted more” can be confirmed from the solution from the correlation matrix. 

Nevertheless, our results showed that there was only very limited correlation. The most remarkable 

finding was that as well tweets with positive as tweets with negative sentiment both get more retweets.  

The last hypothesis declares that the importance of the individual features for the binary 

classification model is about the same as the importance of the features for the regression model. The 

top six features in the importance matrix (table 8) are the same, although they don’t appear in the same 

order. This is logical because we have another but related dependent variable (i.e. retweet count).  

This thesis can have several implications for future research and practice. As our dataset and 

our model are made available, these products can be reused in future research. We are aware that our 

dataset is still in an early stage. However, as our dataset and model is freely available and self-

explanatory we empower the reader to contribute in this educational Machine Learning project and 

unleash the power of Big Data in the area of social media. One can contribute to our research by 

enhancing either the dataset or the model (e.g. in adding more independent variables). Further, we 

believe that marketeers could benefit from adopting our model to his/her specific setting. 

We also have to keep in mind that this research is conducted with completely random 

generated userIDs and this research is not applicable to all tweets of the world.  

We can conclude that we have reached several meaningful models with great performance 

measures, but there is definitely room for improvement and there are some limitations.  
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http://paperpile.com/b/OdUe8w/9Fm1
http://paperpile.com/b/OdUe8w/9Fm1
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Attachments 

 

Attachment 1: Examples JSON structure downloaded and flattened 
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Figure 20: JSON (not retweeted tweet) normal structure 
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Figure 21: JSON (not retweeted tweet) reshaped structure 
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Figure 22: JSON  (retweeted tweet) not reshaped structure 
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Figure 23: JSON  (retweeted tweet) reshaped structure 
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Attachment 2: example of a flattened JSON for a tweet for which the usage in our model 

is indicated 

Usage Feature in flattened JSON 

Used as feature in final 

model 

  "text": "RT @BringBoysBack: @BarackObama We ask…", 

  "n_hashtags": 1, 

  "user_listed_count": 0, 

  "n_urls": 0, 

  "n_followers_tweeter": 10, 

  "n_media": null, 

  "n_statuses_tweeter": 90, 

  "n_friends_tweeter": 32, 

  "n_favourites_tweeter": 92, 

  "n_user_mentions": 2, 

  "n_symbols": 0, 

  "original_followers_count": 177, 

  "original_text": "@BarackObama We ask …", 

  "original_friends_count": 45, 

  "original_listed_count": 1, 

  "original_favourites_count_user": 33, 

  "original_n_urls": 0, 

  "original_n_hastags": 1, 

  "original_n_media": 1, 

  "original_n_symbols": 0, 

  "original_n_user_mentions": 1, 

  "original_statuses_count": 191 

Tested as feature but 

not included in final 

model 

  "n_favorite_count": 0, 

  "hash1_length": 16, 

  "hash2_length": null, 

  "hash3_length": null, 

  "hash1_place": 118, 

  "text_length": 144, 

  "user_mentions1_place_indices": 3, 

  "user_description": "" 
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  "original_description": "#BringBackOurBoys", 

  "original_favourites_count_tweet": 3 

Dependent variable   "retweet_count": 13, 

  "retweeted": true, 

  "original_retweet_count": 13 

Used for technical 

reasons (sorting, 

identifier, grouping) 

  "tweet_id": 478276585112350720, 

  "lang": "en", 

  "user_id": 496480519, 

  "original_name_id": 2610686069, 

  "original_id_tweet": 478185131199721472, 

  "original_user_id": 2610686069 

Not used  "created_at": "Sun Jun 15 20:43:18 +0000 2014", 

 "tweet_id_str": "478276585112350720",   

 "truncated": false, 

 "time_zone": "Jerusalem", 

 "following": false, 

 "hash1_text": "BringBackOurBoys", 

 "hash2_text": null, 

 "hash3_text": null, 

 "user_mention_1": "BringBoysBack", 

 "user_mention_2": "BarackObama", 

 "user_mention_3": null, 

 "url_1_display": null, 

 "url_2_display": null, 

 "url1_place": null, 

 "url_1_length": null, 

 "url_2_length": null, 

 "is_quote_status": false, 

 "in_reply_to_status_id": null, 

 "in_reply_to_user_id": null, 

 "in_reply_to_screen_name": null, 

 "user_name": "adi bohbot", 

 "user_screen_name": "adi_bohbot", 



48 
 

 "user_location": "Israel", 

 "original_name": "#TheyKilledOurBoys", 

 "original_created_at": "Sun Jun 15 14:39:54 +0000 2014", 

 "original_user_time_zone": null, 

 "original_user_created_at": "Sun Jun 15 06:42:48 +0000 2014", 

 "original_protected_user": false, 

 "original_url_tweet": "http://t.co/XDB8SO1gPf" 
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Attachment 3: Program to download and flatten tweets in JSON format 

import tweepy #https://github.com/tweepy/tweepy 

 

import csv 

 

import json 

import random 

import time 

import csv 

from tweepy import OAuthHandler 

 

 

#Twitter API credentials 

 

consumer_key = '***' 

consumer_secret = '***' 

access_key = '***' 

access_secret = '***' 

 

 

auth = tweepy.OAuthHandler(consumer_key, consumer_secret) 

auth.set_access_token(access_key, access_secret) 

 

list1=['jolskiii'] 

 

api = tweepy.API(auth) 

countmax = 200 

totallines =10 

retweeted =5 

notretweeted =5 

 

 

#api = tweepy.API(auth) 

#countmax = 200 

#totallines =60000 

#retweeted =30000 

#notretweeted =30000 

 

def loop_over_user_names(): 

    #file1 = open("C://temp//dataset//5000_balanced.json", "a") 

    file1 = open("C://temp//ww.json", "a") 

    #file1.write("[") 

 

 

    n = 0 

    r=0 

    while (n < notretweeted or r <retweeted): 

        rand = random.randint(100000000, 999999999) 

        try: 

            # orriginally count was 200 

            count = 0 

            print(n,r) 

            time.sleep(1) 

            new_tweets = api.user_timeline(user_id=rand, count=countmax) 

            print(new_tweets) 

            while count < countmax: 

                try: 

                    if (new_tweets[count]._json["lang"] == "en"): 
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                        toFile = json.dumps(new_tweets[count]._json) 

 

                        if (new_tweets[count]._json["retweet_count"] == 0): 

                            if (n < notretweeted): 

                                file1.write(toFile + "\n") 

                                n = n + 1 

                        else: 

                            if (r < retweeted): 

                                file1.write(toFile + "\n") 

                                r = r + 1 

                    count += 1 

 

                except Exception as e: 

                    print(str(e)) 

                    count +=1 

                    break 

 

        except: 

            print("skipping") 

 

 

 

    #file1.write("{}]") 

 

    file1.close() 

 

 

 

loop_over_user_names() 

 

 

 

 

 

 

 

 

 

import tweepy 

import json 

from tweepy import Stream 

from tweepy import OAuthHandler 

from tweepy.streaming import StreamListener 

 

 

#consumer key, consumer secret, access token, access secret. 

consumer_key = '***' 

consumer_secret = '***' 

access_key = '***' 

access_secret = '***' 

 

 

 

auth = tweepy.OAuthHandler(consumer_key, consumer_secret) 

auth.set_access_token(access_key, access_secret) 

 

 

 

def hashtaglength(hashtags,i): 
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    try: 

        return len(hashtags[i]["text"]) 

 

    except: 

        return None 

 

def hashtagname(hashtags,i): 

    try: 

        return (hashtags[i]["text"]) 

 

    except: 

        return None 

 

def hashtagplace(hashtags): 

    try: 

        return (hashtags[0]["indices"][0] ) 

 

    except: 

        return None 

 

def usermentionplace(hashtags): 

    try: 

        return (hashtags[0]["indices"][0]) 

 

    except: 

        return None 

 

def usermentionname(hashtags,i): 

    try: 

        return (hashtags[i]["screen_name"]) 

 

    except: 

        return None 

 

def url(hashtags,i): 

    try: 

        return (hashtags[i]["display_url"]) 

 

    except: 

        return None 

 

def urlplace(hashtags): 

    try: 

        return (hashtags[0]["indices"][0] ) 

 

    except: 

        return None 

 

def urllength(hashtags,i): 

    try: 

        return len(hashtags[i]["url"]) 

 

    except: 

        return None 

 

def symbols(hashtags): 

    try: 

        return (hashtags[0]["text"]) 

 

    except: 

        return None 
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def retweeted(data): 

    if (data["retweet_count"]>0): 

        return True 

    else: 

        return False 

 

def original_followers_count(data): 

    try: 

        return data["retweeted_status"]["user"]["followers_count"] 

    except : 

        return None 

 

 

 

 

def original_name(data): 

    try: 

        return data["retweeted_status"]["user"]["name"] 

    except: 

        return None 

 

def original_name_id(data): 

    try: 

        return data["retweeted_status"]["user"]["id"] 

    except: 

        return None 

 

def original_text(data): 

    try: 

        return data["retweeted_status"]["text"] 

 

    except: 

        return None 

 

 

def original_created_at(data): 

    try: 

        return data["retweeted_status"]["created_at"] 

 

    except: 

        return None 

 

def original_id_tweet(data): 

    try: 

        return data["retweeted_status"]["id"] 

 

    except: 

        return None 

 

 

def original_description(data): 

    try: 

        return data["retweeted_status"]["user"]["description"] 

 

    except: 

        return None 

 

def original_id_tweet(data): 

    try: 

        return data["retweeted_status"]["id"] 
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    except: 

        return None 

 

 

def original_friends_count(data): 

    try: 

        return data["retweeted_status"]["user"]["friends_count"] 

