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ABSTRACT 
In this thesis, we analyze whether machine learning can be used to bypass part of the 
laboratory work required to determine interactions between RNA polymerase and DNA. 
Regulatory networks allow to determine the effects of changing conditions and to connect 
perturbations in the genome, like mutations, to their downstream or upstream effect. The 
construction of those networks first requires the interactions between transcription factors 
and regulatory DNA regions to be determined. Beside this, genetic engineering often implies 
to insert new genes in a microorganism. Those genes must be recognized by the transcription 
machinery of the cell to synthetize the protein for which they code. Hence, the choice of the 
promoters that are incorporated together with those coding elements is of major importance. 
Testing for such interactions should be made possible using mathematical approaches instead 
of long and costly laboratory processes.  

In this thesis, we will use logistic regression (LR) models and support vector machines (SVM) 
together with different string kernels to analyze whether modelling those interactions is 
possible given the dataset at hand. Stacked models will also be employed as they have proven 
to outperform single model approaches. The problematic will be split in two parts. In the first 
part, we will analyze the performance of the models for identifying promoters from a set of 
sequences. Then, we will analyze whether the phase during which a promoter is active can be 
determined on basis of its sequence. Finally, we will push the problematic up to assigning σ 
factors (σ70, σ38, σ32, σ54 and σ28) that interact with the promoters in general or during a specific 
growth phase. In the second part, we will propose two classification approaches that combine 
predictions of two models. We will analyze whether the combination of the models increases 
the reliability on the top predictions as compared to a single model. 

The results showed that promoters can be effectively identified from a set of DNA sequences 
(0.85 AUC). However, when accounting only for promoter sequences, the performances for 
assigning the activity during which a promoter is active are 0.72 and 0.58 AUC for the 
exponential and the stationary phase respectively. Considering the assignment of σ factors to 
promoters, the average performances are 0.62 and 0.56 AUC for the exponential and the 
stationary phase respectively. The combination of the models increases reliability of top 
predictions as compared to the single model. The precision of the top predictions is on average 
better by 22% and 7% for selecting the promoters that interact with a certain σ factor for the 
exponential phase and the stationary phase respectively. However, the precision across all the 
interactions in the top 10 predictions is never completely correct.  

In conclusion, identifying promoters in E. coli based on the sequence can be effectively 
performed with our model. However, we were not able to solve the problematic of assigning 
σ factors to promoters as expected. Nonetheless, we believe that our models would have 
resulted in better performances on a different dataset. Those models may have a great impact 
in genetic engineering and for the construction of transcriptional regulatory networks. 
However, this should be confirmed on another dataset. 

  



 

 

  



1 
  

CHAPTER 1: INTRODUCTION 

1.1. General overview 
Microorganisms must deploy a subset of their genetic arsenal at the right place and time if 
they want to survive. Indeed, part of their molecular tools may be harmful for the cell if they 
are deployed when they are not required, i.e. under the inappropriate extra- or intra-cellular 
conditions, and in the right quantity. If they do not react fast enough, it could lead to their 
death. To make things even more complicated, the cell machinery that allows them to build 
those tools is limited. For those reasons, the regulation of the expression of their genes must 
be properly configured.  

The regulation of the genes can be represented by a regulatory network. The knowledge of 
the regulatory network of a given organism allows to determine the effect of perturbations, 
which can be due to the conditions of growth, mutations, … It has also applications in synthetic 
biology, industrial biotechnology, healthcare industry and ecology. 

The expression of genes is initially regulated at the transcriptional level by transcription factors 
and, more particularly, by a set of σ factors in E. coli. Binding between a σ factor and DNA in 
the upstream region of a gene, the promoter, is required to express that gene. Each type of σ 
factor shows different specificity towards DNA sequences. The construction of regulatory 
networks initially requires determining such interactions. Those relations between DNA 
sequences and σ factors are determined experimentally. Experimental testing for interactions 
between all the possible sequences and each σ factor for each organism is a time consuming 
and expensive effort. 

Machine learning can be used to create models that predict interactions without requiring 
tedious laboratory work. However, those models still require training on labeled data. This 
data describing interactions between DNA sequences and σ factors must be produced 
experimentally.  

The models can also be used to determine prototype sequences that would bind to any σ 
factor. Hence, by creating a synthetic promoter with such a sequence, we could maximize the 
activity of the downstream gene of interest. Or, it can also be used to determine the 
sequences that bind only with a subset of those σ factors, under a given growth phase. 

1.2. Protein synthesis 
In this section, we will explain the biological background behind protein synthesis, including 
transcription and translation. After that, we will see how the synthesis of proteins is regulated 
at the transcriptional level. The focus will be put on transcription and regulation of 
transcription, as they are at the core of this master thesis. 

1.2.1. General overview of protein synthesis 
Proteins are essential for each living organism. They are involved in nearly all processes of life, 
such as catalysis of the biochemical reactions happening inside and outside cells, cellular 
transport, intercellular communication and intercellular recognition. They also play a role in 
cellular structure and immunity. Proteins, also called (poly)peptides, are made of a chain of 
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amino acids (AA) linked by peptide bonds. There are twenty different AAs. The order of the 
different AA in the chain corresponds to the primary structure of the protein. The order and 
composition of amino acids determines the structure of the molecule and its function. The 
three-dimensional structure of the protein results mainly from hydrogen bonds between 
amino acids inside the polypeptide. Secondary structure is the protein structure that results 
from interactions between AAs close to each other. Tertiary structure is the protein structure 
that results from interactions between more distant AAs. The function of proteins comes 
directly from the structure. Note that quaternary structure also exists and results from 
interactions between different proteins. Several protein modifications such as methylation, 
phosphorylation, acetylation, glycosylation, acylation and cleavage confer them new 
capabilities, but also influence their activity and their structure (Berg et al, 2012). 

