
1

Predicting which tweets will be retweeted most.

Word count: 9468

Jolan Bourdeaud’hui

Student number: 01305763

Promotor/ Supervisor: Prof. dr. Dirk Van den Poel

Co-promotor/ Co-supervisor: Matthias Bogaert

Master’s Dissertation submitted to obtain the degree of:

Master of Science in Business Engineering

Academic year: 2017 – 2018

2

CONFIDENTIALITY AGREEMENT

PERMISSION

I declare that the content of this Master’s Dissertation may be consulted and/or reproduced, provided

that the source is referenced.

Name student

:………………………………………………………………………………………………

Signature

3

“To be retweeted, or not to be retweeted,

that’s the question:”

A prediction of which tweets will be retweeted .

4

Inhoud

Preface ... 6

Abstract ... 7

Dutch summary ... 8

1. Introduction ... 9

1.1. An introduction to social media ... 9

2. Theoretical framework .. 11

2.1. Previous twitter research .. 11

2.2 Program description .. 12

2.3. Algorithm and model description ... 13

2.4. Privacy policy ... 14

3. Research questions .. 15

4. Methodology ... 16

4.1. Project overview ... 16

4.2. Data Understanding .. 17

4.3. Data Preparation ... 19

4.4. Modeling .. 23

4.4.1 Pipeline ... 23

4.4.2 Evaluation ... 25

5. Data Analysis .. 29

5.1. Classification retweeter .. 29

5.2 Classification original tweeter ... 30

5.3 Regression original tweeter ... 30

6. Results ... 31

6.1. Variable importance vector .. 31

6.2. Correlation matrix .. 33

6.2.1 Classification original tweeter .. 33

6.2.2 Regression problem .. 34

7. Discussion ... 35

Bibliography .. 36

Attachments ... 38

Attachment 1: Examples JSON structure downloaded and flattened .. 38

Attachment 2: example of a flattened JSON for a tweet for which the usage in our model is

indicated .. 46

Attachment 3: Program to download and flatten tweets in JSON format ... 49

 Attachment 4: Data analytics in Databricks PySpark ………………………………………………57

5

Table 1: Overview of different features .. 12

Table 2: The list of independent variables .. 20

Table 3: The list of extra independent variables ... 21

Table 4:Example of steps to calculate count positive and negative words.. 21

Table 5: Results classification retweeter ... 25

Table 6: Results classification original tweeter ... 26

Table 7 : Mean Absolute Error regression original tweeter .. 27

Table 8: Overview features variable importance vector (3 models: 2 times Random Forest, 1 time

Decision Tree) ... 32

Table 9: Overview values of the features variable importance vector (3 models: 2 times Random

Forest, 1 time Decision Tree) .. 32

Table 10: Correlation matrix classification original retweeter for random forest (the corresponding line

of the dependent variable retweeted) ... 33

Table 11 : Correlation matrix regression problem for decision tree (the corresponding line of the

dependent variable retweet_count) .. 34

Figure 1: CRISP-DM 17

Figure 2: Example flattening JSON .. 19

Figure 3: Overview tweets per user ... 22

Figure 4: Overview distribution tweets (rounded numbers) .. 23

Figure 5: Performance (AUC) classification problem retweeter ... 26

Figure 6: Performance (AUC) classification original tweeter ... 26

Figure 7: Mean Absolute Error regression original tweeter .. 27

Figure 8: Accuracy (R²) regression original tweeter ... 28

Figure 9: Total accuracy classification retweeter .. 29

Figure 10: Specific accuracy classification retweeter ... 29

Figure 11: Total accuracy classification problem original retweeter .. 30

Figure 12: Specific accuracy classification problem original retweeter .. 30

6

Preface

This master dissertation has been made possible by my promoter Prof. Dirk Van den Poel. First, I

would like to thank twitter and their environment for letting tweets being easily extracted from their

site. Special thanks go to my family and friends who have supported me during this long agony.

Finally special thanks to my girlfriend Charlotte who supported me during this long journey. Social

media is getting more and more attention, it is interesting to discover what an impact has on your

social status and your social network. We all want to be retweeted. Twitter and the corresponding

retweet behavior is an excellent example how you can spread your message. The major challenge of

my research was to come up with extra parameters that influence the number of retweets. Another

challenge was to find underlying reasons why certain parameters were performing significant

worse/better than predicted. Our final conclusion is that the user specific information is superior to the

specific text information. The size of your network is important; without followers you cannot be

retweeted.

7

Abstract

In a time where the amount of likes and retweets is more important than ever, we want to investigate

what the ideal recipe is for a tweet to be recognized and retweeted. The purpose of this paper is to

predict which parameters of a tweet are most important to be retweeted and what the ideal recipe is for

a tweet. We use different models such as Random Forest, Logistic Regression and Decision Tree to

increase the AUC of the prediction model. Further, we want to discover if the content of the text or the

user information is the most important. Therefore, we do analyses about user specific data (followers,

friends, number of tweets,…), but also on text specific data (hashtags, text, URL, …). The global

trend is that user specific information is more decisive than text content specific information to be

retweeted. A few important new introduced parameters came to light such as the number of public lists

that a user is a member of. To our knowledge, this study is the first that evaluates the parameters of

retweeted tweets and the parameters of most retweeted tweets.

8

Dutch summary

Omdat likes en retweets altijd maar belangrijker worden, willen we onderzoeken wat het ideale recept

is om een tweet te laten retweeten, Het doel van deze paper is om te voorspellen welke parameters van

een tweet de meest belangrijke zijn om het retweeten te triggeren. We gebruiken verschillende

modellen zoal Random Forest, Logical Regression en Decision Tree om de AUC van de voorspelling

van het model te verbeteren. Verder willen we onderzoeken of de content van de tekst of eerder de

gebruikersinformatie de belangrijkste parameters zijn. Daarom doen we analyse van gebruiker

specifieke data (volgers, vrienden, aantal tweets, ...), maar ook tekst specifieke data (hashtags, tekst,

URLs, ...). De globale trend is dat gebruiker specifieke informatie meer bepalend is voor retweets dan

tekstinhoud. Een paar belangrijke nieuwe parameters kwamen aan het licht, zoals het aantal lijsten

waar de gebruiker deel van uitmaakt. Voor zover wij konden nagaan, is deze studie de eerste die de

parameters van de tweets die worden geretweet en de tweets die meest worden geretweet evalueert.

9

1. Introduction

1.1. An introduction to social media

Nowadays, online social networks such as Facebook, Instagram and Twitter, are very

important and powerful communication tools. In our 21st society, people want more likes, more

retweets and more followers. In this research paper we focus on the social network “Twitter”. Twitter

is a very attractive tool for people who are looking to enlarge their network and influence. With more

than 300 million active users, Twitter is an increasingly significant media context of empirical

examination (Twitter, 2018). Twitter is unique among social media platforms as it is an intermediary

for linking anonymous users to each other as well as a space to break and contextualize news

(Hermida, 2010).

Social media platforms allow rapid information diffusion and serve as a source of information

to many of the users. Therefore, for all kinds of individuals and organizations using Twitter as a

communication channel, it is important to know what they can do to diffuse their tweets. In a time

where status in the form of likes and retweets is more important than ever, individuals want to know

what the ideal recipe is to be recognized or retweeted. In addition, for marketing investors and

organizations it is important to know which messages or tweets are being spread and which not.

The popularity of tweets has resulted in information propagation becoming a prominent

fundamental function of online social networks. From the perspective of information propagation,

retweeting is viewed as an atomic behavior (Boyd, Golder & Lotan 2010). Specifically, retweeting

action diffuses information carried in the original message. If a tweet gets a lot of retweets, the

potential audience of a tweet enlarges significantly. Prior information propagation models treat the

retweeting behavior as having constant retweet probability, or as following a certain probability

distribution. Previous research demonstrated that the composition of Twitter users indicated a highly

skewed composition, where the majority of users (90%) only send out a very few tweets and the

minority of users (10%) are highly active (Bruns & Stieglitz, 2012). Moreover, statistics show that 1%

of Twitter users produce 20-50% of its content and control 25% of its information diffusion (Tang et

al., 2015).

 A lot of Twitter research focus on which tweets are retweeted the most. Most of these studies

are looking for features of a tweet that give the highest probability of being retweeted. First, some

papers show a deeper insight of which tweets are retweeted the most. For example Hong, Dan and

Davison (2011) examined which factors influence the spreading of Twitter tweets via a classification

algorithm. These factors can be the content of the message, the hashtags, the metadata (i.e. has the

message been retweeted before?) or the structural properties of the user. These findings are in line with

the study conducted by Suh, Hong, Pirolli and Chi (2011) who built a predictive retweet model. They

https://paperpile.com/c/OdUe8w/KVWLA
https://paperpile.com/c/OdUe8w/VLKY
https://paperpile.com/c/OdUe8w/VLKY

10

found interesting content features in tweets that result in higher probability of being retweeted. Their

most remarkable conclusion was that the number of past tweets does not predict retweet ability of a

user’s tweet.

To know how many times a tweet will be retweeted, it is important to investigate if the tweet

will be retweeted in the first place. Earlier research don’t focus on both questions. Therefore, in this

study we will first try to solve the binary classification problem before counting how many times a

tweet will be retweeted. This focus doesn’t exist in earlier Twitter research. In addition, the retweeting

research is stagnating over the last few years. Nevertheless, a lot has changed during the past few years

and different extra tweet features are coming up like symbols, included media, extended URL’s and

user lists. The behavior of twitterers also has changed as social media is more available for everyone

and not only for professionals. Therefore, in this paper we want to predict which state-of-the-art tweets

are the ones most likely to be retweeted. To answer this question, we first need to investigate if a tweet

gets retweeted or not. In a second stage, we focus on the expected retweet count.

11

2. Theoretical framework

2.1. Previous twitter research

Twitter tweets provide information over the users through the diffusion of retweets. Hence,

being able to predict the retweet count of a given tweet is important for understanding and controlling

information diffusion on Twitter. As the length of a tweet is limited to 280 characters, extracting

relevant features to predict the retweet count is a challenging task. Different authors report about the

sentiment analysis and their influence on the retweetability of tweets (Rosenthal, 2017; Stieglitz &

Dang-Xuan, 2012). More precisely, tweets convey related information about their author's sentiment.

Tweets can be classified through sentiment analyses in positive, negative or neutral tweets. For

example, Stieglitz and Dang-Xuan (2012) examined whether sentiment occurring in politically

relevant tweets has an effect on their retweetability. The result was a positive relationship between the

quantity of words indicating affective dimensions, including positive and negative emotions in a tweet

and its retweet rate. Rosenthal (2017) declares that the sentiment analysis of a tweet could be classified

on a two-point or a five-point ordinal scale.

To analyze the retweetability of a tweet, there are two different kinds of features: user specific

features and text specific features (Kupavskii, 2013). The category of user specific features includes

all the variables in the user’s profile (e.g. the number of followers, the number of tweets or the number

of favorites). The category of text specific features includes all the variables derived from the actual

text of the tweet (e.g. the number of hashtags, positive/negative sentiment of the tweet and number of

URLs in the tweet) (Kupavskii, 2013).

In Table 1 you can find an overview of the different features used in our research in

comparison to previous researches. Paper 1, the paper of Hong (2011) does not disclose the features

used, so some features might be missing in the previous research binary column.

12

Features Previous

research

binary (1)

Previous

research

regression (2)

Our research

(binary +

regression)

Our research

(binary +

regression final

model

Number of followers x x x x

Number of following x x x x

Number of times the user was listed x x x x

Favorites user x x x x

Favorites tweet x x x

PageRank x

URLs x x x x

Positive and negative smileys, x

Number of posts x x x x

The date of account creation x

Number of mentions x x x x

Number of tweet words x x

Hashtags x x x x

Exclamation and question marks x

Number of symbols x x

Number of media x x

Positive words used ~ x x

Negative words used ~ x x

Table 1: Overview of different features

(1) Predicting Popular Messages in Twitter (Hong, 2011)

(2) Predicting the Audience Size of a Tweet (Kupavskii, 2013)

2.2 Program description

 Research shows that JSONs are mostly downloaded in a python script and that the data

cleaning and further analytics were done in databricks PySpark. Different authors such as Lekha and

Sujala (2015) declared the use of Spark with twitter data. These authors examined the trendy Big Data

processing engine which have gained tremendous interests over the past few years and offers faster

solutions compared to a traditional Java-based programming framework like Hadoop. Lekha and

Sujala (2015) experienced that Spark can be effectively utilized in finding patterns for companies who

are advertising their job vacancies through tweets. In their study the numerous job advertisements

were classified into various job categories, using Spark. Spark has many advantages:

13

1. Spark works with “Resilient Distributed Datasets,” or RDDs. Using this simple extension,

Spark can capture a wide range of processing workloads that previously needed separate

engines, including SQL, streaming, machine learning, and graph processing (Zaharia et al.

2016)

2. Dataframes are a common abstraction for tabular data in R and Python, with programmatic

methods for filtering, computing new columns, and aggregation. In Spark, these operations

map down to the Spark SQL engine and receive all its optimizations. A data frame is a set of

records with a known schema, essentially equivalent to a database table that supports

operations like filtering and aggregation using a restricted “expression” API. Unlike working

in the SQL language, however, dataframe operations are invoked as function calls in a more

general programming language (such as Python and R), allowing developers to easily structure

their program using abstractions in the host language (such as functions and classes) (Zaharia

et al. 2016)

3. In the literature we see that, the big advantage of Spark is that it is a cluster computing system.

In comparison with older programs, Spark is remarkable faster at both running as writing

programs. Shoro and Soomro (2015) quoted: “It is really a big challenge to analyze the bulk

amount of twits to get relevance and different patterns of information on timely manner.”

Their paper explored the concept of Big Data Analysis and recognized interesting information

from tweets, using one of industries emerging tool, known as Spark by Apache.

2.3. Algorithm and model description

During the modeling phase, we will make use of the following algorithms: logistic regression,

decision tree learning and random forest. First, Logistic regression is a statistical model. Generally,

logistic regression is well suited for describing and testing hypotheses about relationships between a

categorical outcome variable and one or more categorical or continuous predictor variables. (Peng,

2002). The two possible dependent variable values are often labelled as "0" and "1". In this paper,

these values will represent outcomes as respectively “not retweeted” and “retweeted”.

Second, classification and regression trees are machine-learning methods for constructing

prediction models from data. The models are obtained by recursively partitioning the data space and

fitting a simple prediction model within each partition. As a result, the partitioning can be represented

graphically as a decision tree. Classification trees are designed for dependent variables that take a

finite number of unordered values, with prediction error measured in terms of misclassification cost.

Regression trees are for dependent variables that take continuous or ordered discrete values, with

prediction error typically measured by the squared difference between the observed and predicted

values. (Wiley et al. 2011)

https://paperpile.com/c/OdUe8w/9Fm1
https://paperpile.com/c/OdUe8w/9Fm1
https://paperpile.com/c/OdUe8w/9Fm1
https://paperpile.com/c/OdUe8w/9Fm1

14

Third, Random forests cope with the limited robustness and sub-optimal performance (Dudoit

et al., 2002) of decision trees by building an ensemble of trees (e.g., a thousand trees) (Breiman,

2001). Each individual tree is grown on a bootstrap sample using Binary Recursive Partitioning (BRP)

(Breiman et al., 1984). In random forests, the BRP algorithm starts by randomly selecting a subset of

candidate variables (Breiman, 2001) and evaluating all possible splits of all candidate variables. A

binary partitioning of the data is then created using the best split. The algorithm proceeds recursively

by, within each parent partition, again randomly selecting a subset of variables, evaluating all possible

splits, and creating two child partitions based on the best split. In sum, random forests uses random

feature selection at each node of each tree, and each tree is built on a bootstrap sample.