 

    except: 

        return None 

 

def original_listed_count(data): 

    try: 

        return data["retweeted_status"]["user"]["listed_count"] 

 

    except: 

        return None 

 

def original_favourites_count_tweet(data): 

    try: 

        return data["retweeted_status"]["favorite_count"] 

 

    except: 

        return None 

 

def original_favourites_count_user(data): 

    try: 

        return data["retweeted_status"]["user"]["favourites_count"] 

 

    except: 

        return None 

 

def original_statuses_count(data): 

    try: 

        return data["retweeted_status"]["user"]["statuses_count"] 

 

    except: 

        return None 

 

def original_protected_user(data): 

    try: 

        return data["retweeted_status"]["user"]["protected"] 

 

    except: 

        return None 

 

def original_user_created_at(data): 

    try: 

        return data["retweeted_status"]["user"]["created_at"] 

 

    except: 

        return None 

 

def original_user_time_zone(data): 

    try: 

        return data["retweeted_status"]["user"]["time_zone"] 

 

    except: 

        return None 
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def orignal_retweet_count(data): 

    try: 

        return data["retweeted_status"]["retweet_count"] 

 

    except: 

        return None 

 

def original_url_tweet(data): 

    try: 

        return 

data["retweeted_status"]["extended_entities"]["media"][0]["url"] 

 

    except: 

        return None 

 

def original_type_extended_entities_tweet(data): 

    try: 

        return data["retweeted_status"]["entities"]["media"][0]["type"] 

 

    except: 

        return None 

 

def original_n_urls(data): 

    try: 

        return len(data["retweeted_status"]["entities"]["urls"]) 

 

    except: 

        return None 

def original_n_hashtags(data): 

    try: 

        return len(data["retweeted_status"]["entities"]["hashtags"]) 

 

    except: 

        return None 

def original_n_user_mentions(data): 

    try: 

        return len(data["retweeted_status"]["entities"]["user_mentions"]) 

 

    except: 

        return None 

def original_n_media(data): 

    try: 

        return len(data["retweeted_status"]["entities"]["media"]) 

 

    except: 

        return None 

def original_n_symbols(data): 

    try: 

        return len(data["retweeted_status"]["entities"]["symbols"]) 

 

    except: 

        return None 

 

def n_media(data): 

    try: 

        return len(data["entities"]["media"]) 

 

    except: 

        return None 

 

def original_user_id(data): 
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    try: 

        return data["retweeted_status"]["user"]["id"] 

 

    except: 

        return None 

 

 

 

def make_json1(data): 

    n = 0 

    q = 0 

    r = 0 

    jsontest = {"created_at": data["created_at"], "tweet_id": data["id"], 

"tweet_id_str": data["id_str"] , "text": data["text"], "truncated": 

data["truncated"], 

                 "n_hashtags": len(data["entities"]["hashtags"]), 

'n_hashtags': len(data["entities"]["hashtags"]), 

                "lang": data["lang"], 'retweet_count': 

data["retweet_count"], 'retweeted': retweeted(data), 

                'user_id': data["user"]["id"], "user_listed_count": 

data["user"]["listed_count"], 

                'n_urls': len(data["entities"]["urls"]), 

                'n_followers_tweeter': 

data["user"]["followers_count"],'n_media': n_media(data), 

                'n_statuses_tweeter': data["user"]["statuses_count"], 

                'n_friends_tweeter': data["user"]["friends_count"], 

'n_favorite_count': data["favorite_count"], 

                'n_favourites_tweeter': data["user"]["favourites_count"], 

'time_zone': data["user"]["time_zone"], 

                'time_zone': data["user"]["time_zone"], 'following': 

data["user"]["following"], 

                

'hash1_length':hashtaglength(data["entities"]["hashtags"],0),'hash1_text':h

ashtagname(data["entities"]["hashtags"],0), 

                'hash2_length': hashtaglength(data["entities"]["hashtags"], 

1), 'hash2_text': hashtagname(data["entities"]["hashtags"], 1), 

                'hash3_length': hashtaglength(data["entities"]["hashtags"], 

2), 'hash3_text': hashtagname(data["entities"]["hashtags"], 2), 

                'hash1_place': hashtagplace(data["entities"]["hashtags"]), 

"text_length": len(data["text"]), 

                'n_user_mentions': len(data["entities"]["user_mentions"]), 

'user_mentions1_place_indices': 

usermentionplace(data["entities"]["user_mentions"]), 

                'user_mention_1': 

usermentionname(data["entities"]["user_mentions"],0), 'user_mention_2': 

usermentionname(data["entities"]["user_mentions"],1), 

                'user_mention_3': 

usermentionname(data["entities"]["user_mentions"], 2), 'n_urls': 

len(data["entities"]["urls"]), 

                'url_1_display': url(data["entities"]["urls"],0), 

'url_2_display': url(data["entities"]["urls"],1), 'url1_place': 

urlplace(data["entities"]["urls"]), 

                'url_1_length': urllength(data["entities"]["urls"], 0), 

'url_2_length': urllength(data["entities"]["urls"], 1), 'n_urls': 

len(data["entities"]["urls"]), 

                'is_quote_status': data["is_quote_status"], 

'in_reply_to_status_id' : data["in_reply_to_status_id"], 

                'in_reply_to_user_id': data["in_reply_to_user_id"], 

'in_reply_to_screen_name': data["in_reply_to_screen_name"], 

'user_name':data["user"]["name"], 
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'user_screen_name':data["user"]["screen_name"],'user_location':data["user"]

["location"], 'user_description':data["user"]["description"], 'n_symbols': 

len(data["entities"]["symbols"]), 

 

                #'rr': data.get('retweeted_status', 

'')['user']['friends_count'] 

 

                'original_followers_count': 

original_followers_count(data),'original_name': original_name(data), 

'original_name_id': original_name_id(data), 

                'original_text': original_text(data), 

'original_created_at': original_created_at(data), 'original_id_tweet': 

original_id_tweet(data), 

                'original_description': original_description(data), 

'original_friends_count': original_friends_count(data), 

'original_listed_count': original_listed_count(data), 

                'original_favourites_count_tweet': 

original_favourites_count_tweet(data),'original_favourites_count_user': 

original_favourites_count_user(data) , 'original_user_time_zone': 

original_user_time_zone(data), 

                'original_user_created_at': original_user_created_at(data), 

'original_retweet_count': 

orignal_retweet_count(data),'original_protected_user': 

original_protected_user(data), 

 

                'original_url_tweet': original_url_tweet(data), 

'original_n_urls': original_n_urls(data),'original_n_hastags': 

original_n_hashtags(data),'original_n_media': original_n_media(data), 

                'original_n_symbols': original_n_symbols(data), 

'original_n_user_mentions': original_n_user_mentions(data), 

'original_statuses_count': original_statuses_count(data), 

                'original_user_id': original_user_id(data) 

 

 

        #,'original_friends_count': original_friends_count(data), 

'original_listed_count': original_listed_count(data) 

        #'original_protected_user': original_protected_user(data), 

 

                } 

 

    return jsontest 

 

 

#'text_symbols': symbols(data["entities"]["symbols"]) 

    # file1.write("{}]") 

#Bij runnen file1 hashtag wegnemen 

file1 = open("C://temp//jsonplat// 560000_balanced_finall.json", "w") 
#file1 = open("C://temp//jsonplat//test.json", "w") 

 

with open("C://temp//ww.json","r") as f: 

 

    for line in f: 

        data = json.loads(line) 

        jsont= make_json1(data) 

 

 

        file1.write(json.dumps(jsont) + "\n") 

 

file1.close() 
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Attachment 4: Data analytics in Databricks PySpark 
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Predicting which tweets will be
retweeted most
Table of content
1. Data preparation

Read in data
Describe data
Clean data

2. Create final basetable
Make extra variables
Clean data

3. Classification retweeter and classification
original tweeter

3.1 Analysis
Logistic Regression
Decision Tree
Random Forest

3.2 Model evaluation

3.3 Results

4. Regression original tweeter

4.1 Analysis
Linear Regression
Decision Tree
Random Forest

4.2 Model evaluation

Twitter_test

http://databricks.com/
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4.3 Results

1. Data preparation

Read in flattened JSON-file:
Json-file is produced in pythonscript and stored in the filestore of Databricks
Each row represent one tweet and all the corresponding features
We have a total of 560 000 tweets and each tweet has 70 features before
cleaning

testJsonData = 
sqlContext.read.json("/FileStore/tables/560000_balanced_finall.json") 
 
display(testJsonData) 



Showing the first 1000 rows.

