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Nederlandstalige samenvatting

In deze thesis onderzoeken we het projector matrix product operator (PMPO) formal-

isme, een tensor netwerk beschrijving van topologische orde. Dit formalisme is gebaseerd

op symmetrieën van een 2 dimensionale projected entangled pair state (PEPS) die zich

uiten als matrix product operators (MPOs) op het virtuele niveau die vrij door het

rooster kunnen bewegen. Deze MPOs vormen een algebra die overeenkomt met een fusie-

categorie, die we de input fusie-categorie noemen. Het is geweten dat deze constructie

geldig is voor unitaire fusie-categorieën, en in deze thesis breiden we dit resultaat uit naar

niet-unitaire fusie-categorieën aan de hand van het eenvoudigste gekende voorbeeld: de

Yang-Lee fusie-categorie.

We beginnen met een zeer korte inleiding tot tensor netwerken in hoofdstuk 1 om de

verscheidene concepten gebruikt doorheen deze thesis te introduceren. Meer specifiek

behandelen we matrix product states (MPS), projected entangled pair states (PEPS) en

matrix product operators (MPOs).

In hoofdstuk 2 geven we een standaard introductie tot conforme veldentheorie, dewelke

nodig is om de resultaten van hoofdstuk 5 te begrijpen. We geven enkele verwijzingen

naar het minder gekende domein van niet-unitaire of logaritmische conforme veldenthe-

orie, waarvan de Yang-Lee edge singularity het simpelste gekende voorbeeld is. Zoals

de naam impliceert, is deze niet-unitaire conforme veldentheorie sterk gerelateerd aan de

Yang-Lee fusie-categorie, een connectie die we verder onderzoeken in hoofdstuk 5.

Hoofdstuk 3 behandelt de bulk van de theoretische achtergrond vereist voor deze the-

sis. We starten met een korte introductie tot topologische orde, niet door te doelen op

een fundamenteel wiskundige opbouw maar door de belangrijkste eigenschappen ervan

te illustreren aan de hand van het simpelste voorbeeld, de toric code. Vervolgens geven

we een gedetailleerde uiteenzetting van het PMPO formalisme voor de beschrijving van

topologische orde met tensor netwerken, en we illustreren de belangrijke eigenschappen

door het formalisme toe te passen op de eenvoudige Fibonacci unitaire fusie-categorie.

De Fibonacci unitaire fusie-categorie heeft een sterk gerelateerde niet-unitaire fusie-

categorie; via een proces bekend als Galois toevoeging bekomen we de Yang-Lee fusie

categorie. In hoofdstuk 4 proberen we het PMPO formalisme toe te passen op deze

Yang-Lee niet-unitaire fusie categorie, en we zien dat in de huidige vorm het formal-

isme deze categorieën niet correct kan beschrijven. Gebaseerd op de sterke gelijkenissen

tussen de Fibonacci en Yang-Lee categorieën stellen we aanpassingen tot het PMPO for-
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malisme voor en we tonen aan dat deze de correcte resultaten geven voor de Yang-Lee

categorie. Verder gebruiken we de inzichten verwonnen door de beschrijving van een uni-

taire categorie en zijn niet-unitaire tegenhanger om verdere resultaten binnen het PMPO

formalisme af te leiden, met name met betrekking tot de verscheidene factoren van kwan-

tum dimensies die doorheen de theorie verschijnen.

Het laatste hoofdstuk gaat over de “strange correlator” methode om topologische velden-

theorieën op conforme veldentheorieën af te beelden, toegepast op de Yang-Lee categorie.

We breiden de resultaten voor de Fibonacci categorie uit en tonen aan dat de bijhorende

conforme veldentheorie de Yang-Lee edge singularity is. De eenvoud van deze conforme

veldentheorie laat toe om deze strange correlator afbeelding beter te begrijpen, met name

het verband tussen topologische sectoren en conforme defecten. In de laatste sectie van

dit hoofdstuk behandelen we het “hard square” model, een niet-integreerbaar statistisch

model dat een kritisch punt in de Yang-Lee universitaliteitsklasse bezit. We gebruiken

de strange correlator afbeelding tussen de topologische Yang-Lee PEPS en dit statistisch

mechanisch model door de overlap te nemen met een gepaste product state, die we zo-

danig proberen kiezen dat we de hard square partitie functie bekomen. Dit is grotendeels

niet succesvol, maar verder onderzoek in deze richting kan een interpretatie voor inte-

greerbaarheid in statistische mechanica opleveren in termen van tensor netwerken.

Het belangrijkste resultaat uit deze thesis is de afbeelding van tensor netwerken naar niet-

unitaire conforme veldentheorieën. Deze laatste zijn interessant aangezien ze verscheidene

kritische statistische modellen beschrijven. Een van de meest prominente hiervan is het

probleem van percolatie, het gedrag van geconnecteerde clusters in een willekeurige graaf.

Dit probleem duikt op in verschillende vakgebieden en de theoretische studie ervan heeft

reeds tot nieuwe inzichten en technieken geleid. Deze thesis opent de deur naar de studie

van dit probleem met tensor netwerken, en we hopen dat deze hun nut nogmaals kunnen

bewijzen om voortgang te maken op de openstaande vragen binnen dit onderwerp.
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Introduction

The quantum many-body problem has been a steady source of new physics ever since the

conception of quantum mechanics. The whole seems to be much more than the sum of its

parts, and the collective behaviour of many quantum degrees of freedom can lead to inter-

esting and surprising features. One such feature is topological order, in which a quantum

many-body system that one would a priori expect to behave in a very uncontrolled and

noisy way seems to exhibit quantised behaviour for many of the macroscopic quantities

that is robust under local perturbations. These systems can not be studied using exact

methods and one has to resort to approximate techniques such as mean field theory, per-

turbative expansions or effective descriptions based on renormalisation arguments. In the

last decades one particularly promising description by the name of tensor networks has

arised based on the local entanglement structure of these quantum many-body systems,

and it has been immensely successful in understanding and simulating the behaviour of

these systems.

In this thesis, we investigate the projector matrix product operator (PMPO) formalism,

a tensor network description of topological order. This formalism is based on symmetries

of a 2 dimensional projected entangled pair state (PEPS) that manifest themselves as

matrix product operators (MPOs) on the virtual level that can be freely moved through

the lattice. These MPOs can be shown to form an algebra that corresponds to a fusion

category, called the input fusion category. It is known that this construction is valid

for unitary fusion categories, and in this thesis we extend this result to non-unitary fu-

sion categories by considering the simplest known example: the Yang-Lee fusion category.

We begin by giving a very short introduction to tensor networks in chapter 1 to intro-

duce various concepts used throughout this thesis. More specifically, we discuss matrix

product states, projected entangled pair states and matrix product operators.

In chapter 2 we provide a fairly standard introduction to conformal field theory, which

is required to understand the results of chapter 5. We include a few points on the lesser
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known domain of non-unitary or logarithmic conformal field theory, of which the Yang-Lee

edge singularity is the simplest known example. As the name implies, this non-unitary

CFT will turn out to be closely connected to the Yang-Lee fusion category, a connection

we explore in chapter 5.

Chapter 3 deals with the bulk of the theoretical background required for this thesis. We

start by briefly introducing topological order, not by aiming for mathematical rigour but

rather give an idea of its main features through example by considering the toric code,

the simplest model in which topological order occurs. This is followed by the detailed

exposition of the PMPO formalism for describing topological order using tensor networks,

and we apply it to the simple Fibonacci unitary fusion category to illustrate the impor-

tant features.

The Fibonacci unitary fusion category turns out to have a very closely related non-unitary

fusion category; more specifically, through a process known as Galois conjugation we ar-

rive at the Yang-Lee fusion category. In chapter 4 we try to apply the PMPO formalism

to this non-unitary category and we see that in its current form it fails to correctly in-

corporate these categories. Based on the similarity between the Fibonacci and Yang-Lee

categories we propose modifications to the PMPO formalism and we show that these

give the correct results for the Yang-Lee category. We further use the insights gained by

describing both a unitary category and its non-unitary counterpart to derive further re-

sults considering the PMPO formalism, in particular dealing with the factors of quantum

dimensions appearing throughout the theory.

The final chapter concerns the strange correlator method for mapping topological to con-

formal field theories (CFT), applied to the Yang-Lee category. We extend the results

obtained for the Fibonacci theory and show that the corresponding CFT is the afore-

mentioned Yang-Lee edge singularity. The simplicity of this CFT allows us to better

understand this strange correlator mapping and in particular the relation between topo-

logical sectors and conformal defects. In the last section of this chapter we consider the

hard square model, a non-integrable statistical mechanics model that has been shown

to contain a critical point in the Yang-Lee edge singularity universality class. We use

the strange correlator mapping to map the topological Yang-Lee PEPS to this statistical

mechanics model by taking the overlap with an appropriate product state, which we try

to tune in such a way that we obtain the hard square partition function. This is largely

unsuccessful, but further investigations in this direction could provide an interpretation

for integrability of statistical mechanics models in terms of tensor networks.

vii



Chapter 1

Tensor Networks

In this chapter we present a very brief overview of tensor networks [1,2], a field which has

enjoyed success among many disciplines of physics over the last few years. While this is es-

pecially true for quantum many-body systems on both the theoretical and numerical side,

it has also provided a handle on the holographic principle and the AdS/CFT correspon-

dence in quantum gravity [3,4]. We give a short motivation for tensor networks, followed

by an introduction to matrix product states (MPS), its higher dimensional generalisation

known as projected entangled pair states (PEPS) and perhaps most importantly for this

thesis, matrix product operators (MPO). There exist a plethora of numerical methods to

simulate quantum many-body systems in the tensor network formalism, but our interest

is mainly in the conceptual insights provided by tensor networks and therefore we will

not discuss them here.

1.1 Quantum many-body Hilbert space

Consider a system of N spin 1/2 particles. The dimension of the associated Hilbert

space is 2N , exponential in the number of particles. This means that representing a

quantum state of this system just by giving its coefficients of the wave function in a local

basis is extremely costly, and already computationally intractable for relatively low N .

Fortunately, not all states in the Hilbert space are equal, and some are more relevant

than others. More specifically, many important Hamiltonians in Nature are such that

the interactions between different particles are local (e.g. nearest neighbour interactions

on a lattice), and have an energy gap between the ground state and the first excited

state. For these gapped Hamiltonians with local interactions, one can prove that the

low-energy eigenstates obey an area-law for the entanglement entropy. More specifically,

if we consider a system HA +HB, the Von Neumann entropy associated to the reduced

1



density matrix

ρA = TrB(ρ), (1.1)

where TrB denotes the partial trace over subsystem HB, is defined as

S(A) = −Tr(ρA log(ρA)) (1.2)

For states that satisfy the area-law, this entanglement entropy satisfies

S(A) ∼ ∂A. (1.3)

The space of states that satisfy the area-law is an exponentially small subspace of the

full Hilbert space. It is clear that a description that treats all states in the full Hilbert

space equally is horribly inefficient for describing these area-law states. Additionally,

given some initial state, the manifold that can be reached in polynomial time by evolv-

ing this state is also exponentially small. In this sense, the immensity of the Hilbert

space is really an illusion, since we will never see most of it. If we aim to study states

within this exponentially small space, we better choose a description that directly tar-

gets these states. This description is precisely the tensor network formalism, which can

be shown to efficiently represent states obeying an area-law for the entanglement entropy.

The main focus of this thesis are systems that exhibit topological order, with ground

states that can not be distinguished from each other with local order parameters. This

long range interaction can be shown to introduce a correction to the area law [5],

S(A) ∼ ∂A+ γ, (1.4)

where γ is called the topological entanglement entropy. It was demonstrated in [6] that

systems exhibiting this topological order can also be described using tensor networks,

which is the formalism with which we will treat it in this thesis.

1.2 Matrix product states

We will start by considering a general quantum many-body wave function of N qudits

(d-dimensional quantum systems) in 1 space dimension:

|ψ〉 =
d∑

j1,j2,...jN

Cj1j2...jN |j1〉 |j2〉 . . . |jN〉 . (1.5)

This wave function is specified entirely by the N -index tensor C with N physical indices

j, which we pictorially depict as

|ψ〉 = C

. . .j1 j2 jN (1.6)
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By splitting out the first index j1 and grouping the rest, we can interpret this tensor as

a d × dN−1 matrix, and perform a singular value decomposition to obtain the Schmidt

decomposition

|ψ〉 =
D∑
i

λi

d∑
j1

Aj1i |j1〉
d∑

j2,...jN

Cj2...jN
i |j2〉 . . . |jN〉 (1.7)

=
D∑
i

d∑
j1

Aj1i |j1〉
d∑

j2,...jN

Cj2...jN
i |j2〉 . . . |jN〉 (1.8)

where λi are the Schmidt weights which we absorbed into Aj. The notation quickly

becomes cumbersome, but graphically we can simply depict this as

C =

. . .j1 j2 jN

A

. . .j2 jNj1

C ′

(1.9)

where the leg connecting the A and C ′ tensor implies a sum over the internal or virtual

indices i = 1, . . . , D and D is called the bond dimension. Performing this procedure N−2

more times, we arrive at

C =

. . .j1 j2 jN

A

. . .j2 jNj1

B . . . Z

(1.10)

For simplicity, we now impose translation invariance and periodic boundary conditions,

so this becomes

C =

. . .j1 j2 jN

A

. . .j2 jNj1

A . . . A

(1.11)

which can be written in terms of the D ×D matrices Aj as

|ψ〉 =
d∑

j1,j2,...jN

Tr(Aj1Aj2 . . . AjN ) |j1〉 |j2〉 . . . |jN〉 , (1.12)

which is an example of a matrix product state or MPS. We haven’t really done anything,

since we showed that by repeated Schmidt decompositions any wave function can be writ-

ten in this way, generally with the bond dimension growing exponentially in the system

size. We note however that the Schmidt weights and in particular the number of non-zero

Schmidt weights determine the Von Neumann entanglement entropy between two sub-

systems. The condition that a state has to obey an area law for its entanglement entropy

then translates in an upper bound on D, such that these states can be faithfully repre-

sented for relatively low values of D [7], which in turn means that we have exponentially

reduced the number of parameters used to describe the wave function.
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1.3 Projected Entangled Pair States

There is a different way of constructing MPS, which both provides more physical insight

and a way of generalising to higher dimensions. We consider again a translation invariant

system with periodic boundary conditions. At each physical d-dimensional degree of

freedom j, we place two D dimensional quantum degrees of freedom, such that at every

site we have a CD ⊗ CD dimensional Hilbert space:

j1 j2 j3

D D D D D D

j4

D D

(1.13)

We now maximally entangle all the pairs of qudits on neighbouring sites by projecting

onto the maximally entangled state

|α〉 =
D∑
i=1

|i〉 |i〉 (1.14)

which we depict as

j1 j2 j3 j4

|α〉〈α| |α〉〈α| |α〉〈α||α〉〈α| |α〉〈α|

(1.15)

where the dotted lines indicate periodic boundary conditions. Finally, we act on the pairs

of qudits associated to one physical degree of freedom j with a linear map CD⊗CD → Cd,

i.e. we map the virtual degrees of freedom to the physical degrees of freedom:

j1 j2 j3 j4 (1.16)

This is called a projected entangled pair state, or PEPS for short. The entanglement

entropy between any two subsystems is given by 2 log(D), and if D is subexponential in

the system size we have constructed a state that satisfies the area-law. The advantage

of this picture is that it has a straightforward generalisation to higher dimensions; in

particular, Figure 1.1a shows a depiction of a PEPS in 2 dimensions, which is usually what

the terminology PEPS is reserved for. We can easily imagine more general PEPS, with

different tensors for every physical degree of freedom, such a tensor network is depicted

in Figure 1.1b. It has been shown that many interesting systems admit such a PEPS

description for their low-energy states with a bond dimension D that is subexponential

in the system size, [8] indicating that we have really identified the correct description of

this low-energy manifold. It is obvious that this construction is not limited to square

lattice configurations, and we will employ a hexagonal and a truncated square lattice in

chapter 5.
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(a) (b)

Figure 1.1: (a) 2 dimensional 2 × 4 patch of a PEPS lattice, with the physical index

sticking out up and to the right. (b) The same patch with more general tensors.