Deoxyribonucleic acid (DNA) is a linear polymer made up of a chain of nucleotides (nt). Each 
nucleotide consists of a deoxyribose molecule with a base and a phosphate. The chain of 
nucleotides is arranged in a backbone of alternating phosphate-deoxyribose groups from 
which bases protrude. The base is attached on the 1’ carbon of the deoxyribose, whereas 
phosphate groups are attached on 3’ and 5’ carbons. Thus, the DNA backbone has a 5’ end 
and a 3’ end (Figure 1). There are four possible bases that can be attached to the backbone: 
adenine (A), cytosine (C), guanine (G) and thymine (T). The arrangement of the four different 
nucleotides inside the DNA chain produces a sequence that is of major importance. Indeed, 
the primary structure of proteins is encoded in the DNA sequence and, more specifically, in 
genes. In fact, parts of the DNA are not coding for proteins. There are coding regions that are 
called genes, and non-coding ones. Non-coding regions can be regulatory sequences. They 
regulate the process allowing production of a protein, starting from a gene, by interacting with 
other molecules.  

Two strands of DNA interact by complementarity of their bases. Adenine pairs with thymine 
with two hydrogen bonds and cytosine pairs with guanine with three hydrogen bonds. The 
hydrogen bonds of a base pair occur between an atom of hydrogen of one base and an atom 
of oxygen or nitrogen of the other base. The interaction between both strands forms a double 
helix of DNA. Both strands are oriented in the opposite direction. Thus, the 5’ end of one 
strand matches the 3’ end of the other strand (Figure 1) (Berg et al, 2012). 

 
Figure 1. Double helix model. Left: general structure of the DNA double helix. Right: molecular structure of the 
double helix. The deoxyribose-phosphate backbone is indicated in blue with its bases attached. The dashed lines 
between bases of the two strands represent hydrogen bonds. (Structure and Function of DNA, 2016) 
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The first step required for the synthesis of proteins is transcription (Figure 2). Transcription 
allows for the generation of a ribonucleic acid (RNA) strand that is used to carry the genetic 
information, called the messenger RNA (mRNA). The mRNA that is synthetized is copied from 
a DNA template (Kapanidis et al, 2006). RNA differs from DNA by the sugar that is used for its 
backbone and by the possible bases it is composed of. The backbone’s sugar is not deoxyribose 
but ribose and adenine is paired to uracil (U) instead of thymine. Moreover, RNA is generally 
single-stranded but double-stranded (ds) RNA also exists (Monsion et al, 2018). The DNA 
template is copied into a mRNA by base pairing. Thus, the mRNA sequence is complementary 
to its template, and the 3’ end of the template matches the 5’ end of the mRNA. The template 
strand is always read in the 3’ - 5’ direction. The complementary strand is called “coding” or 
“sense” strand as its sequence is the same as the synthesized mRNA, with T replaced by U. A 
positive and a negative DNA strand is arbitrarily defined in E. coli. Both the positive and the 
negative strand can be used as a template for transcription, but only one is used for a given 
gene (Weaver, 2011; Berg et al, 2012). 

 
Figure 2. Transcription. The synthetized RNA strand is indicated in green. The 3’ end of the RNA forms an RNA-
DNA hybrid with the template strand with which it pairs. The RNA has the same sequence as the DNA coding 
strand indicated in blue, except that T is replaced by U. (Berg et al, 2012) 

The mRNA sequence is then translated into a polypeptide chain based on the genetic code 
(Table 1) during a process called translation. The genetic code allows to match a RNA- (or a 
DNA-) sequence of three nucleotides called codon, with a given amino acid. The genetic code 
is valid for all living organisms. Translation is the step during which the synthesis of the protein 
occurs (Weaver, 2011; Berg et al, 2012). 

Table 1. The genetic code. The codons are shown at the upper side of the table. The 3- letter codes and 1-
letter codes at the bottom of the table represent the different AAs. UAA, UAG and UGA correspond to a stop 
codon. (Alberts et al, 2015) 
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Translation 
In prokaryotes, translation and transcription are not spatially separated in the cell, both occur 
in the cytosol. Ribosomes are molecular complexes composed out of ribosomal RNA (rRNA) 
and proteins. They perform translation by reading the mRNA strand from its 5’ end to its 3’ 
end. The codons of the mRNA are read one after the other, and the corresponding AA-chain 
is polymerized. The entire mRNA sequence is not always used to code for an AA. Indeed, there 
may be a conserved and untranslated region, AGGAGG, at the 5’ end called the Shine-Dalgarno 
box. This sequence allows base-pairing with an rRNA of the ribosome on the ribosome binding 
site, located ~8 bp upstream of the start codon: AUG (or GUG). This interaction allows the 
alignment of the ribosome with the start codon (Alberts et al, 2015; Weaver, 2011; Berg et al, 
2012). 

Adding of a free AA to the peptide chain is not thermodynamically favorable. AA-esters, called 
activated AAs, are necessary to allow peptide bond formation during polymerization of the 
peptide chain. These are carried to the mRNA by a transfer RNA (tRNA), forming the 
aminoacyl-tRNA or charged tRNA. A codon of the mRNA binds the appropriate aminoacyl-
tRNA by complementarity with a sequence on tRNA called anticodon. Amino acids are added 
to the appropriate tRNA by an enzyme called aminoacyl-tRNA synthetase. There is at least one 
specific enzyme for each AA (Alberts et al, 2015; Weaver, 2011; Berg et al, 2012). 