Fri Apr 29 
04:09:42 
+0000 2011

false null null null null

Fri Apr 29 
01:13:52 
+0000 2011

false 5 42 Quote null

Thu Apr 28 
22:15:30 
+0000 2011

false null null null null

Sat Mar 17 
08 48 02

false null null null null

result= testJsonData 
#display(result) 

Describing basetable:
The describe function shows the range of the features.
It also shows the count on the not null values per feature.

created_at following hash1_length hash1_place hash1_text hash2_    
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display(result.describe()) 



count 560000 118916 118916 118916 4

mean null 9.570739009048404 55.528675703858184 2.0 9

stddev null 4.711061935222937 35.22245249532093 1.511857892036909 4

min Fri Apr 01 
00:05:05 
+0000 2016

1 0 0000ff 1

max Wed Sep 30 
23:59:49 
+0000 2015

64 152 ＴＭ1ＤＮ 5

Data exploration

 
## Quick df facts 
df_size = result.count() 
num_unique_tweets = result.select('tweet_id').distinct().count() 
num_unique_users = result.select('user_id').distinct().count() 
num_unique_users_reteweeted = 
result.select('original_name_id').distinct().count() 
 
print("Number of records: {}".format(df_size)) 
print("Number of unique tweets: {}".format(num_unique_tweets)) 
print("Number of unique users: {}".format(num_unique_users)) 
print("Number of unique users retweeted: 
{}".format(num_unique_users_reteweeted)) 

Number of records: 560000 
Number of unique tweets: 560000 
Number of unique users: 17730 
Number of unique users retweeted: 93999 

# User tweet frequency distribution 
user_tweet_count_df = result.groupBy("user_id").count() 
 
# Retrieve max user tweet frequency 
max_count = user_tweet_count_df.agg({"count": "max"}).collect()[0][0] 
 

summary created_at hash1_length hash1_place hash1_text h    
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user_tweet_count_df = user_tweet_count_df.withColumnRenamed("count", "Tweets 
per user") 

# 80% of the tweeters have a frequency of tweets of 50 or less 
display(user_tweet_count_df) 



0

0.5

0 100 200

Tweets per user

D
en

si
ty

Cleaning basetable
Transform features in correct form
Create new features
Delete not used features

#transform boolean to binary (retweeted) 
 
result = result.withColumn("retweeted1", (result.retweeted == 
'true').astype('int'))  
result = result.withColumn("retweeted_boolean",  result["retweeted"])  
result = result.withColumn("retweeted",  result["retweeted1"])  
result = result.drop('retweeted1') 
 

result = result.withColumn("retweeted_dummy", (result.retweeted_boolean == 
'true').astype('int')) 
#result = result.drop('following_dummy') 
#display(result) 

data=result 

2. Create basetable
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New features
Check if the feature has an original tweeter
YES -> put the value in the new feature
NO -> put the value of the new tweeter in the new feature
No difference between non retweeted tweets and retweeted tweets in the form
of number of variables
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from pyspark.sql.functions import * 
 
data= 
data.withColumn('n_followers_tweeter_new',when(data.retweeted_dummy<=0,data.
n_followers_tweeter).otherwise(data.original_followers_count)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_favourites_tweeter_new',when(data.retweeted_dummy<=0,data
.n_favourites_tweeter).otherwise(data.original_favourites_count_user)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_statuses_tweeter_new',when(data.retweeted_dummy<=0,data.n
_statuses_tweeter).otherwise(data.original_statuses_count)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('retwteet_count_new',when(data.retweeted_dummy<=0,data.retwe
et_count).otherwise(data.original_retweet_count)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_user_mentions_new',when(data.retweeted_dummy<=0,data.n_us
er_mentions).otherwise(data.original_n_user_mentions)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_urls_new',when(data.retweeted_dummy<=0,data.n_urls).other
wise(data.original_n_urls)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_symbols_new',when(data.retweeted_dummy<=0,data.n_symbols)
.otherwise(data.original_n_symbols)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_media_new',when(data.retweeted_dummy<=0,data.n_media).oth
erwise(data.original_n_media)) 
#data= data.drop('n_followers_tweeter') 
                       
                       
data= 
data.withColumn('n_hashtags_new',when(data.retweeted_dummy<=0,data.n_hashtag
s).otherwise(data.original_n_hastags)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_listed_new',when(data.retweeted_dummy<=0,data.user_listed
_count).otherwise(data.original_listed_count)) 
#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('n_friends_count_new',when(data.retweeted_dummy<=0,data.n_fr
iends_tweeter).otherwise(data.original_friends_count)) 
#data= data.drop('n_followers_tweeter') 
data=data.withColumn('n_favourites_tweet_new',when(data.retweeted_dummy<=0,d
ata.n_favorite_count).otherwise(data.original_favourites_count_tweet)) 
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#data= data.drop('n_followers_tweeter') 
data= 
data.withColumn('text_new',when(data.retweeted_dummy<=0,data.text).otherwise
(data.original_text)) 
#data= data.drop('n_followers_tweeter') 
#data= 
data.withColumn('n_followers_tweeter_new',when(data.retweeted_dummy<=0,data.
n_followers_tweeter).otherwise(data.original_n_symbols)) 
#data= data.drop('n_followers_tweeter') 
#data= 
data.withColumn('n_favourites_tweeter_new',when(data.retweeted_dummy<=0,data
.n_favourites_tweeter).otherwise(data.original_n_media)) 
 
display(data) 
 



Showing the first 1000 rows.

Fri Apr 29 
04:09:42 
+0000 2011

false null null null null

Fri Apr 29 
01:13:52 
+0000 2011

false 5 42 Quote null

Thu Apr 28 
22:15:30 
+0000 2011

false null null null null

Sat Mar 17 
08 48 02

false null null null null

An example of the basetable (without extra self added features (positive and
negative count))

example_basetable = data[['retweeted_dummy', 
'n_favourites_tweeter_new','n_followers_tweeter_new','n_friends_count_new', 
'n_hashtags_new',   'n_urls_new','n_user_mentions_new',  
'n_listed_new','n_symbols_new','n_media_new', 
'n_statuses_tweeter_new','retweet_count']] 
display(example_basetable) 

0 0 0 0

created_at following hash1_length hash1_place hash1_text hash2_    

retweeted_dummy n_favourites_tweeter_new n_followers_tweeter_new n_frie  
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

Showing the first 1000 rows.

0 0 0 0

0 0 0 0

0 0 5 18

0 0 5 18

0 0 5 18

1 22 55888 2

 
data = data.na.fill(0) 
#display(data) 

result=data 

Making new variables

from pyspark.sql.functions import * 
from pyspark.sql.types import * 
from pyspark.ml import * 
from pyspark.ml.clustering import * 
from pyspark.ml.classification import * 
from pyspark.ml.regression import *  
from pyspark.ml.feature import * 
from pyspark.ml.evaluation import * 
from scipy.stats import wilcoxon 
from array import array 
from pyspark.sql import Row 
from pyspark.ml.linalg import Vectors 
from urllib2 import urlopen 
from json import loads 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import pyspark.sql.functions as f 

test = result 
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#Define splitcol function: splits column in two columns 
def splitcol(df, col, sep, name1, name2): 
  split_col = split(df[col], sep) 
  df = df.withColumn(name2, split_col.getItem(1)) 
  df = df.withColumn(name1, split_col.getItem(0)) 
  return df 

#Check how much tweets are retweeted (not original creator) (start with RT) 
#Remove @Rt and username from original text 
test = splitcol(test, 'text', 'RT @', 'not_retweeted_text', 
'original_textt') 
#display(test) 

test = splitcol(test, 'original_textt', ': ', 'username_original', 
'text_retweeted') 
#display(test) 

#remove text retweeted 
test = test.na.fill('') 
#display(test) 

#Put together to merge 
test = test.withColumn("text_final", concat(test["not_retweeted_text"], 
test["text_retweeted"])) 
#display(test) 

test = test.withColumn("dummy_retweet_retweeted", (test.text_retweeted != 
"").astype('int')) 
#display(test) 

newdf = 
test.join(test.groupBy('dummy_retweet_retweeted').count(),on='dummy_retweet_
retweeted') 
#display(newdf) 
#232322 van de retweets zijn afkomstig van tweets van andere tweeters. 83% 
van de retweets dus . 
#280000-232322=47678 zijn zelf geschreven en toch geretweeted 
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test = test.withColumn("number_of_words_tweet", 
f.size(f.split(f.col("text_final")," "))) 
#display(test) 
#F.size(F.split(F.col("_1"), " "))).show() 

Sentiment analysis text

Clean up text

result_text=result[['text_final','retweeted']] 
 
#display(result_text) 

Data preparation text
We apply the following transformation to the input text data:

Clean strings
Tokenize ( String -> Array<String> )
Remove stop words
Stem words
Create bigrams

1. Clean text string

from pyspark.sql.functions import col, lower, regexp_replace, split 
 
def clean_text(c): 
  c = lower(c) 
  c = regexp_replace(c, "^rt ", "") 
  c = regexp_replace(c, "(https?\://)\S+", "") 
  c = regexp_replace(c, "[^a-zA-Z0-9\\s]", "") 
  #c = split(c, "\\s+") tokenization... 
  return c 
 
clean_text_df = 
result.select(clean_text(col("text_final")).alias("text_final"), "tweet_id") 
 
clean_text_df.printSchema() 
display(clean_text_df) 
#clean_text_df.show(10) 
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

Showing the first 1000 rows.

just chillin watching teen mom cleaning paying bills and decorating

the place i walked to following the time quote

looks bad out there i am truly terrified of falling today

gettin ready 4 rugby lads dungannon comm well get 2 the final  p

hart is feelin his ass

just up and i found a cat lyin beside me then it talked then i woke up again and it was sleepin never so

this is football reimagined this is the xfl watch the official announcement  live now xfl2020 

come on come on come on lets get it on 
 

1. Tokenizer

from pyspark.ml.feature import Tokenizer 
 
tokenizer = Tokenizer(inputCol="text_final", outputCol="vector") 
vector_df = tokenizer.transform(clean_text_df).select("vector") 
 
vector_df.printSchema() 
vector_df.show(10) 

root 
 |-- vector: array (nullable = true) 
 |    |-- element: string (containsNull = true) 
 
+--------------------+ 
|              vector| 
+--------------------+ 
|[just, chillin, w...| 
|[the, place, i, w...| 
|[looks, bad, out,...| 
|[gettin, ready, 4...| 
|[hart, is, feelin...| 
|[just, up, and, i...| 
|[this, is, footba...| 
|[come, on, come, ...| 
|[retweet, , follo...| 
|[me, gust, un, vi...| 
+--------------------+ 

text_final
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only showing top 10 rows 
 