1.4 Matrix product operators

We end this chapter by defining what we mean by matrix product operators (MPOs). A

general translation invariant MPO with periodic boundary conditions on N sites is given

by

Ô =
d∑

{i},{j}=1

Tr
(
Bi1j1 . . . BiN jN

)
|i1 . . . iN〉 〈j1 . . . jN | (1.17)

which is graphically depicted as

B

. . .j2 jNj1

B . . . BÔ =

. . .i2 iNi1

(1.18)

These can be interpreted as a map between two MPS states, but we will use them

exclusively on the virtual degrees of freedom of a PEPS,

(1.19)

and PEPS tensors that exhibit certain symmetries under these MPO operations can be

used to construct topologically ordered PEPS, which is the subject of Chapter 3.
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Chapter 2

Conformal Field Theory

In this chapter, we aim to give an brief introduction to 2-dimensional conformal field

theory (CFT). It is a vast subject and has been an important tool in theoretical physics

during the last decades, with its origins in the description and classification of critical

phenomena. It was subsequently developed mainly for its use in string theory, and has

been extensively studied in the context of the AdS/CFT-correspondence [3].

The central idea of CFT is invariance under conformal transformations. Since this in-

cludes scale invariance, these theories are particularly suited for describing critical phe-

nomena at the fixed point of some RG flow [9,10], which is the context in which we will

be using it. We can situate CFT by looking at the Coleman-Mandula theorem [11], which

restricts the possible symmetries we can impose on a QFT. According to this theorem,

under the assumption that

1. the theory has a set of Lorentz scalar conserved quantities,

2. the theory has an S-matrix,

the only symmetry we can consistently impose is Poincaré invariance. The two loopholes

to this theorem are precisely those that break one of these two assumptions. More

specifically, if we allow the conserved quantities to be more general than Lorentz scalars,

we arrive at supersymmetry, and if we drop the requirement for the existence of an S-

matrix we arrive at CFT. Because we are only interested in describing 2D statistical

mechanics models at criticality, we will be restricting ourselves to 2D CFT, which turns

out to be rather different from CFT in any other dimension. The main references used

for this chapter are [12,13], and we will be working with a Euclidean metric.
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2.1 Classical conformal invariance

We define a conformal transformation as a coordinate transformation which acts on the

metric as a Weyl transformation:

gµν(x)→ Ω(x)gµν . (2.1)

Rotations and translations do not change the metric, and we can interpret them as

conformal transformation with Ω(x) = 1. The angle α between two vectors is given by

cos(α) =
gµνv

µwν
√
gµνvµvν

√
gµνwµwν

(2.2)

which does not change under a Weyl transformation of the metric. Geometrically then,

the conformal transformations correspond to the set of transformations that preserve all

angles. Given some action S, the energy momentum tensor is defined as

δS =
1

2

∫
ddx
√
gT µνδgµν , (2.3)

for the variation of S under changes of the metric, and invariance under general coordinate

transformations implies conservation of the energy momentum tensor

∂µT
µν = 0. (2.4)

The Weyl transformation in infinitesimal form is given by

gµν → gµν(x) + ω(x)gµν(x), (2.5)

and substituting this into eq. 2.3 we find

δS =
1

2

∫
ddx
√
gT µµω(x). (2.6)

Demanding now that the action is invariant under conformal transformations means that

we must have δS = 0, which implies that the energy momentum tensor must be traceless,

T µµ = 0, (2.7)

since this has to hold for arbitrary functions ω(x).

2.1.1 Conformal transformations in 2D

We are not interested in curved space-times, and in 2D Euclidean space we can write the

line element as

ds2 = dx2 + dy2 =
1

2
dzdz̄, (2.8)
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with (following the convention of [13]),

z = x− iy, z̄ = x+ iy. (2.9)

The Weyl transformation of the metric implies that the line element should change by a

rescaling under a conformal transformation. For an infinitesimal transformation

z → z + ε(z, z̄), z̄ → z̄ + ε̄(z, z̄) (2.10)

we have to linear order in ε and ε̄

ds2 → 1

2
(1 + ∂zε+ ∂z̄ ε̄)dzdz̄ +

1

2
∂z ε̄dzdz +

1

2
∂z̄εdz̄dz̄. (2.11)

For a conformal transformation, this means that we should have

∂z̄ε = ∂z ε̄ = 0, (2.12)

which means that ε is an arbitrary holomorphic function and ε̄ and anti-holomorphic

function, or non-infinitesimally, that the coordinates z and z̄ transform as

z → f(z), z̄ → f̄(z̄) (2.13)

with f and f̄ arbitrary holomorphic and anti-holomorphic functions respectively. These

transformations can be written as generated by differential operators: the generator

Ln = −zn+1∂z (2.14)

generates the transformation

z → z − zn+1, (2.15)

and satisfies the commutation relation

[Ln, Lm] = (n−m)Lm+n. (2.16)

This defines the de Witt algebra, and we will later see that its central extension is the

celebrated Virasoro algebra [14]. The case for the barred quantities is exactly the same,

and furthermore we have

[Ln, L̄m] = 0. (2.17)

The global conformal transformations form a subgroup of the local conformal transfor-

mations, and its generators are the only ones that are defined on the entire complex

plane including ∞, known as the the Riemann sphere. Given the definition of Ln, it is

immediately clear that this requires n ≥ −1 in order for it to be non-singular at z = 0.

To investigate the behaviour at infinity, it is useful to perform a conformal mapping that

8



interchanges z = 0 and z = ∞. Such a transformation is given by z = 1/w, and the

generator Ln transforms to

− zn+1∂z → w1−n∂w, (2.18)

which is non-singular for n ≤ 1. Combined with the previous result we have −1 ≤ n ≤ 1,

and one can show that we have the following global transformations:

� i(L0 + L̄0): generator of global dilatations,

� −(L0 − L̄0): generator of global rotations,

� L−1 ± L̄−1: generators of global translations,

� L1 ± L̄1: generators of special conformal transformations.

There is much more to be said about the group structure of the global conformal trans-

formations, but since it is not relevant for our discussion we will not go into it here.

2.1.2 Scaling dimension and conformal spin

In general, the components of a tensor φ of rank n are of the form φz...z,z̄...z̄(z, z̄), and

under a conformal transformation they transform as

φz...z,z̄...z̄(z, z̄)→ φ′z...z,z̄...z̄(f(z), f̄(z̄)) =

(
∂f(z)

∂z

)−p(
∂f̄(z̄)

∂z̄

)−q
φz...z,z̄...z̄(z, z̄) (2.19)

where p and q are the amount of indices equal to z and z̄ respectively. A field that

transforms in this way is called a conformal field of weight (p, q). Although we derived

this rule for a tensor component, which implies that p and q should be integer, there is

a more general version of this statement and we define a primary field as a field that

transforms as

φ(z, z̄)→ φ′(f(z), f̄(z̄)) =

(
∂f(z)

∂z

)−h(
∂f̄(z̄)

∂z̄

)−h̄
φ(z, z̄), (2.20)

where the conformal weight is now (h, h̄). The bar on h does not denote complex conju-

gation, but merely that it is linked to the anti-holomorphic part of the transformation;

this notation is unfortunate, but standard. We will later see that h+h̄ are the eigenvalues

of L0 + L̄0, which is proportional to dilatation operator and therefore ∆ = h+ h̄ is called

the scaling dimension of the field. Similarly, h− h̄ are the eigenvalues of L0 − L̄0, which

is proportional to the rotation operator and s = h− h̄ is called the conformal spin.
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2.1.3 Conserved current

The fact that the energy momentum tensor is traceless is translated in complex coordi-

nates to

Tzz̄ = Tz̄z = 0, (2.21)

and the fact that it is conserved implies

∂z̄Tzz = ∂zTz̄z̄ = 0, (2.22)

which means that Tzz and Tz̄z̄ have to be holomorphic and anti-holomorphic respectively.

Noether’s theorem implies that the conformal symmetry should come with a conserved

current, and it is given by

Jz = Tzzε ≡ T (z)ε(z), Jz̄ = Tz̄z̄ ε̄ ≡ T (z̄)ε(z̄) (2.23)

where ε and ε̄ are the infinitesimal changes of the coordinates under a conformal transfor-

mation, which we showed to be arbitrary holomorphic and anti-holomorphic respectively.

This infinite number of conserved currents is a key difference between 2D CFT and CFT

in arbitrary dimensions. Since Tzz is holomorphic and Tz̄z̄ is anti-holomorphic, so are Jz

and Jz̄, this current is manifestly conserved:

∂z̄Jz = ∂zJz̄ = 0. (2.24)

2.2 Quantum conformal invariance

As discussed in the previous section, we consider theories defined in 2D Euclidean space.

These can be interpreted as 2D statistical mechanics models, but also as 1+1D quantum

field theories after a Wick rotation:

(x1, ix0)→ (x, y), (2.25)

which for the metric means

ηµν → δµν . (2.26)

In a QFT, symmetries are generated by charges, which are the space integrals of the

zeroth component of a conserved current:

Q =

∫
dx1J0. (2.27)

After a Wick rotation, this becomes

Q =

∫
dx(−iJy), (2.28)

which gives us an expression for the charge Q in Euclidean space.
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2.2.1 Radial quantisation

It will turn out to be convenient to make the space direction finite, by imposing periodic

boundary conditions in the x1 direction. This is similar to regulating a quantum system

by putting it in a finite box in space with periodic boundary conditions. We will fix the

size of the box to 2π, but because of scale invariance this value is irrelevant. After a Wick

rotation, the finite space direction x1 translates to a finite space direction x, while y is

still infinite; this effectively means that we are now studying the theory on a cilinder. In

this topology, the charge is given by

1

2π

∫ 2π

0

dx(−iJy), (2.29)

where we normalised to the length of the interval. Introducing again complex coordinates

z = x− iy as before, we find J2 = −i(Jz − Jz̄), and the charge becomes

Q = − 1

2π

[∮
dzJcyl

z (z, z̄)−
∮
dz̄Jcyl

z̄ (z, z̄)

]
. (2.30)

The integration is along a closed contour that winds around the cylinder, and we chose

z̄ as integration variable in the second term for convenience, which makes no difference

since we only integrate over x, the real part of z. The orientations of these contours is

such that ∮
dz =

∮
dz̄ = 2π, (2.31)

and the superscripts “cyl” remind us that the currents are defined on the cylinder. We

now perform a conformal transformation

w = eix+y = eiz, (2.32)

which maps the cylinder to the plane. In particular, the surface at the Euclidean time

coordinate y = −∞ is mapped to w = 0, and the surface at y = +∞ is mapped to the

infinite circle at |w| =∞. The integration variables transform as∮
dz =

∮
dw

iw
,

∮
dz̄ =

∮
dw̄

iw̄
(2.33)

where these are now contour integrals around the origin and the contours are chosen such

that
1

2πi

∮
dw

w
=

1

2πi

∮
dw̄

w̄
= 1. (2.34)

The currents on the cylinder are transformed to the plane by using eq. 2.20, where Jz

and Jz̄ are primary fields with conformal weight (h = 1, 0) and (0, h̄ = 1) respectively.

We get

Jplane
w (w, w̄) = (iw)−hJcyl

z (z(w), z̄(w̄)),

Jplane
w̄ (w, w̄) = (−iw̄)−hJcyl

z̄ (z(w), z̄(w̄)),
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and so the charge becomes

Q = − 1

2π

[∮
dw(iw)h−1Jplane

w (w, w̄) +

∮
dw̄(−iw̄)h̄−1Jplane

w̄ (w, w̄)

]
. (2.35)

For the current, we obviously have to put h = h̄ = 1, but we will later re-use this formula

for different values of h and h̄. The result of the contour integrations depends on the

poles inside the contour, and we will see that in a quantum field theory these can arise

when considering the product of two operators.

2.2.2 Radial ordering

In order to sensibly discuss products of operators, we first have to make a detour to

elaborate on radial ordering. In a classical theory, the ordering of fields or charges in a

product is of course irrelevant, but this changes when they are promoted to operators in

a quantum theory and we have to be more careful. To see this, we go back to basic 1D

quantum mechanics and consider two operators A and B in the Heisenberg picture. The

products of these two operators acting at some points (xa, ta) and (xb, tb) can be written

with the Hamiltonian H as

A(xa, ta)B(xb, tb) = eiHtaA(xa, 0)e−iHtaeiHtbB(xb, 0)e−iHtb . (2.36)

After a Wick rotation, we get

e−iH(ta−tb) → e−H(τa−τb), (2.37)

which is no longer a bounded operator for τa < τb since the Hamiltonian is usually not

bounded from above. This means that expectation values are no longer defined, and we

therefore impose time ordering, denoted as

T (A(xa, τa)B(xb, τb)) =

A(xa, τa)B(xb, τb) for τa > τb,

B(xb, τb)A(xa, τa) for τa < τb.
(2.38)

After mapping from the cylinder to the plane, the Euclidean time coordinate becomes

the radial coordinate, and time ordering becomes radial ordering:

R(A(za, z̄a)B(zb, z̄b)) =

A(za, z̄a)B(zb, z̄b) for |za| > |zb|,

B(zb, z̄b)A(za, z̄a) for |za| < |zb|.
(2.39)

2.2.3 The generator of conformal transformations

Returning to charge operators, we now consider the generator of the conformal transfor-

mations. The conserved current for an infinitesimal transformation is given by T (z)ε(z)
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and T (z̄)ε(z̄) for the holomorphic and anti-holomorphic part of the transformation re-

spectively. Ideally, we would write the current on the cylinder first and then perform a

conformal transformation to the plane, but as we will later see the energy-momentum

tensor is not a conformal field and so it does not transform as eq. 2.20. Instead, we

define the charge corresponding to an infinitesimal conformal transformation directly on

the plane as

Qε =
1

2πi

[∮
dzε(z)T (z) +

∮
dz̄ε(z̄)T (z̄)

]
(2.40)

Since the holomorphic and anti-holomorphic part of a conformal transformation decouple,

we will restrict ourselves to the holomorphic part and omit the anti-holomorphic part of

the transformation as well as the anti-holomorphic component of T in the following. We

expect Qε to generate conformal transformations of a conformal field φ of the form

φ(w, w̄)→ φ′(w, w̄) =

(
∂f(w)

∂w

)h
φ(f(w), w̄) (2.41)

with f(w) = w+ ε(w). We note that z and w are both coordinates on the complex plane,

and no longer have anything to do with complexified cylinder coordinates. Infinitesimally,

this transformation is

δεφ(w, w̄) = h∂wε(w)φ(w, w̄) + ε(w)∂wφ(w, w̄), (2.42)

and the quantum version of this transformation should satisfy

δεφ(w, w̄) = [Qε, φ(w, w̄)]. (2.43)

Trying to evaluate this commutator with the above expression for the charge, we get

[Qε, φ(w, w̄)] =
1

2πi

∮
(dzε(z) [T (z)φ(w, w̄)− φ(w, w̄)T (z)] , (2.44)

but as we just saw, we have to impose radial ordering and therefore the first term is only

defined for |z| > |w|, whereas the second term requires |z| < |w|. Obviously, this can not

be satisfied with a single choice of contour, so we will have to redefine Qε in order for it

to be well-defined after quantisation. Classically, Qε is in fact independent of the contour

because the integrand is a holomorphic function, and the Cauchy theorem states that

we can freely deform the contour as long as we don’t cross any poles of the integrand.

The commutator vanishes clasically, but we can write it in such a way that it remains

well-defined after quantisation:

[Qε, φ(w, w̄)] =
1

2πi

∮
|z|>|w|

dzε(z)T (z)φ(w, w̄)− 1

2πi

∮
|z|<|w|

dzε(z)φ(w, w̄)T (z), (2.45)
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or, equivalently,

[Qε, φ(w, w̄)] =
1

2πi

[∮
|z|>|w|

−
∮
|z|<|w|

]
dzε(z)R(T (z)φ(w, w̄)). (2.46)

If we now deform these contours as

0

w

0

w

− = 0

w

(2.47)

we end up with

[Qε, φ(w, w̄)] =
1

2πi

∮
dzε(z)R(T (z)φ(w, w̄)) (2.48)

where the integration contour encircles the point w. The integration only makes sense if

the radially ordered product is analytic around w, in which case we can expand it as a

Laurent series around w:

R(T (z)φ(w, w̄)) =
∑
n

(z − w)nOn(w, w̄), (2.49)

where the expansion coefficients On are operators. The integration will only produce the

required infinitesimal transformation if

R(T (z)φ(w, w̄)) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) +

∞∑
n=0

(z − w)nOn(w, w̄). (2.50)

The terms with operators On for n ≥ 0 do not contribute to the integral since they do

not contain poles, and therefore they can be anything and are usually not written. The

property in eq. 2.50 and its anti-holomorphic counterpart define what we mean by a

conformal field φ.

2.2.4 Operator Product Expansion

The expression obtained in eq. 2.50 is an example of an Operator Product Expansion

(OPE). More generally, this concept states that for all possible local operators in the CFT,

we can write the product of two local operators as a (possibly infinite) linear combination

of other local operators:

Oi(x)Oj(y) =
∑
k

Ck
ij(x− y)Ok(y) (2.51)

where the Ck
ij(x − y) are expansion coefficients. The OPE should really be understood

in terms of correlation functions, where we calculate the expectation value of operator
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products in some state. The behaviour of these correlation functions is singular when the

positions x and y coincide, and this behavious is precisely described by the OPE. These

OPE’s can be used to constrain and solve CFT’s, a method known as the conformal

bootstrap, which has been used most notably for calculating the critical exponents of the

critical three-dimensional Ising model [15].