Last but not least, we are aware that statistics can be used in a misleading way. We refer to

John D. Cook (PhD and consultant in applied mathematics, statistics and technical computing) who

states that “With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.”, therefore we opt to try not to overfit our data.

2.4. Privacy policy

One of the reasons General Data Protection Regulation (GDPR) gets a lot of attention is the

recent scandal around user data leaks at Facebook. GDPR came into effect on May 25th, 2018. The

GDPR builds upon and modernizes existing EU Data Protection and Privacy rules and will replace

them with one single set of rules that govern how personal information is collected and processed. It is

a law that helps to protect and defend user privacy and informs the user of what is being done with

their personal details. For future research there will become more restrictions about user streaming. It

is not completely clear what will change on the Twitter API platform.

15

3. Research questions

RO1: Which tweets will be retweeted?

Before we want to know, how many times a tweet will be retweeted, we need to investigate if a tweet

gets retweeted or not. To reach this goal, we make a difference between a retweeted and a non-

retweeted tweet and look at the differences between both.

- Hypothesis 1: We predict that user related features would be more important than text related

features.

- Hypothesis 2: We predict that the most determinative parameter of the user is the number of

followers.

- Hypothesis 3: We predict that messages that score high on sentiment, positive or negative, will

be retweeted more.

RO2: Which tweets will be retweeted most?

After figuring out what differentiate a retweeted tweet from a not retweeted tweet, we can formulate

hypotheses 1 as in our first research question.

- Hypothesis 1: The importance of the individual features for the binary classification model are

similar but not the same as the importance of the features for the regression model.

16

4. Methodology

In the following section we are deciding which features we are selecting for which problem.

We used three different algorithms Logistic Regression, Decision Tree and Random forest to compare

the impact of features within the different algorithms.

4.1. Project overview

The project starts from the assumption that certain determinants could influence the chance of being

retweeted, either positive or negative. To answer our research questions we follow the different steps

of the Cross-Industry Standard Process for Data Mining (CRISP-DM). The CRISP-DM is a data

mining process model that describes commonly used approaches that data mining experts use to tackle

problems (Chapman, 2000). Figure 1 illustrates the six phases of CRISP-DM.

1. Business Understanding: Finding the features that influence retweetability as described in

the problem statement and theoretical framework.

2. Data Understanding: Downloading tweets in the form of JSON through the twitter API to

the local hard disk. And examining this JSON structure with a JSON viewer is elaborated in

section 4.2.

3. Data Preparation: JSON structure manipulation in Python and Databricks as described in

chapter 4.3 (Data Understanding and Data Preparation).

4. Modeling: Selecting and building the most appropriate models in Databricks is elaborated in

chapter 4.4 (Data Analysis).

5. Evaluation: Using performance measurements as AUC to compare results can be found in

addendum 2.

6. Deployment: Deploying and summarize our final findings. Method and strategy can be found

in addendum 2.

https://paperpile.com/c/OdUe8w/8OuPV

17

Figure 1: CRISP-DM

4.2. Data Understanding

We extracted our social media data from the website Twitter. Earlier research shows that

social media data is often more subjective and personal. To answer our research question “Which

tweets will be retweeted most?”, we need to filter this raw data. The first problem is to decide from

whom we are we going to collect our data. As we want to create a dataset with both important and

non-important twitterers, a logical solution is to select the twitterers using random Twitter id’s. The

code that is used for downloading the dataset is available in addendum 1. Most important is that we

use randomly generated account numbers (nine numbers). To select a tweet from an account, two

criteria are added. First, the tweets should be in English so we don’t have to take translations into

account for the sensitivity analysis. We note that the language of the retweeted tweet is in English (not

the original tweet that is retweeted). Therefore, it is possible that there are still non-English tweets in

the dataset before data preparation. Second, the tweets should contribute to an equally divided dataset.

More specifically, we want to have 50% tweets that are retweeted and 50% that are not retweeted,

because literature shows that the results are best with equally divided samples.

We used the twitter API_user_timeline command and the package tweepy for downloading

tweets. Furthermore, we made use of personal keys: a consumer key, an access key and a consumer

access. These items made it possible to set up a personal connection with twitter. In accordance with

those keys we can extract tweets and user information for free. Nevertheless, twitter can track who is

downloading their data and there is an upper limit to the amount of calls you can make in a period of

time. For this reasons you need to build in sleeping periods in your program when extracting data. Pay

attention that we downloaded this data locally.

18

After running the tweet downloader for many nights on the computer, we accumulated a dataset of 560

000 tweets with 280 000 retweeted and 280 000 not retweeted. Due to the limitations of the download

API, we never had more than 200 tweets per user. The number of unique users we used to extract the

tweets is 17 730. The tweets downloaded originated from 93 999 different users. After the data was

gathered, we cleaned and modified it on the databricks platform.

 To prevent overfitting on the dataset we created the accounts that extracted the tweets

completely random. The downloaded data is saved as a JSON as this is an easy way of saving social

media data. Next, we applied a process called serialization to transform all these individual JSON files

into one big table, called dataframe on our platform databricks. Keeping in mind that we store each

tweet in an individual JSON, our final dataframe will be a collection of JSONs. For more information

about tweets in JSON format, you can look on the developer site from twitter. In figure below there is

a visualization of a sample tweet in JSON structure. This whole process provides us with the data to

analyze what would be the impact of different tweets from different users on the retweetability of

tweets.

When we take a closer look at the different JSONs in attachment, we see a remarkable

difference between the flattened and the normal shaped JSON. The big difference is that the normal

JSON goes much deeper (multiple dimension). This gives us a lot of complication when we want to

make a dataset of this deep JSON. Therefore we need to flatten this JSON first. The originally data

contains concrete enumerations of concrete attributes where for our research we typically want only

the number of attributes. In other places the data we want is deeply nested into the JSON structure and

to fit in the dataframe model we don’t want nested JSONs. You can find an example in figure below.

You can find the complete JSONs in attachment 1.

19

…

After flattening becomes

Figure 2: Example flattening JSON

4.3. Data Preparation

When we look at all different variables, we see that we have too many variables to start with.

The goal is to make a model that includes the most predictive and most effective parameters. We

include the variables as suggested in previous research (referred to as standard variables) and add the

ones which we think could contribute (see above) .

For the classification problem, the dependent variable is retweeted_dummy. This is a boolean,

which takes the value 1 if the tweet is retweeted, 0 otherwise. For the regression problem the

dependent variable is retweet_count. This is the number of times that the original tweet/message is

retweeted. The standard independent variables are the same for the classification and the linear

problem. Table 2 summarizes the standard variables.

20

Independent

variable

Explanation

followers_count current number of followers of the user. A follower is a person who follows

you on twitter. You don’t need to follow him/her back. It is just a follower.

friends_count The number of users this account is following (AKA their “followings”).

favourites_count The number of Tweets this user has liked in the account’s lifetime.

n_user_mentions The number of users that are mentioned in the tweet. There is a list of which

users are mentioned but we are only interested in how much users are

included in the tweet

n_urls The number of urls that are mentioned in the tweet. There is a list of which

urls are mentioned but we are only interested in how much urls are included

in the tweet

n_hashtags Represents the number of hashtags which have been parsed out of the Tweet

text.

n_listed The number of public lists that this user is a member of. *

n_statuses The number of Tweets (including retweets) issued by the user

**

Table 2: The list of independent variables

*A List is a curated group of Twitter accounts. You can create your own Lists or subscribe to Lists created by others.

Viewing a List timeline will show you a stream of Tweets from only the accounts on that List (google)

** Remark: n_favorited (= the number of times that the tweet is favorited) is not put in the list of independent variables.

Because we won’t have that information if we have to predict the retweets of a tweet. Another research question could be:

“Predicting which tweets will be favorited most”?

21

Next to these variables we have created additional variables that hopefully will add predictive value to

this model. Table 3 summarizes these additional variables.

Extra Independent

Variables

Explanation

count_positive The number of positive words that are included in the text of the tweet. *

count_negative The number of negative words that are included in the text of the tweet. *

n_symbols The number of symbols that are mentioned in the tweet. There is a list of

which symbols are mentioned but we are only interested in how much

symbols are included in the tweet

n_media Represents the number of media elements uploaded with the Tweet. A

media element is a photo, an url, an expanded url,...

Table 3: The list of extra independent variables

*To get a sentiment score for each tweet, we use a lexicon-based approach. Before we are able to execute sentiment analysis,

we need to clean the text and tokenize the tweets into English words. We make multiple strings from one large string. This

means per tweet we filter out all irrelevant characters, remove RT, convert everything to lower case, tokenize the result and

count how many positive and negative words appear in the resulting vector. The lists of words we used consist of more than 2

000 words (Ding, Liu, and Zhang 2009). For an example see Table 4.

Different steps Text

Original text from retweet RT @xfl2020: This is great football reimagined. This is

the XFL. Watch the official announcement — LIVE

NOW! #XFL2020 https://t.co/KFX5oLmkHw

Convert to lower case rt @xfl2020: this is great football reimagined. this is the

xfl. watch the official announcement — live now!

#xfl2020 https://t.co/kfx5olmkhw

Remove rt, http and all special characters this is great football reimagined this is the xfl watch the

official announcement live now xfl2020

Remove stopwords great football reimagined xfl watch official

announcement live xfl2020

Tokenize [“great”,"football","reimagined","xfl","watch","official",

"announcement","live","xfl2020"]

Count positive words 1

Count negative words 0

Table 4:Example of steps to calculate count positive and negative words

https://paperpile.com/c/OdUe8w/Skel

22

It is important to mention that retweeted tweets and non-retweeted tweets have a different

structure (JSON). If a tweet is retweeted we are interested in the data of the original tweeter, and not of

the re-tweeter. So we create new variables that indicate whether the data is retweeted from another

account or whether the data is purely user-generated. An example will make this clearer. For example,

I as a student see a tweet that I want to share from prof. Dirk Van den Poel, and then I can retweet his

original tweet. On that same evening there is a soccer game going about which I tweet. When we want

to collect this information, we want to assemble for the first tweet the user and text data from the

original tweeter prof. Dirk Van den Poel. For the second tweet, we want to collect user and text data

from Jolan Bourdeaud’hui. Hence, we always want the data from the original tweet.

First we make a dataset for our classification problem. Is a tweet retweeted or not? For this

more appropriate shaped JSON, we make sure that there are no variables present in the dataframe

from retweeted tweets, because these variables are the consequence of a retweet and thus cannot be

used to predict a retweet.

In Attachment 2 you see an example of a flattened JSON for a tweet for which the usage in our

model is indicated.

First we look at the distribution number of tweets per user. We have 560 000 tweets in total

and 17 730 unique users. Each user has an average of 31.5 tweets. When we look at the distribution of

the number of tweets per user we see that this is not normally distributed. This is because there are a

lot of users that tweet very rarely and only a small percentage of the twitter network is responsible for

the most diffusion on twitter. Figure 3 shows that only 10 percent of the users are responsible for 90

percent of the total tweets. When we generate our user-id randomly, there is a bigger chance to take an

account with fewer tweets. The maximum number of tweets per user we can fetch through the twitter

api is 200. 50% of the unique users have 5 tweets or less that meet the requirements.

Figure 3: Overview tweets per user

23

Figure 4 shows that 50% is retweeted and 50% is not retweeted. Of the 560 000 there were 280 000

tweets retweeted and 280 000 not retweeted. We have retweeted tweets from original tweeters and

retweeted tweets from the user timeline we scraped. 230 000 Of the retweets (or 83%) come from

tweets from other tweeters. 47 678 Of the retweets (or 17%) are written by the users we scraped and

are retweeted by others..

Figure 4: Overview distribution tweets (rounded numbers)

4.4. MODELING

4.4.1 Pipeline

To implement our predictive models we use databricks python spark (pyspark). This is a

pretty new programming language. Python allows us to run functions over collections on multiple

processors in parallel. Spark allows us to run functions over multiple servers in parallel (Odersky,

2017). This should allow us to analyze massive amounts of tweets in a reasonable time. Working

locally on python would be limited because we are tied to a single compute node (computer). To

model everything in PySpark, we need to put our data in the right format. First of all we considers null

values being the integer 0.

Most of the operations will be done on either the categorical values, the continuous values or

the label. Therefore, a split-up in a label, the categorical features and the continuous features is the

most efficient. The conversion is the easiest with RDD's, therefore we will transform the DataFrame

to an RDD and afterwards use a map function to transform each of the rows.

24

After putting it in the right format we convert the RDD back to a DataFrame and we split the

base table up in a train and test set. 70% of the data is used for training and 30% is used for testing.

The splitting of the data is executed randomly to save computation time. Cross validation is not used

because we have limited Databricks resources.

Now we have our basetable ready for a Machine Learning Pipeline. So now, we need to construct a

pipeline.

The pipeline will consist out of five stages:

1. StringIndexer: A label indexer that maps a string column of labels to an ML column of label

indices. So this makes category indices of the strings in a column.

2. VectorIndexer: Class for indexing categorical feature columns in a dataset of Vector.

3. StandardScaler: Standardizes features by removing the mean and scaling to unit variance

using column summary statistics on the samples in the training set.

4. VectorAssembler: A feature transformer that merges multiple columns into a vector column.

5. Decide on the machine learning algorithm that we will be using. We will give an example of

Logistic Regression, Decision Tree learning, Random Forest

The next step in our model is training the pipeline, the number of iterations we trained differs for the

models we used.

• For logistic regression the number of iterations is 1000.

• For the decision tree classification our model came up with the solution of depth 5 with 63

nodes. Each node represent a test or decision.

• For random forest 500 number of trees were used. This is a good trade-off between

computation time and error.

We made use of machine learning techniques classification and regression. There is an

important difference between classification and regression problems. Fundamentally, classification is

about predicting a label and regression is about predicting a quantity.

For the first research question we use classification. Classification gives answers to a binary problem:

Is a tweet retweeted or not? We use logistic regression, random forest and decision tree learning in this

scenario. We make a subdivision. Classification retweeter is using the new user specific data.

Classification original tweeter is using the original user specific data

25

For the second research question we have to make use of regression. Regression gives answers to

continuous problems: How many times is a tweet retweeted? We use linear regression, random forest

and decision tree in this scenario.

4.4.2 Evaluation

4.4.2.1 Classification retweeter. Table 5 shows the results for the three previous discussed models. We

first made our basetable with the data from the last person that tweeted, not the original. We had 12

independent variables and 1 dependent variable.