1. Remove stop words

from pyspark.ml.feature import StopWordsRemover 
 
# Define a list of stop words or use default list 
remover = StopWordsRemover() 
stopwords = remover.getStopWords()  
 
# Display default list 
stopwords[:100] 

Out[44]:  
[u'i', 
 u'me', 
 u'my', 
 u'myself', 
 u'we', 
 u'our', 
 u'ours', 
 u'ourselves', 
 u'you', 
 u'your', 
 u'yours', 
 u'yourself', 
 u'yourselves', 
 u'he', 
 u'him', 
 u'his', 
 u'himself', 
 u'she', 
 u'her', 
 u'hers', 

# Specify input/output columns 
remover.setInputCol("vector") 
remover.setOutputCol("vector_no_stopw") 
 
# Transform existing dataframe with the StopWordsRemover 
vector_no_stopw_df = remover.transform(vector_df).select("vector_no_stopw") 
 
# Display 
vector_no_stopw_df.printSchema() 
vector_no_stopw_df.show() 



3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 13/44

root 
 |-- vector_no_stopw: array (nullable = true) 
 |    |-- element: string (containsNull = true) 
 
+--------------------+ 
|     vector_no_stopw| 
+--------------------+ 
|[chillin, watchin...| 
|[place, walked, f...| 
|[looks, bad, trul...| 
|[gettin, ready, 4...| 
| [hart, feelin, ass]| 
|[found, cat, lyin...| 
|[football, reimag...| 
|[come, come, come...| 
|[retweet, , follo...| 
|[gust, un, video,...| 
|[gust, un, video,...| 
|[city, mania, hac...| 
|[videos, , , , , ...| 
|[society, look, i...| 
|[everyone, proble...| 
|[hellolalit, hey,...| 
|[warehousing, tak...| 
|[inspired, americ...| 
|[list, americanni...| 
|[dcopperfield, al...| 
+--------------------+ 
only showing top 20 rows 
 

text_dataset_production=vector_no_stopw_df 
display(text_dataset_production) 

Showing the first 1000 rows.

 ["chillin","watching","teen","mom","cleaning","paying","bills","decorating"]

 ["place","walked","following","time","quote"]

 ["looks","bad","truly","terrified","falling","today"]

 ["gettin","ready","4","rugby","lads","dungannon","comm","well","get","2","final","","p"]

 ["hart","feelin","ass"]

 ["found","cat","lyin","beside","talked","woke","sleepin","never","sooooooo","scared","life"]

 ["football","reimagined","xfl","watch","official","announcement","","live","xfl2020"]

 ["come","come","come","lets","get","","todays","raw","superstars","ready","show","ruthless","aggressio

 ["retweet" "" "follow" "mikeyacestudios" "" "4" "best" "daily" "wwe" "cartoons" "twitter" "ff" "fridayfeeling

vector_no_stopw



3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 14/44



Save production data as Spark table for analysis

#production_df.write.saveAsTable("text_dataset_production") 
#text_dataset_production = spark.sql("SELECT * FROM 
text_dataset_production") 
#display(text_dataset_production.select("*")) 

positive = sqlContext.read.csv("/FileStore/tables/positive.txt") 
negative = sqlContext.read.csv("/FileStore/tables/neg.csv") 
 
display(negative) 
#display(txt) 



Showing the first 1000 rows.

abnormal

abolish

abominable

abominably

abominate

abomination

abort

aborted

aborts

negative = negative.withColumnRenamed("_c0", "words") 
positive = positive.withColumnRenamed("_c0", "words") 
 

#positive = txtx.select('words').collect() 
negative = negative.select("words").rdd.flatMap(lambda x: x).collect() 
positive = positive.select("words").rdd.flatMap(lambda x: x).collect() 
 

_c0
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def positive_count(row): 
  cnt=0 
  print row 
  for item in row: 
    if item in positive: 
      cnt+=1 
  return cnt 
 
def negative_count(row): 
  cnt=0 
  print row 
  for item in row: 
    if item in negative: 
      cnt+=1 
  return cnt 

pos_udf = udf(positive_count, IntegerType()) 
neg_udf = udf(negative_count, IntegerType()) 

 
       
sample3 = text_dataset_production.withColumn('count_positive', 
pos_udf(text_dataset_production['vector_no_stopw'])) 
sample3 = sample3.withColumn('count_negative', 
neg_udf(sample3['vector_no_stopw'])) 
#display(sample3) 

# combine the table with the positve and negative word count with the 
original data  
# We used the function monotonically_increasing_id() that randomly assign a 
number to the respectively row 
df11 =  sample3.withColumn("rowId", monotonically_increasing_id()) 
df22 =  result.withColumn("rowId", monotonically_increasing_id()) 
newDF = df11.join(df22, df11.rowId == df22.rowId, 'inner').drop(df22.rowId) 
#display(newDF) 

 ["great","times","great","times","great","times"]

 ["love"]

vector_no_stopw
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

Showing the first 997 rows.

 ["cravemythoughts" "emilyemmons3" "us" "lol"]

newDF= newDF.withColumn('count_pos_NEG', newDF.count_positive - 
newDF.count_negative) 
#display(newDF) 



Showing the first 995 rows.

 ["great","times","great","times","great","times"]

 ["love"]

 ["cravemythoughts","emilyemmons3","us","lol"]

 ["beatty","street","grocery","building"]

basetablee = spark.sql("SELECT * FROM basetable_first") 
display(basetablee) 

Showing the first 1000 rows.

 ["everyone","problem","area","treated","hasansurgery"]

 ["earn","money","using","facebook","twitter","etc"]

vector_no_stopw

vector_no_stopw
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

3. Classification retweeter and classification
original tweeter:

from pyspark.ml.linalg import Vectors 
from array import array 
from pyspark.sql import Row 

display(basetablee.describe()) 



count 560000 560000 560000 560000

mean 0.5406946428571429 0.31935178571428574 3.353321848742147E10 null

stddev 0.8057552568702495 0.6487205891167308 2.1861263450107533E10 null

min 0 0 0 Fri Apr 01
00:05:05 
+0000 20

max 21 19 68719528052 Wed Sep
23:59:49 
+0000 20

Show result

#final = final.filter(result.n_followers_tweeter_new. isNotNull()) 
#display(final) 

-Classification retweeter

aa = basetablee[['retweeted_dummy', 
'n_favourites_tweeter','n_followers_tweeter','n_friends_tweeter', 
'n_hashtags',   'n_urls','n_user_mentions',  
'user_listed_count','n_symbols','n_media','count_positive', 
'count_negative', 'n_statuses_tweeter','retweet_count']] 
display(aa) 

summary count_positive count_negative rowId created_   
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

Showing the first 1000 rows.

1 24 3 624

0 3 459 90

0 10 24 368

1 1761 8649 9503

0 0 340 1739

0 0 340 1739

0 0 340 1739

1 0 32 28

basetable = aa.rdd.map(lambda r : Row( retweeted = r.retweeted_dummy,  
                        continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter , r.n_followers_tweeter , r.n_friends_tweeter, 
r.n_hashtags, r.n_urls,r.n_user_mentions,r.user_listed_count,r.n_symbols, 
r.n_media, r.count_positive,r.count_negative, r.n_statuses_tweeter]), 
                        categoricalFeatures = Vectors.dense([]) 
                        )).toDF() 
#extra: 
r.hash1_length,r.hash2_length,r.hash3_length,r.number_of_words_tweet,r.count
_pos_neg(afgetrokken) (not included in final model) 
#extra: r.following_dummy (not included in final model) 
basetable.show(20) 

+-------------------+--------------------+---------+ 
|categoricalFeatures|  continuousFeatures|retweeted| 
+-------------------+--------------------+---------+ 
|                 []|[24.0,3.0,624.0,1...|        1| 
|                 []|[3.0,459.0,90.0,0...|        0| 
|                 []|[10.0,24.0,368.0,...|        0| 
|                 []|[1761.0,8649.0,95...|        1| 
|                 []|[0.0,340.0,1739.0...|        0| 
|                 []|[0.0,340.0,1739.0...|        0| 
|                 []|[0.0,340.0,1739.0...|        0| 
|                 []|[0.0,32.0,28.0,0....|        1| 
|                 []|[4.0,114.0,379.0,...|        0| 
|                 []|[486.0,440.0,360....|        0| 
|                 []|[0.0,37.0,166.0,0...|        0| 
|                 []|[36.0,165.0,166.0...|        0| 
|                 []|[6.0,3.0,77.0,0.0...|        0| 
|                 []|[145.0,534.0,196....|        1| 
|                 []|[145.0,534.0,196....|        1| 
|                 []|[7.0,231.0,300.0,...|        1| 
|                 []|[7.0,231.0,300.0,...|        0| 

retweeted_dummy n_favourites_tweeter n_followers_tweeter n_friends_tweet  
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|                 []|[123.0,277.0,20.0...|        0| 
|                 []|[2.0,34.0,86.0,2....|        1| 
|                 []|[4009.0,489.0,345...|        0| 
+-------------------+--------------------+---------+ 
only showing top 20 rows 
 

Classification original tweeter

 
aa = basetablee[['retweeted_dummy', 
'n_favourites_tweeter_new','n_followers_tweeter_new','n_friends_count_new', 
'n_hashtags_new',   'n_urls_new','n_user_mentions_new',  
'n_listed_new','n_symbols_new','n_media_new','count_positive', 
'count_negative', 'n_statuses_tweeter_new','retweet_count']] 
display(aa) 



Showing the first 1000 rows.