To illustrate, we give (without proof) the OPE of the holomorphic component of the

energy momentum tensor with itself (without the finite terms):

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂wT (w). (2.52)

From this, we see that T (z) would be a conformal field of weight 2, were it not for the

term proportional to c. This term arises due to quantum effects, and is known as the

conformal anomaly. In a free boson theory for example, c is equal to the number of

bosonic degrees of freedom.

2.3 The Virasoro algebra

Considering again the current for conformal symmetry Jε(z) = T (z)ε(z), we derived that

ε is an arbitrary holomorphic function. It is therefore natural to expand it in modes,

where the mode expansion depends on the surface we work on. Since we required fields

and transformations to be continuous on contours around the origin, we can choose

ε(z) = zn+1, and we expect

Jn(z) = T (z)zn+1 (2.53)

to generate the transformation z → z − zn+1, as was the case for classical CFT. The

relation with the operators Ln is given by the normalisation

Ln =
1

2πi

∮
dzzn+1T (z), (2.54)

where we can verify the normalisation by comparing with the classical case. To do this,

we compute the commutator [Ln, Lm]. We can do this using contour integration and the

OPE expanstion of T (z) with itself, and a straightforward calculation leads to

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn,−m (2.55)

which is known as the Virasoro algebra. The conformal anomaly c appears only on the

right hand side of these commutators, and commutes with every element of the algebra.

It is the central extension of the de Witt algebra we encountered for classical conformal

invariance, and is more commonly known as the central charge. The same commutation
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relations hold for the anti-holomorphic generators. Notably, the generators of global

conformal transformations L−1, L0, L1 are unaffected by this central extension. Given

this algebra, it is important to find its representations, much like we do for the angular

momentum algebra. In this case, we label states by the maximally commuting set of

operators J2 and Jz. Such a set is called a Cartan subalgebra, and for the case of the

Virasoro algebra we will choose L0 and c to label the representations.

2.3.1 Unitarity

Given that this thesis considers non-unitary CFT, a note on unitarity is in order. A

representation of the Virasoro algebra is called unitary if all generators Ln are realised

as operators acting on a Hilbert space, with the additional constraint that L†n = L−n.

The latter condition enforces the energy momentum tensor to be a Hermitian operator.

Non-unitary representations have also been studied in the last decades, in particular in

the context of statistical mechanics, which is also the context in which it surfaces in this

thesis. These representations still consist of states in a Hilbert space (with positive norm,

by definition of a Hilbert space), but the requirement L†n = L−n is dropped.

2.3.2 Virasoro representation theory

We define a highest weight representation as a representation containing a state with

a smallest value of L0. Not all representations have this property, but it is reasonable

to expect this in a physical theory since L0 + L̄0 is the Hamiltonian, which is usually

bounded from below. The terminology “highest weight” for representations containing a

state with lowest energy is perhaps unfortunate, but standard. If we have a state which

is an eigenvector of L0

L0 |ψ〉 = h |ψ〉 , (2.56)

we see that when we act on it with Ln:

L0Ln |ψ〉 = (LnL0 − nLn) |ψ〉 = (h− n) |ψ〉 , (2.57)

the eigenvalue of |ψ〉 is lowered by n, and Ln with n > 0 can be interpreted as a raising1

operator. If |h〉 is a highest weight state, then by definition, we have

Ln |h〉 = 0 for n > 0. (2.58)

Suppose now we have the operator L0 acting on the heighest weight state |h〉 creating a

state |h〉′, then we have for operartors Ln with n > 0

Ln |h〉′ = LnL0 |h〉 = (L0 + n)Ln |h〉 = 0, (2.59)

1We are really lowering the value of h, so the name is again unfortunate but standard.
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which means that L0 maps highest weight states to highest weight states. For the unitary

models, L0 is Hermitian, and therefore we can diagonalise it on the highest weight states:

L0 |h〉 = h |h〉 (2.60)

Ln |h〉 = 0 for n > 0. (2.61)

The other states in the representation are then generated by the negative modes Ln, n < 0

acting on the highest weight state; these are called descendant states. For the non-unitary

models, L0 is no longer Hermitian, and we can no longer diagonalise it on the highest

weight representations; the best we can do is bring it into Jordan normal form. Assuming

we have a Jordan block of rank r and s ∈ {0, . . . , r− 1}, one can show that we have [16]

L0 |h; s〉 = h |h; s〉+ (1− δs,0) |h; s− 1〉 (2.62)

Ln |h; s〉 = 0 for n > 0. (2.63)

The representation theory for non-unitary CFT is considerably more difficult than the

unitary case, but we note that for s = 0 we recover an irreducible subrepresentation

of the algebra which is identical to the unitary case. The other representations with

s 6= 0 are called logarithmic partners and a full description of a non-unitary CFT has to

include these representations, but we will not need them for our discussion. We end by

noting that the discussion is the same for the anti-holomorphic representations, and since

the holomorphic and anti-holomorphic parts decouple the combined representations are

simply the tensor product of the two.

2.3.3 The vacuum

We define the vacuum by the condition that it has to respect the maximum number

of symmetries, or that it has to be annihilated by the maximum number of conserved

charges. We would like to impose Ln |0〉 = 0 ∀n, but due to the conformal anomaly this

is not possible. The maximal number of symmetries we can impose is

Ln |0〉 = 0, for n ≥ −1, (2.64)

which implies that the vacuum is a highest weight state.

2.3.4 States and fields

There is a simple connection between highest weight states and conformal fields, known

as the state-operator correspondence. We consider a conformal field φ(w, w̄) with weights
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h and h̄, and compute the commutator with Ln:

[Ln, φ(w, w̄)] =
1

2πi

∮
dzzn+1T (z)φ(w, w̄) (2.65)

= h(n+ 1)wnφ(w, w̄) + wn+1∂wφ(w, w̄), (2.66)

which vanishes for w = 0 and n > 0. If we now define

|h, h̄〉 = φ(0, 0) |0〉 , (2.67)

we see that this is a highest weight state and because

[L0, φ(0, 0)] = hφ(0, 0), (2.68)

and the same for the anti-holomorphic sector, the notation is justified. The highest

weight states are therefore also called Virasoro primaries, because they can be created by

primary fields acting on the vacuum. For the descendant states, we consider the OPE of

the energy momentum tensor with the same φ(w, w̄):

T (z)φ(w, w̄) =
∑
k≥0

(z − w)k−2φ−k(w, w̄) (2.69)

and project out a term from this sum by

φ−k(w, w̄) =
1

2πi

∮
dz

1

(z − w)k−1
T (z)φ(w, w̄). (2.70)

We then find

φ−k(0, 0) |0〉 =
1

2πi

∮
dz

1

zk−1
T (z)φ(0, 0) |0〉 = L−kφ(0, 0) |0〉 , (2.71)

so that φ−k(0, 0) generates the L−k descendant of |h, h̄〉.

2.3.5 Minimal models

The class of models that we will be considering are the minimal rational CFTs. These

have a finite number of irreducible representations for unitary CFTs2 where all conformal

dimensions and the central charge are rational numbers that can be calculated from

consistency conditions [12]. For these models, the Verma modules3 V (c, h) can be shown

to contain null states, which can be quotiented out4 to arrive at irreducible representation

2For the non-unitary CFTs, we get also an infinite number of logarithmic indecomposable represen-

tations, but we only consider the non-logarithmic irreducible representations [17,18].
3Subspaces of the Hilbert space generated by a primary and its descendants, closed under the Virasoro

algebra therefore forming representations or more correctly, modules
4For non-unitary models, this is more subtle; we do not go into details, but refer again to [17,18].
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M(c, h), the building blocks of minimal models. The central charge for such models is

given by

c = 1− 6
(p− q)2

pq
(2.72)

where q and p are coprime integers larger than 1. The conformal dimensions of the

irreducible representations are given by

hr,s =
(pr − qs)2 − (p− q)2

4pq
, (2.73)

with r, s integers such that 1 ≤ r ≤ q − 1 and 1 ≤ s ≤ p − 1. We denote the minimal

model by M(p, q). A generic Hilbert space looks like [19]

H =
⊕
h,h̄

M(c, h)⊗ M̄(c, h̄), (2.74)

but the particular way of combining the components of a minimal model in the tensor

product is not obvious and governed by modular invariance, as we will see later when

studying CFT on a torus. An example would be to associate the anti-holomorphic module

to the holomorphic module, which are known as the diagonal models:

H =
⊕
r,s

M(c, hr,s)⊗ M̄(c, h̄r,s). (2.75)

Examples include the Ising model M(4, 3) and the Yang-Lee edge singularity M(2, 5).

For a unitary CFT we should have |p − q| = 1 since this guarantees that all conformal

weights are positive, and we see that the Ising model is unitary while the Yang-Lee edge

singularity is not.

2.4 CFT on a torus

In this final section we want to address which ground states can actually occur in a CFT.

Once we know these, we have completely specified the set of states in the theory; they

consist of the ground states and all their descendants generated by the Virasoro algebra,

minus all the null states. We have seen that on the infinite plane, the holomorphic and

anti-holomorphic sectors of a CFT completely decouple and can be studied seperately.

This situation is very unphysical however, as it only exists at the fixed point in parameter

space (the point where we have conformal invariance) and for the infinite plane geometry.

In order to impose physical constraints on the coupling between the holomorphic and anti-

holomorphic content of a CFT without leaving the fixed point, we are forced to couple

these two sectors through the geometry of the space on which the theory is defined.

The infinite plane is topologically equivalent to a sphere, a Riemann surface of genus 0.
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We could study the CFT on a surface of arbitrary genus, but in the context of critical

phenomena that are often described by a lattice with periodic boundary conditions in

both directions, we will consider the torus.

2.4.1 Parametrising the torus

We first describe how we parametrise the torus, which we imagine being constructed

by gluing together the two ends of a cylinder. We can then describe the torus as a

parallelogram in the complex plane where we identify the opposing edges. This is more

general than considering a rectangle, and is due to the fact that we allow ourselves to

twist one end of the cylinder before gluing it to the other one. We can choose our

coordinates such that one of the edges of the parallelogram is aligned with one of the

axes and additionally has unit length. The torus is then fully described by specifying the

other edge with a complex number we call τ , as shown in Figure 2.1

Im

Re

τ

1

Figure 2.1: The parallelogram is completely parametrised by specifying one point in the

complex plane, denoted τ . If we interpret the complex plane modulo the basis vectors 1

and τ this corresponds to a torus.

2.4.2 The partition function

In 1D quantum mechanics, the partition function is given by a Wick rotation of the path

integral,

Z =

∫
PBC

D[q]e−SE(q) = Tr e−βH , (2.76)

where the integration is over all paths q(y), with y the Euclidean time coordinate, that

satisfy periodic boundary conditions q(0) = q(β). The 2D version of this on the torus is an

integration over all field configurations, where we regard the real axis of the parallelogram

as the x direction and the imaginary axis as the y direction. For Re(τ) = 0, i.e. without

twisting the torus, we get ∫
Dφe−SE(φ) = Tr e−2πIm(τ)H . (2.77)
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The factor 2π appears for consistency with previous conventions. If we now twist the

torus, the periodic boundary conditions are shifted in the x direction after going around

the torus once. Such a shift is generated by the momentum operator P , and including

twists, the partition function becomes

Z = Tr e−2πIm(τ)H+2πiRe(τ)P . (2.78)

The operators H and P are the time and space translation operators on the cylinder,

and they can be derived from the energy-momentum tensor. We have defined the energy-

momentum tensor on the plane, but its transformation to the cylinder is not straightfor-

ward because it is not a conformal field. The details of the derivation are given in [12,13],

and the result is

H = L0 + L̄0 −
c+ c̄

24
, (2.79)

P = L0 − L̄0 +
c− c̄
24

. (2.80)

We have allowed for different values of the holomorphic and anti-holomorphic central

charge, but for sensible theories these are usually equal and we will take them as such

from now on. Defining

q = e2πiτ , q̄ = e−2πiτ̄ , (2.81)

the partition function can be written as

Z = Tr qL0−c/24q̄L̄0−c/24 (2.82)

The trace runs over all primary fields and their descendants, and we can write

Z =
∑
h,h̄

Mh,h̄χh(q)χh̄(q̄), (2.83)

where we have defined the Virasoro characters as

χh(q) = q−c/24+h

∞∑
N=0

dh(N)qN . (2.84)

Here, dh(N) denotes the degeneracy of the representation at level N . The possible de-

scendants in the characters are constrained by the fact that they should have a positive

norm. This condition is expressed by stating that the Kac determinant should be pos-

itive [12, 13]. This is the determinant of the Gram-matrix, the matrix containing all

possible inner products between all descendants at some level N . A discussion falls well

beyond the scope of this thesis; we only give the expansion for (a subset of) the charac-

ters from the 3-state Potts modelM(6, 5) relevant in chapter 5 and the characters of the

Yang-Lee edge singularity M(5, 2), taken from table 8.1 in [12].
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hr,s qc/24−hχhr,s(q)

M(6, 5) h1,1 = 0 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + . . .

h2,1 = 2/5 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + . . .

M(5, 2) h1,1 = 0 1 + q2 + q3 + q4 + q5 + 2q6 + . . .

h1,2 = −1/5 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + . . .

Table 2.1: The low-q expansions of two characters of the 3-state Potts model and the

characters of the Yang-Lee edge singularity up to order 6.

2.4.3 Modular invariance

We have defined the torus in terms of two basis vectors 1 and τ spanning a parallelogram

in the complex plane, where we identified opposing edges. It is clear that these choices of

basis vectors is not unique, and we can construct the same torus by taking for example the

basis vectors 1 and 1 + τ instead. We have another transformation that leaves the torus

invariant, but it is a little more difficult to see. We note that we chose one of the basis

vectors along the real axis and rescaled it to 1. This choice is arbitrary, and transforming

between these two boils down to replacing τ by −1/τ . These two transformations,

T : τ → τ + 1 (2.85)

S : τ → −1

τ
(2.86)

generate a group, called the modular group. The characters transform in a simple way

under T :

χh(τ + 1) = e2πi(h−c/24)χh(τ), (2.87)

which we can write in matrix form as

χhi(τ + 1) =
∑
j

Tijχhj(τ), (2.88)

with T a diagonal matrix of phases. The transformation S is much harder to compute,

but since it is a basis transformation, we can also write it as

χhi

(
−1

τ

)
=
∑
j

Sijχhj(τ), (2.89)

with S a unitary symmetric matrix. In order for the partition function to be invariant

under modular transformations, we must have

[M,T ] = [M,S] = 0, (2.90)

with the additional condition that there exists a unique vacuum labelled by 0 so that

M00 = 1. This strongly restricts the possible matrices M , and it is this modular invariance
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that dictates how the holomorphic and anti-holomorphic sectors of the model couple to

each other. The simplest solution is M = 1, the so called diagonal models, in which

case it is easy to show that all the conformal spins s = h − h̄ should be integer. This

is no longer true for non-diagonal models, which we will encounter in chapter 5 where

we do not use periodic boundary conditions but rather topological conformal defects that

introduce a topological correction to the conformal spin.
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Chapter 3

Topological order and Matrix

Product Operators

Topological order is a vast subject that has its conception in the study of the experimental

observations of superconductivity and the (fractional) quantum Hall effect. It has been

rich source of interesting physics for well over 30 years, and it netted its founders Thouless,

Haldane and Kosterlitz the Nobel prize in Physics 2016 [20]. In this chapter we will briefly

describe some features of topological order in quantum many-body systems relevant to

this thesis by considering the simplest model in which it occurs. We will subsequently

build up the theory of Projection Matrix Product Operators (PMPO’s), which is the

tensor network description of topological order, following the exposition of [6].

3.1 The toric code

We will only consider topological order in the context of lattice models. The effective

field theories that are the continuum limit of these lattices form the subject of topological

quantum field theory (TQFT), but a discussion falls beyond the scope of this thesis. The

model we describe here is called the toric code, and it was first introduced by Kitaev

in 1997 in the context of fault-tolerant quantum computing [21]. Consider a 2D N ×N
lattice, where we take periodic boundary condition in both directions, i.e. we identify

the opposing edges. This gives the lattice the topology of a torus, which is where the

model gets its name. We now place a spin (or qubit) degree of freedom on each edge (not

vertex!) of the lattice, described by the vector operator σi, with its components being the

three Pauli matrices. We have the following anticommutation/commutation relations:

{σαi , σ
β
i } = 2δαβ , [σαi , σ

β
j ] = 0, (α, β = x, y, z), i 6= j. (3.1)

24



Bp
As

Figure 3.1: The operators As and Bp acting on the spins living on the edges of the lattice.