Ribosomes are made out of a small subunit and a large subunit, 30S and 50S respectively. 
During initiation of translation, the small subunit, containing three sites: E (exit), P (peptidyl) 
and A (aminoacyl), binds to the mRNA on the ribosome binding site, helped by three initiation 
factors (IF): IF-1, -2 and -3. Simultaneously, a tRNA carrying the AA matching the start codon 
enters the P site. The IFs are then released from the 50S subunit to bind to the complex and 
form the complete ribosome (70S) (Alberts et al, 2015; Weaver, 2011; Berg et al, 2012). 

Then starts the elongation, carried by three elongation factors (EF). A tRNA goes into the A-
site and stays only if its anticodon complements the mRNA codon on the A-site. The peptide 
(now one AA) linked to the tRNA at the P-site is transferred to the AA of the tRNA at the A-site 
and a peptide bond is formed. This reaction is catalyzed by the ribosome. Then, the large 
subunit of the ribosome translocates in the 3’ direction. This displacement moves the tRNA 
from the A-site to the P-site and the tRNA at the P-site to the E-site. The tRNA at the exit site 
leaves the ribosome and the small subunit of the ribosome translocates under the large 
subunit. Then, the cycle restarts (a new tRNA enters the A-site, …). Figure 3 shows the steps 
of addition of the fourth AA (Alberts et al, 2015; Weaver, 2011; Berg et al, 2012). 

Elongation is stopped when a stop codon (UAA, UAG, UGA) comes into the A-site. Indeed, a 
stop codon is recognized by one of the release factors: RF-1 or RF-2. This induces releasing of 
the polypeptide. Subsequently, the interaction between RF-3 and the A-site provokes 
detachment of the ribosome subunits (Alberts et al, 2015; Weaver, 2011; Berg et al, 2012). 
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Figure 3. Translation of an mRNA. The mRNA is represented by the blue line and the ribosome is shown in green. 
The light green part corresponds to the 50S subunit and the dark green part correspond to the 30S subunit. The 
polypeptide that is synthetized is indicated by the colored circles. (Alberts et al, 2015) 

1.2.2. Transcription in E. coli  
Transcription is discussed thoroughly in this subsection, apart from the general overview on 
protein synthesis. First, we will describe the molecular complex responsible for this process. 
Then, we will go through the three steps composing this biological process.  

RNA polymerase  
The molecular complex responsible for transcription is a multi-subunit RNA polymerase 
composed of four types of subunits: α (two copies) , β,  β’and ω, forming the RNA polymerase 
core enzyme (E) (Finn et al, 2000).  
Both α subunits (329 AAs in E. coli) are made out of two independently folding domains that 
are joined together by a linker of ~20 AAs (Browning & Busby, 2004). The amino-terminal 
domains (αNTD, AA 1-235) allow the assembly of β and β’ subunits after dimerization. The 
carboxy-terminal domains (αCTD, AA 250-329) can bind DNA (Browning & Busby, 2004). β and 
β’ subunits represent the active site cleft of the complex which contains two divalent metal 
ions (usually Mg2+), playing the role of electron withdrawer. β and β’ are the biggest subunits 
of the complex, they are made of 1342 and 1407 residues respectively in E. coli (Browning & 
Busby, 2004). All bacterial β’ subunits seem to contain the AA-string NADFDGD from which 
aspartate residues chelate both divalent metal ions (Weaver, 2011). Both β and β’ subunits 
are responsible for binding: to double-stranded DNA downstream of the synthesis direction, 
to DNA-RNA hybrids during transcription and to RNA (Murakami, 2015). The small ω subunit 
(91 AAs) helps in the last step of the assembly of the RNA polymerase core enzyme. That is, 
the association between β’ and α2β. Nevertheless, a study of Gunnelius et al showed in 2014 
that the ω subunit is not essential in E. coli (Browning & Busby, 2004; Gunnelius et al, 2014).  

The RNA polymerase core enzyme requires a transcription factor to interact with DNA and 
initiate transcription. This transcription factor is a σ factor. Together, they form the RNA 
polymerase holoenzyme (Eσx) (Gunnelius et al, 2014). σ factors allow principally to: associate 
the Eσx-promoter complex (RP) in the initially “closed” conformation (RPc), stabilize the 
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complex in “open” conformation (RPo) and interact with transcription activators for RNA 
synthesis (Paget, 2015).  

σ factors are proteins containing up to four different domains interacting with the core 
enzyme (Nagai & Shimamoto, 1997). σ2, σ3 and σ4 specifically interact with promoter elements. 
σ1.1 occupies the active site in RPc before double stranded DNA in RPo. Note that this domain 
is absent from most of the σ factors and can inhibit or promote transcription (Paget, 2015; 
Vuthoori et al, 2001). Thus, the σ1 domain needs to be moved away from the RNA polymerase 
cleft to form the active RPo (Murakami, 2015). Seven types of σ factors are known in E. coli; a 
house-keeping σ factor: σ70 and six alternative minor σ factors: σ54, σ38, σ32, σ28, σ24 and σ19 
(respectively: rpoD, rpoN, rpoS, rpoH, fliA, rpoE and fecI) (Shimada et al, 2017; Cho et al, 2014). 
The group of alternative σ factors mainly regulates expression of genes involved in the 
response to environmental stress-conditions, but also in auxiliary processes such as nitrogen 
fixation or flagellar assembly (Glyde et al, 2017). The polymerase and σ factors are limiting 
elements for the transcription of genes. The competition between σ factors for the RNA 
polymerase and the competition between promoters allow to regulate gene expression in the 
cell (Browning & Busby, 2004; Maeda, 2000). 