1 24 790 254

0 3 459 90

0 10 24 368

1 67 32867 13

0 0 340 1739

0 0 340 1739

0 0 340 1739

1 7936 45472 11513

0 4 114 379

basetable = aa.rdd.map(lambda r : Row( retweeted = r.retweeted_dummy,  
                        continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter_new , r.n_followers_tweeter_new , 
r.n_friends_count_new, 
r.n_hashtags_new,r.n_urls_new,r.n_user_mentions_new,r.n_listed_new,r.n_symbo
ls_new, r.n_media_new, r.count_positive,r.count_negative, 
r.n_statuses_tweeter_new]), 
                        categoricalFeatures = Vectors.dense([]) 
                        )).toDF() 
#extra: r.count_negative,r.count_positive] 
basetable.show(20) 

retweeted_dummy n_favourites_tweeter_new n_followers_tweeter_new n_friends_  
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+-------------------+--------------------+---------+ 
|categoricalFeatures|  continuousFeatures|retweeted| 
+-------------------+--------------------+---------+ 
|                 []|[24.0,790.0,254.0...|        1| 
|                 []|[3.0,459.0,90.0,0...|        0| 
|                 []|[10.0,24.0,368.0,...|        0| 
|                 []|[67.0,32867.0,13....|        1| 
|                 []|[0.0,340.0,1739.0...|        0| 
|                 []|[0.0,340.0,1739.0...|        0| 
|                 []|[0.0,340.0,1739.0...|        0| 
|                 []|[7936.0,45472.0,1...|        1| 
|                 []|[4.0,114.0,379.0,...|        0| 
|                 []|[486.0,440.0,360....|        0| 
|                 []|[0.0,37.0,166.0,0...|        0| 
|                 []|[36.0,165.0,166.0...|        0| 
|                 []|[6.0,3.0,77.0,0.0...|        0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1| 
|                 []|[0.0,0.0,0.0,0.0,...|        1| 
|                 []|[0.0,0.0,0.0,0.0,...|        1| 
|                 []|[7.0,231.0,300.0,...|        0| 
|                 []|[123.0,277.0,20.0...|        0| 
|                 []|[17795.0,139516.0...|        1| 
|                 []|[4009.0,489.0,345...|        0| 
+-------------------+--------------------+---------+ 
only showing top 20 rows 
 

''' Split data into trainig and test data''' 
(trainingData, testData) = basetable.randomSplit([0.70, 0.30], 1) 
 
#print trainingData.count() 
#print testData.count() 

Machine Learning Pipeline Construction

Now we have our basetable that is ready to be put in our Machine Learning
Pipeline. First we need to construct a pipeline.

The pipeline will consist out of 5 stages:
StringIndexer: A label indexer that maps a string column of labels to an ML
column of label indices. So this makes category indices of the strings in a
column.
VectorIndexer: Class for indexing categorical feature columns in a dataset of
Vector.
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StandardScaler: Standardizes features by removing the mean and scaling to
unit variance using column summary statistics on the samples in the training
set.
VectorAssembler: A feature transformer that merges multiple columns into a
vector column.
The machine learning algorithm that we will be using. We will give an example
of Logistic Regression, Decision Trees, Random Forest

from pyspark.ml.feature import StringIndexer, VectorIndexer, 
VectorAssembler, StandardScaler 
from pyspark.ml import Pipeline 
 
# Import for Logistic Regression 
from pyspark.ml.classification import LogisticRegression 
from pyspark.ml.classification import LogisticRegressionModel 
 
# Import for Decision Tree 
from pyspark.ml.classification import DecisionTreeClassifier 
from pyspark.ml.classification import DecisionTreeClassificationModel 
 
# Import for Random Forest 
from pyspark.ml.classification import RandomForestClassifier 
from pyspark.ml.classification import RandomForestClassificationModel 

String Indexer

For the String and Vector Indexer it is important that you fit them to the entire data.
Not just the training data, because it might be possible that not all different labels
are present in the training set. In this case you will get errors when you try to make
predictions on the test set because he will encounter labels that he doesnt
recognize because they were not in the training set.

# What is a StringIndexer? (just to display help info) 
#help(StringIndexer) 
 
# String Indexer: the input column is our default_next_month column and our 
output will be called label 
labelIndexer = StringIndexer(inputCol = "retweeted", outputCol = 
"label").fit(basetable) 
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## What is a VectorIndexer? (just to display help info) 
#help(VectorIndexer) 
 
# Vector Indexer: the input column are the categorical features and they 
will be transformed to a column of indexed categorical features 
vtrIndexer = VectorIndexer(inputCol = "categoricalFeatures", outputCol= 
"indexedCatFeatures").fit(basetable) 

# What is a StandardScaler? (just to display help info) 
#help(StandardScaler) 
 
 
# Standard Scaler: scales the continuous features to scaled continuous 
features 
standardScaler = StandardScaler(inputCol="continuousFeatures", 
outputCol="scaledContFeatures") 

# What is a VectorAssembler? (just to display help info) 
#help(VectorAssembler) 
 
# Vector Assembler: assembles the different vectors of the categorical and 
continuous features and outputs them as a feature column 
vtrAssembler = VectorAssembler(inputCols= ["indexedCatFeatures", 
"scaledContFeatures"], outputCol= "features") 

The machine learning model:

# How to do a Linear Regression? What are the parameters? (just to display 
help info) 
 
from pyspark.ml.classification import LogisticRegression 
# Logistic Regression 
logRegressor = LogisticRegression(labelCol="label", featuresCol="features", 
maxIter=100) 

# How to do a Decision Tree Regression? What are the parameters? (just to 
display help info) 
#help(DecisionTreeRegressor) 
 
# Decision Tree 
dtRegressor = DecisionTreeClassifier(labelCol = "label", featuresCol = 
"features") 
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# How to do a Random Forest Regression? What are the parameters? (just to 
display help info) 
#help(RandomForestRegressor) 
 
# numTrees 5000 out of memory after 33 min , 2500 trees; training and 
fitting last 20 minutes, 500 trees 5 min 
# Random Forest Regressor: we define the label and the features columns and 
the number of trees we want to build. 500 is a good trade-off between 
computation time and error. 
# The Random Forest will contain 500 different decision trees. 
rfRegressor = RandomForestClassifier(labelCol="label", 
featuresCol="features", numTrees=500) 

#Logistic regression: Defining all the stages of the pipeline 
lrPipeline = Pipeline(stages = [labelIndexer,vtrIndexer, standardScaler, 
vtrAssembler, logRegressor]) 
 
# Fitting the pipeline to the training data: This is the execution of all 
the stages and the training of the logistic regression Model. 
lrModel = lrPipeline.fit(trainingData) 

lrModel.stages 

Out[16]:  
[StringIndexer_4affb6492dd6097b1004, 
 VectorIndexer_41bf9a3e9e1053f6d719, 
 StandardScaler_455bb927110fb7685ddf, 
 VectorAssembler_4316943654fe9d38ad4e, 
 LogisticRegression_456a81a80ab509bbb33c] 

#Decision tree: Defining all the stages of the pipeline 
dtPipeline = Pipeline(stages = [labelIndexer, vtrIndexer, standardScaler, 
vtrAssembler, dtRegressor]) 
 
# Fitting the pipeline to the training data: This is the execution of all 
the stages and the training of the Random Forest Model. 
dtModel = dtPipeline.fit(trainingData) 

#Random Forest: Defining all the stages of the pipeline 
rfPipeline = Pipeline(stages = [labelIndexer, vtrIndexer, standardScaler, 
vtrAssembler, rfRegressor]) 
 
# Fitting the pipeline to the training data: This is the execution of all 
the stages and the training of the Random Forest Model. 
rfModel = rfPipeline.fit(trainingData) 
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# Deployment of Logistic Regression: Make predictions on test data. 
lrPredictions = lrModel.transform(testData) 
 
# The label denotes what should have been the prediction. The prediction 
column is the prediction that was made with the trained machine learning 
model 
lrPredictions.show(4) 
#lrPredictions.printSchema() 

+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+--------------------+--------------------+-
---------+ 
|categoricalFeatures|  continuousFeatures|retweeted|label|indexedCatFeatures
|  scaledContFeatures|  features|       rawPrediction|         probability|p
rediction| 
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+--------------------+--------------------+-
---------+ 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...| 
      0.0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...| 
      0.0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...| 
      0.0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...| 
      0.0| 
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+--------------------+--------------------+-
---------+ 
only showing top 4 rows 
 

# Deployment of Decision Tree: Make predictions on test data. 
dtPredictions = dtModel.transform(testData) 
 
# The label denotes what should have been the prediction. The prediction 
column is the prediction that was made with the trained machine learning 
model 
dtPredictions.show(4) 
#dtPredictions.printSchema() 

+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+-------------+--------------------+--------
--+ 
|categoricalFeatures|  continuousFeatures|retweeted|label|indexedCatFeatures
|  scaledContFeatures|  features|rawPrediction|         probability|predicti
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on| 
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+-------------+--------------------+--------
--+ 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|       
1.0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|       
1.0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|       
1.0| 
|                 []|[0.0,0.0,0.0,0.0,...|        1|  1.0|                []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|       
1.0| 
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+-------------+--------------------+--------
--+ 
only showing top 4 rows 
 

Show result

# Deployment of Random Forest: Make predictions on test data. 
rfPredictions = rfModel.transform(testData) 
 
# The label denotes what should have been the prediction. The prediction 
column is the prediction that was made with the trained machine learning 
model 
rfPredictions.show(1000) 
#rfPredictions.printSchema() 

3. Model Evaluation
from pyspark.ml.evaluation import BinaryClassificationEvaluator 
from pyspark.ml.evaluation import MulticlassClassificationEvaluator 