For each of the N2 vertices s and N2 faces p, we define the operators

As =
∏
j∈s

σxj , Bp =
∏
j∈p

σzj , (3.2)

where we have used the notation j ∈ s and j ∈ p to denote the edges touching the vertex

s and the boundary edges of face p respectively. Graphically, these operators are depicted

in Figure 3.1. Due to the fact that these operators consist of an even number of anti-

Hermitian commuting Pauli matrices, the operators As and Bs are Hermitian operators

with eigenvalues ±1. We associate a Hamiltonian to this system of the form

H = −
∑
s

As −
∑
p

Bp, (3.3)

and the total Hilbert space is 22N2
dimensional because we have 2N2 spins. The set of

operators As all commute with one another, as do the set of operators Bp. Furthermore,

we have that

[As, Bp] = 0, ∀s, p (3.4)

since As and Bp have either 0 or 2 edges in common. This means that the combined set

of operators can be simultaneously diagonalised, and any eigenstates of the Hamiltonian

can be specified by its eigenvalues of the set of operators As and Bp. In particular, the

ground state is a common eigenstate of all the As and Bp with As = Bp = 1. At first

glance, this provides us with 2N2 conditions on 2N2 degrees of freedom, which uniquely

determines the ground state. We note however that because we work on a torus, the

identification of the opposing edges leads to the following conditions on the operators As

and Bp: ∏
s

As = 1,
∏
p

Bp = 1, (3.5)

since in each of these products we have counted each link exactly twice and any of the

Pauli matrices square to the identity. These two conditions imply that the number of

independent operators is really 2N2 − 2. This means that for the ground state there are
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Figure 3.2: (a) The excitations e and m created in pairs by the operators σz and σx

respectively. (b) A pair of e charges connected by a string of σz operators.

two spin degrees of freedom left so that the dimensionality of the ground state manifold

is given by

22N2−(2N2−2) = 4. (3.6)

This degeneracy is simply a consequence the fact that we are working on a non-trivial

topology, and this ground state degeneracy turns out to be a general feature of systems

exhibiting topological order. We now consider the two types of excitations in this model;

we have

1. As = −1 corresponding to an electric charge e living on a vertex of the lattice

2. Bp = −1 corresponding to a magnetic vortex m living on a face of the lattice (or

equivalently a vertex of the dual lattice)

Condition 3.5 implies that both the electric charges e and the magnetic vortices m must

always be created in pairs. The creation operators of the charges and the vortices cor-

respond to the local operators σz and σx respectively, as can be easily seen from Figure

3.2a. If we now consider strings of operators σz and σx,∏
i

σzi ,
∏
i

σxi , (3.7)

where the index i runs over the edges of some connected path, we see that these operators

create and move excitations along the path. The product of σz operators along a path is

depicted in Figure 3.2b. Importantly, a closed string of σz operators commutes with the

Hamiltonian: it creates, moves and annihilates two electric charges. We can see this by

noting that for a closed loop, every vertex must have either 0 or 2 σz operators acting on

it, which means that they commute with all of the As operators. The same conclusion
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x

y

Figure 3.3: Torus with two non-contractible loops in the y and x direction

holds for the magnetic vortices, and we note that any topologically trivial (contractible)

loop can be written as a product of the operators As, Bp. Considering now again the

ground state, with As = Bp = +1 for all s and p, we see then that these closed loops act

as the identity on the ground state, and that by acting with the operators As and Bp we

can freely deform these loops without changing the energy. The only non trivial closed

loop operators are the loops that go around a non-contractible cycle of the torus, shown

in Figure 3.3. Assuming we work in the σz basis, we have 4 possible configurations:

1. No non-contractible loops of σz operators

2. A non-contractible loop of σz operators in the x-direction

3. A non-contractible loop of σz operators in the y-direction

4. Two non-contractible loop of σz operators, one in the x-direction and one in the

y-direction.

These four configurations correspond to the 4 degenerate ground states of the model,

and they can not be transformed into each other by applying local operators. We note

that a closed contractible loop of operators can be deformed to 2 non-contractible loops

both in either the x- or y-direction, so it is really the number of non-contractible loops

in the x- and y-directions modulo 2 that label the 4 different ground states. The fact

that we cannot transform between the different ground states with local operators is also

a general feature of topological phases, and it is this robustness against local operations

that makes them interesting for storing quantum information [21,22].

3.1.1 Anyons

We now consider what happens when we take two excitations and rotate them around

each other. Due to the fact that the excitations are connected with strings of either

σz or σx, we are really looking at what happens when we braid these strings with each

27



other. Because the σz and σx commute with themselves, the charges e and vortices m

are bosonic with respect to themselves. If we take a vortex around a charge however,

the wave function picks up a minus sign due to the fact that the σz and σx anticommute

on the link where the two strings cross each other. This process is shown graphically in

Figure 3.4.

e e

m m

e e

m m

Figure 3.4: The braiding of a vortex m around a charge e results in an overall minus sign

for the wave functions.

This result for the mutual statistics is neither bosonic nor fermionic statistics, and we are

forced to conclude that the e and m particles are anyons ; particles that are not restricted

to ±1 under exchange. These exist only in 2D systems because in higher dimensions the

rotation of two particles around each other, which corresponds to swapping them twice,

can always be deformed to the identity operator. The particles e and m are clearly their

own antiparticles since they are always created in pairs, and we can write this in terms

of fusion rules as

e× e = 1, m×m = 1, (3.8)

where 1 denotes the vacuum. We can also construct a non-trivial particle composed of a

charge and a vortex, which we will denote as

e×m = ψ (3.9)

where ψ has fermionic self-statistics due to the mutual statistics of the charges and

vortices. These anyonic excitations are again a general feature of systems exhibiting

topological order. To summarise, we have the following general properties for these

systems:

1. A ground state with a degeneracy that depends on the topology of the system

2. Different ground state sectors that can not be transformed into one another by local

operation

3. Particles with fractional statistics called anyons created an annihilated with string-

like operators that can be moved freely through the lattice
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3.2 Matrix product operators and fusion categories

In this section, we give a tensor network description of topological order. We will see

that given some input fusion category, we can construct a set of MPOs that satisfies this

fusion algebra, and that these MPOs can be fused to each other with fusion tensors. From

this we construct a PEPS lattice such that these MPOs can be moved freely through the

lattice. Finally, we will construct the different topological sectors corresponding to the

topological models. To briefly illustrate before delving into the full theory, we get a bit

ahead of ourselves and consider again the toric code. The input fusion category is simply

the group Z2 represented by the identity and σz, and the MPOs and fusion tensors are

= I, = σz,0 1

0

0

0

0

1

1

0

1

1

1

1

0= = = = 1.

(3.10)

With this, we can construct a four dimensional ground state manifold by considering

a second type of algebra and calculating its irreducible representations, which we then

identify with the topological sectors of the model. The basis elements of this second type

of algebra are given by

0
00

0

0
11

0

1
00

1

1
11

1 (3.11)

The red tensor can be interpreted as the intersection of two non-contractible loops, and

we see that these basis elements correspond to the earlier definition of the degenerate

ground states in terms of non-contractible loops in the x- and y-direction. The irreducible

representations of this algebra correspond to the topological sectors that we can then

identify with the four types of anyonic excitations in the model: 1, e, m and ψ. In the

remainder we build up the full theory of PMPOs and see how it can describe a large class

of models exhibiting topological order, but it will help to keep the toric code in mind to

give a more concrete interpretation to the concepts we will introduce.

3.2.1 Projector Matrix Product Operators

We start by considering the most general form of a translation invariant Matrix Product

Operator (MPO), given by

PL =
D∑

{i},{j}=1

tr
(
∆Bi1j1 . . . BiLjL

)
|i1 . . . iL〉 〈j1 . . . jL| . (3.12)
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In this expression, for every pair of indices i, j = 1, 2, . . . D, with D the dimension of

Hilbert space, Bij is a χ × χ matrix and ∆ is a matrix such that changing its point of

insertion leaves the MPO unchanged. We now impose that there exists a canonical form

of the MPO, where the individual tensors assume a block diagonal structure:

Bij =
N⊕
a=1

Bij
a , (3.13)

∆ =
N⊕
a=1

∆a, (3.14)

where both Bij
a and ∆a are now χa × χa matrices such that

N∑
a=1

χa = χ (3.15)

with N the number of blocks in the block decomposition of the MPO. In this canonical

form, the MPO becomes a sum of MPOs

PL =
N∑
a=1

D∑
{i},{j}=1

tr
(
∆aB

i1j1
a . . . BiLjL

a

)
|i1 . . . iL〉 〈j1 . . . jL| . (3.16)

If we now impose that the ∆a commute with every Bij
a , we have a sufficient condition

for translation invariance of the MPO. The fact that the Bij
a can not be decomposed into

smaller blocks implies that the MPOs labelled by a are injective, or equivalently that for

every a the matrices {Bij
a } := {Bij

a : i, j = 1, 2, . . . , D} span the entire space of χa × χa
matrices. This then implies that ∆a has to be proportional to the identity on the space

of χa × χa matrices,

∆a = wa1χa , (3.17)

with wa some complex number associated to the block labelled by a, which we will

henceforth refer to as weights. We finally arrive at the following form for the MPO:

PL =
N∑
a=1

wa

D∑
{i},{j}=1

tr
(
Bi1j1
a . . . BiLjL

a

)
|i1 . . . iL〉 〈j1 . . . jL| (3.18)

=
N∑
a=1

waO
L
a . (3.19)

We now require the MPO constructed in the previous section to be a projector,

P 2
L =

N∑
a,b=1

wawbO
L
aO

L
b =

N∑
a=1

waO
L
a = PL. (3.20)
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Since this has to hold for every L (and in particular, for L → ∞), the fundamental

theorem for injective MPS [23] (which generalises to MPOs by grouping the indices i, j

into one index) implies that the matrices Ba that build up PL and P 2
L are the same.

This then leads to the following relationship for the injective MPOs that build up the

projector [6, 24]:

OL
aO

L
b =

N∑
c=1

N c
abO

L
c . (3.21)

From this, we can derive the following condition on the weights,

N∑
a,b=1

wawbO
L
aO

L
b =

N∑
a,b,c=1

wawbN
c
abO

L
c =

N∑
c=1

wcO
L
c

⇒
N∑

a,b=1

wawbN
c
ab = wc. (3.22)

The fact that eq. 3.21 has to hold for every length L restricts the rank three tensor N c
ab

to integer values, from which it follows that the MPOs Oa form a fusion ring [24]. The

objects N c
ab are known as fusion rules or fusion multiplicities. For the purpose of this

thesis, it suffices to restrict to the case where the fusion multiplicities are either 0 or 1.

This will significantly simplify the notation, but it should be stressed that the framework

in this chapter was developed in [6] for fusion multiplicities greater than unity.

3.2.2 Fusion tensors

From the theory of MPS representations [25] and eq. 3.21, it follows that there exist

matrices called fusion tensors :

Xc
ab : Cχa × Cχb → Cχc , (3.23)

with left inverses Xd+
ab such that

Xd+
ab X

c
ab = δdc1χc , (3.24)

so that, on the level of the individual matrices Ba that constitute OL
a , we have

Xc+
ab

(
D∑
j=1

Bij
a ⊗B

jk
b

)
Xc
ab = Bik

c . (3.25)

As noted in [6],

Xd+
ab

(
D∑
j=1

Bij
a ⊗B

jk
b

)
Xc
ab (3.26)

31



can be non-zero for c 6= d, which has no influence on the MPO when closed by tracing,

but prevents us from writing

N∑
c=1

Xc
abB

ik
c X

c+
ab =

D∑
j=1

Bij
a ⊗B

jk
b . (3.27)

For the remainder of this thesis, we will assume that 3.26 is zero for c 6= d, and we note

that we can rewrite 3.27 as(
D∑
j=1

Bij
a ⊗B

jk
b

)
Xc
ab = Xc

abB
ik
c , (3.28)

Bik
c X

c+
ab = Xc+

ab

(
D∑
j=1

Bij
a ⊗B

jk
b

)
. (3.29)

These latter two equations will be referred to from now on as the zipper condition. We

are now at a point where we can introduce the graphical language for the (P)MPOs and

the fusion tensors that will be used extensively in this thesis. The diagrams that we use

are shown in Figure 3.5. The matrices building up the MPOs are represented by black

circles, where the red line carries the label a of the block the MPO Oa belongs to and

represents the matrix indices, while the black lines carry the indices i and j. The matrices

building up the PMPO are represented in a similar way but with a square instead of a

circle, indicating that they are weighted sums of the matrices building up the MPOs.

The fusion tensors are shown satisfying the zipper condition, where we only have one

unlabeled type of fusion tensor specified by its virtual index labels, in contrast to the

more general setting of [6] with fusion multiplicities greater than one. We will see that

for our purposes the fusion tensor and its inverse will in fact be the same tensor and

therefore the diagrams can simply be flipped, but this is certainly not true in general.

3.2.3 Hermiticity of the PMPO

We now require the projector PL to be Hermitian for all L. This condition enforces

unitarity of the resulting theory, and we will see in the next chapter that we have to

weaken this constraint in order to describe non-unitary fusion categories. We find that

PL = P †L
N∑
a=1

waO
L
a =

N∑
a=1

w̄aO
L†
a

implies that for every label a there exists some label a∗ such that

w̄a = wa∗ , (3.30)(
OL
a

)†
= OL

a∗ , (3.31)
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Figure 3.5: Diagrammatic convention for (a) the MPOs, (b) PMPOs and (c) the fusion

tensors satisfying the zipper conditions.

where the bar denotes complex conjugation and the dagger is defined with respect to the

physical indices. We now again invoke the fundamental theorem of MPS to state that

the tensors B̄ji
a and Bij

a∗ , the building blocks of OL†
a and OL

a∗ respectively, are related by

a gauge transformation

Bij
a = Z̄−1

a B̄ji
a∗Z̄a, (3.32)

which applied twice yields

Bij
a = Z̄−1

a Z−1
a∗ B

ij
a Za∗Z̄a. (3.33)

From the injectivity of {Bij
a } we see that Za∗Z̄a has to be proportional to the identity, or

more precisely

Za∗Z̄a = Z̄aZa∗ = γa1, (3.34)

with γa some complex number for which γa = γ̄a∗ . For a = a∗ we can at most absorb

the absolute value of γa in the definition of the gauge matrices, and the remaining signs

χa = sign(γa), for each label a, are discrete invariants of the PMPO.

3.2.4 The pentagon equation

The multiplication of two MPOs is associative,(
OL
aO

L
b

)
OL
c = OL

a

(
OL
b O

L
c

)
, (3.35)

which implies that on the level of the tensors B that build up these MPOs we have two

options:
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1. We fuse Bij
a and Bjk

b to Bik
e , which we then fuse with Bkl

c to obtain Bil
d

2. We fuse Bjk
b and Bkl

c to Bjl
f , which we then fuse with Bij

a to obtain Bil
d

These two options are shown graphically in Figure 3.6 on the left and right hand side

respectively.

=
d

e b

a

e

d

c

d

f

c

b

a

f

d

Figure 3.6: Two equivalent ways of fusing three MPOs. We have omitted the labels on

the fusion tensors to simplify notation, as they are completely determined by their labels

and the orientation in the diagram.

For PMPOs satisfying the zipper conditions, we can write down the following identity

∑
de

∑
df

=

a

b

c

e
d

e
a

b

c

a

b

c

a

b

c

d
f f

(3.36)

We act on both sides with fusion tensors to obtain

∑
d′f

=

a

b

c

e
d

a

b

c

a

b

c

d′

f f
e

d

(3.37)

The injectivity of the B tensors that build up the MPO implies that, when interpreted

as a map from the virtual to the physical indices, these maps have an inverse. Acting

with this inverse on both sides of the previous equation, we find

∑
f

=

a

b

c

e
d

a

b

c

a

b

c

d
f f

e
d

d
d⊗

⊗

(3.38)

This equation implies that there exists a linear transformation between the two different

ways of fusing three MPOs. We denote the second factor of the tensor product on the

right hand side as (
F abc
d

)f
e

:= F abc
def , (3.39)
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a matrix from label e to label f . With this object, which we will call the F-symbol of

the theory, we are able to transform between the two ways to fuse three particles, a

process we will call an F-move. We can now make the connection with fusion category

theory [26,27]: it is well known that the F-symbols have to satisfy a consistency condition

called the pentagon equation. This equation arises from the different paths of F-moves

one can make when fusing 4 labels to a single label, as illustrated in Figure 3.7.

a b c d a b c d

a b c d

a b c d

a b c d

f
g

f

g
h

e

e

e

ee

h

j

i

i
j

Figure 3.7: Schematic representation of the two paths that lead to the pentagon equation.