Model Performance Total_accuracy Accuracy_not_retweeted Accuracy_retweeted

Logistic

regression
0.82 0.747 0.76 0.733

Decision

tree
0.755 0.776 0.811 0.741

Random

forest
0.853 0.782 0.836 0.727

Table 5: Results classification retweeter

The performance measure is AUC (i.e. Area Under Curve). For binary classification we will

use one performance measure in this section called Area Under the Receiver Operating Characteristics

curve (AUC). AUC is a measure between 0.5 (if the model is not doing better than random selection)

and 1 (if the model makes perfect predictions). The area under the ROC curve (AUC) is a well-known

measure of ranking performance, estimating the probability that a random positive is ranked higher

than a random negative, without committing to a particular decision threshold. (book predictive and

prescriptive analytics)

26

Figure 5 tells us that random forest performs best. We see that the AUC is quite high,, but there is

definitely still room for improvement.

Figure 5: Performance (AUC) classification problem retweeter

4.4.2.2 Classification original tweeter

Model Performance Total_accuracy Accuracy_not_retweeted Accuracy_retweeted

Logistic

regression
0.888 0.81 0.672 0.949

Decision

tree
0.826 0.91 0.891 0.93

Random

forest
0.969 0.916 0.88 0.953

Table 6: Results classification original tweeter

Figure 6: Performance (AUC) classification original tweeter

27

The performance from classification problem 2 is remarkably higher than the performance of

classification problem 1. Replacing the user parameters of the new tweeter in the original tweeter has a

positive influence on performance. We see that Random forest is our best model with an AUC of

0.969. When we want to predict which tweets will be retweeted most, we must change from a

classification problem to a linear problem. The independent variable is no longer retweeted_dummy

but retweeted_count. We don’t change the dependent variables. They stay the same as the variables in

classification problem original tweeter. We remove all data that is not retweeted from the dataset,

because we are interested in how much a tweet get retweeted. So all observations must be retweeted at

least 1 time.

4.4.2.3 Regression original tweeter. Note that the dependent variable is now changed to retweet count.

The independent variables remain the same.

Model Performance MeanAbsoluteError

Logistic regression 0.046 0.81

Decision tree 0.529 0.91

Random forest 0.408 0.916

Table 7 : Mean Absolute Error regression original tweeter

Figure 7: Mean Absolute Error regression original tweeter

Figure 8 shows that decision tree is outperforming random forest, which is at least remarkable. When

we look at the figure 7 of the Mean Absolute Error, we see that the MAE has risen significantly. It is a

lot harder to predict how many times a tweet is going to be retweeted than the classification if a tweet

is going to be retweeted.

28

Figure 8: Accuracy (R²) regression original tweeter

The performance of the models is being expressed in R². This is the proportion of the variance in the

dependent variable that is predictable from the independent variables. We see that it dropped relative

to the classification problems. There is a lot of uncertainty how much a tweet is going to be retweeted.

29

5. Data Analysis

5.1. Classification retweeter

The total accuracy is the percentage of tweets that is actually correctly predicted. If all

retweeted tweets are predicted as retweeted tweets and all not retweeted tweets are retweeted as not

retweeted tweets. This would result in an accuracy of 100%. The total accuracy in classification

problem 1 is quite high, but as said before there is still room for improvement. We can see in Figure 9

that Random forest is our best model with a performance of 0.853.

Figure 9: Total accuracy classification retweeter

Figure 10: Specific accuracy classification retweeter

Remark that the accuracy of the not retweeted tweets is higher than the accuracy of the

retweeted tweets (Figure 10). This is very surprising. Our model predicts more that a tweet will not be

retweeted. A possible explanation for this phenomenon is that we have a lot of not famous people who

don’t get retweeted so much. Because we don’t use - in this classification problem - the data from the

original tweeter, we get a lot of user data from ordinary people.

30

5.2 Classification original tweeter

Figure 11: Total accuracy classification problem original retweeter

Replacing the user parameters of the new tweeter in the original tweeter also has a positive influence

on the accuracy.

Figure 12: Specific accuracy classification problem original retweeter

Just as in classification problem 1, the accuracy of the not retweeted tweets is higher than the accuracy

of the retweeted tweets.

5.3 Regression original tweeter

For the regression problem we don’t have meaningful results concerning accuracy and residuals. We

refer to attachment 3 for the residuals.

31

6. Results

6.1. Variable importance vector

Table 9 shows the variable importance vector for the best model (2 times Random Forest , 1

time Decision Tree). The total of the sum of the feature importance vector is 1. The (absolute)

magnitude of each non-zero weights can give an idea about the importance of the corresponding

attribute. Irrelevant variables are set to zero. Many variable selection algorithms include variable

ranking as a principal or auxiliary selection mechanism because of its simplicity, scalability, and good

empirical success (Guyon & Elisseeff, 2003).

Table 8 is ordered from most important features above to least important features below.

When we look at Table 8, we see variables changing position when we change classification into

regression problem. We also see a remarkably difference in the variable importance between the two

classification problems. In classification problem 1 (with the new user retweeted data) the number of

users mentioned is the most important variable. In contrary with classification problem 2 (with the

original user retweeted data) and the linear problem (with the number of retweets as dependent

variable), the number of statuses of the user makes the reserve movement. At classification problem

number 1 it is less important, than in problem 2 and 3. However, the most special perception of the

table is that the number of followers is not that important in problem 1 and 3. In problem 2 - this is

also the problem with the best results in terms of performance - the number of followers is the most

important feature. We see a global trend that the user specific data (followers, friends, statuses,..) are

more important than tweet specific data like number of hashtags, urls or positive/negative words. This

confirms our hypotheses that user related features are more important than content related features.

In the past, a lot of research has been done to find out which parameters of the tweet correlate

with the number of times a tweet is retweeted. Luckily there is always room for improvement and

twitter provides us with extra parameters. For instance, there are the number of the memberships of

lists and the different types of media attached to the tweet. The results of these parameters are

particularly interesting.

32

Place (variable

importance)

Classification

retweeter
Classification

original tweeter
Regression

1. n_user_mentions followers_count n_statuses

2. n_media n_statuses friends_count

3. followers_count n_listed favourites_count

4. friends_count, friends_count n_listed

5. favourites_count favourites_count followers_count

6. n_urls n_media n_media

7. n_listed n_urls n_hashtags

8. n_statuses n_user_mentions count_positive

9. n_hashtags n_hashtags n_urls

10. count_negative count_negative n_user_mentions

11. count_positive count_positive count_negative

12. n_symbols n_symbols n_symbols

Table 8: Overview features variable importance vector (3 models: 2 times Random Forest, 1 time Decision Tree)

Classification

retweeter
Classification

original tweeter
Classification

retweeter
Regression

favourites_count 0.154 0.059 0.142

followers_count 0.042 0.399 0.114

friends_count, 0.038 0.090 0.200

n_hashtags 0.010 0.002 0.044

n_urls 0.012 0.008 0.011

n_user_mentions 0.629 0.007 0.006

n_listed 0.011 0.203 0.117

n_symbols 0.0 0.0 0.0

n_media 0.085 0.014 0.107

count_positive 0.001 0.0 0.022

count_negative 0.001 0.0 0.004

n_statuses 0.010 0.217 0.231

Table 9: Overview values of the features variable importance vector (3 models: 2 times Random Forest, 1 time Decision
Tree

33

6.2. Correlation matrix

6.2.1 Classification original tweeter

An interesting result is the correlation matrix. Correlation is a scaled measure of how two

variables change with respect to each other. We knew already which variables were more important

than others (see tables 8 and 9), but the correlation matrix learns us how the variables influence the

dependent variable. In table 10 we see that there are only two negative variables namely the number of

urls in the tweet and the number of users mentioned in the tweet. This means that if you add one (or

more) url or users in your tweet, the number of times that you are going to be retweeted drops. All

other parameters are positive. This means that, for example, the more followers you have, the more

chance you have to be retweeted. The variables with the highest correlation values are numbers of

media elements that are uploaded with the tweet, the number of favorites of the user and the number of

followers of the user. Adding media to your tweet helps to get your message retweeted.

Features Correlation with feature retweeted

Retweeted 1

favourites_count 0.188

followers_count 0.155

friends_count 0.114

n_hashtags 0.017

n_urls -0.059

n_user_mentions -0.129

n_listed 0.112

n_symbols 0.008

n_media 0.282

count_positive 0.055

count_negative 0.051

n_statuses 0.289

Table 10: Correlation matrix classification original retweeter for random forest (the corresponding line of the dependent
variable retweeted)

34

6.2.2 Regression problem

Table 11 shows the corresponding line of the dependent variable (retweet_count) for the

regression problem. When we look at the correlation between the retweeted count and all the variables

in Table 11, we see similar results as before. There are two extra variables that have a negative impact

on the retweet count, namely the number of hashtags and the number of symbols. But the correlation

values are relatively low. The number of public lists that a user is member of, the number of followers

and the number of statuses has the biggest correlation values with the retweet count.

Features Correlation with feature retweet_count

favourites_count 0.044

followers_count 0.187

friends_count 0.055

n_hashtags -0.011

n_urls -0.001

n_user_mentions -0.027

n_listed 0.118

n_symbols -0.001

n_media 0.071

count_positive 0.004

count_negative 0.007

n_statuses 0.127

retweet_count 1

Table 11 : Correlation matrix regression problem for decision tree (the corresponding line of the dependent variable
retweet_count)

35

7. Discussion

The results are in line with the expectations. The global trend is that most of the time user

specific information is more decisive than text content specific information to be retweeted. This

confirms our first hypothesis that user related features are more important than content related

features. The most remarkable and maybe surprising result is the relatively high positive correlation

between the variables “memberships lists” and “number of retweets”. Further, the negative correlation

between “number of urls” and the variable “retweeted” is at least equally interesting.

The answer on the second hypothesis “the most important feature of the original tweeter is the

number of followers” can be confirmed from the variable importance vector from the classification

model. This is in contradiction to the regression model. Note that the classification has proven to be

much more reliable than the regression model so we can confirm the hypothesis.

The answer on the third hypothesis “messages that score high on sentiment, positive or

negative, will be retweeted more” can be confirmed from the solution from the correlation matrix.

Nevertheless, our results showed that there was only very limited correlation. The most remarkable

finding was that as well tweets with positive as tweets with negative sentiment both get more retweets.

The last hypothesis declares that the importance of the individual features for the binary

classification model is about the same as the importance of the features for the regression model. The

top six features in the importance matrix (table 8) are the same, although they don’t appear in the same

order. This is logical because we have another but related dependent variable (i.e. retweet count).

This thesis can have several implications for future research and practice. As our dataset and

our model are made available, these products can be reused in future research. We are aware that our

dataset is still in an early stage. However, as our dataset and model is freely available and self-

explanatory we empower the reader to contribute in this educational Machine Learning project and

unleash the power of Big Data in the area of social media. One can contribute to our research by

enhancing either the dataset or the model (e.g. in adding more independent variables). Further, we

believe that marketeers could benefit from adopting our model to his/her specific setting.

We also have to keep in mind that this research is conducted with completely random

generated userIDs and this research is not applicable to all tweets of the world.

We can conclude that we have reached several meaningful models with great performance

measures, but there is definitely room for improvement and there are some limitations.

36

Bibliography

Boyd, D., S. Golder, & G. Lotan. (2010). “Tweet, Tweet, Retweet: Conversational Aspects of

Retweeting on Twitter.” In 2010 43rd Hawaii International Conference on System Sciences.

https://doi.org/10.1109/hicss.2010.412.

Breiman, L. (1999). Using adaptive bagging to debias regressions. Technical Report, Department of

Statistics, University of California, Berkeley.

Breiman, L. & Oct (2001). Random Forests. Machine Learning 45 (1), 5–32.

Chao-Ying Joanne Peng , Kuk Lida Lee & Gary M. Ingersoll, (2002). An Introduction to Logistic

Regression Analysis and Reporting, The Journal of Educational Research, 96(1), 3-14. doi:

10.1080/00220670209598786

Chapman, Pete (2000). CRISP-DM 1.0: Step-by-Step Data Mining Guide.

Dang-Xuan, L., & Stieglitz, S. (2012). Political Communication and Influence through

Microblogging. An Empirical Analysis of Sentiment in Twitter Messages and Retweet Behavior.

47th Hawaii International Conference on System Sciences. doi:10.1109/HICSS.2012.476.

Ding, Xiaowen, Bing Liu, & Lei Zhang, 2009. “Entity Discovery and Assignment for Opinion Mining

Applications.” In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining - KDD ’09. https://doi.org/10.1145/1557019.1557141.

Flach, P., Hernandez-Orallo, J., Ferri, C., 2011. A Coherent Interpretation of AUC as a Measure of

Aggregated Classification Performance. In: Proceedings of the 28th International Conference on

Machine Learning. Bellevue,WA, USA, p. 8.

Hong, Liangjie, Ovidiu Dan, & Brian D. Davison (2011). “Predicting Popular Messages in Twitter.”

In Proceedings of the 20th International Conference Companion on World Wide Web - WWW

’11. https://doi.org/10.1145/1963192.1963222.

Isabelle, C. (2003). An Introduction to Variable and Feature Selection, JMLR, 3(Mar), 1157-1182.

Wiley, J. & Sons, I. (2011). WIREs Data Mining Knowl Discov (1), 14–23. doi: 10.1002/widm.8

Chapman, P. (2000). CRISP-DM 1.0: Step-by-step Data Mining Guide.

Kupavskii A, Umnov A, Gusev G, & Serdyukov P. (2013). Predicting the audience size of a tweet. In

ICWSM. Cambridge, Massachusetts, USA, The AAAI Press. Google Scholar

Lekha. R. N., & Sujala, D. S. (2015). Streaming Twitter data analysis using Spark. Journal of

Theoretical and Applied Information Technology, 80(2).

 Shoro, A. G., & Soomro, T. R. (2015). Big Data Analysis: Ap Spark Perspective. Global Journal of

Computer Science and Technology: C Software & Data Engineering, 15(1). USA: Global

Journals Inc.

Odersky, M.(2017). Online course: Big Data Analysis with Scala and Spark. Coursera. École

Polytechnique Fédérale de Lausanne.