1. Logistic Regression
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# Our PipelineModel consists of 5 stages starting of index 0 to index 4. 
Each of these index places contains the model of the respective stage. The 
more stages you add the larger the pipeline will become, but in this example 
it contains 5 stages. 
# The machine learning model is on index 4 
# Print the coefficients and intercept for logistic regression 
print("Coefficients: " + str(lrModel.stages[4].coefficients)) 
print("Intercept: " + str(lrModel.stages[4].intercept)) 

Coefficients: [1.2490986877346895,874.9525560342598,-4.199810970818677,-0.05
646538865809754,-0.42702785624500833,-0.326421570809041,705.8257709006641,0.
022928759948021585,0.31947377573726016,0.11065618779743354,0.019602001505486
147,0.6280888835783143] 
Intercept: -0.887662470904 

# With the binary evaluator 
lrEvaluator = BinaryClassificationEvaluator() 
 
lrAUC = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: 
"areaUnderROC"}) 
 
print "The AUC of the Logistic Regression Model is %f" %(lrAUC) 

The AUC of the Logistic Regression Model is 0.887920 
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#Results with 8+1 variables continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter, 
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags, 
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.count_pos_neg(afgetrokk
en)] 
                        # categoricalFeatures = 
Vectors.dense([r.following_dummy] 
  #Accuracy of Logistic Regression: 0.743158 
#Results with 8+1 variables continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter, 
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags, 
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.count_pos_neg(opgeteld)
] 
                        # categoricalFeatures = 
Vectors.dense([r.following_dummy] 
  #Accuracy of Logistic Regression: 0.743158 
#Results with 8+1 variables continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter, 
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags, 
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.number_of_words_tweet] 
                        # categoricalFeatures = 
Vectors.dense([r.following_dummy] 
  #Accuracy of Logistic Regression: 0.743891 
#Results with 7+1 variables continuousFeatures = Vectors.dense([ 
r.n_favourites_tweete 
#r, r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags, 
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions 
                        # categoricalFeatures = 
Vectors.dense([r.following_dummy]) 
#Accuracy of Logistic Regression: 0.748672 
# Results with 5+1 variables continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter, 
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags, 
r.n_statuses_tweeter]), 
                        # categoricalFeatures = 
Vectors.dense([r.following_dummy]) 
#Accuracy of Logistic Regression: 0.601272 
#Results with 10+1 variables continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter, 
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags, 
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.hash1_length,r.hash2_le
ngth,r.hash3_length] 
                        # categoricalFeatures = 
Vectors.dense([r.following_dummy]) 
#Accuracy of Logistic Regression: 0.747654 
lrMultiEvaluator = 
MulticlassClassificationEvaluator(predictionCol="prediction") 
lrAcc = lrMultiEvaluator.evaluate(lrPredictions, 
{lrMultiEvaluator.metricName: "accuracy"}) 
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print "Accuracy of Logistic Regression: %f" %(lrAcc) 
print "Test Error of Logistic Regression: %g" % (1.0 - lrAcc) 

Accuracy of Logistic Regression: 0.810059 
Test Error of Logistic Regression: 0.189941 

retweetedTweets = lrPredictions.filter(lrPredictions.label == 1) 
notretweetedTweets = lrPredictions.filter(lrPredictions.label == 0) 
 
#print lrPredictions.count() 
#print notretweetedTweets.count() 
#print retweetedTweets.count() 

#Results with 7+1 variables 
# Accuracy of retweeted tweets: 0.811439 
#Accuracy of not retweeted tweets: 0.685824 
lrAccDefault = lrMultiEvaluator.evaluate(retweetedTweets, 
{lrMultiEvaluator.metricName: "accuracy"}) 
lrAccNonDefault = lrMultiEvaluator.evaluate(notretweetedTweets, 
{lrMultiEvaluator.metricName: "accuracy"}) 
 
print "Accuracy of retweeted tweets: %f" %(lrAccDefault) 
print "Accuracy of not retweeted tweets: %f" %(lrAccNonDefault) 

Accuracy of retweeted tweets: 0.671972 
Accuracy of not retweeted tweets: 0.949389 

2. Decision Tree

Show result

print dtModel.stages[4].toDebugString 

dtModel.stages[4].featureImportances 

Out[29]: SparseVector(12, {0: 0.0271, 1: 0.6547, 2: 0.0008, 5: 0.0002, 6: 0.
0072, 8: 0.0128, 9: 0.0, 10: 0.0, 11: 0.297}) 

 
# With the binary evaluator 
dtEvaluator = BinaryClassificationEvaluator() 
 
dtAUC = dtEvaluator.evaluate(dtPredictions, {dtEvaluator.metricName: 
"areaUnderROC"}) 
 
print "The AUC of the Decision Tree Model is %f" %(dtAUC) 
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The AUC of the Decision Tree Model is 0.825964 

#Results of 8+1 variables 
#Accuracy of Decision Tree: 0.776932 
#Test Error of Decision Tree: 0.223068 
 
 
#Results of 7+1 variables 
#Accuracy of Decision Tree: 0.777301 
#Test Error of Decision Tree: 0.222699 
dtMultiEvaluator = 
MulticlassClassificationEvaluator(predictionCol="prediction") 
dtAcc = dtMultiEvaluator.evaluate(dtPredictions, 
{dtMultiEvaluator.metricName: "accuracy"}) 
 
print "Accuracy of Decision Tree: %f" %(dtAcc) 
print "Test Error of Decision Tree: %g" % (1.0 - dtAcc) 

Accuracy of Decision Tree: 0.910215 
Test Error of Decision Tree: 0.0897845 

retweetedTweets = dtPredictions.filter(dtPredictions.label == 1) 
notretweetedTweets = dtPredictions.filter(dtPredictions.label == 0) 
 
#print lrPredictions.count() 
#print notretweetedTweets.count() 
#print retweetedTweets.count() 

#Results of 7+1 variables 
#Accuracy of retweeted tweets: 0.821603 
#Accuracy of not retweeted tweets: 0.732942 
dtAccDefault = dtMultiEvaluator.evaluate(retweetedTweets, 
{dtMultiEvaluator.metricName: "accuracy"}) 
dtAccNonDefault = dtMultiEvaluator.evaluate(notretweetedTweets, 
{dtMultiEvaluator.metricName: "accuracy"}) 
 
print "Accuracy of retweeted tweets: %f" %(dtAccDefault) 
print "Accuracy of not retweeted tweets: %f" %(dtAccNonDefault) 

Accuracy of retweeted tweets: 0.890977 
Accuracy of not retweeted tweets: 0.929627 

3. Random Forest

Show result

print rfModel.stages[4].toDebugString  
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To get an idea of how important the different features were in predicting the
outcome, you can print the feature importances. The higher the number the more
important the feature was.

rfModel.stages[4].featureImportances 

Out[35]: SparseVector(12, {0: 0.0597, 1: 0.3996, 2: 0.0901, 3: 0.0021, 4: 0.
008, 5: 0.0069, 6: 0.2037, 7: 0.0, 8: 0.0142, 9: 0.0, 10: 0.0, 11: 0.2157}) 

# With the binary evaluator 
rfEvaluator = BinaryClassificationEvaluator() 
 
rfAUC = rfEvaluator.evaluate(rfPredictions, {rfEvaluator.metricName: 
"areaUnderROC"}) 
 
print "The AUC of the Random Forest Model is %f" %(rfAUC) 

The AUC of the Random Forest Model is 0.969339 

#number of trees =500 -> ACC of 0.778033 
#number of trees =2000 -> ACC of 0.778170? 
rfMultiEvaluator = 
MulticlassClassificationEvaluator(predictionCol="prediction") 
rfAcc = rfMultiEvaluator.evaluate(rfPredictions, 
{rfMultiEvaluator.metricName: "accuracy"}) 
 
print "Accuracy of Random Forest: %f" %(rfAcc) 
print "Test Error of Random Forest: %g" % (1.0 - rfAcc) 

Accuracy of Random Forest: 0.916401 
Test Error of Random Forest: 0.0835995 

retweetedTweets = rfPredictions.filter(rfPredictions.label == 1) 
notretweetedTweets = rfPredictions.filter(rfPredictions.label == 0) 
 
#print rfPredictions.count() 
#print notretweetedTweets.count() 
#print retweetedTweets.count() 
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# 500 number of trees  
# retweeted tweets: 0.827649 
# not retweeted tweets: 0.728354 
 
# 2500 number of trees  
# retweeted tweets: 0.826280 
# not retweeted tweets: 0.729998 
 
rfAccDefault = rfMultiEvaluator.evaluate(retweetedTweets, 
{rfMultiEvaluator.metricName: "accuracy"}) 
rfAccNonDefault = rfMultiEvaluator.evaluate(notretweetedTweets, 
{rfMultiEvaluator.metricName: "accuracy"}) 
 
print "Accuracy of retweeted tweets: %f" %(rfAccDefault) 
print "Accuracy of not retweeted tweets: %f" %(rfAccNonDefault) 

Accuracy of retweeted tweets: 0.880225 
Accuracy of not retweeted tweets: 0.952902 
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#create dataframe overview results 
# import pyspark class Row from module sql 
from pyspark.sql import * 
import pyspark.sql.functions as func 
 
# Create Example Data - Model, Performance, accuracy 
 
# Create the Departments 
ModelLOGR = 'Logistic regression' 
ModelDT = 'Decision tree' 
ModelRF = 'Random forest' 
 
 
performanceLOGR = lrAUC 
performanceDT = dtAUC 
performanceRF = rfAUC 
 
TOTaccuracyLOGR = lrAcc 
TOTaccuracyDT = dtAcc 
TOTaccuracyRF = rfAcc 
 
accuracyNotRetLOGR = lrAccNonDefault 
accuracyNotRetDT = dtAccNonDefault 
accuracyNotRetRF = rfAccNonDefault 
 
accuracyRetLOGR = lrAccDefault 
accuracyRetDT = dtAccDefault 
accuracyRetRF = rfAccDefault 
  