Written down explicitly, the pentagon equation reads∑
h

F abc
gfhF

ahd
egi F

bcd
ihj = F fcd

egj F
abj
efi . (3.40)

A theorem called the Mac Lane coherence theorem states that the pentagon equation can

be used as the defining equation for the F-symbols, in that it suffices (although this is

very non-trivial in practice) to find the solutions to this equation to completely determine

the F-symbols, given some input fusion rules N c
ab. The F-symbols we obtain this way then

automatically satisfy all other possible consistency conditions [26–28], although it is not

guaranteed that every set of fusion rules leads to a pentagon equation with solutions, in

which case the fusion category is not consistent. We conclude by remarking that there

exists another theorem by the name of Ocneanu rigidity [27, 29], which says that the

algebraic data (N c
ab, F

abc
def , χa) we have derived from the Hermitian PMPO is in many

cases robust. This means that any small deformation of the F-symbols that satisfies the

pentagon equation can be absorbed in the gauge freedom of the fusion tensors,

F abc
def →

f(a, b, e)f(e, c, d)

f(a, f, d)f(b, c, f)
F abc
def , (3.41)

and therefore the PMPOs that satisfy the zipper condition fall into discrete families. We

end this section by mentioning that the sign χa is strongly related to the Frobenius-Schur

indicator in category theory, but a discussion falls beyond the scope of this thesis.
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3.3 MPO-injective PEPS

It was shown in [30,31] that topologically ordered systems (or at least, a subset of them)

can be described by PEPS that exhibit a type of symmetry on the virtual level. This

class of PEPS was termed MPO-injective PEPS, due to the fact that these symmetries

manifest themselves as MPOs on the virtual level that can be moved freely through the

PEPS lattice. This formalism is a generalisation of G-injectivity [32], and it was shown

that all string-net models [33] can be described in terms of MPO-injective PEPS [31].

In this section we will impose the additional requirements on the PMPOs for them to

be usable for the construction of PEPS that satisfy the axioms of MPO-injectivity listed

in [31].

3.3.1 Zipper, unitarity and pivotal structure

We impose three requirements on the PMPOs in order to be able to construct MPO-

injective PEPS. The first of these is the zipper condition we have already encountered

and assumed to be valid in order to be able to derive the F-symbols. The second property

we impose is that there exists a gauge on the internal MPO indices such that the fusion

tensors Xc
ab are isometries,

Xc+
ab = (Xc

ab)
† (3.42)

and the gauge matrices Za are unitary. This requirement restricts the formalism to unitary

fusion categories (UFC), and we will see in the next chapter that we will have to modify

this condition to describe non-unitary fusion categories (nUFC). We now introduce a new

graphical notation for the gauge matrices illustrating that they transform between a label

a and its dual a∗ as discussed in Section 3.2.3:

a∗ a a∗a

a∗a a∗ a

= Za

= Z†a = Z̄a

= ZT
a

(3.43)

The final requirement is that the fusion tensors satisfy the so-called pivotal property :

= Ac
abc

b

a

b

c

aa∗

(3.44)

Where the numbers Acab satisfy

|Acab|2 =
wc
wb

(3.45)
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This property has a deep connection with the pivotal scructure in category theory, and

it is known [27, 29] that every UFC admits a pivotal structure, while for nUFC this is

conjectured in [29]. The left hand side of eq. 3.45 is real and positive, which implies

that all the weights must have the same phase. Combining eq. 3.30 and 3.22 leads to the

conclusion that all wa must be positive. We will see that eq. 3.45 is modified for nUFCs,

and that negative weights will be allowed.

3.3.2 Right- and left-handed MPOs

We need one additional ingredient for defining the MPO-injective PEPS, which is the

notion of left- and right-handed MPOs, necessary for the consistent virtual symmetry

of arbitrary branching structures. The right-handed MPOs are defined as the original

MPOs we used to construct the PMPO,

i

j

aα β =
(
Bija

)
αβ

(3.46)

while we define a left-handed type as the Hermitian conjugate on the physical indices of

the right-handed type,
i

j

aα β =
(
Bija

)†
αβ

(3.47)

Using eq. 3.32, and the fact that the gauge matrices are unitary, we can write the

following graphical relation between the right- and left-handed MPOs:

a a∗a a
=

a a∗a a
=

(3.48)

We have added the arrow to the physical indices merely to keep track of the handedness

of the MPOs, as we will be rotating them to construct PEPS on arbitrary lattices.
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3.3.3 MPO-injective PEPS

We now have everything we need to construct an MPO-injective PEPS. We will work

on a square lattice, but the construction can be done for arbitrary lattices. We begin

by assigning an orientation to every edge in the lattice. We then place a closed PMPO

loop around every vertex, where we choose (for now) the orientation of the internal (red)

indices to be counter-clockwise. We choose right- and left-handed MPOs according to

the edge and internal index orientation, as illustrated in Figure 3.8a.

(a) (b)

Figure 3.8: (a) 2 by 2 square lattice on which the above described procedure has been

applied. (b) The same lattice completed with a tensor A.

Changing the orientation of any of the virtual indices to clockwise amounts to taking the

Hermitian conjugate due to the relation between the right- and left-handed MPOs, and

since we assumed the PMPO to be Hermitian the orientations of the internal indices are

arbitrary. The PMPO rings are connected to each other by placing a maximally entangled

qudit pair on all edges of the lattice (which just amounts to connecting the black lines

in Figure 3.8a). To obtain a PEPS similar to those we have described in Chapter 1, we

can place a tensor

A =
d∑
i=1

D∑
α

Aiα1α2α3α4
|i〉 〈α1α2α3α4| (3.49)

at every vertex acting as an injective map from CD
4

to Cd, which requires d > D4. The

resulting PEPS tensor is shown in Figure 3.8b and satisfies the MPO injectivity axioms

defined in [31], but there it was also argued that all topological properties are captured

by the structure on the virtual level, and therefore we will not be using the tensor A but

rather the more general picture of Figure 3.8a.
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3.3.4 Pulling through equation

A key property that allows the MPO-injective PEPS to describe topological order is the

existence of MPO-symmetries on the virtual level that can be pulled freely through the

lattice. These MPOs are the same MPOs that build up the PMPOs, and for each label

a we have the following identity:

=a a

(3.50)

where we have not assigned an orientation to the external (black) MPO indices, indicating

that this property is valid independently of these orientations. To prove this, we write

the PMPO as the weighted sum of the constituent MPOs, and we use eq. 3.26 with the

zipper condition to write the left hand side of eq. 3.50 as

=

a

a

a

a

c cb b∑
b,c

wc

∑
b,c

wc=
a

(3.51)

where we can then use the pivotal property, the fact that |Acab|2 = wc
wb

and once again eq.

3.26 to write

=

a

a

c b∑
b,c

wc

a

a

c b∑
b,c

wb

a
=

(3.52)

which proves the pulling through property. Variations of eq. 3.50 with different internal

orientations of the MPO and PMPO indices, as well as the case where the MPO connects

to two PMPO tensors on both sides of the equation have completely analogous proofs.
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3.4 The anyon ansatz

A key feature of MPO-injective PEPS is that they can exhibit degenerate ground states

on non-trivial manifolds [31] (i.e. cylinder, torus, ...), a hallmark of topological order.

It was shown in [6, 31] that the ground state PEPS tensor has to have a support space

corresponding to the support of the following tensors,

a

b

c

d

d∗
Aabcd =

(3.53)

if we interpret them as a matrix from the outer to the inner indices. The derivation of

this tensor as presented in [6, 31] is beyond the scope of this thesis, but the models we

will be considering allow for various simplifications, and a proof is given in Appendix

A.1. These tensors form a C∗ algebra as proven in [6] by using F-moves and the pivotal

property,

AhegfAabcd = δga
∑
ij

Ωhjci
hegf,abcdAhjci (3.54)

A†abcd =
∑
e

Θe
abcdAcead∗ (3.55)

and we give an alternative proof for eq. 3.54 without the need for a pivotal structure in

Appendix A.2. We can identify the topological ground state sectors with the irreducible

representations of the algebra spanned by the tensors Aabcd, or more specifically that for

every sector i there exists an minimal central idempotent, which we refer to as the anyon

ansatz, of the form

Pi =
∑
abd

ciabdAabad, (3.56)

PiPj = δijPi, P†i = Pi.

to which we associate a topological sector. The algebra formed by the matrices Aabcd is

an example of what is known in the mathematical literature as Ocneanu’s tube algebra

[34, 35]. We will be denoting the minimal central idempotents graphically as

i

Pi =

(3.57)

where in this case the black blocks represent the sum in eq. 3.56.
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3.4.1 Topological spin

Imagine that we have some region of the PEPS in the topological sector defined by Pi.
This region has one internal MPO-index at its boundary that connects to the blue tensor

in 3.57 when acted upon with Pi, and doing so leaves this region unchanged since Pi is a

projector on the topological sector it defines. If we now rotate this region one full turn,

while leaving the surrounding PEPS unchanged, Pi is transformed to

Pi,2π =
i

(3.58)

due to the fact that we can not freely move the blue tensor in 3.57. We can interpret this

as Pi acting on a matrix 1

R2π =

(3.59)

It is proven in [6] that the matrix R2π is unitary and that its left eigenvectors correspond

to the central idempotents Pi:

i i

= e2πihi

(3.60)

where the eigenvalues of R2π are pure phases due to its unitarity, and we identify hi as

the topological spin associated to Pi. We note that the blocks in the graphical notation

for R2π represent the unweighed sum over all MPO labels, and simply calculating the

eigenvalues of this matrix gives all the possible topological spins in the theory; if we want

to assign them to a specific topological sector, we have to perform the calculation in 3.60.

1This matrix will correspond to the Dehn twist on a torus in Chapter 5
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3.5 Fibonacci fusion category

We now turn to the simplest fusion category with multiple fusion channels (unlike e.g.

the group Z2 for the toric code) to illustrate the concepts introduced so far, and we will

see in the next chapter that this category also allows us to construct an equally simple

nUFC. The unitary category we consider here is the Fibonacci fusion category, which is

defined by specifying that there are two labels, 1 and τ , obeying the following fusion

rules:

1× 1 = 1, τ × 1 = 1× τ = τ , τ × τ = 1 + τ . (3.61)

It can be shown that τ × τ = 1 + aτ only yields consistent solutions to the pentagon

equation for a = 0 and a = 1 [36], so that this is the unique fusion category of this type.

Given these fusion rules we have

N1
11 = N τ

τ1 = N τ
1τ = N1

ττ = N τ
ττ = 1 (3.62)

and 0 for the other components, leading to the following set of equations for the weights:w1 = w2
1 + w2

τ ,

wτ = 2w1wτ + w2
τ .

(3.63)

which can easily be solved to yield

w1 =
1

1 + φ2
≡ d1

d2
1 + d2

τ

, wτ =
φ

1 + φ2
≡ dτ
d2

1 + d2
τ

, (3.64)

where we have introduced the golden ratio φ, the positive root of

φ = φ2 − 1, (3.65)

and d1 = 1, dτ = φ are known as the quantum dimensions in string-net models. The

F-symbols can be obtained from the pentagon equation, and they are given by [6,33,37]

F abc
def = δeabδ

e
cdδ

f
adδ

f
bcF

abc
def , (3.66)

with δkij = 1 if Nk
ij 6=, 0

δkij = 0 if Nk
ij = 0.

(3.67)

The non-trivial components of F are given by the following matrix:

F τττ
τef,Fib =

1

φ

(
1 c−1

√
φ

c
√
φ −1

)
=

1

φ

(
1
√
φ

√
φ −1

)
(3.68)

where c ∈ C is the gauge freedom we have in the F -symbols [38] and subsequently put

c = 1 which brings us in the symmetrical gauge.
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3.5.1 MPOs and fusion tensors

The Fibonacci fusion category is already well understood in terms of string-net models

as introduced by Levin and Wen in [33], and the explicit expressions of the MPOs and

fusion tensors was given in [6, 31, 39]. We will use the convention of [39], which is also

the convention used in the strange correlator of [40] and Chapter 5. The right- and

left-handed MPO tensors are given by

βα

νµ

i

i

a a =
F aµiβαν√
dαdν

=

νµ

βα

i

i

a a

(3.69)

where the 4 sets of three indices should be grouped into 4 regular indices to correspond

to the definition of MPOs we gave previously. The right-handed MPO on the right hand

side is simply the Hermitian conjugate on the external indices of the MPO of the left-

handed MPO on the left hand side, and we used that for the Fibonacci fusion category

the F-symbols are real. These MPOs consist of a two-dimensional block labelled by a = 1

and a three-dimensional block labelled by a = τ , and due to the fact that the F-symbols

have to satisfy 3.66, we have the following possible values for some internal index b:

1-block :

111→ b = 1

τ1τ → b = 2
, τ -block :


1ττ → b = 3

ττ1→ b = 4

τττ → b = 5

. (3.70)

The same conventions hold for the external MPO indices. We will be freely switching

between the string-net and grouped indices, and the transformations are given in eq.

3.70. The fusion tensors are given by

=
F abγαcβ√

dβ
=

a

b

c

α

γ

β

a

b

c

α

γ

β

(3.71)

We take the convention that for every closed loop with some Greek index α we multiply

by a factor of dα, in line with [39] but in contrast to [6] where these factors of quantum

dimensions were included in the MPOs themselves. We will discuss this convention, that

we will call the closed loop convention, as well as the factors of quantum dimensions

appearing in eq. 3.69 and 3.71 in more detail in the next chapter.
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3.5.2 Central idempotents

An algorithm to find the central idempotents of the anyon ansatz algebra is presented

in [6]. We will not elaborate on the details and merely give the results for the Fibonacci

fusion category. There are 7 non-zero basis elements

A1111, Aτττ1, A1τ1τ , A1τττ , Aτ1ττ , Aττ1τ , Aττττ (3.72)

so we expect the algebra to be 7-dimensional. The central idempotents are found to be

P1 =
1√
5

[
1

φ
A1111 +

√
φA1τ1τ

]
, (3.73)

P2 =
1√
5

[
1

φ
Aτττ1 +

1√
φ
e−

4πi
5 Aτ1ττ + e

3πi
5 Aττττ

]
,

P3 =
1√
5

[
1

φ
Aτττ1 +

1√
φ
e

4πi
5 Aτ1ττ + e−

3πi
5 Aττττ

]
,

P4 =
1√
5

[
φA1111 + Aτττ1 −

√
φA1τ1τ +

√
φAτ1ττ +

1

φ
Aττττ

]
.

The central idempotents P1,P2,P3 are one-dimensional, in that they can not be de-

composed further into irreducible non-central idempotents. The idempotent P4 however

is two-dimensional, and it can be written as P4 = P4,1 + P4,τ with P4,1 and P4,τ two

non-central idempotents given by

P4,1 =
1√
5

[
φA1111 −

√
φA1τ1τ

]
, (3.74)

P4,τ =
1√
5

[
Aτττ1 +

√
φAτ1ττ +

1

φ
Aττττ

]
. (3.75)

A d-dimensional idempotent projects onto a d2 dimensional subspace, so that we have

12 + 12 + 12 + 22 = 7, which is indeed the dimension of the algebra. We conclude by

giving the topological spins associated to these idempotents calculated with eq. 3.60:

h1 = 0, h2 = −2

5
, h2 =

2

5
, h2 = 0. (3.76)

These topological sectors can be identified with the quantum double [21] of the Fibonacci

category [41]. This is a general feature for modular categories [42,43], and this will turn

out to be relevant in the CFT continuum limit of these models where we identify the

idempotents with the product of 2 characters.
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Chapter 4

Non-unitary fusion categories

The central question of this thesis is whether the formalism described in the previous

chapter can be extended to include non-unitary fusion categories. These nUFCs are

intimately related to non-unitary CFT 1, and one such connection is made in the next

chapter by the use of a strange correlator [40]. Besides from their theoretical interest,

non-unitary CFTs find application in the description of critical points in certain statistical

mechanics models, with one prominent example being percolation described by a CFT

with vanishing central charge [44,45]. We discuss two applications of nUFCs in the next

chapter.

4.1 Yang-Lee fusion category

We will use the simplest nUFC as a proxy for verifying the MPO formalism for these types

of categories. It is known as the Yang-Lee fusion category, and its CFT counterpart,

known as the Yang-Lee edge singularity, appears in the 2D classical Ising model with

complex magnetic field [12]. This CFT is well studied, and we will be able to use the

CFT literature for verifying the predictions made by the MPO formalism. it should be

stressed that all results have been obtained by using the Yang-Lee fusion category as an

example, and that the proposed modifications have only been validated for this simple

category, but are expected to be valid for a broader range of nUFCs.