Boyd,%20D.,%20S.%20Golder,%20&%20G.%20Lotan.%20(2010).%20“Tweet,%20Tweet,%20Retweet:%20Conversational%20Aspects%20of%20Retweeting%20on%20Twitter.”%20In%202010%2043rd%20Hawaii%20International%20Conference%20on%20System%20Sciences.%20https:/doi.org/
Boyd,%20D.,%20S.%20Golder,%20&%20G.%20Lotan.%20(2010).%20“Tweet,%20Tweet,%20Retweet:%20Conversational%20Aspects%20of%20Retweeting%20on%20Twitter.”%20In%202010%2043rd%20Hawaii%20International%20Conference%20on%20System%20Sciences.%20https:/doi.org/
Boyd,%20D.,%20S.%20Golder,%20&%20G.%20Lotan.%20(2010).%20“Tweet,%20Tweet,%20Retweet:%20Conversational%20Aspects%20of%20Retweeting%20on%20Twitter.”%20In%202010%2043rd%20Hawaii%20International%20Conference%20on%20System%20Sciences.%20https:/doi.org/
http://dx.doi.org/10.1109/hicss.2010.412
http://paperpile.com/b/OdUe8w/KVWLA
http://paperpile.com/b/OdUe8w/8OuPV
Ding,%20Xiaowen,%20Bing%20Liu,%20&%20Lei%20Zhang,%202009.%20“Entity%20Discovery%20and%20Assignment%20for%20Opinion%20Mining%20Applications.”%20In%20Proceedings%20of%20the%2015th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining%20-%20KDD%20'09.%20https:/doi.org/
Ding,%20Xiaowen,%20Bing%20Liu,%20&%20Lei%20Zhang,%202009.%20“Entity%20Discovery%20and%20Assignment%20for%20Opinion%20Mining%20Applications.”%20In%20Proceedings%20of%20the%2015th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining%20-%20KDD%20'09.%20https:/doi.org/
Ding,%20Xiaowen,%20Bing%20Liu,%20&%20Lei%20Zhang,%202009.%20“Entity%20Discovery%20and%20Assignment%20for%20Opinion%20Mining%20Applications.”%20In%20Proceedings%20of%20the%2015th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining%20-%20KDD%20'09.%20https:/doi.org/
http://dx.doi.org/10.1145/1557019.1557141
http://paperpile.com/b/OdUe8w/Skel
Hong,%20Liangjie,%20Ovidiu%20Dan,%20&%20Brian%20D.%20Davison%20(2011).%20“Predicting%20Popular%20Messages%20in%20Twitter.”%20In%20Proceedings%20of%20the%2020th%20International%20Conference%20Companion%20on%20World%20Wide%20Web%20-%20WWW%20'11.%20https:/doi.org/
Hong,%20Liangjie,%20Ovidiu%20Dan,%20&%20Brian%20D.%20Davison%20(2011).%20“Predicting%20Popular%20Messages%20in%20Twitter.”%20In%20Proceedings%20of%20the%2020th%20International%20Conference%20Companion%20on%20World%20Wide%20Web%20-%20WWW%20'11.%20https:/doi.org/
Hong,%20Liangjie,%20Ovidiu%20Dan,%20&%20Brian%20D.%20Davison%20(2011).%20“Predicting%20Popular%20Messages%20in%20Twitter.”%20In%20Proceedings%20of%20the%2020th%20International%20Conference%20Companion%20on%20World%20Wide%20Web%20-%20WWW%20'11.%20https:/doi.org/
http://dx.doi.org/10.1145/1963192.1963222
http://paperpile.com/b/OdUe8w/rR539

37

Suh, Bongwon, Lichan Hong, Peter Pirolli, & Ed H. Chi. (2010). “Want to Be Retweeted? Large Scale

Analytics on Factors Impacting Retweet in Twitter Network.” In 2010 IEEE Second International

Conference on Social Computing. https://doi.org/10.1109/socialcom.2010.33.

Tang X., Miao Q., Quan Y., Tang, J. & Deng, K. (2015). Predicting Individual Retweet Behavior by

User Similarity: A Multi-Task Learning Approach. Knowledge-Based Systems, 89, 681–88.

Yang, Q., & Xu Z. (2012). Advances in Social Networks Analysis and Mining

(ASONAM). Analyzing User Retweet Behavior on Twitter. International Conference. Turkey.

Ddoi: 10.1109/ASONAM.2012.18.

Zaharia, Matei, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, Ion Stoica, Reynold

S. Xin, et al. 2016. “Apache Spark.” Communications of the ACM 59 (11), 56–65.

Suh,%20Bongwon,%20Lichan%20Hong,%20Peter%20Pirolli,%20&%20Ed%20H.%20Chi.%20(2010).%20“Want%20to%20Be%20Retweeted?%20Large%20Scale%20Analytics%20on%20Factors%20Impacting%20Retweet%20in%20Twitter%20Network.”%20In%202010%20IEEE%20Second%20International%20Conference%20on%20Social%20Computing.%20https://doi.org/
Suh,%20Bongwon,%20Lichan%20Hong,%20Peter%20Pirolli,%20&%20Ed%20H.%20Chi.%20(2010).%20“Want%20to%20Be%20Retweeted?%20Large%20Scale%20Analytics%20on%20Factors%20Impacting%20Retweet%20in%20Twitter%20Network.”%20In%202010%20IEEE%20Second%20International%20Conference%20on%20Social%20Computing.%20https://doi.org/
Suh,%20Bongwon,%20Lichan%20Hong,%20Peter%20Pirolli,%20&%20Ed%20H.%20Chi.%20(2010).%20“Want%20to%20Be%20Retweeted?%20Large%20Scale%20Analytics%20on%20Factors%20Impacting%20Retweet%20in%20Twitter%20Network.”%20In%202010%20IEEE%20Second%20International%20Conference%20on%20Social%20Computing.%20https://doi.org/
http://dx.doi.org/10.1109/socialcom.2010.33
http://paperpile.com/b/OdUe8w/q2a9P
http://paperpile.com/b/OdUe8w/VLKY
http://paperpile.com/b/OdUe8w/VLKY
http://paperpile.com/b/OdUe8w/9Fm1
http://paperpile.com/b/OdUe8w/9Fm1

38

Attachments

Attachment 1: Examples JSON structure downloaded and flattened

39

Figure 20: JSON (not retweeted tweet) normal structure

40

Figure 21: JSON (not retweeted tweet) reshaped structure

41

42

43

44

Figure 22: JSON (retweeted tweet) not reshaped structure

45

Figure 23: JSON (retweeted tweet) reshaped structure

46

Attachment 2: example of a flattened JSON for a tweet for which the usage in our model

is indicated

Usage Feature in flattened JSON

Used as feature in final

model

 "text": "RT @BringBoysBack: @BarackObama We ask…",

 "n_hashtags": 1,

 "user_listed_count": 0,

 "n_urls": 0,

 "n_followers_tweeter": 10,

 "n_media": null,

 "n_statuses_tweeter": 90,

 "n_friends_tweeter": 32,

 "n_favourites_tweeter": 92,

 "n_user_mentions": 2,

 "n_symbols": 0,

 "original_followers_count": 177,

 "original_text": "@BarackObama We ask …",

 "original_friends_count": 45,

 "original_listed_count": 1,

 "original_favourites_count_user": 33,

 "original_n_urls": 0,

 "original_n_hastags": 1,

 "original_n_media": 1,

 "original_n_symbols": 0,

 "original_n_user_mentions": 1,

 "original_statuses_count": 191

Tested as feature but

not included in final

model

 "n_favorite_count": 0,

 "hash1_length": 16,

 "hash2_length": null,

 "hash3_length": null,

 "hash1_place": 118,

 "text_length": 144,

 "user_mentions1_place_indices": 3,

 "user_description": ""

47

 "original_description": "#BringBackOurBoys",

 "original_favourites_count_tweet": 3

Dependent variable "retweet_count": 13,

 "retweeted": true,

 "original_retweet_count": 13

Used for technical

reasons (sorting,

identifier, grouping)

 "tweet_id": 478276585112350720,

 "lang": "en",

 "user_id": 496480519,

 "original_name_id": 2610686069,

 "original_id_tweet": 478185131199721472,

 "original_user_id": 2610686069

Not used "created_at": "Sun Jun 15 20:43:18 +0000 2014",

 "tweet_id_str": "478276585112350720",

 "truncated": false,

 "time_zone": "Jerusalem",

 "following": false,

 "hash1_text": "BringBackOurBoys",

 "hash2_text": null,

 "hash3_text": null,

 "user_mention_1": "BringBoysBack",

 "user_mention_2": "BarackObama",

 "user_mention_3": null,

 "url_1_display": null,

 "url_2_display": null,

 "url1_place": null,

 "url_1_length": null,

 "url_2_length": null,

 "is_quote_status": false,

 "in_reply_to_status_id": null,

 "in_reply_to_user_id": null,

 "in_reply_to_screen_name": null,

 "user_name": "adi bohbot",

 "user_screen_name": "adi_bohbot",

48

 "user_location": "Israel",

 "original_name": "#TheyKilledOurBoys",

 "original_created_at": "Sun Jun 15 14:39:54 +0000 2014",

 "original_user_time_zone": null,

 "original_user_created_at": "Sun Jun 15 06:42:48 +0000 2014",

 "original_protected_user": false,

 "original_url_tweet": "http://t.co/XDB8SO1gPf"

49

Attachment 3: Program to download and flatten tweets in JSON format

import tweepy #https://github.com/tweepy/tweepy

import csv

import json

import random

import time

import csv

from tweepy import OAuthHandler

#Twitter API credentials

consumer_key = '***'

consumer_secret = '***'

access_key = '***'

access_secret = '***'

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_key, access_secret)

list1=['jolskiii']

api = tweepy.API(auth)

countmax = 200

totallines =10

retweeted =5

notretweeted =5

#api = tweepy.API(auth)

#countmax = 200

#totallines =60000

#retweeted =30000

#notretweeted =30000

def loop_over_user_names():

 #file1 = open("C://temp//dataset//5000_balanced.json", "a")

 file1 = open("C://temp//ww.json", "a")

 #file1.write("[")

 n = 0

 r=0

 while (n < notretweeted or r <retweeted):

 rand = random.randint(100000000, 999999999)

 try:

 # orriginally count was 200

 count = 0

 print(n,r)

 time.sleep(1)

 new_tweets = api.user_timeline(user_id=rand, count=countmax)

 print(new_tweets)

 while count < countmax:

 try:

 if (new_tweets[count]._json["lang"] == "en"):

50

 toFile = json.dumps(new_tweets[count]._json)

 if (new_tweets[count]._json["retweet_count"] == 0):

 if (n < notretweeted):

 file1.write(toFile + "\n")

 n = n + 1

 else:

 if (r < retweeted):

 file1.write(toFile + "\n")

 r = r + 1

 count += 1

 except Exception as e:

 print(str(e))

 count +=1

 break

 except:

 print("skipping")

 #file1.write("{}]")

 file1.close()

loop_over_user_names()

import tweepy

import json

from tweepy import Stream

from tweepy import OAuthHandler

from tweepy.streaming import StreamListener

#consumer key, consumer secret, access token, access secret.

consumer_key = '***'

consumer_secret = '***'

access_key = '***'

access_secret = '***'

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_key, access_secret)

def hashtaglength(hashtags,i):

51

 try:

 return len(hashtags[i]["text"])

 except:

 return None

def hashtagname(hashtags,i):

 try:

 return (hashtags[i]["text"])

 except:

 return None

def hashtagplace(hashtags):

 try:

 return (hashtags[0]["indices"][0])

 except:

 return None

def usermentionplace(hashtags):

 try:

 return (hashtags[0]["indices"][0])

 except:

 return None

def usermentionname(hashtags,i):

 try:

 return (hashtags[i]["screen_name"])

 except:

 return None

def url(hashtags,i):

 try:

 return (hashtags[i]["display_url"])

 except:

 return None

def urlplace(hashtags):

 try:

 return (hashtags[0]["indices"][0])

 except:

 return None

def urllength(hashtags,i):

 try:

 return len(hashtags[i]["url"])

 except:

 return None

def symbols(hashtags):

 try:

 return (hashtags[0]["text"])

 except:

 return None

52

def retweeted(data):

 if (data["retweet_count"]>0):

 return True

 else:

 return False

def original_followers_count(data):

 try:

 return data["retweeted_status"]["user"]["followers_count"]

 except :

 return None

def original_name(data):

 try:

 return data["retweeted_status"]["user"]["name"]

 except:

 return None

def original_name_id(data):

 try:

 return data["retweeted_status"]["user"]["id"]

 except:

 return None

def original_text(data):

 try:

 return data["retweeted_status"]["text"]

 except:

 return None

def original_created_at(data):

 try:

 return data["retweeted_status"]["created_at"]

 except:

 return None

def original_id_tweet(data):

 try:

 return data["retweeted_status"]["id"]

 except:

 return None

def original_description(data):

 try:

 return data["retweeted_status"]["user"]["description"]

 except:

 return None

def original_id_tweet(data):

 try:

 return data["retweeted_status"]["id"]

53

 except:

 return None

def original_friends_count(data):

 try:

 return data["retweeted_status"]["user"]["friends_count"]

 except:

 return None

def original_listed_count(data):

 try:

 return data["retweeted_status"]["user"]["listed_count"]

 except:

 return None

def original_favourites_count_tweet(data):

 try:

 return data["retweeted_status"]["favorite_count"]

 except:

 return None

def original_favourites_count_user(data):

 try:

 return data["retweeted_status"]["user"]["favourites_count"]

 except:

 return None

def original_statuses_count(data):

 try:

 return data["retweeted_status"]["user"]["statuses_count"]

 except:

 return None

def original_protected_user(data):

 try:

 return data["retweeted_status"]["user"]["protected"]

 except:

 return None

def original_user_created_at(data):

 try:

 return data["retweeted_status"]["user"]["created_at"]

 except:

 return None

def original_user_time_zone(data):

 try:

 return data["retweeted_status"]["user"]["time_zone"]

 except:

 return None

54

def orignal_retweet_count(data):

 try:

 return data["retweeted_status"]["retweet_count"]

 except:

 return None

def original_url_tweet(data):

 try:

 return

data["retweeted_status"]["extended_entities"]["media"][0]["url"]

 except:

 return None

def original_type_extended_entities_tweet(data):

 try:

 return data["retweeted_status"]["entities"]["media"][0]["type"]

 except:

 return None

def original_n_urls(data):

 try:

 return len(data["retweeted_status"]["entities"]["urls"])

 except:

 return None

def original_n_hashtags(data):

 try:

 return len(data["retweeted_status"]["entities"]["hashtags"])

 except:

 return None

def original_n_user_mentions(data):

 try:

 return len(data["retweeted_status"]["entities"]["user_mentions"])

 except:

 return None

def original_n_media(data):

 try:

 return len(data["retweeted_status"]["entities"]["media"])

 except:

 return None

def original_n_symbols(data):

 try:

 return len(data["retweeted_status"]["entities"]["symbols"])

 except:

 return None

def n_media(data):

 try:

 return len(data["entities"]["media"])

 except:

 return None

def original_user_id(data):