Anti-σ factors have an antagonist role to σ factors. Some of those molecules prevent the 
association of σ factors with the core enzyme by interacting principally with the alternative σ 
factors, less with σ70. As σ factors are limited in the cell, transcription of genes that are 
dependent to the targeted σ factor is diminished. Other anti-σ factors bind to σ factors but 
they still allow the interaction with the core enzyme. For example, AsiA binds with the σ4 
domain, preventing the initiation of the transcription. This might be caused by the 
impossibility of the σ4 to interact with the -35 region of the promoter (see Transcription 
initiation), or by preventing the association of σ4 with the β subunit of the core enzyme (Dove 
et al, 2003). 

Transcription initiation 
Here, we will discuss the first step of the transcription process. Locations indicated with 
numbers refer to the relative position towards the transcription start site, indicated by 0, −𝑥 
refers to the 𝑥 th position upstream the TSS. 

Studies performed on Thermus aquaticus and Thermus thermophilus revealed that promoter 
region -41 to -7 stands outside the RNA polymerase active site cleft, at the surface of the 
complex. This place corresponds to where the σ factor is located. This observation has shown 
that it is the σ factor that interacts with the promoter rather than the RNA polymerase itself 
(Murakami, 2015).  

Promoters contain four sequence elements involved in the interaction with the σ factor of the 
RNA polymerase. Those elements are specific to each σ factor. In E. coli, for σ70, two of them 
are hexamers with consensus sequences TTGACA and TATAAT and are located respectively 
around positions -35 and -10. Those hexamers are the principal elements responsible for the 
promoter recognition by σ4 (-35 box, by subregion σ4.2) and σ2 (-10 box, by subregion σ2.4) 
domains of the RNA polymerase (Browning & Busby, 2004). Considering σ54, interaction 
between promoter and the σ factor occurs at consensus sequences [CT]TGGCA[CT][GA] and 
TGC[AT][TA] around regions -24 and -12 respectively. Transition to RPo conformation depends 
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on enhancer-binding proteins (Lin et al, 2014). Another element is the extended -10 element, 
which is found upstream the -10 box and consists of a 3-4-mer: TGn (Sanderson et al, 2003). 
This pattern is recognized by the σ3 domain, is present in ~20% of the E. coli promoters and 
can trigger promoter activity up to more than 100-fold (Sanderson et al, 2003; Ross et al, 
2001). The last element is a ~20 bp sequence located upstream the -35 element up to ~-90 
(Browning & Busby, 2004; Saecker et al, 2011). This region is called the “UP element” and is 
not recognized by the σ factor but rather by the αCTDs of the RNA polymerase (Figure 4). 
Promoters that do not contain an UP element are called core promoters (Browning & Busby, 
2004; Ross et al, 2001; Gourse et al, 2000). 

 
Figure 4. Model for the function of the C-terminal domain (CTD) of the polymerase α-subunit. (a) In a core 
promoter, the α-CTDs do not interact with the promoter. (b) in a promoter with an UP element, the α-CTDs 
interact with the UP element. The dark line represents the promoter. The colored shapes over the promoter 
represent the subunits of the RNA polymerase holoenzyme. (Weaver, 2011) 

A consensus sequence is a sequence that is over-represented across promoters but is not the 
“optimal” sequence. It also differs for each σ factor in E. coli. The closer a promoter sequence 
is from the consensus sequence, the more affinity it will have for the σ factor and thus express 
the gene more efficiently (Browning & Busby, 2004). However, most of the promoters do not 
have a consensus sequence. Hence, an equilibrium is set between the activities of the 
promoters (Browning & Busby, 2004). 

For the transcription to start, the RNA polymerase holoenzyme-promoter complex (RP) must 
switch from the inactive closed conformation to the active open conformation. This shift 
allows to initiate transcription at the transcription start site (TSS) and not in the promoter 
region (Glyde et al, 2017). 

The open conformation of the promoter is obtained by a process called “isomerization” and 
results in an unstable open complex (Saecker et al, 2011; Browning & Busby, 2004). 
Isomerization allows to separate both DNA strands around position -13 to +2, forming a 
transcription “bubble” from which position +1 of the template strand is placed in the active 
site. This displacement of the template stabilizes the open complex (Saecker et al, 2011). 
Three aromatic AAs (Phe248, Tyr253 and Trp256) from the σ factor might be responsible for 
the isomerization. These AAs are well conserved across organisms. Isomerization might occur 
by linkage of those AAs to the non-template strand around the -10 box (Weaver, 2011). The 
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non-template strand or coding strand still interacts with the RNA polymerase and regulates 
the formation of the complex, its lifetime, the selection of the transcription start site and 
abortive synthesis (Nandy Mazumdar et al, 2016).   

Indeed, the RNA polymerase-DNA complex can evolve in abortive or productive synthesis 
(Saecker et al, 2011). During synthesis, α-phosphate of the lastly arrived nucleoside 
triphosphate is covalently linked to the 3’-OH end of the neosynthesized RNA. The α-
phosphate corresponds to the phosphate group that is directly linked with the ribose. The RNA 
chain and the transcription “bubble” grow while the RNA polymerase holoenzyme still 
interacts with the promoter (Alberts et al, 2015). Thus, template DNA is continuously pulled 
inside the enzyme complex, this is called “scrunching”. This process induces stress and 
competition between two possible paths: releasing the RNA strand to diminish the stress 
(abortive synthesis) or keeping on extending it (productive synthesis). The size of the aborted 
RNA chain is a function of the promoter sequence and conditions but is not yet elucidated 
(Saecker et al, 2011). Abortion can happen several times before the productive synthesis to 
occur (Alberts et al, 2015). The stress is automatically avoided at a critical RNA chain size of 11 
nucleotides by perturbation of the interaction between the RNA polymerase and the 
promoter (Saecker et al, 2011). Note that initiation does not necessarily end up with the 
release of the σ factor from the RNA polymerase (Bar-Nahum & Nudler, 2001; Mukhopadhyay 
et al, 2001). 