 
ModelwithresultsLOGR = Row(Model=ModelLOGR, Performance=performanceLOGR, 
Total_accuracy=TOTaccuracyLOGR,  
                               Accuracy_not_retweeted=accuracyNotRetLOGR, 
Accuracy_retweeted=accuracyRetLOGR) 
ModelwithresultsDT = Row(Model=ModelDT, Performance=performanceDT, 
Total_accuracy=TOTaccuracyDT,  
                               Accuracy_not_retweeted=accuracyNotRetDT, 
Accuracy_retweeted=accuracyRetDT) 
ModelwithresultsRF = Row(Model=ModelRF, Performance=performanceRF, 
Total_accuracy=TOTaccuracyRF,  
                               Accuracy_not_retweeted=accuracyNotRetRF, 
Accuracy_retweeted=accuracyRetRF) 
 
 
 
ModelwithresultsSeq1 = [ModelwithresultsLOGR, ModelwithresultsDT, 
ModelwithresultsRF] 
 
df = sqlContext.createDataFrame(ModelwithresultsSeq1) 
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#df2 = df.withColumn("Model", df1.Model) 
 
df2 = df.withColumn("Accuracy_retweeted", 
func.round(df["Accuracy_retweeted"], 3)) 
df2 = df2.withColumn("Accuracy_not_retweeted", 
func.round(df["Accuracy_not_retweeted"], 3)) 
df2 = df2.withColumn("Performance", func.round(df["Performance"], 3)) 
df2 = df2.withColumn("Total_accuracy", func.round(df["Total_accuracy"], 3)) 
 
df3=df2[['Model','Performance','Total_accuracy','Accuracy_not_retweeted','Ac
curacy_retweeted']] 
 
display(df3) 
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aa = basetablee[['retweeted_dummy', 
'n_favourites_tweeter_new','n_followers_tweeter_new','n_friends_count_new', 
'n_hashtags_new',   'n_urls_new','n_user_mentions_new',  
'n_listed_new','n_symbols_new','n_media_new','count_positive', 
'count_negative', 'n_statuses_tweeter_new','retweet_count']] 
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features = aa.rdd.map(lambda row: row[0:]) 
 
from pyspark.mllib.stat import Statistics 
 
corr_mat=Statistics.corr(features, method="pearson") 
print corr_mat 

[[ 1.00000000e+00  1.88070964e-01  1.55125596e-01  1.14687640e-01 
   1.72495133e-02 -5.88822443e-02 -1.28777171e-01  1.11794910e-01 
   8.13467870e-03  2.82361102e-01  5.48576318e-02  5.15052711e-02 
   2.88728695e-01  7.92549094e-02] 
 [ 1.88070964e-01  1.00000000e+00  3.15324589e-05  1.20886932e-01 
  -7.83156450e-03  1.60515124e-02 -2.46204666e-02  1.94714495e-03 
  -2.73672769e-04  1.06218087e-01  3.50167679e-03  3.49298275e-02 
   2.28068000e-01  4.42246956e-02] 
 [ 1.55125596e-01  3.15324589e-05  1.00000000e+00  2.84132758e-01 
   3.80716923e-03 -1.77159977e-03 -2.40452583e-02  8.36349546e-01 
  -1.88031458e-03  4.99063185e-02  3.41546012e-02 -1.81587123e-04 
   9.10626709e-02  1.87128641e-01] 
 [ 1.14687640e-01  1.20886932e-01  2.84132758e-01  1.00000000e+00 
   9.03528286e-03 -9.15530276e-03 -2.75191725e-02  2.84029198e-01 
   4.06646543e-03  5.76125209e-02  6.42964011e-03  1.23042500e-02 
   1.41648936e-01  5.55007383e-02] 
 [ 1.72495133e-02 -7.83156450e-03  3.80716923e-03  9.03528286e-03 
   1.00000000e+00  1.26003743e-01  2.26674391e-02  4.58856497e-03 
   9.76867065e-03  9.99069814e-02  2.16339823e-02 -4.91456345e-02 
   1.66408384e-02 -1.07796311e-02] 
 [-5.88822443e-02  1.60515124e-02 -1.77159977e-03 -9.15530276e-03 

4.1 Regression original tweeter
from pyspark.sql.types import * 
from pyspark.sql.functions import * 

basetablee = spark.sql("SELECT * FROM basetable_first") 
#display(basetablee) 
 

#filter; only retweeted tweets (280 000) 
 
 
result= basetablee.where(col('retweeted_dummy') == 1) 
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from pyspark.ml.linalg import Vectors 
from array import array 
from pyspark.sql import Row 

basetable = result.rdd.map(lambda r : Row( retweeted = r.retwteet_count_new,  
                        continuousFeatures = Vectors.dense([ 
r.n_favourites_tweeter_new , r.n_followers_tweeter_new , 
r.n_friends_count_new, 
r.n_hashtags_new,r.n_urls_new,r.n_user_mentions_new,r.n_listed_new,r.n_symbo
ls_new, r.n_media_new, r.count_positive,r.count_negative, 
r.n_statuses_tweeter_new]), 
                        categoricalFeatures = Vectors.dense([]) 
                        )).toDF() 
#extra: r.count_negative,r.count_positive] 
basetable.show(20) 
 

+-------------------+--------------------+---------+ 
|categoricalFeatures|  continuousFeatures|retweeted| 
+-------------------+--------------------+---------+ 
|                 []|[24.0,790.0,254.0...|      161| 
|                 []|[67.0,32867.0,13....|        5| 
|                 []|[7936.0,45472.0,1...|        7| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[17795.0,139516.0...|       48| 
|                 []|[14680.0,1965.0,1...|        1| 
|                 []|[4230.0,2733.0,43...|        1| 
|                 []|[54486.0,1995.0,9...|        1| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[1178.0,1.7527795...|    20317| 
|                 []|[14603.0,531864.0...|      388| 
|                 []|[10296.0,24839.0,...|      315| 
|                 []|[182.0,3146152.0,...|    41128| 
|                 []|[2198.0,510.0,401...|       60| 
|                 []|[51554.0,2812.0,1...|        8| 
|                 []|[11497.0,1656450....|     5519| 
|                 []|[29608.0,4273.0,4...|     2152| 
|                 []|[80.0,3.1819537E7...|   110477| 
+-------------------+--------------------+---------+ 
only showing top 20 rows 
 

basetable.show() 
(trainingData, testData) = basetable.randomSplit([0.7, 0.3]) 

+-------------------+--------------------+---------+ 
|categoricalFeatures|  continuousFeatures|retweeted| 
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+-------------------+--------------------+---------+ 
|                 []|[24.0,790.0,254.0...|      161| 
|                 []|[67.0,32867.0,13....|        5| 
|                 []|[7936.0,45472.0,1...|        7| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[17795.0,139516.0...|       48| 
|                 []|[14680.0,1965.0,1...|        1| 
|                 []|[4230.0,2733.0,43...|        1| 
|                 []|[54486.0,1995.0,9...|        1| 
|                 []|[0.0,0.0,0.0,0.0,...|        0| 
|                 []|[1178.0,1.7527795...|    20317| 
|                 []|[14603.0,531864.0...|      388| 
|                 []|[10296.0,24839.0,...|      315| 
|                 []|[182.0,3146152.0,...|    41128| 
|                 []|[2198.0,510.0,401...|       60| 
|                 []|[51554.0,2812.0,1...|        8| 
|                 []|[11497.0,1656450....|     5519| 
|                 []|[29608.0,4273.0,4...|     2152| 
|                 []|[80.0,3.1819537E7...|   110477| 
+-------------------+--------------------+---------+ 
only showing top 20 rows 
 

from pyspark.ml.feature import VectorIndexer, VectorAssembler, 
StandardScaler 
from pyspark.ml import Pipeline 
 
# Import for Logistic Regression 
from pyspark.ml.regression import LinearRegression 
 
# Import for Decision Tree 
from pyspark.ml.regression import DecisionTreeRegressor 
 
# Import for Random Forest 
from pyspark.ml.regression import RandomForestRegressor 

from pyspark.ml.feature import Binarizer 
 
binarizer = Binarizer(threshold = 1.0, inputCol = "continuousFeatures", 
outputCol = "features") 
binarizer.transform(trainingData).show() 

+-------------------+--------------------+---------+----------+ 
|categoricalFeatures|  continuousFeatures|retweeted|  features| 
+-------------------+--------------------+---------+----------+ 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
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|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|(12,[],[])| 
+-------------------+--------------------+---------+----------+ 
only showing top 20 rows 
 

## What is a VectorIndexer? (just to display help info) 
#help(VectorIndexer) 
 
# Vector Indexer: the input column are the categorical features and they 
will be transformed to a column of indexed categorical features 
vtrIndexer = VectorIndexer(inputCol = "categoricalFeatures", outputCol= 
"indexedCatFeatures").fit(basetable) 
 
# What is a StandardScaler? (just to display help info) 
#help(StandardScaler) 
 
# Standard Scaler: scales the continuous features to scaled continuous 
features 
standardScaler = StandardScaler(inputCol="continuousFeatures", 
outputCol="scaledContFeatures") 
 