55

 try:

 return data["retweeted_status"]["user"]["id"]

 except:

 return None

def make_json1(data):

 n = 0

 q = 0

 r = 0

 jsontest = {"created_at": data["created_at"], "tweet_id": data["id"],

"tweet_id_str": data["id_str"] , "text": data["text"], "truncated":

data["truncated"],

 "n_hashtags": len(data["entities"]["hashtags"]),

'n_hashtags': len(data["entities"]["hashtags"]),

 "lang": data["lang"], 'retweet_count':

data["retweet_count"], 'retweeted': retweeted(data),

 'user_id': data["user"]["id"], "user_listed_count":

data["user"]["listed_count"],

 'n_urls': len(data["entities"]["urls"]),

 'n_followers_tweeter':

data["user"]["followers_count"],'n_media': n_media(data),

 'n_statuses_tweeter': data["user"]["statuses_count"],

 'n_friends_tweeter': data["user"]["friends_count"],

'n_favorite_count': data["favorite_count"],

 'n_favourites_tweeter': data["user"]["favourites_count"],

'time_zone': data["user"]["time_zone"],

 'time_zone': data["user"]["time_zone"], 'following':

data["user"]["following"],

'hash1_length':hashtaglength(data["entities"]["hashtags"],0),'hash1_text':h

ashtagname(data["entities"]["hashtags"],0),

 'hash2_length': hashtaglength(data["entities"]["hashtags"],

1), 'hash2_text': hashtagname(data["entities"]["hashtags"], 1),

 'hash3_length': hashtaglength(data["entities"]["hashtags"],

2), 'hash3_text': hashtagname(data["entities"]["hashtags"], 2),

 'hash1_place': hashtagplace(data["entities"]["hashtags"]),

"text_length": len(data["text"]),

 'n_user_mentions': len(data["entities"]["user_mentions"]),

'user_mentions1_place_indices':

usermentionplace(data["entities"]["user_mentions"]),

 'user_mention_1':

usermentionname(data["entities"]["user_mentions"],0), 'user_mention_2':

usermentionname(data["entities"]["user_mentions"],1),

 'user_mention_3':

usermentionname(data["entities"]["user_mentions"], 2), 'n_urls':

len(data["entities"]["urls"]),

 'url_1_display': url(data["entities"]["urls"],0),

'url_2_display': url(data["entities"]["urls"],1), 'url1_place':

urlplace(data["entities"]["urls"]),

 'url_1_length': urllength(data["entities"]["urls"], 0),

'url_2_length': urllength(data["entities"]["urls"], 1), 'n_urls':

len(data["entities"]["urls"]),

 'is_quote_status': data["is_quote_status"],

'in_reply_to_status_id' : data["in_reply_to_status_id"],

 'in_reply_to_user_id': data["in_reply_to_user_id"],

'in_reply_to_screen_name': data["in_reply_to_screen_name"],

'user_name':data["user"]["name"],

56

'user_screen_name':data["user"]["screen_name"],'user_location':data["user"]

["location"], 'user_description':data["user"]["description"], 'n_symbols':

len(data["entities"]["symbols"]),

 #'rr': data.get('retweeted_status',

'')['user']['friends_count']

 'original_followers_count':

original_followers_count(data),'original_name': original_name(data),

'original_name_id': original_name_id(data),

 'original_text': original_text(data),

'original_created_at': original_created_at(data), 'original_id_tweet':

original_id_tweet(data),

 'original_description': original_description(data),

'original_friends_count': original_friends_count(data),

'original_listed_count': original_listed_count(data),

 'original_favourites_count_tweet':

original_favourites_count_tweet(data),'original_favourites_count_user':

original_favourites_count_user(data) , 'original_user_time_zone':

original_user_time_zone(data),

 'original_user_created_at': original_user_created_at(data),

'original_retweet_count':

orignal_retweet_count(data),'original_protected_user':

original_protected_user(data),

 'original_url_tweet': original_url_tweet(data),

'original_n_urls': original_n_urls(data),'original_n_hastags':

original_n_hashtags(data),'original_n_media': original_n_media(data),

 'original_n_symbols': original_n_symbols(data),

'original_n_user_mentions': original_n_user_mentions(data),

'original_statuses_count': original_statuses_count(data),

 'original_user_id': original_user_id(data)

 #,'original_friends_count': original_friends_count(data),

'original_listed_count': original_listed_count(data)

 #'original_protected_user': original_protected_user(data),

 }

 return jsontest

#'text_symbols': symbols(data["entities"]["symbols"])

 # file1.write("{}]")

#Bij runnen file1 hashtag wegnemen

file1 = open("C://temp//jsonplat// 560000_balanced_finall.json", "w")
#file1 = open("C://temp//jsonplat//test.json", "w")

with open("C://temp//ww.json","r") as f:

 for line in f:

 data = json.loads(line)

 jsont= make_json1(data)

 file1.write(json.dumps(jsont) + "\n")

file1.close()

57

Attachment 4: Data analytics in Databricks PySpark

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 1/44

Predicting which tweets will be
retweeted most
Table of content
1. Data preparation

Read in data
Describe data
Clean data

2. Create final basetable
Make extra variables
Clean data

3. Classification retweeter and classification
original tweeter

3.1 Analysis
Logistic Regression
Decision Tree
Random Forest

3.2 Model evaluation

3.3 Results

4. Regression original tweeter

4.1 Analysis
Linear Regression
Decision Tree
Random Forest

4.2 Model evaluation

Twitter_test

http://databricks.com/

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 2/44

4.3 Results

1. Data preparation

Read in flattened JSON-file:
Json-file is produced in pythonscript and stored in the filestore of Databricks
Each row represent one tweet and all the corresponding features
We have a total of 560 000 tweets and each tweet has 70 features before
cleaning

testJsonData =
sqlContext.read.json("/FileStore/tables/560000_balanced_finall.json")

display(testJsonData)



Showing the first 1000 rows.

Fri Apr 29
04:09:42
+0000 2011

false null null null null

Fri Apr 29
01:13:52
+0000 2011

false 5 42 Quote null

Thu Apr 28
22:15:30
+0000 2011

false null null null null

Sat Mar 17
08 48 02

false null null null null

result= testJsonData
#display(result)

Describing basetable:
The describe function shows the range of the features.
It also shows the count on the not null values per feature.

created_at following hash1_length hash1_place hash1_text hash2_    

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 3/44

display(result.describe())



count 560000 118916 118916 118916 4

mean null 9.570739009048404 55.528675703858184 2.0 9

stddev null 4.711061935222937 35.22245249532093 1.511857892036909 4

min Fri Apr 01
00:05:05
+0000 2016

1 0 0000ff 1

max Wed Sep 30
23:59:49
+0000 2015

64 152 ＴＭ1ＤＮ 5

Data exploration

Quick df facts
df_size = result.count()
num_unique_tweets = result.select('tweet_id').distinct().count()
num_unique_users = result.select('user_id').distinct().count()
num_unique_users_reteweeted =
result.select('original_name_id').distinct().count()

print("Number of records: {}".format(df_size))
print("Number of unique tweets: {}".format(num_unique_tweets))
print("Number of unique users: {}".format(num_unique_users))
print("Number of unique users retweeted:
{}".format(num_unique_users_reteweeted))

Number of records: 560000
Number of unique tweets: 560000
Number of unique users: 17730
Number of unique users retweeted: 93999

User tweet frequency distribution
user_tweet_count_df = result.groupBy("user_id").count()

Retrieve max user tweet frequency
max_count = user_tweet_count_df.agg({"count": "max"}).collect()[0][0]

summary created_at hash1_length hash1_place hash1_text h    

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 4/44

user_tweet_count_df = user_tweet_count_df.withColumnRenamed("count", "Tweets
per user")

80% of the tweeters have a frequency of tweets of 50 or less
display(user_tweet_count_df)



0

0.5

0 100 200

Tweets per user

D
en

si
ty

Cleaning basetable
Transform features in correct form
Create new features
Delete not used features

#transform boolean to binary (retweeted)

result = result.withColumn("retweeted1", (result.retweeted ==
'true').astype('int'))
result = result.withColumn("retweeted_boolean", result["retweeted"])
result = result.withColumn("retweeted", result["retweeted1"])
result = result.drop('retweeted1')

result = result.withColumn("retweeted_dummy", (result.retweeted_boolean ==
'true').astype('int'))
#result = result.drop('following_dummy')
#display(result)

data=result

2. Create basetable

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 5/44

New features
Check if the feature has an original tweeter
YES -> put the value in the new feature
NO -> put the value of the new tweeter in the new feature
No difference between non retweeted tweets and retweeted tweets in the form
of number of variables

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 6/44

from pyspark.sql.functions import *

data=
data.withColumn('n_followers_tweeter_new',when(data.retweeted_dummy<=0,data.
n_followers_tweeter).otherwise(data.original_followers_count))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_favourites_tweeter_new',when(data.retweeted_dummy<=0,data
.n_favourites_tweeter).otherwise(data.original_favourites_count_user))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_statuses_tweeter_new',when(data.retweeted_dummy<=0,data.n
_statuses_tweeter).otherwise(data.original_statuses_count))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('retwteet_count_new',when(data.retweeted_dummy<=0,data.retwe
et_count).otherwise(data.original_retweet_count))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_user_mentions_new',when(data.retweeted_dummy<=0,data.n_us
er_mentions).otherwise(data.original_n_user_mentions))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_urls_new',when(data.retweeted_dummy<=0,data.n_urls).other
wise(data.original_n_urls))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_symbols_new',when(data.retweeted_dummy<=0,data.n_symbols)
.otherwise(data.original_n_symbols))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_media_new',when(data.retweeted_dummy<=0,data.n_media).oth
erwise(data.original_n_media))
#data= data.drop('n_followers_tweeter')

data=
data.withColumn('n_hashtags_new',when(data.retweeted_dummy<=0,data.n_hashtag
s).otherwise(data.original_n_hastags))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_listed_new',when(data.retweeted_dummy<=0,data.user_listed
_count).otherwise(data.original_listed_count))
#data= data.drop('n_followers_tweeter')
data=
data.withColumn('n_friends_count_new',when(data.retweeted_dummy<=0,data.n_fr
iends_tweeter).otherwise(data.original_friends_count))
#data= data.drop('n_followers_tweeter')
data=data.withColumn('n_favourites_tweet_new',when(data.retweeted_dummy<=0,d
ata.n_favorite_count).otherwise(data.original_favourites_count_tweet))

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 7/44

#data= data.drop('n_followers_tweeter')
data=
data.withColumn('text_new',when(data.retweeted_dummy<=0,data.text).otherwise
(data.original_text))
#data= data.drop('n_followers_tweeter')
#data=
data.withColumn('n_followers_tweeter_new',when(data.retweeted_dummy<=0,data.
n_followers_tweeter).otherwise(data.original_n_symbols))
#data= data.drop('n_followers_tweeter')
#data=
data.withColumn('n_favourites_tweeter_new',when(data.retweeted_dummy<=0,data
.n_favourites_tweeter).otherwise(data.original_n_media))

display(data)



Showing the first 1000 rows.

Fri Apr 29
04:09:42
+0000 2011

false null null null null

Fri Apr 29
01:13:52
+0000 2011

false 5 42 Quote null

Thu Apr 28
22:15:30
+0000 2011

false null null null null

Sat Mar 17
08 48 02

false null null null null

An example of the basetable (without extra self added features (positive and
negative count))

example_basetable = data[['retweeted_dummy',
'n_favourites_tweeter_new','n_followers_tweeter_new','n_friends_count_new',
'n_hashtags_new', 'n_urls_new','n_user_mentions_new',
'n_listed_new','n_symbols_new','n_media_new',
'n_statuses_tweeter_new','retweet_count']]
display(example_basetable)

0 0 0 0

created_at following hash1_length hash1_place hash1_text hash2_    

retweeted_dummy n_favourites_tweeter_new n_followers_tweeter_new n_frie  

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 8/44



Showing the first 1000 rows.

0 0 0 0

0 0 0 0

0 0 5 18

0 0 5 18

0 0 5 18

1 22 55888 2

data = data.na.fill(0)
#display(data)

result=data

Making new variables

from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.ml import *
from pyspark.ml.clustering import *
from pyspark.ml.classification import *
from pyspark.ml.regression import *
from pyspark.ml.feature import *
from pyspark.ml.evaluation import *
from scipy.stats import wilcoxon
from array import array
from pyspark.sql import Row
from pyspark.ml.linalg import Vectors
from urllib2 import urlopen
from json import loads
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pyspark.sql.functions as f

test = result

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 9/44

#Define splitcol function: splits column in two columns
def splitcol(df, col, sep, name1, name2):
 split_col = split(df[col], sep)
 df = df.withColumn(name2, split_col.getItem(1))
 df = df.withColumn(name1, split_col.getItem(0))
 return df

#Check how much tweets are retweeted (not original creator) (start with RT)
#Remove @Rt and username from original text
test = splitcol(test, 'text', 'RT @', 'not_retweeted_text',
'original_textt')
#display(test)

test = splitcol(test, 'original_textt', ': ', 'username_original',
'text_retweeted')
#display(test)

#remove text retweeted
test = test.na.fill('')
#display(test)

#Put together to merge
test = test.withColumn("text_final", concat(test["not_retweeted_text"],
test["text_retweeted"]))
#display(test)

test = test.withColumn("dummy_retweet_retweeted", (test.text_retweeted !=
"").astype('int'))
#display(test)

newdf =
test.join(test.groupBy('dummy_retweet_retweeted').count(),on='dummy_retweet_
retweeted')
#display(newdf)
#232322 van de retweets zijn afkomstig van tweets van andere tweeters. 83%
van de retweets dus .
#280000-232322=47678 zijn zelf geschreven en toch geretweeted

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 10/44

test = test.withColumn("number_of_words_tweet",
f.size(f.split(f.col("text_final")," ")))
#display(test)
#F.size(F.split(F.col("_1"), " "))).show()

Sentiment analysis text

Clean up text

result_text=result[['text_final','retweeted']]

#display(result_text)

Data preparation text
We apply the following transformation to the input text data:

Clean strings
Tokenize (String -> Array<String>)
Remove stop words
Stem words
Create bigrams

1. Clean text string

from pyspark.sql.functions import col, lower, regexp_replace, split

def clean_text(c):
 c = lower(c)
 c = regexp_replace(c, "^rt ", "")
 c = regexp_replace(c, "(https?\://)\S+", "")
 c = regexp_replace(c, "[^a-zA-Z0-9\\s]", "")
 #c = split(c, "\\s+") tokenization...
 return c

clean_text_df =
result.select(clean_text(col("text_final")).alias("text_final"), "tweet_id")

clean_text_df.printSchema()
display(clean_text_df)
#clean_text_df.show(10)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 11/44



Showing the first 1000 rows.

just chillin watching teen mom cleaning paying bills and decorating

the place i walked to following the time quote

looks bad out there i am truly terrified of falling today

gettin ready 4 rugby lads dungannon comm well get 2 the final p

hart is feelin his ass

just up and i found a cat lyin beside me then it talked then i woke up again and it was sleepin never so

this is football reimagined this is the xfl watch the official announcement live now xfl2020

come on come on come on lets get it on

1. Tokenizer

from pyspark.ml.feature import Tokenizer

tokenizer = Tokenizer(inputCol="text_final", outputCol="vector")
vector_df = tokenizer.transform(clean_text_df).select("vector")

vector_df.printSchema()
vector_df.show(10)

root
 |-- vector: array (nullable = true)
 | |-- element: string (containsNull = true)

+--------------------+
| vector|
+--------------------+
|[just, chillin, w...|
|[the, place, i, w...|
|[looks, bad, out,...|
|[gettin, ready, 4...|
|[hart, is, feelin...|
|[just, up, and, i...|
|[this, is, footba...|
|[come, on, come, ...|
|[retweet, , follo...|
|[me, gust, un, vi...|
+--------------------+

text_final

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 12/44

only showing top 10 rows

1. Remove stop words

from pyspark.ml.feature import StopWordsRemover

Define a list of stop words or use default list
remover = StopWordsRemover()
stopwords = remover.getStopWords()

Display default list
stopwords[:100]

Out[44]:
[u'i',
 u'me',
 u'my',
 u'myself',
 u'we',
 u'our',
 u'ours',
 u'ourselves',
 u'you',
 u'your',
 u'yours',
 u'yourself',
 u'yourselves',
 u'he',
 u'him',
 u'his',
 u'himself',
 u'she',
 u'her',
 u'hers',

Specify input/output columns
remover.setInputCol("vector")
remover.setOutputCol("vector_no_stopw")

Transform existing dataframe with the StopWordsRemover
vector_no_stopw_df = remover.transform(vector_df).select("vector_no_stopw")

Display
vector_no_stopw_df.printSchema()
vector_no_stopw_df.show()

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 13/44

root
 |-- vector_no_stopw: array (nullable = true)
 | |-- element: string (containsNull = true)

+--------------------+
| vector_no_stopw|
+--------------------+
|[chillin, watchin...|
|[place, walked, f...|
|[looks, bad, trul...|
|[gettin, ready, 4...|
| [hart, feelin, ass]|
|[found, cat, lyin...|
|[football, reimag...|
|[come, come, come...|
|[retweet, , follo...|
|[gust, un, video,...|
|[gust, un, video,...|
|[city, mania, hac...|
|[videos, , , , , ...|
|[society, look, i...|
|[everyone, proble...|
|[hellolalit, hey,...|
|[warehousing, tak...|
|[inspired, americ...|
|[list, americanni...|
|[dcopperfield, al...|
+--------------------+
only showing top 20 rows

text_dataset_production=vector_no_stopw_df
display(text_dataset_production)

Showing the first 1000 rows.