Transcription elongation 
The β’ subunit of the polymerase contains a valine residue that is in contact with the minor 
groove of the DNA downstream the transcription bubble. This AA might act by causing the 
screw-like motion by turning around the minor groove of the DNA. This valine might also stop 
the DNA to prevent it from entering or escaping the polymerase. (Weaver, 2011) 
The action of separating paired nucleic acids is described as helicase activity. During 
elongation, the polymerase melts DNA downstream (helicase) and unmelts it upstream of the 
synthesis direction. This results in a transcription bubble covering around 17 bp and containing 
an RNA-DNA hybrid of ~9bp up to position +1, where the new nucleotide is added. As 
downstream DNA is double-stranded up to position +2, only position +1 is available for 
incoming nucleotides. Hence, new nucleotides are added one by one (Vassylyev et al, 2007).  
The arginine 422 of the β subunit interacts with the nucleotide of the template strand at 
position +1. This AA might thus be implied in the proofreading process. Proofreading consists 
in verifying that the correct nucleic acid is added. Indeed, the new nucleotide is added to the 
elongation complex in a “pre-insertion state” which enters an “insertion state” if bases are 
correctly paired and linked to the appropriate sugar (ribose). The polymerization of the RNA 
chain is catalyzed by both Mg2+ ions in the active site, acting as an electron withdrawer. The 
nascent RNA goes out from the polymerase by the exit channel. (Weaver, 2011) 
What limits the length of the RNA-DNA hybrid is on one hand the size of the transcription 
bubble and on the other hand a hydrophobic pocket that captures the first RNA base displaced 
from the hybrid (upstream). Indeed, contrarily to DNA polymerase, RNA polymerase must 
unhybridize the synthesized RNA and DNA template to rewind DNA upstream of the 
transcription bubble (Jiang et al, 2004). 
Elongation brings tension in DNA downstream and upstream the transcription bubble. This 
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stress is released thanks to creation of positive supercoils downstream and negative supercoils 
upstream of the bubble. Supercoils are then relaxed by the action of topoisomerases. This 
costs less energy than making the RNA polymerase rotate to follow the DNA’s twist during the 
elongation, which would also surround the synthetized RNA around the DNA template 
(Weaver, 2011). 

Elongation is not a continuous process, pauses occur and those have an important regulatory 
role. Pausing allows to coordinate transcription and translation and help the folding of the 
nascent product. Both steps of transcription permit regulators to bind to the complex and are 
required for termination of the transcription (Weixlbaumer et al, 2013). Pausing can have 
several causes. The first cause is the addition of the wrong nucleotide. The second cause is the 
presence of a promoter-like sequence in the non-template strand, interacting with the σ 
factor, if the latter is still present. The third cause is the formation of an RNA hairpin of ~11 
nucleotides at the exit channel of the polymerase (Yakhnin & Babitzke, 2010; Weixlbaumer et 
al, 2013). 

When the wrong nucleotide is added, backtracking occurs. This process is carried by proteins 
GreA and GreB which activate RNase activity of the polymerase (3’ to 5’ direction). During 
backtracking, the polymerase goes in the opposite direction, removing completely the 3’ end 
of the RNA from the active site. This movement induces pausing which can also lead to a 
complete interruption of the transcription. GreB also allows to prevent this pause to occur. 
However, these two proteins are not mandatory for proofreading. As the last incorporated 
nucleotide does not match with the DNA template, it is more flexible. The wrongly 
incorporated nucleotide can thus bend back to enter in contact with the Mg2+ of the active 
site. The metal ion might be involved in the RNase activity. This cannot occur if the appropriate 
nucleotide is added as it will not be flexible enough to interact with Mg2+. (Weaver, 2011) 

The formation of an RNA hairpin at the exit channel provokes pausing of transcription. Indeed, 
the RNA hairpin interacts with the β-flap of the β subunit of the polymerase. This interaction 
might induce displacement from the active site of critical residues for polymerization activity 
(Kang et al, 2018). The NusA protein enhances this effect by stabilizing the interaction 
between the β-flap and the hairpin. Hairpin-formation is due to apparition of a reverse 
complemented repeat in the sequence. The repeat is separated by a gap with a “random” 
sequence, forming the loop of the hairpin (Toulokhonov et al, 2001). 

Transcription termination 
There are two different types of transcription termination signals or “terminators”. One type 
of terminator depends only on the RNA polymerase whereas the other depends on proteins 
called “rho”. 

The rho-independent terminator is a T-rich region preceded by a reverse complemented 
repeat in the non-template strand, which favorizes the formation of a hairpin in the RNA at 
the exit channel. The T-rich region allows to form weak interactions in the RNA-DNA hybrid 
(rU-dA interactions) to help dissociation of both strands. The separation of the transcript from 
DNA causes pausing of transcription. This pause allows the hairpin to form and destabilizes 
the elongation complex. Because of this instability, the transcript further detaches from the 
template. RNA escapes from the polymerase and the transcription bubble can rewind (Figure 
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5, left). Thus, hairpin-formation facilitates termination but is not mandatory.  
The hairpin-forming sequence can bind a region of the core polymerase called the upstream 
binding site (UBS). This association inhibits hairpin-formation and thus termination. NusA 
avoids inhibition of termination by weakening the interaction between the transcript and the 
UBS. (Yarnell & Roberts, 1999; Farnham & Platt, 1980) 