4.1.1 Weights and F-symbols

As mentioned in the description of the Fibonacci fusion category, it has an equally simple

non-unitary counterpart that we will use to investigate the PMPO description for nUFCs.

The fusion rules for this category are identical to those of the Fibonacci category, but

1Also called logarithmic CFT in some contexts.
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both the pentagon equation and the equation that determines the weights admit a sec-

ond solution that will give us non-unitary F-symbols and one negative weight. In more

abstract terms, the Fibonacci category is one of two models described by the integer

subset of the quantum deformed group su(2)k. The F-symbols for the su(2)k theory are

calculated in [46] as generalisations of the Wigner-6j symbols and are given for su(2)3

by [37]

F τττ
τef =

 1
q−1+1+q

1√
q−1+1+q

1√
q−1+1+q

q−1−1+q
q−1+q

 , (4.1)

where q = e
2πi
5 and q = e

4πi
5 , both roots of q5 = 1, correspond to the Fibonacci and

Yang-Lee fusion category respectively. For the Fibonacci case, this result corresponds to

the symmetric F-symbol we used in the previous chapter where it was given in terms of

the golden ratio φ. Similarly, we can express the Yang-Lee F-symbol as

F τττ
τef,YL =

(
−φ i

√
φ

i
√
φ φ

)
(4.2)

and we see that going from the Fibonacci to the Yang-Lee F-symbol comes down to the

transformation

φ→ −1

φ
≡ φ′, (4.3)

where φ′ is also a root of eq. 3.65. Both in transforming between the two values for q

and as in eq. 4.3 we go from one root of an algebraic equation to another. This process

is known as Galois conjugation [37, 38], and we say that the Fibonacci and Yang-Lee

fusion categories are Galois conjugates of one another. The Yang-Lee F-symbol is still

symmetric, but it is no longer unitary,(
F τττ
τef,YL

)†
F τττ
τef,YL 6= 1, (4.4)

which is why we refer to it as a non-unitary fusion category. The equation that defines

the weights, eq. 3.30, also admits another solution that also can be written in terms of

φ′:

w1 =
1

1 + φ′2
, wτ =

φ′

1 + φ′2
, (4.5)

where wτ is negative, also an indicator of nUFCs. If we define the right-handed MPOs in

the same way as for the Fibonacci case, but with the Yang-Lee F-symbol, we find that

they still satisfy the algebra on the level of the MPOs:

O1O1 = O1, O1Oτ = OτO1 = Oτ , OτOτ = O1 +Oτ , (4.6)

which is ultimately due to the fact that φ and φ′ have the same algebraic properties. This

is certainly reassuring in our attempt to describe a nUFC in the PMPO formalism. In

46



the previous chapter, we already hinted to the modifications that will need to be made

to accommodate these non-unitary theories, and these modifications are the subject of

the following sections.

4.1.2 Hermiticity of the PMPO

In the previous chapter we derived that imposing the PMPO to be Hermitian implied

the existence of a gauge transformation between an MPO tensor B̄ji
a and its Hermitian

conjugate Bij
a∗ , written down explicitly in eq. 3.32. We will now show that this is no

longer true for the Yang-Lee category. Two MPOs A and B are equivalent up to a gauge

transformation on the virtual indices if and only if the transfer matrix

E(A,A) =
∑
ij

AijĀij =

A

Ā
, (4.7)

where the bar denotes complex conjugation, and the mixed transfer matrix

E(A,B) =
∑
ij

AijB̄ij =

A

B̄
(4.8)

have the same eigenvalues [23]. The black arrows here do not have the interpretation of

indicating handedness of the MPO (for this, an arrow on the internal MPO index would

also be required), but merely indicate that we are using 1 MPO type (for our purpose,

the right-handed Yang-Lee MPO tensor) and we have rotated one of them 180°. We have

verified that the eigenvalues of the regular and the mixed transfer matrices are indeed

equal for the Fibonacci MPO tensors, but not for the Yang-Lee MPO tensors, from which

we conclude that we can not demand the PMPO to be Hermitian.

4.1.3 Symmetric PMPOs

In the previous chapter we used the Hermiticity of the PMPO to derive the existence of

left- and right-handed MPOs. For the Fibonacci model, taking the Hermitian conjugate

simply amounts to taking the transpose due to the fact that for this model all the F-

symbols are real. Inspired by this, we require the PMPO to be symmetric instead of

Hermitian:

(PL)T = PL (4.9)
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which for each label a requires the existence of a label a∗ such that

wa = wa∗ ,(
OL
a

)T
= OL

a .

This now implies that the tensors building up
(
OL
a

)T
and OL

a are related by a gauge

transformation Za, which for the Yang-Lee category turns out to be the same as the

gauge transformation for the Fibonacci category.

4.1.4 MPO-injective PEPS

We thus propose the following form for the left-handed MPOs; given that the right-handed

MPOs are still given by
i

j

aα β =
(
Bija

)
αβ

, (4.10)

we now define the left-handed types to be the transpose on the physical indices of the

right-handed type,
i

j

aα β =
(
Bija

)T
αβ

. (4.11)

Equipped with this new notion of right- and left-handed MPOs, and the gauge transfor-

mation Za between them, we can investigate the other assumptions needed to construct

MPO-injective PEPS. The first of these was that the zipper condition holds, which is

still the case for the Yang-Lee category since the zipper equation for string-net models

is really the pentagon equation in disguise. The second assumption, that there exists a

gauge on the internal MPO indices such that the fusion tensors are isometries, has to be

dropped and eq. 3.42 has to be replaced by

Xc+
ab = (Xc

ab)
T , (4.12)

and in this gauge the gauge matrices are now orthogonal instead of unitary. The final

property we need is the pivotal structure; we find that the Yang-Lee fusion tensors do

indeed satisfy the pivotal property with the gauge matrices proposed above, with the

change that eq. 3.45 has to be modified to

(Acab)
2 =

wc
wb

(4.13)

48



As already noted, these gauge matrices are the same for both the Fibonacci and Yang-Lee

models, and in the convention of eq. 3.70, these gauge matrices are given by

Z1 =

(
1 0

0 1

)
, Zτ =

0 1 0

1 0 0

0 0 1

 (4.14)

which graphically amounts to switching the outer 2 lines, which can also be seen in (3.69).

With this we have all the elements to prove the pulling through property just like we did

for the unitary case. We note that the pulling through equation always must involve both

types of MPOs, for example in

=a a

(4.15)

we have 3(4) right(left)-handed MPOs on the left hand side, and 2(3) right(left)-handed

MPOs on the right hand side. We have verified this and all possible variations of this

equation, which indicates that the new relation we proposed between the right- and

left-handed MPOs is indeed correct.

4.1.5 Central Idempotents

Just like the for the unitary categories, the ground state tensors are still given by the

support of the tensors Aabcd as defined in the previous chapters. These tensors still form

an algebra for the Yang-Lee category, but it is no longer closed under Hermitian con-

jugation which means that it is no longer a C∗ algebra. We can however still look for

the irreducible representations of this algebra, i.e. the central idempotents, and associate

topological sectors to these central idempotents.

For the Fibonacci case, these were given in eq. 3.73, and these were found using the algo-

rithm described in [6]. We could use the same algorithm to find the central idempotents

of the Yang-Lee model, but given its similarity to the Fibonacci model, we can guess that

the structure of the central idempotents for the Yang-Lee model will be very similar. By

using the structure factors of the algebra, we have an expression for any possible product

of tensors Aabcd as a sum of the tensors Aabcd themselves. To illustrate, we write the

Yang-Lee central idempotent P1 as

P1 = aA1111 + bA1τ1τ (4.16)
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We find the following expressions for A1111 and A1τ1τ :

(A1111)2 = A1111,

(A1τ1τ )
2 = (φ′ − 1)A1111 +

1√
φ′
A1τ1τ ,

A1111A1τ1τ = A1τ1τA1111 = A1τ1τ .

Requiring P2
1 = P1 and using the expressions above we find the following set of equations

for a and b: 
a = a2 + (φ′ − 1)b

b =
1√
φ′
b2 + 2ab

(4.17)

which can easily be solved. For the other central idempotents, simply requiring them to

be idempotent gives multiple solutions for the coefficients, and we have to include the

condition that they are central to arrive at a unique solution. Doing so for the all central

idempotents, we find

P1 = − 1√
5

[
1

φ′
A1111 +

√
φ′A1τ1τ

]
, (4.18)

P2 = − 1√
5

[
1

φ′
Aτττ1 +

1√
φ′
e−

2πi
5 Aτ1ττ + e−

πi
5 Aττττ

]
,

P3 = − 1√
5

[
1

φ′
Aτττ1 +

1√
φ′
e

2πi
5 Aτ1ττ + e

πi
5 Aττττ

]
,

P4 = − 1√
5

[
φ′A1111 + Aτττ1 −

√
φ′A1τ1τ +

√
φ′Aτ1ττ +

1

φ′
Aττττ

]
.

We again have 3 one-dimensional idempotents and 1 two-dimensional idempotent, corre-

sponding to the 7-dimensional algebra. The topological spins associated to these idem-

potents are given by

h1 = 0, h2 = −1

5
, h2 =

1

5
, h2 = 0, (4.19)

and we see that these results are consistent with the CFT literature [47], and this will

also become evident in Chapter 5.

4.2 Mixing Fibonacci and Yang-Lee

We have obtained the Yang-Lee model by taking the Fibonacci model and replacing

φ → φ′ which gives us the Yang-Lee weights and the Yang-Lee MPOs as defined above.

One could wonder if the pairing of the weights with the MPOs is unique, or in other
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words, if the labelling of the weights by either “Fibonacci” or “Yang-Lee” is justified.

After all, as long as the MPOs represent the fusion algebra and the weights satisfy eq.

3.30, the PMPO we construct with them will be a projector. We can not impose this

PMPO to be Hermitian if we use the Yang-Lee MPOs, but this does not matter as we

can simply replace it by the requirement to be symmetric since in the Fibonacci model

this is equal to demanding Hermiticity due to the reality of the Fibonacci MPO tensors.

We would like to verify if, for example, the Fibonacci MPOs and the Yang-Lee weights

can be used to build an MPO-injective PEPS. This mixing of the Fibonacci and Yang-

Lee categories leads to a slight complication however: we are working in the string-

net picture, with the closed loop convention. It is not immediately clear which fusion

category’s quantum dimensions we should be multiplying with in order for everything

to be consistent. We therefore first investigate if we can find an alternative to this

convention, and we will see that we can get rid of it altogether by a redefinition of the

left-handed MPOs.

4.2.1 Closed loop convention

From a tensor network point of view, the need to artificially add a factor da for every

closed loop seems somewhat unsatisfactory. In fact, the reason that the zipper condition

holds is that for our string-net models it corresponds precisely to the pentagon equation,

i.e.

=

(4.20)

is really just eq. 3.40, with the loop on the left hand side being the summation index. We

therefore know that, if we just use the F-symbols to define the MPOs and fusion tensors,

βα

νµ

i

i

a a = F aµi
βαν, = F abγ

αcβ ,

a

b

c

α

γ

β

(4.21)

51



without the extra factors of quantum dimensions as in eqs. 3.69 and 3.71, these satisfy

the zipper conditions, and consequently the MPOs also represent the fusion algebra. The

question we now want to ask is if we can use the MPOs and fusion tensors defined in

this way to build an MPO injective PEPS. For this we need the pivotal property to hold,

and we find that it can only be satisfied for the fusion tensors in eq. 4.21 if the gauge

matrices are of the form

Z1 =

(
1 0

0 1

)
, Zτ =

 0 1/
√
dτ 0

√
dτ 0 0

0 0 1

 . (4.22)

The gauge matrix Zτ is no longer unitary/orthonormal, nor are the fusion tensors isome-

tries/symmetric for the UFC/nUFC case respectively, but if we ignore this and use it to

define a left-handed MPO, we find again that all the possible pulling through equations

are satisfied. The PMPO is no longer symmetric with these right-handed MPOs, which

ultimately explains why the right- and left-handed MPOs are no longer connected by a

true gauge transformation. We note that we still use Za and (Za)
T to define the left-

handed MPO, but that (Za)
T 6= (Za)

−1, so we are abusing the term “gauge matrix” and

we will simply call them transformation matrices.

We conclude then that when we drop the convention of multiplying by quantum dimen-

sions for closed loops, the quantum dimensions sneak their way into the transformation

matrices, or equivalently in the definition of the left-handed MPOs. We have verified that

these left-handed MPOs also satisfy the fusion algebra, which no longer trivially follows

from the algebra of the right-handed MPOs due to the fact that these two are no longer

related by a gauge transformation.

4.2.2 Pulling through equation

In the previous section we have compensated for the lack of loop counting by including the

quantum dimensions in the gauge matrices. This change in transformation matrices was

imposed by requiring that the pivotal property holds for the new fusion tensors without

quantum dimensions in their definition. In proving the pulling through property, we used

that the matrices ACab satisfy eq. 4.13, which gives us a connection between the fusion

tensors and the weights. One could wonder however whether eq. 4.13 can be modified

by changing the transformation matrices, just as we accommodated for the lack of loop
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counting in the previous section. To verify this, we look at

=a a

(4.23)

This is one of many pulling through equations, but its proof is independent of the handed-

ness of the MPOs, and so it should hold for all of them. The advantage of this particular

choice is that this is a linear equation in the left-handed MPO, and assuming that we

know the right-handed MPO we can solve for the left-handed MPO and ultimately the

transformation matrices. We find

1. For the Fibonacci weights and Fibonacci MPOs, we find the left-handed Fibonacci

MPO tensor as defined above

2. For the Yang-Lee weights and Yang-Lee MPOs, we find the left-handed Yang-Lee

MPO tensor as defined above

3. For the Yang-Lee weights and the Fibonacci MPOs, this equation has no solutions

for the left-handed MPO

4. For the Fibonacci weights and the Yang-Lee MPOs, this equation has no solutions

for the left-handed MPO

We conclude that the pulling through equation excludes the mixing of the Fibonacci and

Yang-Lee models, and that the names “Fibonacci/Yang-Lee weights” are indeed justified.

It is remarkable that solving eq. 4.23 yields the exact left-handed tensor as we have been

using it. This implies that we can really use the pulling through equation to define the

left-handed MPO tensor, without requiring any Hermiticity or symmetry of the PMPO.

We end this section by noting that although the inclusion of quantum dimensions in the

definitions of the MPOs and fusion tensors may seem cumbersome and the loop counting

convention unnatural, it allows for a more symmetrical definition of the right- and left-

handed MPO tensors related by a true gauge transformation. The description without

loop counting is further complicated due to the need to define more types of fusion tensors

depending on the input MPOs, again due to the lack of gauge transformation between

right- and left-handed MPOs. In practical implementations it is therefore often easier to

just use the loop counting convention; nevertheless, it is satisfying to know that at least

for our purposes, we can get rid of this convention.
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4.3 Other non-unitary fusion categories

As already mentioned, the results in this chapter were obtained solely by looking at the

Yang-Lee fusion category. The main conclusion from this chapter is that, due to the real-

ity of the F-symbols of the Fibonacci category we can replace the Hermiticity requirement

of the PMPO by the requirement to be symmetric. The fact that this modification then

also describes the Yang-Lee category is due to the fact that they are both solutions to

the same pentagon equation and therefore have near identical algebraic properties.

In [6], the PMPO formalism is also applied for the Ising fusion category. This category

has three labels, 1,ψ,σ, and is defined by the fusion rules

1× 1 = 1, 1×ψ = ψ, 1× σ = σ,

ψ ×ψ = 1, σ ×ψ = σ, σ × σ = 1 +ψ. (4.24)

There are two unitary solutions to the pentagon equation characterised by their Frobenius-

Schur indicator [22], and the choice in [6] corresponds to ξ = +1. Using an unpublished

algoritm based on Gröbner basises [48], we can calculate all the solutions to the pentagon

equation, unitary or not. We find that for the Ising category there are 4 solutions in

total including the 2 unitary solutions described above, and 2 non-unitary solutions. The

F-symbols corresponding to these non-unitary solutions are not invertible however, and

therefore these do not describe a valid non-unitary solution.

The story is similar for other fusion categories. It seems then that non-unitary solutions

to the pentagon equation with invertible F-symbols are quite scarce, and we have not

found any examples besides the Yang-Lee category with which we can verify our results.
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Chapter 5

Strange correlators

In this chapter we will apply our results for the Yang-Lee fusion category to the strange

correlator construction of [40, 49]. We will first give a very superficial overview of the

strange correlator method for mapping a topological PEPS wave function to a classical

partition function. Consequently, we will describe and extend the results for the Fibonacci

category in [40] for describing the so called hard hexagon model to the Yang-Lee category.