 ["chillin","watching","teen","mom","cleaning","paying","bills","decorating"]

 ["place","walked","following","time","quote"]

 ["looks","bad","truly","terrified","falling","today"]

 ["gettin","ready","4","rugby","lads","dungannon","comm","well","get","2","final","","p"]

 ["hart","feelin","ass"]

 ["found","cat","lyin","beside","talked","woke","sleepin","never","sooooooo","scared","life"]

 ["football","reimagined","xfl","watch","official","announcement","","live","xfl2020"]

 ["come","come","come","lets","get","","todays","raw","superstars","ready","show","ruthless","aggressio

 ["retweet" "" "follow" "mikeyacestudios" "" "4" "best" "daily" "wwe" "cartoons" "twitter" "ff" "fridayfeeling

vector_no_stopw

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 14/44



Save production data as Spark table for analysis

#production_df.write.saveAsTable("text_dataset_production")
#text_dataset_production = spark.sql("SELECT * FROM
text_dataset_production")
#display(text_dataset_production.select("*"))

positive = sqlContext.read.csv("/FileStore/tables/positive.txt")
negative = sqlContext.read.csv("/FileStore/tables/neg.csv")

display(negative)
#display(txt)



Showing the first 1000 rows.

abnormal

abolish

abominable

abominably

abominate

abomination

abort

aborted

aborts

negative = negative.withColumnRenamed("_c0", "words")
positive = positive.withColumnRenamed("_c0", "words")

#positive = txtx.select('words').collect()
negative = negative.select("words").rdd.flatMap(lambda x: x).collect()
positive = positive.select("words").rdd.flatMap(lambda x: x).collect()

_c0

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 15/44

def positive_count(row):
 cnt=0
 print row
 for item in row:
 if item in positive:
 cnt+=1
 return cnt

def negative_count(row):
 cnt=0
 print row
 for item in row:
 if item in negative:
 cnt+=1
 return cnt

pos_udf = udf(positive_count, IntegerType())
neg_udf = udf(negative_count, IntegerType())

sample3 = text_dataset_production.withColumn('count_positive',
pos_udf(text_dataset_production['vector_no_stopw']))
sample3 = sample3.withColumn('count_negative',
neg_udf(sample3['vector_no_stopw']))
#display(sample3)

combine the table with the positve and negative word count with the
original data
We used the function monotonically_increasing_id() that randomly assign a
number to the respectively row
df11 = sample3.withColumn("rowId", monotonically_increasing_id())
df22 = result.withColumn("rowId", monotonically_increasing_id())
newDF = df11.join(df22, df11.rowId == df22.rowId, 'inner').drop(df22.rowId)
#display(newDF)

 ["great","times","great","times","great","times"]

 ["love"]

vector_no_stopw

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 16/44



Showing the first 997 rows.

 ["cravemythoughts" "emilyemmons3" "us" "lol"]

newDF= newDF.withColumn('count_pos_NEG', newDF.count_positive -
newDF.count_negative)
#display(newDF)



Showing the first 995 rows.

 ["great","times","great","times","great","times"]

 ["love"]

 ["cravemythoughts","emilyemmons3","us","lol"]

 ["beatty","street","grocery","building"]

basetablee = spark.sql("SELECT * FROM basetable_first")
display(basetablee)

Showing the first 1000 rows.

 ["everyone","problem","area","treated","hasansurgery"]

 ["earn","money","using","facebook","twitter","etc"]

vector_no_stopw

vector_no_stopw

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 17/44



3. Classification retweeter and classification
original tweeter:

from pyspark.ml.linalg import Vectors
from array import array
from pyspark.sql import Row

display(basetablee.describe())



count 560000 560000 560000 560000

mean 0.5406946428571429 0.31935178571428574 3.353321848742147E10 null

stddev 0.8057552568702495 0.6487205891167308 2.1861263450107533E10 null

min 0 0 0 Fri Apr 01
00:05:05
+0000 20

max 21 19 68719528052 Wed Sep
23:59:49
+0000 20

Show result

#final = final.filter(result.n_followers_tweeter_new. isNotNull())
#display(final)

-Classification retweeter

aa = basetablee[['retweeted_dummy',
'n_favourites_tweeter','n_followers_tweeter','n_friends_tweeter',
'n_hashtags', 'n_urls','n_user_mentions',
'user_listed_count','n_symbols','n_media','count_positive',
'count_negative', 'n_statuses_tweeter','retweet_count']]
display(aa)

summary count_positive count_negative rowId created_   

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 18/44



Showing the first 1000 rows.

1 24 3 624

0 3 459 90

0 10 24 368

1 1761 8649 9503

0 0 340 1739

0 0 340 1739

0 0 340 1739

1 0 32 28

basetable = aa.rdd.map(lambda r : Row(retweeted = r.retweeted_dummy,
 continuousFeatures = Vectors.dense([
r.n_favourites_tweeter , r.n_followers_tweeter , r.n_friends_tweeter,
r.n_hashtags, r.n_urls,r.n_user_mentions,r.user_listed_count,r.n_symbols,
r.n_media, r.count_positive,r.count_negative, r.n_statuses_tweeter]),
 categoricalFeatures = Vectors.dense([])
)).toDF()
#extra:
r.hash1_length,r.hash2_length,r.hash3_length,r.number_of_words_tweet,r.count
_pos_neg(afgetrokken) (not included in final model)
#extra: r.following_dummy (not included in final model)
basetable.show(20)

+-------------------+--------------------+---------+
|categoricalFeatures| continuousFeatures|retweeted|
+-------------------+--------------------+---------+
[]	[24.0,3.0,624.0,1...	1
[]	[3.0,459.0,90.0,0...	0
[]	[10.0,24.0,368.0,...	0
[]	[1761.0,8649.0,95...	1
[]	[0.0,340.0,1739.0...	0
[]	[0.0,340.0,1739.0...	0
[]	[0.0,340.0,1739.0...	0
[]	[0.0,32.0,28.0,0....	1
[]	[4.0,114.0,379.0,...	0
[]	[486.0,440.0,360....	0
[]	[0.0,37.0,166.0,0...	0
[]	[36.0,165.0,166.0...	0
[]	[6.0,3.0,77.0,0.0...	0
[]	[145.0,534.0,196....	1
[]	[145.0,534.0,196....	1
[]	[7.0,231.0,300.0,...	1
[]	[7.0,231.0,300.0,...	0

retweeted_dummy n_favourites_tweeter n_followers_tweeter n_friends_tweet  

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 19/44

[]	[123.0,277.0,20.0...	0
[]	[2.0,34.0,86.0,2....	1
[]	[4009.0,489.0,345...	0
+-------------------+--------------------+---------+
only showing top 20 rows

Classification original tweeter

aa = basetablee[['retweeted_dummy',
'n_favourites_tweeter_new','n_followers_tweeter_new','n_friends_count_new',
'n_hashtags_new', 'n_urls_new','n_user_mentions_new',
'n_listed_new','n_symbols_new','n_media_new','count_positive',
'count_negative', 'n_statuses_tweeter_new','retweet_count']]
display(aa)



Showing the first 1000 rows.

1 24 790 254

0 3 459 90

0 10 24 368

1 67 32867 13

0 0 340 1739

0 0 340 1739

0 0 340 1739

1 7936 45472 11513

0 4 114 379

basetable = aa.rdd.map(lambda r : Row(retweeted = r.retweeted_dummy,
 continuousFeatures = Vectors.dense([
r.n_favourites_tweeter_new , r.n_followers_tweeter_new ,
r.n_friends_count_new,
r.n_hashtags_new,r.n_urls_new,r.n_user_mentions_new,r.n_listed_new,r.n_symbo
ls_new, r.n_media_new, r.count_positive,r.count_negative,
r.n_statuses_tweeter_new]),
 categoricalFeatures = Vectors.dense([])
)).toDF()
#extra: r.count_negative,r.count_positive]
basetable.show(20)

retweeted_dummy n_favourites_tweeter_new n_followers_tweeter_new n_friends_  

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 20/44

+-------------------+--------------------+---------+
|categoricalFeatures| continuousFeatures|retweeted|
+-------------------+--------------------+---------+
[]	[24.0,790.0,254.0...	1
[]	[3.0,459.0,90.0,0...	0
[]	[10.0,24.0,368.0,...	0
[]	[67.0,32867.0,13....	1
[]	[0.0,340.0,1739.0...	0
[]	[0.0,340.0,1739.0...	0
[]	[0.0,340.0,1739.0...	0
[]	[7936.0,45472.0,1...	1
[]	[4.0,114.0,379.0,...	0
[]	[486.0,440.0,360....	0
[]	[0.0,37.0,166.0,0...	0
[]	[36.0,165.0,166.0...	0
[]	[6.0,3.0,77.0,0.0...	0
[]	[0.0,0.0,0.0,0.0,...	1
[]	[0.0,0.0,0.0,0.0,...	1
[]	[0.0,0.0,0.0,0.0,...	1
[]	[7.0,231.0,300.0,...	0
[]	[123.0,277.0,20.0...	0
[]	[17795.0,139516.0...	1
[]	[4009.0,489.0,345...	0
+-------------------+--------------------+---------+
only showing top 20 rows

''' Split data into trainig and test data'''
(trainingData, testData) = basetable.randomSplit([0.70, 0.30], 1)

#print trainingData.count()
#print testData.count()

Machine Learning Pipeline Construction

Now we have our basetable that is ready to be put in our Machine Learning
Pipeline. First we need to construct a pipeline.

The pipeline will consist out of 5 stages:
StringIndexer: A label indexer that maps a string column of labels to an ML
column of label indices. So this makes category indices of the strings in a
column.
VectorIndexer: Class for indexing categorical feature columns in a dataset of
Vector.

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 21/44

StandardScaler: Standardizes features by removing the mean and scaling to
unit variance using column summary statistics on the samples in the training
set.
VectorAssembler: A feature transformer that merges multiple columns into a
vector column.
The machine learning algorithm that we will be using. We will give an example
of Logistic Regression, Decision Trees, Random Forest

from pyspark.ml.feature import StringIndexer, VectorIndexer,
VectorAssembler, StandardScaler
from pyspark.ml import Pipeline

Import for Logistic Regression
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.classification import LogisticRegressionModel

Import for Decision Tree
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.classification import DecisionTreeClassificationModel

Import for Random Forest
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.classification import RandomForestClassificationModel

String Indexer

For the String and Vector Indexer it is important that you fit them to the entire data.
Not just the training data, because it might be possible that not all different labels
are present in the training set. In this case you will get errors when you try to make
predictions on the test set because he will encounter labels that he doesnt
recognize because they were not in the training set.

What is a StringIndexer? (just to display help info)
#help(StringIndexer)

String Indexer: the input column is our default_next_month column and our
output will be called label
labelIndexer = StringIndexer(inputCol = "retweeted", outputCol =
"label").fit(basetable)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 22/44

What is a VectorIndexer? (just to display help info)
#help(VectorIndexer)

Vector Indexer: the input column are the categorical features and they
will be transformed to a column of indexed categorical features
vtrIndexer = VectorIndexer(inputCol = "categoricalFeatures", outputCol=
"indexedCatFeatures").fit(basetable)

What is a StandardScaler? (just to display help info)
#help(StandardScaler)

Standard Scaler: scales the continuous features to scaled continuous
features
standardScaler = StandardScaler(inputCol="continuousFeatures",
outputCol="scaledContFeatures")

What is a VectorAssembler? (just to display help info)
#help(VectorAssembler)

Vector Assembler: assembles the different vectors of the categorical and
continuous features and outputs them as a feature column
vtrAssembler = VectorAssembler(inputCols= ["indexedCatFeatures",
"scaledContFeatures"], outputCol= "features")

The machine learning model:

How to do a Linear Regression? What are the parameters? (just to display
help info)

from pyspark.ml.classification import LogisticRegression
Logistic Regression
logRegressor = LogisticRegression(labelCol="label", featuresCol="features",
maxIter=100)

How to do a Decision Tree Regression? What are the parameters? (just to
display help info)
#help(DecisionTreeRegressor)

Decision Tree
dtRegressor = DecisionTreeClassifier(labelCol = "label", featuresCol =
"features")

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 23/44

How to do a Random Forest Regression? What are the parameters? (just to
display help info)
#help(RandomForestRegressor)

numTrees 5000 out of memory after 33 min , 2500 trees; training and
fitting last 20 minutes, 500 trees 5 min
Random Forest Regressor: we define the label and the features columns and
the number of trees we want to build. 500 is a good trade-off between
computation time and error.
The Random Forest will contain 500 different decision trees.
rfRegressor = RandomForestClassifier(labelCol="label",
featuresCol="features", numTrees=500)

#Logistic regression: Defining all the stages of the pipeline
lrPipeline = Pipeline(stages = [labelIndexer,vtrIndexer, standardScaler,
vtrAssembler, logRegressor])

Fitting the pipeline to the training data: This is the execution of all
the stages and the training of the logistic regression Model.
lrModel = lrPipeline.fit(trainingData)

lrModel.stages

Out[16]:
[StringIndexer_4affb6492dd6097b1004,
 VectorIndexer_41bf9a3e9e1053f6d719,
 StandardScaler_455bb927110fb7685ddf,
 VectorAssembler_4316943654fe9d38ad4e,
 LogisticRegression_456a81a80ab509bbb33c]

#Decision tree: Defining all the stages of the pipeline
dtPipeline = Pipeline(stages = [labelIndexer, vtrIndexer, standardScaler,
vtrAssembler, dtRegressor])

Fitting the pipeline to the training data: This is the execution of all
the stages and the training of the Random Forest Model.
dtModel = dtPipeline.fit(trainingData)

#Random Forest: Defining all the stages of the pipeline
rfPipeline = Pipeline(stages = [labelIndexer, vtrIndexer, standardScaler,
vtrAssembler, rfRegressor])

Fitting the pipeline to the training data: This is the execution of all
the stages and the training of the Random Forest Model.
rfModel = rfPipeline.fit(trainingData)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 24/44

Deployment of Logistic Regression: Make predictions on test data.
lrPredictions = lrModel.transform(testData)