Rho-dependent termination depends on proteins called “rho” and a reverse complemented 
repeat. Contrarily to rho-independent termination, this process does not require a U-rich 
region at the end of the transcript. Rho is a doughnut shaped hexamer made out of the same 
subunits. This protein initially interacts with the polymerase at the beginning of transcription. 
When the transcript is long enough, rho binds RNA polymerase on a sequence called the “rho 
loading site”. This interaction creates an RNA loop between the rho binding site and the RNA 
escaping from the polymerase. During transcription, the nascent RNA is fed through the center 
of the doughnut shaped protein. The RNA loop remains as rho cannot catch up the RNA 
continuously flowing out of the polymerase. At the end of transcription, a hairpin is formed 
because of the reverse complemented repeat. The hairpin causes the transcription to pause, 
allowing rho to catch up with the lastly synthesized ribonucleotides. RNA synthesis gets 
blocked because the RNA loop gets tightened, the elongation complex is “trapped” (Figure 5, 
right). Then, rho dissociates the RNA-DNA hybrid with its helicase activity. The transcript is 
released, ending the transcription (Brennan et al, 1987; Roberts, 1969; Epshtein et al, 2010) . 

 
Figure 5. Rho-independent termination (left) and rho dependent termination (right). The RNA polymerase is 

represented by the pink shape. The rho-protein is represented by the blue hexamer. At the last step of the rho-
dependent termination, we see that the RNA loop gets tightened, inducing the release of the mRNA. (Weaver, 

2011) 
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1.2.3. Regulation of transcription is mediated by σ factors 
In this subsection, we will discuss the principles and importance of the regulation of protein 
synthesis, and more particularly the regulation of transcription. Therefore, we will first explain 
the differences between the growth phases of microorganisms. Then, we will explain how this 
regulation works at the molecular level. The latter part is of major importance considering the 
subject of this master thesis. Indeed, interactions between σ factors and promoters change 
while conditions change and those molecules explain part of the regulation of transcription. 

Growth phases 
The growth of a microorganism in nature can be studied thanks to its behavior in a batch 
fermentation. Fermentations are used in the bioindustry to produce complex molecules by 
cultivation of microorganisms in the presence a substrate, which they feed on. Typical 
examples of molecules produced by fermentation are: bioethanol (Rolfe et al, 2012), lactic 
acid (Reddy et al, 2008), vitamin B12 (Keuth & Bisping, 1994), penicillin (San & 
Stephanopoulos, 1989) and coenzyme Q10 (Kien et al, 2010). The process occurs in bioreactors 
under controlled conditions. During batch cultivation, a certain quantity of substrate is added 
to an empty reactor. Then, microorganisms are inoculated to start the fermentation. 

There are five distinct growth phases (Figure 6): the lag phase, the exponential phase, the 
stationary phase, the death phase and the long-term stationary phase. The fermentation first 
starts by the lag phase. The microorganism needs to adapt to the new environment: pH, 
temperature, substrate, … It does not multiply yet as it requires a new set of molecules to 
cope with the new conditions. After a time of adaptation, the cells start to grow and multiply 
while consuming the substrate. This phase is called the log phase or exponential phase as the 
number of cells grows exponentially. Then, two factors can cause the organism to enter in the 
stationary phase. This phase corresponds to the stop of replication of the cells. An essential 
nutrient can become limiting or a toxic product can accumulate. When the cells run out of 
their energy reserves, they enter the death phase. Microorganisms die and their number 
decreases exponentially with time. During the long-term stationary phase, dead cells release 
nutrients that are used by survivors, which can multiply. This is called cross-feeding. There is 
an alternating increase and decrease in the number of living cells. (Rolfe et al, 2012; Pletnev 
et al, 2015) 

 
Figure 6. Bacterial growth curve showing the five different growth phases. 1: lag phase, 2: exponential phase, 
3: stationary phase, 4: death phase and 5: long-term stationary phase. (Pletnev et al, 2015) 

 

The transition between the exponential phase and the stationary phase in E. coli comes along 
with reprogramming of the physiology of the cell and gene expression. This transformation is 
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driven by the modulable selectivity of the different σ factors for the different promoters. This 
variation is due to a modification of the relative concentrations of each σ factor and to 
interactions with other molecules (Bernardo et al, 2006; Typas et al, 2007; Wassarman & Storz, 
2000; Kang et al, 1997). 

1.2.4. Promoter activities and promoter specificity 
The limited transcriptional resources must be appropriately distributed across the set of genes 
of the cell. Depending on the conditions, certain promoters need to be more active than 
others. To this end, two factors are of major importance: growth rate (µ) and growth 
conditions. The growth rate corresponds to number of cell divisions occurring per unit of time. 
This metric generally lies between 0.2 and 1.3 /h (Andersen & Von Meyenburg, 1980). It 
appears that the general promoter activity of the cell depends only on growth rate. Moreover, 
this activity follows a power-law distribution. In fact, the distribution derives from a mixture 
of two log-normal distributions: metabolic promoters and ribosomal promoters (Figure 7). 
Both distributions remain constant for a given growth rate. However, the different metabolic 
promoters show different activities in function of the growth conditions (Zaslaver et al, 2009). 

 
Figure 7.  Heavy-tailed distribution obtained by a mixture of two log-normal distributions. (A) Log-normal 
distributions with the observed mean and standard deviation of ribosomal promoters (dashed) and metabolic 
promoters (solid line) at µ = 0.8 divisions per hour in glucose medium. The ribosomal function was multiplied by 
5 for clarity. (B) Rank frequency plot for the resulting mixture of these two ‘scale rich’ classes. Note: figure and 
legend were downloaded from the paper of Zaslaver et al (2009). 