# What is a VectorAssembler? (just to display help info) 
#help(VectorAssembler) 
 
# Vector Assembler: assembles the different vectors of the categorical and 
continuous features and outputs them as a feature column 
vtrAssembler = VectorAssembler(inputCols= ["indexedCatFeatures", 
"scaledContFeatures"], outputCol= "features") 
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# How to do a Linear Regression? What are the parameters? (just to display 
help info) 
#help(LinearRegression) 
 
# Logistic Regression 
lrRegressor = LinearRegression(labelCol="retweeted", featuresCol="features", 
maxIter=100) 
 
# How to do a Decision Tree Regression? What are the parameters? (just to 
display help info) 
#help(DecisionTreeRegressor) 
 
# Decision Tree 
dtRegressor = DecisionTreeRegressor(labelCol = "retweeted", featuresCol = 
"features") 
 
# How to do a Random Forest Regression? What are the parameters? (just to 
display help info) 
#help(RandomForestRegressor) 
 
# Random Forest Regressor: we define the label and the features columns and 
the number of trees we want to build. 500 is a good trade-off between 
computation time and error. 
# The Random Forest will contain 500 different decision trees. 
rfRegressor = RandomForestRegressor(labelCol="retweeted", 
featuresCol="features", numTrees=500) 

4. Training the pipeline

1. Linear Regression

# Defining all the stages of the pipeline 
lrPipeline = Pipeline(stages = [vtrIndexer, standardScaler, vtrAssembler, 
lrRegressor]) 
 
# Fitting the pipeline to the training data: This is the execution of all 
the stages and the training of the Random Forest Model. 
lrModel = lrPipeline.fit(trainingData) 



3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 39/44

# Make predictions on test data. 
lrPredictions = lrModel.transform(testData) 
 
# The label denotes what should have been the prediction. The prediction 
column is the prediction that was made with the trained machine learning 
model 
lrPredictions.show(4) 
#lrPredictions.printSchema() 

+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+ 
|categoricalFeatures|  continuousFeatures|retweeted|indexedCatFeatures|  sca
ledContFeatures|  features|        prediction| 
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+ 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497| 
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+ 
only showing top 4 rows 
 

from pyspark.ml.evaluation import RegressionEvaluator 
 
# Our PipelineModel consists of 5 stages starting of index 0 to index 4. 
Each of these index places contains the model of the respective stage. The 
more stages you add the larger the pipeline will become, but in this example 
it contains 5 stages. 
# The machine learning model is on index 4 
# Print the coefficients and intercept for linear regression 
print("Coefficients: " + str(lrModel.stages[3].coefficients)) 
print("Intercept: " + str(lrModel.stages[3].intercept)) 

Coefficients: [2799.371154504995,21151.278960461983,283.04008446110674,-164
7.191189434722,1575.8189545042499,-1907.0616617386952,-9273.515041288427,3.7
385389630400963,4633.379640080822,-281.0185201965542,696.3083497575342,-246
3.4014849957143] 
Intercept: 3010.19333024 

summ = lrModel.stages[3].summary 
summ 

Out[102]: <pyspark.ml.regression.LinearRegressionTrainingSummary at 0x7f0bb7
d38610> 
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For Linear Regression we have an extra class called
LinearRegressionTrainingSummary which gives us statistics about our model
performance on the training dataset. Calculating performance metrics on the
training dataset is not good practice since it will show better results than realistic.

To get the performance on the test set we have to use RegressionEvaluator.
Therefore you always need to refer to the test statistics if you want to compare
different models.

#final dataset with not retweeted still in  
#The p-values are: [0.0, 0.0, 0.21635917423454454, 6.468159341466162e-13, 
0.124091058302914, 0.0, 0.0, 0.9270422296973089, 0.0] 
#the R^2 is:0.0453167329296 
#The MSE is: 2636715307.51 
# Two-sided p-value of estimated coefficients and intercept. 
print "The p-values are: " + str(summ.pValues) 
# Returns R^2^, the coefficient of determination. 
print "the R^2 is:" + str(summ.r2) 
# Returns the mean squared error 
print "The MSE is: " + str(summ.meanSquaredError) 

The p-values are: [0.0, 0.0, 0.10033585604243545, 0.0, 0.0, 0.0, 0.0, 0.9817
660815841176, 0.0, 0.08715402529025074, 2.746541335252317e-05, 0.0, 0.0] 
the R^2 is:0.0441290146063 
The MSE is: 5244070163.22 

If you want to compare this Linear Regression to the models of Random Forest and
Decision Trees, use the performance metrics of the RegressionEvaluator. These
metrics are calculated on the test data instead of the training data and give,
therefore, a good view of the performance of the model on new data.
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from pyspark.ml.evaluation import RegressionEvaluator 
 
##final dataset with not retweeted still in 
#R^2 on test data = 0.0362238 
#Mean Absolute Error (MAE)) on test data = 7187.73 
 
lrEvaluator = RegressionEvaluator(labelCol="retweeted", 
predictionCol="prediction") 
 
lrr2 = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "r2"}) 
lrmae = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "mae"}) 
 
print("R^2 on test data = %g" % lrr2) 
print("Mean Absolute Error (MAE)) on test data = %g" % lrmae) 

R^2 on test data = 0.0385547 
Mean Absolute Error (MAE)) on test data = 12611.4 

from pyspark.ml.evaluation import RegressionEvaluator 
 
lrEvaluator = RegressionEvaluator(labelCol="retweeted", 
predictionCol="prediction") 
 
lrr2 = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "r2"}) 
lrmae = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "mae"}) 
 
print("R^2 on test data = %g" % lrr2) 
print("Mean Absolute Error (MAE)) on test data = %g" % lrmae) 

R^2 on test data = 0.0385547 
Mean Absolute Error (MAE)) on test data = 12611.4 

2. Decision Tree

# Defining all the stages of the pipeline 
dtPipeline = Pipeline(stages = [vtrIndexer, standardScaler, vtrAssembler, 
dtRegressor]) 
 
# Fitting the pipeline to the training data: This is the execution of all 
the stages and the training of the Random Forest Model. 
dtModel = dtPipeline.fit(trainingData) 
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# Make predictions on test data. 
dtPredictions = dtModel.transform(testData) 
 
# The label denotes what should have been the prediction. The prediction 
column is the prediction that was made with the trained machine learning 
model 
dtPredictions.show(4) 
#dtPredictions.printSchema() 

+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+ 
|categoricalFeatures|  continuousFeatures|retweeted|indexedCatFeatures|  sca
ledContFeatures|  features|        prediction| 
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+ 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542| 
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+ 
only showing top 4 rows 
 

Show result

print dtModel.stages[3].toDebugString 

dtModel.stages[3].featureImportances 

Out[111]: SparseVector(12, {0: 0.2591, 1: 0.3449, 2: 0.0396, 4: 0.0, 5: 0.00
05, 6: 0.1585, 8: 0.0947, 10: 0.0031, 11: 0.0996}) 

# Select (prediction, true label) and compute test error 
dtEvaluator = RegressionEvaluator(labelCol="retweeted", 
predictionCol="prediction",) 
 
dtr2 = dtEvaluator.evaluate(dtPredictions, {dtEvaluator.metricName: "r2"}) 
dtmae = dtEvaluator.evaluate(dtPredictions, {dtEvaluator.metricName: "mae"}) 
 
print("R^2 on test data = %g" % dtr2) 
print("Mean Absolute Error (MAE) on test data = %g" % dtmae) 

R^2 on test data = 0.527149 
Mean Absolute Error (MAE) on test data = 10224.4 
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3. Random Forest

# Defining all the stages of the pipeline 
rfPipeline = Pipeline(stages = [vtrIndexer, standardScaler, vtrAssembler, 
rfRegressor]) 
 
# Fitting the pipeline to the training data: This is the execution of all 
the stages and the training of the Random Forest Model. 
rfModel = rfPipeline.fit(trainingData) 

# Make predictions on test data. 
rfPredictions = rfModel.transform(testData) 
 
# The label denotes what should have been the prediction. The prediction 
column is the prediction that was made with the trained machine learning 
model 
rfPredictions.show(4) 
#rfPredictions.printSchema() 

+-------------------+--------------------+---------+------------------+-----
---------------+----------+-----------------+ 
|categoricalFeatures|  continuousFeatures|retweeted|indexedCatFeatures|  sca
ledContFeatures|  features|       prediction| 
+-------------------+--------------------+---------+------------------+-----
---------------+----------+-----------------+ 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086| 
|                 []|[0.0,0.0,0.0,0.0,...|        0|                []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086| 
+-------------------+--------------------+---------+------------------+-----
---------------+----------+-----------------+ 
only showing top 4 rows 
 

Show result

print rfModel.stages[3].toDebugString  

To get an idea of how important the different features were in predicting the
outcome, you can print the feature importances. The higher the number the more
important the feature was.
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rfModel.stages[3].featureImportances 

Out[116]: SparseVector(12, {0: 0.1561, 1: 0.1141, 2: 0.2009, 3: 0.0315, 4:
 0.0101, 5: 0.0068, 6: 0.1045, 7: 0.0, 8: 0.1413, 9: 0.0213, 10: 0.0059, 11:
 0.2075}) 

# Select (prediction, true label) and compute test error 
rfEvaluator = RegressionEvaluator(labelCol="retweeted", 
predictionCol="prediction",) 
 
rfr2 = rfEvaluator.evaluate(rfPredictions, {rfEvaluator.metricName: "r2"}) 
rfmae = rfEvaluator.evaluate(rfPredictions, {rfEvaluator.metricName: "mae"}) 
 
print("R^2 on test data = %g" % rfr2) 
print("Mean Absolute Error (MAE) on test data = %g" % rfmae) 

R^2 on test data = 0.413803 
Mean Absolute Error (MAE) on test data = 10840.3 
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