The label denotes what should have been the prediction. The prediction
column is the prediction that was made with the trained machine learning
model
lrPredictions.show(4)
#lrPredictions.printSchema()

+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+--------------------+--------------------+-
---------+
|categoricalFeatures| continuousFeatures|retweeted|label|indexedCatFeatures
| scaledContFeatures| features| rawPrediction| probability|p
rediction|
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+--------------------+--------------------+-
---------+
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...|
 0.0|
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...|
 0.0|
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...|
 0.0|
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[0.88766247090405...|[0.70840755318084...|
 0.0|
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+--------------------+--------------------+-
---------+
only showing top 4 rows

Deployment of Decision Tree: Make predictions on test data.
dtPredictions = dtModel.transform(testData)

The label denotes what should have been the prediction. The prediction
column is the prediction that was made with the trained machine learning
model
dtPredictions.show(4)
#dtPredictions.printSchema()

+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+-------------+--------------------+--------
--+
|categoricalFeatures| continuousFeatures|retweeted|label|indexedCatFeatures
| scaledContFeatures| features|rawPrediction| probability|predicti

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 25/44

on|
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+-------------+--------------------+--------
--+
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|
1.0|
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|
1.0|
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|
1.0|
| []|[0.0,0.0,0.0,0.0,...| 1| 1.0| []
|[0.0,0.0,0.0,0.0,...|(12,[],[])|[2.0,14078.0]|[1.42045454545454...|
1.0|
+-------------------+--------------------+---------+-----+------------------
+--------------------+----------+-------------+--------------------+--------
--+
only showing top 4 rows

Show result

Deployment of Random Forest: Make predictions on test data.
rfPredictions = rfModel.transform(testData)

The label denotes what should have been the prediction. The prediction
column is the prediction that was made with the trained machine learning
model
rfPredictions.show(1000)
#rfPredictions.printSchema()

3. Model Evaluation
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

1. Logistic Regression

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 26/44

Our PipelineModel consists of 5 stages starting of index 0 to index 4.
Each of these index places contains the model of the respective stage. The
more stages you add the larger the pipeline will become, but in this example
it contains 5 stages.
The machine learning model is on index 4
Print the coefficients and intercept for logistic regression
print("Coefficients: " + str(lrModel.stages[4].coefficients))
print("Intercept: " + str(lrModel.stages[4].intercept))

Coefficients: [1.2490986877346895,874.9525560342598,-4.199810970818677,-0.05
646538865809754,-0.42702785624500833,-0.326421570809041,705.8257709006641,0.
022928759948021585,0.31947377573726016,0.11065618779743354,0.019602001505486
147,0.6280888835783143]
Intercept: -0.887662470904

With the binary evaluator
lrEvaluator = BinaryClassificationEvaluator()

lrAUC = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName:
"areaUnderROC"})

print "The AUC of the Logistic Regression Model is %f" %(lrAUC)

The AUC of the Logistic Regression Model is 0.887920

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 27/44

#Results with 8+1 variables continuousFeatures = Vectors.dense([
r.n_favourites_tweeter,
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags,
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.count_pos_neg(afgetrokk
en)]
 # categoricalFeatures =
Vectors.dense([r.following_dummy]
 #Accuracy of Logistic Regression: 0.743158
#Results with 8+1 variables continuousFeatures = Vectors.dense([
r.n_favourites_tweeter,
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags,
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.count_pos_neg(opgeteld)
]
 # categoricalFeatures =
Vectors.dense([r.following_dummy]
 #Accuracy of Logistic Regression: 0.743158
#Results with 8+1 variables continuousFeatures = Vectors.dense([
r.n_favourites_tweeter,
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags,
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.number_of_words_tweet]
 # categoricalFeatures =
Vectors.dense([r.following_dummy]
 #Accuracy of Logistic Regression: 0.743891
#Results with 7+1 variables continuousFeatures = Vectors.dense([
r.n_favourites_tweete
#r, r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags,
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions
 # categoricalFeatures =
Vectors.dense([r.following_dummy])
#Accuracy of Logistic Regression: 0.748672
Results with 5+1 variables continuousFeatures = Vectors.dense([
r.n_favourites_tweeter,
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags,
r.n_statuses_tweeter]),
 # categoricalFeatures =
Vectors.dense([r.following_dummy])
#Accuracy of Logistic Regression: 0.601272
#Results with 10+1 variables continuousFeatures = Vectors.dense([
r.n_favourites_tweeter,
r.n_followers_tweeter,r.n_friends_tweeter,r.n_hashtags,
r.n_statuses_tweeter]),,r.n_urls,r.n_user_mentions,r.hash1_length,r.hash2_le
ngth,r.hash3_length]
 # categoricalFeatures =
Vectors.dense([r.following_dummy])
#Accuracy of Logistic Regression: 0.747654
lrMultiEvaluator =
MulticlassClassificationEvaluator(predictionCol="prediction")
lrAcc = lrMultiEvaluator.evaluate(lrPredictions,
{lrMultiEvaluator.metricName: "accuracy"})

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 28/44

print "Accuracy of Logistic Regression: %f" %(lrAcc)
print "Test Error of Logistic Regression: %g" % (1.0 - lrAcc)

Accuracy of Logistic Regression: 0.810059
Test Error of Logistic Regression: 0.189941

retweetedTweets = lrPredictions.filter(lrPredictions.label == 1)
notretweetedTweets = lrPredictions.filter(lrPredictions.label == 0)

#print lrPredictions.count()
#print notretweetedTweets.count()
#print retweetedTweets.count()

#Results with 7+1 variables
Accuracy of retweeted tweets: 0.811439
#Accuracy of not retweeted tweets: 0.685824
lrAccDefault = lrMultiEvaluator.evaluate(retweetedTweets,
{lrMultiEvaluator.metricName: "accuracy"})
lrAccNonDefault = lrMultiEvaluator.evaluate(notretweetedTweets,
{lrMultiEvaluator.metricName: "accuracy"})

print "Accuracy of retweeted tweets: %f" %(lrAccDefault)
print "Accuracy of not retweeted tweets: %f" %(lrAccNonDefault)

Accuracy of retweeted tweets: 0.671972
Accuracy of not retweeted tweets: 0.949389

2. Decision Tree

Show result

print dtModel.stages[4].toDebugString

dtModel.stages[4].featureImportances

Out[29]: SparseVector(12, {0: 0.0271, 1: 0.6547, 2: 0.0008, 5: 0.0002, 6: 0.
0072, 8: 0.0128, 9: 0.0, 10: 0.0, 11: 0.297})

With the binary evaluator
dtEvaluator = BinaryClassificationEvaluator()

dtAUC = dtEvaluator.evaluate(dtPredictions, {dtEvaluator.metricName:
"areaUnderROC"})

print "The AUC of the Decision Tree Model is %f" %(dtAUC)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 29/44

The AUC of the Decision Tree Model is 0.825964

#Results of 8+1 variables
#Accuracy of Decision Tree: 0.776932
#Test Error of Decision Tree: 0.223068

#Results of 7+1 variables
#Accuracy of Decision Tree: 0.777301
#Test Error of Decision Tree: 0.222699
dtMultiEvaluator =
MulticlassClassificationEvaluator(predictionCol="prediction")
dtAcc = dtMultiEvaluator.evaluate(dtPredictions,
{dtMultiEvaluator.metricName: "accuracy"})

print "Accuracy of Decision Tree: %f" %(dtAcc)
print "Test Error of Decision Tree: %g" % (1.0 - dtAcc)

Accuracy of Decision Tree: 0.910215
Test Error of Decision Tree: 0.0897845

retweetedTweets = dtPredictions.filter(dtPredictions.label == 1)
notretweetedTweets = dtPredictions.filter(dtPredictions.label == 0)

#print lrPredictions.count()
#print notretweetedTweets.count()
#print retweetedTweets.count()

#Results of 7+1 variables
#Accuracy of retweeted tweets: 0.821603
#Accuracy of not retweeted tweets: 0.732942
dtAccDefault = dtMultiEvaluator.evaluate(retweetedTweets,
{dtMultiEvaluator.metricName: "accuracy"})
dtAccNonDefault = dtMultiEvaluator.evaluate(notretweetedTweets,
{dtMultiEvaluator.metricName: "accuracy"})

print "Accuracy of retweeted tweets: %f" %(dtAccDefault)
print "Accuracy of not retweeted tweets: %f" %(dtAccNonDefault)

Accuracy of retweeted tweets: 0.890977
Accuracy of not retweeted tweets: 0.929627

3. Random Forest

Show result

print rfModel.stages[4].toDebugString

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 30/44

To get an idea of how important the different features were in predicting the
outcome, you can print the feature importances. The higher the number the more
important the feature was.

rfModel.stages[4].featureImportances

Out[35]: SparseVector(12, {0: 0.0597, 1: 0.3996, 2: 0.0901, 3: 0.0021, 4: 0.
008, 5: 0.0069, 6: 0.2037, 7: 0.0, 8: 0.0142, 9: 0.0, 10: 0.0, 11: 0.2157})

With the binary evaluator
rfEvaluator = BinaryClassificationEvaluator()

rfAUC = rfEvaluator.evaluate(rfPredictions, {rfEvaluator.metricName:
"areaUnderROC"})

print "The AUC of the Random Forest Model is %f" %(rfAUC)

The AUC of the Random Forest Model is 0.969339

#number of trees =500 -> ACC of 0.778033
#number of trees =2000 -> ACC of 0.778170?
rfMultiEvaluator =
MulticlassClassificationEvaluator(predictionCol="prediction")
rfAcc = rfMultiEvaluator.evaluate(rfPredictions,
{rfMultiEvaluator.metricName: "accuracy"})

print "Accuracy of Random Forest: %f" %(rfAcc)
print "Test Error of Random Forest: %g" % (1.0 - rfAcc)

Accuracy of Random Forest: 0.916401
Test Error of Random Forest: 0.0835995

retweetedTweets = rfPredictions.filter(rfPredictions.label == 1)
notretweetedTweets = rfPredictions.filter(rfPredictions.label == 0)

#print rfPredictions.count()
#print notretweetedTweets.count()
#print retweetedTweets.count()

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 31/44

500 number of trees
retweeted tweets: 0.827649
not retweeted tweets: 0.728354

2500 number of trees
retweeted tweets: 0.826280
not retweeted tweets: 0.729998

rfAccDefault = rfMultiEvaluator.evaluate(retweetedTweets,
{rfMultiEvaluator.metricName: "accuracy"})
rfAccNonDefault = rfMultiEvaluator.evaluate(notretweetedTweets,
{rfMultiEvaluator.metricName: "accuracy"})

print "Accuracy of retweeted tweets: %f" %(rfAccDefault)
print "Accuracy of not retweeted tweets: %f" %(rfAccNonDefault)

Accuracy of retweeted tweets: 0.880225
Accuracy of not retweeted tweets: 0.952902

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 32/44

#create dataframe overview results
import pyspark class Row from module sql
from pyspark.sql import *
import pyspark.sql.functions as func

Create Example Data - Model, Performance, accuracy

Create the Departments
ModelLOGR = 'Logistic regression'
ModelDT = 'Decision tree'
ModelRF = 'Random forest'

performanceLOGR = lrAUC
performanceDT = dtAUC
performanceRF = rfAUC

TOTaccuracyLOGR = lrAcc
TOTaccuracyDT = dtAcc
TOTaccuracyRF = rfAcc

accuracyNotRetLOGR = lrAccNonDefault
accuracyNotRetDT = dtAccNonDefault
accuracyNotRetRF = rfAccNonDefault

accuracyRetLOGR = lrAccDefault
accuracyRetDT = dtAccDefault
accuracyRetRF = rfAccDefault

ModelwithresultsLOGR = Row(Model=ModelLOGR, Performance=performanceLOGR,
Total_accuracy=TOTaccuracyLOGR,
 Accuracy_not_retweeted=accuracyNotRetLOGR,
Accuracy_retweeted=accuracyRetLOGR)
ModelwithresultsDT = Row(Model=ModelDT, Performance=performanceDT,
Total_accuracy=TOTaccuracyDT,
 Accuracy_not_retweeted=accuracyNotRetDT,
Accuracy_retweeted=accuracyRetDT)
ModelwithresultsRF = Row(Model=ModelRF, Performance=performanceRF,
Total_accuracy=TOTaccuracyRF,
 Accuracy_not_retweeted=accuracyNotRetRF,
Accuracy_retweeted=accuracyRetRF)

ModelwithresultsSeq1 = [ModelwithresultsLOGR, ModelwithresultsDT,
ModelwithresultsRF]

df = sqlContext.createDataFrame(ModelwithresultsSeq1)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 33/44

#df2 = df.withColumn("Model", df1.Model)

df2 = df.withColumn("Accuracy_retweeted",
func.round(df["Accuracy_retweeted"], 3))
df2 = df2.withColumn("Accuracy_not_retweeted",
func.round(df["Accuracy_not_retweeted"], 3))
df2 = df2.withColumn("Performance", func.round(df["Performance"], 3))
df2 = df2.withColumn("Total_accuracy", func.round(df["Total_accuracy"], 3))

df3=df2[['Model','Performance','Total_accuracy','Accuracy_not_retweeted','Ac
curacy_retweeted']]

display(df3)



0

0.2

0.4

0.6

0.8

1

Logistic regression Decision tree Random forest
0

0.2

0.4

0.6

0.8

1

Logistic regression Decision tree Random forest

Ac
cu

ra
cy

_r
et

w
ee

te

Accuracy_retw
Accuracy_not_

Correlation matrix

aa = basetablee[['retweeted_dummy',
'n_favourites_tweeter_new','n_followers_tweeter_new','n_friends_count_new',
'n_hashtags_new', 'n_urls_new','n_user_mentions_new',
'n_listed_new','n_symbols_new','n_media_new','count_positive',
'count_negative', 'n_statuses_tweeter_new','retweet_count']]

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 34/44

features = aa.rdd.map(lambda row: row[0:])

from pyspark.mllib.stat import Statistics

corr_mat=Statistics.corr(features, method="pearson")
print corr_mat

[[1.00000000e+00 1.88070964e-01 1.55125596e-01 1.14687640e-01
 1.72495133e-02 -5.88822443e-02 -1.28777171e-01 1.11794910e-01
 8.13467870e-03 2.82361102e-01 5.48576318e-02 5.15052711e-02
 2.88728695e-01 7.92549094e-02]
 [1.88070964e-01 1.00000000e+00 3.15324589e-05 1.20886932e-01
 -7.83156450e-03 1.60515124e-02 -2.46204666e-02 1.94714495e-03
 -2.73672769e-04 1.06218087e-01 3.50167679e-03 3.49298275e-02
 2.28068000e-01 4.42246956e-02]
 [1.55125596e-01 3.15324589e-05 1.00000000e+00 2.84132758e-01
 3.80716923e-03 -1.77159977e-03 -2.40452583e-02 8.36349546e-01
 -1.88031458e-03 4.99063185e-02 3.41546012e-02 -1.81587123e-04
 9.10626709e-02 1.87128641e-01]
 [1.14687640e-01 1.20886932e-01 2.84132758e-01 1.00000000e+00
 9.03528286e-03 -9.15530276e-03 -2.75191725e-02 2.84029198e-01
 4.06646543e-03 5.76125209e-02 6.42964011e-03 1.23042500e-02
 1.41648936e-01 5.55007383e-02]
 [1.72495133e-02 -7.83156450e-03 3.80716923e-03 9.03528286e-03
 1.00000000e+00 1.26003743e-01 2.26674391e-02 4.58856497e-03
 9.76867065e-03 9.99069814e-02 2.16339823e-02 -4.91456345e-02
 1.66408384e-02 -1.07796311e-02]
 [-5.88822443e-02 1.60515124e-02 -1.77159977e-03 -9.15530276e-03