Finally, we speculate that the hard square model, for which there is numerical evidence

[50] that there exists a critical point at negative fugacity in the Yang-Lee universality

class, can be described by a strange correlator using a Yang-Lee PEPS.

5.1 PEPS to classical partition functions

The idea of a strange correlator is that, given some wave function, we can act on the

physical indices with a product state yielding a classical partition function. This idea

was first introduced in [51] for symmetry protected topological order (SPT) states and

extended in [40] to long-range entangled string-net wave functions. It is argued in [40]

that the resulting partition function has to be either critical/gapless or symmetry broken.

In some cases, the continuum limit of these critical partition functions is described by

a CFT, and the properties of topological conformal defects have been shown to be very

similar to those of virtual MPO symmetries and topological sectors [52, 53]. With this

method we therefore have an explicit tensor network representation of these topological

conformal defects and we are able to numerically calculate the conformal spectra in the

presence of these topological conformal defects [54].
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5.2 The hard hexagon model

The statistical model we consider here is the hard hexagon model. This model is defined

on a hexagonal lattice of which the faces can be either occupied or not occupied by a

particle with the restriction that no two adjacent faces can be occupied. This model was

first introduced and analytically solved by Baxter [55] in 1980, who found that it was

related to the Rogers-Ramanujan identities. The partition function of this model is given

by

Z(z) =
∑
n

zng(n,N) = 1 +Nz +
1

2
N(N − 7)z2 + . . . (5.1)

where

z = exp
( µ

kT

)
(5.2)

is the fugacity given some chemical potential µ and g(n,N) gives the number of ways to

place n particles on N hexagons such that no 2 particles are adjacent. The energy of all

the allowed configurations is the same so that the only important thermodynamic control

variable is the fugacity z. We define the function κ by

κ(z) = lim
N→∞

Z(z)1/N = 1 + z − 3z2 + . . . (5.3)

such that log(κ) is the free energy per site. The mean density is then given by

ρ = z
d

dz
log κ(z) = z − 7z2 + 58z3 − 519z4 + 4856z5 + . . . (5.4)

There are 3 different ways to maximally fill the lattice with hard hexagons that define

3 sub-lattices, corresponding local densities labelled ρ1, ρ2 and ρ3. When the fugacity z

is large, the system approximates one of the 3 maximal packings and the local densities

differ, but when it is below a certain critical point the three local densities are the same.

Baxter used the Rogers-Ramanujan identities to write an exact expression for κ as a

function of z, and found that the critical point is given by

zc =
11 + 5

√
5

2
= φ5 (5.5)

where φ is again the golden ratio.

5.2.1 Fibonacci string-net

In Chapter 3, we derived the PEPS wave function for topological models where we rep-

resented the individual PEPS tensors as a closed loop of PMPOs. In this section, we use

a different definition for the PEPS tensor used in [39], but we will show later that these
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two are completely equivalent. We define 2 types of Fibonacci string-net PEPS tensors

on a hexagonal lattice as

=
Fαijγβk√

dβ
=

j i

k

αγ

β

j i

k

αγ

β

j i
k j i

k

(5.6)

where the physical indices correspond to i, j, k and the F symbols are the ones defined in

Chapter 3. Together these 2 trivalent tensors can be used to build up a hexagonal lattice.

Note that these are very similar to the fusion tensors defined in Chapter 3, and that the

pulling through equation for these PEPS tensors is again really the pentagon equation.

To obtain the partition function for the hard hexagon model, we now project the physical

i, j, k indices onto the τ label by taking the overlap of the PEPS with a suitable product

state. The result is a number, given by the contraction of the PEPS tensor network while

summing over all possible loop configurations. Given the fusion rules of the Fibonacci

category and because we projected all the physical indices to the τ label, we see that this

implies that no two adjacent loops can have value 1. If we now interpret the loops as

the faces of the hard hexagon model, a 1 loop as a particle and the τ loop as an empty

face, we see that we have constructed the partition function of the hard hexagon model

where the sum over all loop configurations is precisely the sum over all valid hard hexagon

configurations. As already mentioned, it was shown in [40] that this partition function

is either critical or symmetry broken; we will find that it is critical, which means that

the fugacity assigned to a 1 loop in this strange correlator construction of the partition

function corresponds to the critical fugacity. Explicitly evaluating the possible tensors,

we get

τ τ

τ

τ1

τ

τ τ
τ

= = = Cφ−1/2φ2/6 = Cφ−1/6

τ τ

τ

τ

1

τ

τ τ
τ

τ τ

τ

τ 1

τ

τ τ
τ

(5.7)

for tensors surrounding a face containing a particle, and

τ τ

τ

ττ

τ

τ τ
τ

= −Cφ−3/2φ3/6 = −Cφ−1

(5.8)
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for tensors that do not. We have already included the closed loop convention in the tensors

themselves by multiplying by a factor of φ1/6 for every 1/6th of a τ valued loop. The second

type of tensors, the right hand side of eq. 5.6, are the same. The multiplication by a

constant C preserves the pulling through property, and we can fix it by requiring that an

empty lattice configuration has a contribution of 1 to the partition function; we find C = φ

so that the tensor Aτ in eq. 5.8 is equal to −1. The positivity of the Boltzmann weights is

guaranteed by the fact that in any valid hard hexagon configuration, the negative tensors

must always come in pairs. For the tensors T1 in eq. 5.7 we get A1 = φ5/6, and noting

that every occupied face is surrounded by 6 such tensors, we find for the critical fugacity

zc = (A1)6 = φ5 (5.9)

which corresponds to the result obtained by Baxter [55] by vastly more complicated meth-

ods. It is remarkable that this simple ansatz gives the correct critical fugacity, and it is

not unreasonable to hope that this strange correlator mapping of topological PEPS to

partition functions will provide new insights in certain statistical mechanics models.

To make the connection with results from CFT, we consider again eq. 2.78 for the

partition function on a torus, following [19]. Assuming equal holomorphic and anti-

holomorphic central charges, we find

Z = Tr e−2πIm(τ)H+2πiRe(τ)P

= Tr e−2πIm(τ)(L0+L̄0− c
12

)+2πiRe(τ)(L0−L̄0)

=
∑
α

e−2πIm(τ)(hα+h̄α− c
12)+2πiRe(τ)(hα−h̄α)

=
∑
α

e−2πIm(τ)(∆α− c
12)+2πiRe(τ)sα (5.10)

where we have used ∆α = hα + h̄α and sα = hα − h̄α for the scaling dimensions and the

conformal spin respectively, and the sum runs over all the primaries and their descendants.

It was shown in [54,56] that this partition function can be written on a lattice as

Z = Tr(MLx), (5.11)

with M the column-to-column transfer matrix where we neglected effects of finite-size

scaling

M ≈ eaLy
∑
α

e
− 2π
Ly

(∆α− c
12) |α〉 〈α| , (5.12)

where Lx and Ly are the number of lattice sites in the x and y direction respectively, and a

is a non-universal contribution corresponding to the free energy per site. We could extract

the free energy by varying Lx and Ly while keeping their ratio fixed, and subsequently
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rescale M such that the free energy factor disappears, but we will see that we can use a

different approach. The partition function defined in terms of the transfer matrix M in

eq. 5.11 has periodic boundary conditions without twisting of the torus, but the complete

partition function in eq. 5.10 also includes twisted boundary conditions. The one-site

shifts are generated by the momentum operator P , given in the lattice description by

T1 = e
2πi
Ly

P
. (5.13)

Assuming translation invariance, this shift operator commutes with M , and its eigenval-

ues e
2πi
Ly

pα are good quantum numbers. Because we have P = L0 + L̄0, these momentum

quantum numbers correspond to the conformal spin sα. This means that in the lattice

description, we can obtain the scaling dimensions and the conformal spins by diagonal-

ising the matrices Mα and T . There is a short-cut to obtain both by diagonalising the

product T ·M instead, which has the eigenvalues

λα = e
− 2π
Ly

(∆α− c
12)+ 2πi

Ly
sα (5.14)

so that the modulus gives the scaling dimensions and the phase yields the conformal spin.

In the above derivation, we assumed periodic boundary conditions, which corresponds to

the case of no conformal defects. This means that we have

(T1)Ly = 1 (5.15)

so that the momenta (or conformal spins) have to be integers. We can also however

consider the following object:

Ta = a

(5.16)

where we have inserted a defect of type a (much like in Appendix A.1), and the twisting

action of T introduces an MPO tensor with label a where the lines cross. We define the

Dehn twist operator Da as

Da ≡ (Ta)
Ly (5.17)
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which corresponds to cutting the torus into a cylinder, twisting one of its ends and gluing

it back together. We already encountered this operator as the matrix that contains

information on the topological spin, and its effect is to introduce topological corrections

to the conformal spin. For the hard hexagon model, we can either insert a 1 (which

corresponds to no defect) or a τ defect. The spectra are shown in 5.1 for the 1 and τ defect

respectively, and the eigenvalues have been labelled by projecting the transfer matrices

onto the different topological sectors given by the central idempotents and labelling them

by their topological spins. The spectra are consistent with a subset of the minimal model

M(6, 5) with central charge 4/5, called the 3-state Potts model, corresponding to the

trivial defect partition function Z1|1 and the τ defect partition function Z1|9 in [40, 57].
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Figure 5.1: The Fibonacci spectra calculated by diagonalising T ·M extrapolated from

L = 18, 21, 24, without and with the presence of a τ defect on the left and right re-

spectively [40]. The different topological sectors have been labelled by different symbols

shown above the plots.

5.2.2 Yang-Lee string-net

In 1967 Gaunt [58] obtained a numerical value for the hard hexagon critical fugacity by

using a series expansion for the local densities. He found

zc = 11.05± 0.15, (5.18)

but observed that the function κ(z) appeared to have another singularity at

zNP = −0.0900± 0.0003, (5.19)
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where the subscript NP indicates non-physical since a negative fugacity implies a complex

chemical potential. Speculating that these two numbers are the roots of some simple

quadratic equation, he formed their sum and product, yielding

zc + zNP = 10.96± 0.15

zczNP = −0.995± 0.014. (5.20)

He then guessed that these numbers might be exactly 11 and −1, which was shown

by Baxter [55] to be exactly right. This means that zNP = −1/zc is another critical

fugacity [59], albeit non-physical. Looking at the exact expression we found for the

fugacity zc, we have

zNP = − 1

φ5
(5.21)

which corresponds precisely to the Galois conjugation of φ → −1/φ. This result is

precisely what we obtain if we apply the strange correlator formalism of the previous

section to the Yang-Lee PEPS tensors instead of the Fibonacci PEPS tensors, using the

same product state. We can again calculate the spectra for this partition function, shown

in Figure 5.2. We find that the no-defect spectrum is consistent with the non-unitary
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Figure 5.2: The Yang-Lee spectra calculated by diagonalising T ·M for Ly = 18, without

and with the presence of a τ defect on the left and right respectively. The different

topological sectors have been labelled by different symbols shown above the plots, and

the conformal spins −1/5 and 1/5 are denoted next to their respective primaries.

minimal model M(5, 2) with central charge −22/5, which we already encountered in
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chapter 2, and this agrees with the results in [37]. The no-defect partition function is

diagonal in the Virasoro characters and can be written as

Z1 = |χ0(q)|2 + |χ− 1
5
(q)|2 (5.22)

containing two primary fields usually labeled I and ε with conformal weights

I = (0, 0) , ε =

(
−1

5
,−1

5

)
. (5.23)

The partition function with a τ defect is not diagonal and is given by

Zτ = χ0(q)χ− 1
5
(q̄) + χ− 1

5
(q)χ0(q̄) + |χ− 1

5
(q)|2, (5.24)

which corresponds to the three primary fields found in [47] with conformal weights(
0,−1

5

)
,

(
−1

5
, 0

)
,

(
−1

5
,−1

5

)
. (5.25)

More details on the relation between the anyon ansatz algebra elements Aabcd and the

Virasoro characters are given in Appendix B.1. In particular, we obtain the following

relations:

A1111 → |χ0(q)|2 + |χ− 1
5
(q)|2 = Z1, (5.26)

Aτττ1 → χ0(q)χ− 1
5
(q̄) + χ− 1

5
(q)χ0(q̄) + |χ− 1

5
(q)|2 = Zτ , (5.27)

A1τ1τ →
√
φ′|χ0(q)|2 − φ′−3/2|χ− 1

5
(q)|2, (5.28)

Aτ1ττ →
1√
φ′

[
e

2πi
5 χ0(q)χ− 1

5
(q̄) + e−

2πi
5 χ− 1

5
(q)χ0(q̄) + |χ− 1

5
(q)|2

]
, (5.29)

Aττττ → e
πi
5 χ0(q)χ− 1

5
(q̄) + e−

πi
5 χ− 1

5
(q)χ0(q̄) +

1

φ′2
|χ− 1

5
(q)|2. (5.30)

From this we infer that A1111 and Aτττ1 correspond to the no-defect and τ defect partition

functions respectively, while the other 3 elements give different combinations of Virasoro

characters that correspond to defects on the other non-contractible loop of the torus,

which are usually not studied in the CFT literature [47].

5.3 Hard square model

The hard hexagon model can be interpreted as a square lattice with 2 types of diagonal

interaction L and M [55], where we take L = 0 and M = ∞. The closely related
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hard square model is obtained by setting L = M = 0, such that there are no diagonal

interactions and the model can be formulated by stating that an occupied square forces

the neighbouring squares with which it shares an edge to be empty. Unlike the hard

hexagon model, the hard square model has not yielded to exact solution and is widely

believed to be non-integrable [60]. Various numerical methods have been employed to

obtain the critical fugacities for this model [61,62], and investigations along the negative

fugacity axis have yielded [50,63]

zc = −0.11933888188(1). (5.31)

In [63] it is also found that the central charge and the dominant scaling dimension are

c = −4.399996(8), ∆ = −0.3999996(7), (5.32)

which strongly implies that this model lies in the Yang-Lee edge singularity universality

class which has

c =
22

5
, ∆ = −2

5
. (5.33)

It is therefore natural to wonder whether we can use the Yang-Lee topological PEPS

description and map it to the hard square partition function at criticality using a strange

correlator.

We first consider again the hard hexagon model. We used the topological PEPS on a

hexagonal lattice as defined in eq. 5.6, but as we mentioned this PEPS is different from

the one we used in Chapter 3, where we considered the following object instead:

∑
a

wa
a

(5.34)

If we now fix the physical indices of this tensor to τ and interpret this as a matrix from

the inner to the outer PMPO indices, we find that this matrix is rank 1 and its column

space is given precisely by the tensor in eq. 5.6, showing that these two PEPS tensors are

completely equivalent. The advantage of the PMPO definition is that the generalisation

to any coordination number is straightforward, and in particular for coordination number
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4 we have the following tensor:

∑
a

wa

a

τ

τ

τ

τ

τ τ τ τ

(5.35)

If we consider a square lattice with these tensors as building blocks, we see that the

hard square condition is enforced in the same way as for the hard hexagon model. When

interpreted as a matrix, this tensor is now rank 2 meaning that we have two degrees of

freedom with which we can tune this tensor to obtain a partition function that assigns

a Boltzman weight of z to every 1-valued loop. We have verified that the tensor in eq.

5.35 is completely equivalent to

α1
+
βτ

τ

τ

τ

τ

α1
+
βτ≡ ≡

a

b

c

d

a
b

c
d

a b

cd

(5.36)

where α and β parametrise the two degrees of freedom of the 2 dimensional column space

of the tensor in eq. 5.35 by fixing the physical index to α1 +βτ , and the trivalent tensors

are the same as the ones for the hard hexagon model defined in eq. 5.6. The variables

a, b, c, d label the loops, and we also introduced two levels of notational simplification

that we will use for the remainder of this chapter. We can construct a square lattice with

this tensor by using a truncated square tiling, which is built out of octagons and squares

which we both interpret as faces of the hard square lattice. A unit cell for this lattice

64



looks like

α1
+
βτ

α1
+
βτ

α1
+
βτ

α1
+
βτ

≡

a

b

c

d e f

g
h

i

a b c

d e f

g h i

(5.37)

which is obtained by rotating and gluing together the tensors from eq. 5.36 and the

variables a, b, c, d, e, f, g, h, i label the loops. Because the unit cell tensor is built out of

4 copies of the same tensor, we can split it into smaller unit cell tensors and write the

condition that every 1-valued loop should be weighed with a factor z on the level of these

tensors as
τ
τ
τ

τ
= 1,

1
1
τ

τ
= z1/2,

τ
τ
1

1
=

τ
τ
τ

1
1
τ
τ

τ
τ
τ
1

τ
τ

1
τ

τ
= z1/4= = =

(5.38)

which is a set of 7 algebraic equations for the three variables z, α, β, where the solution

for z would yield the critical fugacity for the hard square model. Unfortunately, this

set of equations has no solution. In the above construction we took the overlap of the

Yang-Lee PEPS on a truncated square lattice with a product state that fixes the vertical

and horizontal indices to τ to enforce the hard square condition, and the diagonal indices

to α1 + βτ to obtain the correct Boltzmann weight. We showed that this does not yield

the hard square partition function at criticality, but we can try to take the overlap of the

PEPS with other states than the one we used. One possibility is allowing for the diagonal

physical indices to be fixed to different values and taking a bigger unit cell tensor, i.e.