We will now focus on the transition between the exponential phase and the stationary phase. 
In E. coli, this phase switch implies variation of the growth rate and restructuration of the gene 
regulatory network (Raffaelle et al, 2005). It is straightforward to think of how genome-wide 
promoter activity becomes lower. As the nutrient availability is low, the cell cannot afford 
transcribing all its genes. Thus, the promoter activity at the general level is diminished. 
However, it is more complex to understand how the global pattern of metabolic promoters’ 
activities is modified. The number of RNAP core enzymes is limited in the cell, creating a 
competition between the different σ factors. When switching growth phase, the relative 
concentrations of the σ factors change. Therefore, the pool of RNA polymerase holoenzymes 
changes, such as the general selectivity for the different promoters (Kang et al, 1997). When 
switching from the exponential to the stationary phase, the concentration of σ38 is increased 
to one third of the most abundant σ factor, the housekeeping σ factor (σ70) (Typas et al, 2007). 
Hence, dominance of σ38 should be increased.  
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However, this switch towards alternative σ factors is not only a matter of σ factor 
concentrations. Indeed, the molecular characteristics of the RNA polymerase core enzyme 
also differs. It has been shown that entering the stationary phase implied association of poly-
phosphates to the core enzyme (Kang et al, 1997). In fact, those molecules correspond to 
interaction of Eσ70 holoenzymes with guanosine tetraphosphate (ppGpp) alarmone. This 
nucleotide allows the dissociation of the Eσ70 complex in synergy with another protein: DksA. 
The core enzyme is thus more available for alternative σ factors (Bernardo et al, 2006; Typas 
et al, 2007). ppGpp is an adaptive response to amino acid starvation (Artsimovitch et al, 2004; 
Jishage et al, 2002; Perederina et al, 2004). 
In addition, 6S RNA further reduces the activity of σ70- specific promoters. This RNA of 184 nt 
competes with promoters by interacting specifically with Eσ70. This conserved molecule 
among bacteria imitates the secondary structure of a promoter’s transcription bubble (Barrick 
et al, 2005). The 6S RNA can also be used as a template for transcription when nutrient 
availability increases, releasing an RNA product (pRNA). Synthesis of pRNA provokes 
separation of the 6S RNA-holoenzyme complex. Thus, when conditions become favorable for 
growth, the activity of σ70-dependent promoters is recovered (Cavanagh et al, 2012; Chen et 
al, 2017). 
The E. coli’s alternative σ factor σ38 is the most closely related to σ70. Indeed, they have a 
similar -10 box (TAtaaT and CTAtacT, for σ70 and σ38 respectively). There is no distinctive -35 
box for σ38 (Cho et al, 2014). Both facts allow large overlap of the regulated promoters 
between both σ factors. During the stationary phase, a protein called Crl favorizes Eσ38 
interactions (Typas et al, 2007). Ironically, this molecule induces also the synthesis of RssB, the 
protein responsible for the proteolysis of σ38. The σ factor is protected from degradation while 
it interacts with RNAP (Eσ38). However, the effect of Crl promoting Eσ38 formation is favorized 
over the effect of σ38 proteolysis. Thus, competitivity of this alternative σ factor is increased 
during stationary phase. 

1.3. Machine learning 
Nowadays, an enormous quantity of information is generated every day which is mostly 
accessible online (Jacobson Ralph, 2013). Data is now stored online whereas it was initially 
saved on a sheet of paper. The large amount of information that is generated needs to be 
processed to extract tendencies, make conclusions, create knowledge, but also to be able to 
make predictions. Companies must take decisions that are supported by the data, if they want 
to grow and minimize the risk of failure. It is nearly impossible for a human to do so. The 
computational speed of computers allows us to process the data faster and in an automated 
way. The use of computers for data analysis is applicable for a wide variety of fields: sales, 
transport, healthcare, agriculture, biology, in banking, telecommunications, etc. (Chen et al, 
2014a; Assunção et al, 2015; Carbonell, 2016). 

1.3.1. Machine learning types 
A dataset is a table composed of observations. An observation is an entry in the dataset for 
which different parameters are measured. The measurement of the parameters can be either 
qualitative or quantitative. Those parameters are used to build a model which will allow to 
predict an output. A model is a mathematical function that depends on the parameters 



14 
  

provided in the dataset. For some datasets, the output is already present for the observations. 
In this case, the output allows to train a model to make predictions for new observations. 
Training or fitting a model corresponds to assigning coefficients to its parameters. This type of 
machine learning procedure is called supervised learning. Supervised learning makes use of 
labeled data to train a model. When the observations in the data are not assigned to a label 
we enter in the field of unsupervised learning.  

Supervised learning 
Depending on the type of output that the observations are labeled with, the machine learning 
approach will be different. If the output represents a category (label or class), it is a 
classification problem. The output is qualitative. If the output is a quantitative value, the 
problem is referred to as regression (Hastie et al, 2009). 

Classification is the type of machine learning model used to assign qualitative values (classes) 
to observations. Examples of classification problems would be: assigning mails to “spam” or 
“mail” and determining whether a bag undertaking an X-ray control at the airport contains 
forbidden items or not. These are examples of binary classification problems. The 
observations must be classified into one of two classes. Parameters used to classify mails could 
be: the number of misspelled words, the number of words, the presence of hyperlinks, the 
presence of the words “free”, “win”, etc. Parameters used to report dangerous bags could be: 
presence of metallic objects, presence of liquids, etc. In those type of problems, the model is 
required to build a decision function that will allow discriminating observations of both 
classes. Multiclass classification consists in a problem for which the observations may be 
assigned to several classes. For instance, the picture of an animal is shown to the model which 
must determine whether the animal is a deer, a wild boar, a pheasant, or a fox. Only one class 
from four can be assigned to the image. Multilabel classification is a problem for which several 
classes can be assigned to an observation. For instance, several animals may be present in a 
picture. There are multiple labels to be predicted by the model, one label per animal. The 
model will determine for each possible target whether it is present or not. A common way to 
solve a multilabel classification problem is to train a separate binary classifier for each possible 
target. 