4.1 Regression original tweeter
from pyspark.sql.types import *
from pyspark.sql.functions import *

basetablee = spark.sql("SELECT * FROM basetable_first")
#display(basetablee)

#filter; only retweeted tweets (280 000)

result= basetablee.where(col('retweeted_dummy') == 1)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 35/44

from pyspark.ml.linalg import Vectors
from array import array
from pyspark.sql import Row

basetable = result.rdd.map(lambda r : Row(retweeted = r.retwteet_count_new,
 continuousFeatures = Vectors.dense([
r.n_favourites_tweeter_new , r.n_followers_tweeter_new ,
r.n_friends_count_new,
r.n_hashtags_new,r.n_urls_new,r.n_user_mentions_new,r.n_listed_new,r.n_symbo
ls_new, r.n_media_new, r.count_positive,r.count_negative,
r.n_statuses_tweeter_new]),
 categoricalFeatures = Vectors.dense([])
)).toDF()
#extra: r.count_negative,r.count_positive]
basetable.show(20)

+-------------------+--------------------+---------+
|categoricalFeatures| continuousFeatures|retweeted|
+-------------------+--------------------+---------+
[]	[24.0,790.0,254.0...	161
[]	[67.0,32867.0,13....	5
[]	[7936.0,45472.0,1...	7
[]	[0.0,0.0,0.0,0.0,...	0
[]	[0.0,0.0,0.0,0.0,...	0
[]	[0.0,0.0,0.0,0.0,...	0
[]	[17795.0,139516.0...	48
[]	[14680.0,1965.0,1...	1
[]	[4230.0,2733.0,43...	1
[]	[54486.0,1995.0,9...	1
[]	[0.0,0.0,0.0,0.0,...	0
[]	[1178.0,1.7527795...	20317
[]	[14603.0,531864.0...	388
[]	[10296.0,24839.0,...	315
[]	[182.0,3146152.0,...	41128
[]	[2198.0,510.0,401...	60
[]	[51554.0,2812.0,1...	8
[]	[11497.0,1656450....	5519
[]	[29608.0,4273.0,4...	2152
[]	[80.0,3.1819537E7...	110477
+-------------------+--------------------+---------+
only showing top 20 rows

basetable.show()
(trainingData, testData) = basetable.randomSplit([0.7, 0.3])

+-------------------+--------------------+---------+
|categoricalFeatures| continuousFeatures|retweeted|

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 36/44

+-------------------+--------------------+---------+
[]	[24.0,790.0,254.0...	161
[]	[67.0,32867.0,13....	5
[]	[7936.0,45472.0,1...	7
[]	[0.0,0.0,0.0,0.0,...	0
[]	[0.0,0.0,0.0,0.0,...	0
[]	[0.0,0.0,0.0,0.0,...	0
[]	[17795.0,139516.0...	48
[]	[14680.0,1965.0,1...	1
[]	[4230.0,2733.0,43...	1
[]	[54486.0,1995.0,9...	1
[]	[0.0,0.0,0.0,0.0,...	0
[]	[1178.0,1.7527795...	20317
[]	[14603.0,531864.0...	388
[]	[10296.0,24839.0,...	315
[]	[182.0,3146152.0,...	41128
[]	[2198.0,510.0,401...	60
[]	[51554.0,2812.0,1...	8
[]	[11497.0,1656450....	5519
[]	[29608.0,4273.0,4...	2152
[]	[80.0,3.1819537E7...	110477
+-------------------+--------------------+---------+
only showing top 20 rows

from pyspark.ml.feature import VectorIndexer, VectorAssembler,
StandardScaler
from pyspark.ml import Pipeline

Import for Logistic Regression
from pyspark.ml.regression import LinearRegression

Import for Decision Tree
from pyspark.ml.regression import DecisionTreeRegressor

Import for Random Forest
from pyspark.ml.regression import RandomForestRegressor

from pyspark.ml.feature import Binarizer

binarizer = Binarizer(threshold = 1.0, inputCol = "continuousFeatures",
outputCol = "features")
binarizer.transform(trainingData).show()

+-------------------+--------------------+---------+----------+
|categoricalFeatures| continuousFeatures|retweeted| features|
+-------------------+--------------------+---------+----------+
| []|[0.0,0.0,0.0,0.0,...| 0|(12,[],[])|
| []|[0.0,0.0,0.0,0.0,...| 0|(12,[],[])|

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 37/44

[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
[]	[0.0,0.0,0.0,0.0,...	0	(12,[],[])
+-------------------+--------------------+---------+----------+
only showing top 20 rows

What is a VectorIndexer? (just to display help info)
#help(VectorIndexer)

Vector Indexer: the input column are the categorical features and they
will be transformed to a column of indexed categorical features
vtrIndexer = VectorIndexer(inputCol = "categoricalFeatures", outputCol=
"indexedCatFeatures").fit(basetable)

What is a StandardScaler? (just to display help info)
#help(StandardScaler)

Standard Scaler: scales the continuous features to scaled continuous
features
standardScaler = StandardScaler(inputCol="continuousFeatures",
outputCol="scaledContFeatures")

What is a VectorAssembler? (just to display help info)
#help(VectorAssembler)

Vector Assembler: assembles the different vectors of the categorical and
continuous features and outputs them as a feature column
vtrAssembler = VectorAssembler(inputCols= ["indexedCatFeatures",
"scaledContFeatures"], outputCol= "features")

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 38/44

How to do a Linear Regression? What are the parameters? (just to display
help info)
#help(LinearRegression)

Logistic Regression
lrRegressor = LinearRegression(labelCol="retweeted", featuresCol="features",
maxIter=100)

How to do a Decision Tree Regression? What are the parameters? (just to
display help info)
#help(DecisionTreeRegressor)

Decision Tree
dtRegressor = DecisionTreeRegressor(labelCol = "retweeted", featuresCol =
"features")

How to do a Random Forest Regression? What are the parameters? (just to
display help info)
#help(RandomForestRegressor)

Random Forest Regressor: we define the label and the features columns and
the number of trees we want to build. 500 is a good trade-off between
computation time and error.
The Random Forest will contain 500 different decision trees.
rfRegressor = RandomForestRegressor(labelCol="retweeted",
featuresCol="features", numTrees=500)

4. Training the pipeline

1. Linear Regression

Defining all the stages of the pipeline
lrPipeline = Pipeline(stages = [vtrIndexer, standardScaler, vtrAssembler,
lrRegressor])

Fitting the pipeline to the training data: This is the execution of all
the stages and the training of the Random Forest Model.
lrModel = lrPipeline.fit(trainingData)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 39/44

Make predictions on test data.
lrPredictions = lrModel.transform(testData)

The label denotes what should have been the prediction. The prediction
column is the prediction that was made with the trained machine learning
model
lrPredictions.show(4)
#lrPredictions.printSchema()

+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+
|categoricalFeatures| continuousFeatures|retweeted|indexedCatFeatures| sca
ledContFeatures| features| prediction|
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|3010.1933302449497|
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+
only showing top 4 rows

from pyspark.ml.evaluation import RegressionEvaluator

Our PipelineModel consists of 5 stages starting of index 0 to index 4.
Each of these index places contains the model of the respective stage. The
more stages you add the larger the pipeline will become, but in this example
it contains 5 stages.
The machine learning model is on index 4
Print the coefficients and intercept for linear regression
print("Coefficients: " + str(lrModel.stages[3].coefficients))
print("Intercept: " + str(lrModel.stages[3].intercept))

Coefficients: [2799.371154504995,21151.278960461983,283.04008446110674,-164
7.191189434722,1575.8189545042499,-1907.0616617386952,-9273.515041288427,3.7
385389630400963,4633.379640080822,-281.0185201965542,696.3083497575342,-246
3.4014849957143]
Intercept: 3010.19333024

summ = lrModel.stages[3].summary
summ

Out[102]: <pyspark.ml.regression.LinearRegressionTrainingSummary at 0x7f0bb7
d38610>

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 40/44

For Linear Regression we have an extra class called
LinearRegressionTrainingSummary which gives us statistics about our model
performance on the training dataset. Calculating performance metrics on the
training dataset is not good practice since it will show better results than realistic.

To get the performance on the test set we have to use RegressionEvaluator.
Therefore you always need to refer to the test statistics if you want to compare
different models.

#final dataset with not retweeted still in
#The p-values are: [0.0, 0.0, 0.21635917423454454, 6.468159341466162e-13,
0.124091058302914, 0.0, 0.0, 0.9270422296973089, 0.0]
#the R^2 is:0.0453167329296
#The MSE is: 2636715307.51
Two-sided p-value of estimated coefficients and intercept.
print "The p-values are: " + str(summ.pValues)
Returns R^2^, the coefficient of determination.
print "the R^2 is:" + str(summ.r2)
Returns the mean squared error
print "The MSE is: " + str(summ.meanSquaredError)

The p-values are: [0.0, 0.0, 0.10033585604243545, 0.0, 0.0, 0.0, 0.0, 0.9817
660815841176, 0.0, 0.08715402529025074, 2.746541335252317e-05, 0.0, 0.0]
the R^2 is:0.0441290146063
The MSE is: 5244070163.22

If you want to compare this Linear Regression to the models of Random Forest and
Decision Trees, use the performance metrics of the RegressionEvaluator. These
metrics are calculated on the test data instead of the training data and give,
therefore, a good view of the performance of the model on new data.

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 41/44

from pyspark.ml.evaluation import RegressionEvaluator

##final dataset with not retweeted still in
#R^2 on test data = 0.0362238
#Mean Absolute Error (MAE)) on test data = 7187.73

lrEvaluator = RegressionEvaluator(labelCol="retweeted",
predictionCol="prediction")

lrr2 = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "r2"})
lrmae = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "mae"})

print("R^2 on test data = %g" % lrr2)
print("Mean Absolute Error (MAE)) on test data = %g" % lrmae)

R^2 on test data = 0.0385547
Mean Absolute Error (MAE)) on test data = 12611.4

from pyspark.ml.evaluation import RegressionEvaluator

lrEvaluator = RegressionEvaluator(labelCol="retweeted",
predictionCol="prediction")

lrr2 = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "r2"})
lrmae = lrEvaluator.evaluate(lrPredictions, {lrEvaluator.metricName: "mae"})

print("R^2 on test data = %g" % lrr2)
print("Mean Absolute Error (MAE)) on test data = %g" % lrmae)

R^2 on test data = 0.0385547
Mean Absolute Error (MAE)) on test data = 12611.4

2. Decision Tree

Defining all the stages of the pipeline
dtPipeline = Pipeline(stages = [vtrIndexer, standardScaler, vtrAssembler,
dtRegressor])

Fitting the pipeline to the training data: This is the execution of all
the stages and the training of the Random Forest Model.
dtModel = dtPipeline.fit(trainingData)

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 42/44

Make predictions on test data.
dtPredictions = dtModel.transform(testData)

The label denotes what should have been the prediction. The prediction
column is the prediction that was made with the trained machine learning
model
dtPredictions.show(4)
#dtPredictions.printSchema()

+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+
|categoricalFeatures| continuousFeatures|retweeted|indexedCatFeatures| sca
ledContFeatures| features| prediction|
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|146.87198505265542|
+-------------------+--------------------+---------+------------------+-----
---------------+----------+------------------+
only showing top 4 rows

Show result

print dtModel.stages[3].toDebugString

dtModel.stages[3].featureImportances

Out[111]: SparseVector(12, {0: 0.2591, 1: 0.3449, 2: 0.0396, 4: 0.0, 5: 0.00
05, 6: 0.1585, 8: 0.0947, 10: 0.0031, 11: 0.0996})

Select (prediction, true label) and compute test error
dtEvaluator = RegressionEvaluator(labelCol="retweeted",
predictionCol="prediction",)

dtr2 = dtEvaluator.evaluate(dtPredictions, {dtEvaluator.metricName: "r2"})
dtmae = dtEvaluator.evaluate(dtPredictions, {dtEvaluator.metricName: "mae"})

print("R^2 on test data = %g" % dtr2)
print("Mean Absolute Error (MAE) on test data = %g" % dtmae)

R^2 on test data = 0.527149
Mean Absolute Error (MAE) on test data = 10224.4

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 43/44

3. Random Forest

Defining all the stages of the pipeline
rfPipeline = Pipeline(stages = [vtrIndexer, standardScaler, vtrAssembler,
rfRegressor])

Fitting the pipeline to the training data: This is the execution of all
the stages and the training of the Random Forest Model.
rfModel = rfPipeline.fit(trainingData)

Make predictions on test data.
rfPredictions = rfModel.transform(testData)

The label denotes what should have been the prediction. The prediction
column is the prediction that was made with the trained machine learning
model
rfPredictions.show(4)
#rfPredictions.printSchema()

+-------------------+--------------------+---------+------------------+-----
---------------+----------+-----------------+
|categoricalFeatures| continuousFeatures|retweeted|indexedCatFeatures| sca
ledContFeatures| features| prediction|
+-------------------+--------------------+---------+------------------+-----
---------------+----------+-----------------+
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086|
| []|[0.0,0.0,0.0,0.0,...| 0| []|[0.0,
0.0,0.0,0.0,...|(12,[],[])|69.32680555202086|
+-------------------+--------------------+---------+------------------+-----
---------------+----------+-----------------+
only showing top 4 rows

Show result

print rfModel.stages[3].toDebugString

To get an idea of how important the different features were in predicting the
outcome, you can print the feature importances. The higher the number the more
important the feature was.

3-6-2018 Twitter_test - Databricks

file:///C:/Users/jolan/Downloads/Twitter_test%20(1).html 44/44

rfModel.stages[3].featureImportances

Out[116]: SparseVector(12, {0: 0.1561, 1: 0.1141, 2: 0.2009, 3: 0.0315, 4:
 0.0101, 5: 0.0068, 6: 0.1045, 7: 0.0, 8: 0.1413, 9: 0.0213, 10: 0.0059, 11:
 0.2075})

Select (prediction, true label) and compute test error
rfEvaluator = RegressionEvaluator(labelCol="retweeted",
predictionCol="prediction",)

rfr2 = rfEvaluator.evaluate(rfPredictions, {rfEvaluator.metricName: "r2"})
rfmae = rfEvaluator.evaluate(rfPredictions, {rfEvaluator.metricName: "mae"})

print("R^2 on test data = %g" % rfr2)
print("Mean Absolute Error (MAE) on test data = %g" % rfmae)

R^2 on test data = 0.413803
Mean Absolute Error (MAE) on test data = 10840.3



0

0.1

0.2

0.3

0.4

0.5

Logistic regression Decision tree Random forest

Pe
rfo

rm
an

ce

	Masterproef_Jolan_0603.output
	Twitter_test - Databricks