α1
+
βτ

δ1
+
γτ

ρ1
+
στ

µ1
+
ντ

a

b

c

d e f

g
h

i
(5.39)

65



but this means that we can not impose the conditions of counting 1-valued loops on

the level of the individual tensors, and we have to consider the entire unit cell tensor

instead. The additional freedom we gain by using more parameters is compensated by

the fact that the amount of conditions also increases due to the larger amount of possible

hard square configurations on this unit cell tensor compared to eq. 5.38, and we again

find that this set of equations has no solution. We can guess that this will be a general

trend, and that the increased amount of parameters by increasing the unit cell size will

be compensated by an increase in the amount of conditions that have to be satisfied,

leading to contradictions. We can however try something more general than a product

state, and place a tensor Aαβγδ at the center of the octagon with 4 indices corresponding

to the 4 diagonal physical indices of the unit cell:

≡

a

b

c

d

e

f

g
h

i

a b c

d
e

f

g h i

A

(5.40)

We could consider a general tensor A and write out all the valid hard square configurations

of this unit cell to obtain the correct counting of the 1-valued loops, but given that there

is some symmetry in these configurations we can be a bit more clever. We know that if

we have one possible configuration, its image under the elements of the dihedral group

D4
1 must also be an allowed configuration with the same Boltzmann weight assigned to

it. This means that the tensor Aαβγδ should be invariant under D4, and we can introduce

a new tensor Ai with 6 degrees of freedom in which this invariance is manifest:

A1 ≡ Aττττ

A2 ≡ A1τττ + Aτ1ττ + Aττ1τ + Aτττ1

A3 ≡ A11ττ + Aτ11τ + Aττ11 + A1ττ1

A4 ≡ A1τ1τ + Aτ1τ1

A5 ≡ A111τ + A11τ1 + A1τ11 + Aτ111

A6 ≡ A1111

(5.41)

1D4 is the symmetry group of the square consisting of 4 rotations (including the identity), 2 reflections

along perpendicular bisectors and 2 reflections along the diagonal bisectors.
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This means that we effectively have 6 degrees of freedom to tune the tensor Ai such that

all hard square configurations will be given the correct Boltzmann weight. We find 19

remaining possible configurations that can not be transformed into each other under D4,

which implies that there are 19 conditions on the 6 degrees of freedom of Ai and the

1 fugacity parameter z. These configurations are given in Appendix B.2 together with

their appropriate Boltzmann weight. We end up with an equation of the form

M · A = Z (5.42)

where M is a 19 × 6 matrix containing the unit cell tensor evaluated at every allowed

configuration for the 6 elements of Ai, A is a 6 × 1 vector containing the 6 degrees of

freedom of Ai, and Z is a 19 × 1 vector containing the appropriate Boltzmann weights

(powers of the fugacity z) for each of the 19 allowed configurations. This looks like a

standard problem in linear algebra, but the catch is that we do not know the vector

Z, only that it is parametrized by 1 variable z. It is however fairly straightforward to

check whether Z is in the image of M : we calculate a basis for this 6-dimensional column

space by computing the row reduced echelon form of MT . We can then try to write Z

as a linear combination of these basis vectors, which very straightforwardly leads to a

consistency condition on the coefficients and z due to the orthogonality of these basis

vectors. Unfortunately, we find that the vector Z is not in the column space of M , which

implies that we can not write the hard square partition function in this way. We should

note that we have really only put tensors Ai on a checkerboard sublattice of the original

lattice, as shown in Figure 5.3a; placing a tensor on every octagon of the lattice as in

Figure 5.3b significantly complicates the conditions we have to impose on this tensor,

and we have not yet found a way to do this.

(a) (b)

Figure 5.3: The checkerboard configuration that we have been able to implement (a), and

the full configuration for which it is unclear how to impose the conditions of the correct

Boltzmann weights (b).
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The difficulties in trying to write the hard square partition function as a strange correlator

can be traced back to the fact that this model is believed to be not integrable, and we

should therefore not expect to find an analytical expression for the critical fugacity in

this way. One approach we can take is to calculate the value of z for which the vector

Z is closest to the column space of M . We can then keep increasing the size of the unit

cell tensor and perform such a fit for z at every step, and we might expect this value for

z to grow closer to the exact critical fugacity. We have performed this procedure for the

unit cell in 5.36, which yields a promising value of

zc = −0.08073292780, (5.43)

which is pretty close to the value zc = −0.11933888188(1) as calculated in [50]. Doing

the same for the bigger unit cell however, we find

zc = −0.00004828549551, (5.44)

which is orders of magnitude worse. This is most likely due to the fact that this config-

uration breaks translation invariance due to its checkerboard-like structure. We expect

to find some checkerboard structure in the hard square configuration but only at large

enough occupation number, and the low value for zc at criticality seems to indicate that

this is not the case.
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Conclusion and outlook

The main objective of this thesis was to verify whether the PMPO formalism for topo-

logical order could be extended to include non-unitary fusion categories. We used the

Yang-Lee fusion category as a probe for these categories, and found that with some modi-

fications based on the very similar Fibonacci category the PMPO formalism is indeed still

valid. Based on the fact that we have the unitary and non-unitary version of the same

category in the PMPO formalism, we make some remarks on the quantum dimensions

of the theory and their relation to the MPOs. We also find indication that the notion

of left and right MPOs arising from some constraint on the PMPO can be made more

general by defining the relation between these two types via the pulling-through equation.

We verified our results for the Yang-Lee category by constructing the topological sectors

associated to the doubled Yang-Lee model and more importantly, by mapping the Yang-

Lee topological PEPS to the hard hexagon model using a strange correlator. We find a

negative critical fugacity for this model that corresponds to the literature, but since it

is non-physical it is mainly of theoretical interest. We find that at this critical fugacity

the model is described by the Yang-Lee edge singularity CFT in the continuum limit by

putting the lattice on a cylinder to calculate the partition function. We make the con-

nection to recent work on topological conformal defects and in particular, we recover the

correct CFT Virasoro primaries for both the no-defect and the τ defect spectra. Notably,

we find all Virasoro primaries in the hard hexagon model at negative critical fugacity, in

contrast to the Fibonacci case where we only recover a subset of the 3-state Potts CFT.

This allows us to provide a mapping between the tube algebra elements of the topological

model and the Virasoro characters, which might prove useful in further understanding

the connection between topological and conformal field theory defects.

We also used the Yang-Lee topological PEPS to attempt to describe the non-integrable

hard square model, given that it is known that there exists a critical point in the Yang-Lee

universality class. We explored several options, one of which lead to a promising approx-

imation of the correct critical fugacity, but more work should be done to make these
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methods more rigorous and yield better approximations, which could provide a very con-

crete interpretation of integrable versus non-integrable models in statistical physics.

It is clear that the results for the Yang-Lee fusion category should be investigated for

other non-unitary fusion categories to see if generalisations to the non-unitary PMPO

formalism should be made. The modifications we made to accomodate for the Yang-

Lee category were based on the similar algebraic properties between it and its unitary

counterpart, which are ultimately inherited from the pentagon equation. The relation

between other non-unitary categories and their unitary counterparts is similar, and we

therefore expect that the modified PMPO formalism is general. We mentioned that these

non-unitary fusion categories with invertible F-symbols seem to be quite scarce, but it is

hard to imagine that these do not exist and we expect to find these solutions given that

we have an algorithm to explicitly solve the pentagon equation [48].

The fact that we managed to map a tensor network to a non-unitary CFT opens the

door to studying these CFTs using tensor networks. As we mentioned at the start of

chapter 4, percolation is described by a non-unitary CFT. The study of percolation

has already yielded new understanding and techniques not only in physics but also in

materials science, complex networks, epidemics and many more. There remain a large

amount of open problems in this field, and we hope that tensor networks can once more

prove their usefulness by making progress on some of these issues.
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Appendix A

The anyon ansatz

A.1 Ground state support

We begin by assuming that we work in a string-net model where a∗ = a, such that we

have [6]

N c
ab = N b

ca = Na
bc (A.1)

and that the weights are given by

wa =
da
D2

, D2 =
∑
a

d2
a. (A.2)

It is proven in [27] and mentioned in Appendix A of [6] that the quantum dimensions

satisfy the following equation:

dadb =
∑
c

N c
abdc, (A.3)

which can be rewritten in terms of the weights assuming that the trivial element has

quantum dimension d1 = 1 as

wawb = w1

∑
c

N c
abwc. (A.4)

We now prove the following identity:

a

= da

(A.5)
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To do this, we first use the pulling through property to write this as

a

a

=

(A.6)

which we then write as

OaPL = Oa

∑
b

wbOb =
∑
b,c

N c
abwbOc =

1

w1

w1

∑
b,c

N b
cawbOc. (A.7)

where we have used A.1, and we now use A.4 to find

wa
w1

∑
c

wcOc = daPL (A.8)

which is what we set out to prove. We now consider an MPO-injective PEPS of arbitrary

size on a cylinder with a general boundary condition tensor A:

A A

where the dots indicate periodic boundary conditions, and we have omitted the black

boxes where the unlabelled red lines cross the black lines since we implicitly assume these

are PMPOs. We now impose that locally this PEPS looks the same everywhere, which

requires the boundary tensor where the two edges meet to have the property that it can

be moved through the PEPS. We know that the tensors that can be moved freely through

the lattice are precisely the MPO tensors, and so we get some linear combination of

CB a
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where we now have A =
∑
B ⊗ C, and we assume there are MPO tensors where the

labelled red line crosses the black lines. We now use eq. A.5 to see that this is proportional

to

CB ad

and we use the pulling through property to move this loop to the edge of the PEPS

CB a

d

d

Using the zipper condition, we finally arrive at (summing over b and c)

CB a a

d

d

d

d

c
b b

d∗d∗

Here we recognise the tensor Aabcd, with the left tensor being the Hermitian transpose of

the tensor on the right. We conclude that whatever the ground state PEPS tensor is, it

must be supported by the tensors Aabcd when interpreted as matrices from the outer to

the inner indices.
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A.2 Closure of the algebra

The ground state support tensors Aabcd as derived in the previous section are proven to

form an algebra in [6]. The proof requires the pivotal property for the fusion category,

one of the assumptions needed for MPO-injective PEPS. Because of this property, we can

write

a

b

c

d

d∗
Aabcd =

a

b

c

d

∝

(A.9)

The right hand side of this equation can be used as an alternative definition of the

tensors Aabcd, since the derivation above can yield both the left and right hand side of

this equation. The benefit of using the right hand side is that we can prove it forms an

algebra without the use of the pivotal property, and it is therefore more general in some

sense; we don’t need a pivotal structure in the fusion category. To do this, we first write

e

f

a

h

b

c

d

AabcdAefah =

e

f

a

h

b

c

d

=
∑
i

i

h
d
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and then use the zipper condition to arrive at

e

f

a

b

c

∑
i

i

d

h

h

d

≡

e

f

a

b

c

∑
i

d

h

h

d

i

i

We will be omitting the MPOs for notational simplicity since they are not involved in

the proof. We also take all the red arrows to be pointing upwards. Through repeated use

of the zipper condition and F-moves we write

e

f

a

b

c

∑
i

d

h

h

d

i

i

e

f

a

b

c

=
∑
ij

d

h

h

d

i

i

j

fd e

a

b

c

=
∑
ijkl

(
F dhe
jkf

) (
F dah
jlf

)−1

d

h

h

l

i

i

j

d

k

d
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e

b

c

=
∑
ij

(
F dhe
jif

) (
F dah
jbf

)−1

d

h

i

i

j
e

c

=
∑
ij

(
F dhe
jif

) (
F dah
jbf

)−1 (
F cdh
jbi

) i

j

i

where the tensor on the right hand side is equal to Aejci, which proves that the algebra

is closed under multiplication. We have avoided using the pivotal property, which hints

towards the fact that the pivotal property is really a consequence of the structure of the

F-symbols, also pointed out in [6]. However, the pivotal property does hold for all the

fusion categories (be it unitary or non-unitary) described in this thesis, and therefore this

section mainly serves as an alternative proof to the one provided in the appendix of [6].
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Appendix B

Strange correlator

B.1 Anyon ansatz and Virasoro characters

In this section we elaborate on the connection between the Yang-Lee anyon ansatz algebra

elements Aabcd and the Yang-Lee CFTM(5, 2). To reiterate, we have the following central

idempotents identifying the topological sectors of the doubled Yang-Lee model:

P1 = − 1√
5

[
1

φ′
A1111 +

√
φ′A1τ1τ

]
, (B.1)

P2 = − 1√
5

[
1

φ′
Aτττ1 +

1√
φ′
e−

2πi
5 Aτ1ττ + e−

πi
5 Aττττ

]
,

P3 = − 1√
5

[
1

φ′
Aτττ1 +

1√
φ′
e

2πi
5 Aτ1ττ + e

πi
5 Aττττ

]
,

P4 = − 1√
5

[
φ′A1111 + Aτττ1 −

√
φ′A1τ1τ +

√
φ′Aτ1ττ +

1

φ′
Aττττ

]
.

where P4 is a two-dimensional central idempotent that can be written as the sum of two

non-central idempotents

P4,1 = − 1√
5

[
φ′A1111 −

√
φ′A1τ1τ

]
, (B.2)

P4,τ = − 1√
5

[
Aτττ1 +

√
φ′Aτ1ττ +

1

φ′
Aττττ

]
. (B.3)

We see that when there is no conformal defect, we can only project with P1 and P4,1.

From the no-defect spectrum in Figure 5.2, we make the identifications

P1 → χ0(q)χ0(q̄) ≡ |χ0(q)|2, (B.4)

P4,1 → χ− 1
5
(q)χ− 1

5
(q̄) ≡ |χ− 1

5
(q)|2, (B.5)
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which is consistent with the topological spins we derived for these topological sectors.

When we insert a τ defect, we can only project onto P2, P3 and P4,τ . From the τ defect

spectrum in Figure 5.2, we make the identifications

P2 → χ0(q)χ− 1
5
(q̄), (B.6)

P3 → χ− 1
5
(q)χ0(q̄), (B.7)

P4,τ → χ− 1
5
(q)χ− 1

5
(q̄) ≡ |χ− 1

5
(q)|2, (B.8)

which is again consistent with the topological spins of these topological sectors. Looking

at the low-q expansions of the characters, we see that the spectrum in Figure 5.2 has the

correct degeneracies. Given this identification of idempotents with Virasoro characters,

we can write the idempotents in terms of the tube algebra elements Aabcd and invert these

relations to obtain

A1111 → |χ0(q)|2 + |χ− 1
5
(q)|2 = Z1, (B.9)

Aτττ1 → χ0(q)χ− 1
5
(q̄) + χ− 1

5
(q)χ0(q̄) + |χ− 1

5
(q)|2 = Zτ , (B.10)

A1τ1τ →
√
φ′|χ0(q)|2 − φ′−3/2|χ− 1

5
(q)|2, (B.11)

Aτ1ττ →
1√
φ′

[
e

2πi
5 χ0(q)χ− 1

5
(q̄) + e−

2πi
5 χ− 1

5
(q)χ0(q̄) + |χ− 1

5
(q)|2

]
, (B.12)

Aττττ → e
πi
5 χ0(q)χ− 1

5
(q̄) + e−

πi
5 χ− 1

5
(q)χ0(q̄) +

1

φ′2
|χ− 1

5
(q)|2, (B.13)

which are discussed in the main text.
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B.2 Hard square configurations

In this appendix we give all the hard square configurations and their associated Boltzmann

weights for the unit cell tensor where we place a D4 invariant tensor in the middle. As

mentioned in the main text, there are 19 such configurations that can not be transformed

into one another under D4, and we take the convention that a τ -valued loop is depicted

as a blank space so we only have to show the 1-valued loops.

= 1

1

= z1/4

1 = z1/2

1

1

= z1/2

1

1

= z1/2

1

1

= z3/4

1 = z

1 1

1

1

1

1

1

= z

1 1

1 1

1

1 = z5/4

1

1

1

= z5/4

1

1

1

= z3/2

1

1 1 = z3/2

1

1

1

= z3/2

1 1

1

1

= z7/4

1

1 1

1

= z2

1 1

1

1 1

= z2

= z

= z

= z

(B.14)
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