Regression refers to machine learning models that predict quantitative outputs. For example, 
a doctor who wants to predict the level of glucose in the blood of its patient on basis of a 
multitude of parameters: has he eaten recently, what is his hearth rate, etc. An economist 
who tries to determine tomorrow’s price of a company’s share on the stock market based on 
the evolution of the last 5 days. Here, the parameters could be: price on day -5, on day -4, … 
up to day 0 and we want to predict the price on day +1 (tomorrow). 

Unsupervised learning 
Unsupervised learning allows to build models that classify observations without requiring the 
explicit labelling of the observations. Observations do not have an associated response. What 
can be done in such cases is trying to understand the relationships between the parameters 
or between observations. An example of unsupervised learning approach is clustering. 
Clustering methods allow to group similar observations in the data. There exist multiple 
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methods for clustering observations. A well know clustering family that is used in this thesis is 
hierarchical clustering. 

Hierarchical clustering produces a user-defined number of clusters from the observations. 
Those clusters are nested with each other in a hierarchical manner. They form a tree in a way 
that the root contains all the observations from the data and each leaf contains a subset of 
similar observations. In this tree, clusters (leaves) present in the same branch resemble to 
each other mother than observations present in other branches. For instance, hierarchical 
clustering can be used to build phylogenetic trees which group organisms based on of the 
similarity of their 16S rRNA gene sequences (Cai & Sun, 2011).  

1.3.2. Machine learning models used 
In this subsection, we will present machine learning models that were used in this master 
thesis. We explain the rationales behind logistic regression and support vector machines. 

Logistic regression (LR) 
Logistic regression fits a linear model and transforms it with the logistic function. It is used for 
binary classification problems. A linear model is given by Eq. 1. 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑝) contains the 
𝑝 values assigned to observation 𝑥, one per feature. 𝛽0 corresponds to the intercept, that is 
the response of the equation when all the values for 𝑥 = 0. 𝛽 correspond to the coefficients 
vector (𝛽0, 𝛽1, …, 𝛽𝑝), there is one coefficient per feature. 

 
𝑓(𝑥) = 𝛽0  + ∑  𝛽𝑖𝑥

𝑝

𝑖=𝑖

 (1) 

In binary classification, the label assigned can be either 1 (positive class) or 0 (negative class). 
The output of the function described in Eq. 1 is a continuous value. We can assign the label 0 
or 1 to an observation on basis of the output of the function by using a threshold. Using a 
cutoff of 0.5, an observation will be classified as positive if the output is bigger than 0.5. The 
response of the function can be seen as the probability for an observation to belong to class 
1. The problem is that the output of this function can be outside [0, 1], which is not possible 
for probabilities. Applying a logistic function to this linear model keeps the output between 
the desired boundaries and forms Eq. 2. 𝑝(𝑥) is the probability for observation 𝑥 to belong to 
class 1.  
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Figure 8. Transformation of a linear model into a logistic model. The linear model 𝒇(𝒙) = 𝟎. 𝟓 + 𝟎. 𝟎𝟕𝒙 is 
transformed into the logistic model 𝒑(𝒙) =  𝟏

𝟏+ 𝒆−(𝟎.𝟎𝟓+𝟎.𝟎𝟕𝒙) 
. The output of the logistic model is maintained 

between [0, 1] whereas the output of the linear model can be outside [0,1]. 

Support vector classifier (SVC) 
SVC fits a linear hyperplane to separate classes (James et al, 2000). The hyperplane that is fit 
is the one that lies the farthest possible from the observations of each class. For this reason, 
the classifier is also referred to as the maximal margin classifier (Figure 9). The margin is the 
perpendicular distance between the hyperplane and the observations that lie the closest from 
it. Those observations are called support vectors, they are the only one influencing the shape 
of the hyperplane. The support observations can lie either: on the margin, between the 
hyperplane and the margin or at the wrong side of the hyperplane. Indeed, it is not always 
possible to separate 2 classes perfectly while ensuring a good performance of the model. The 
size of the margin is tuned by a parameter C, which is proportional to the number of 
observations that can violate the margin. If C is large, the margin will be large (Figure 9, left), 
if it small, the margin will be narrow (Figure 9, right). In the latter case, the hyperplane will 
more fit to the training data. 

SVC can also fit a non-linear decision function by enlarging the feature space of  𝑝 dimensions 
using combinations of the features. Then, SVC fits a linear hyperplane in the enlarged feature 
space, resulting in a non-linear separator in the initial feature space. 

  
Figure 9. Support vector classifier. The hyperplane corresponds to the solid line and the margins corresponds to 
the dashed lines. The dots of the same color correspond to the observations for one class. 𝑿𝟏, 𝑿𝟐 correspond to 
two features. It is a 2D feature space for which each observation is assigned 2 values, one for each feature. (James 
et al, 2000) 
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Support vector machine (SVM) 
SVM differs from SVC by the way the feature space is enlarged, SVM does not use 
combinations of features but a function called kernel. By using Lagrangian multipliers to 
determine the coefficients for the 𝑝 parameters, it appears that only knowledge of the inner 
product between all the pairs of observations is required (Eq. 3). 𝑥 and 𝑥′ correspond to 2 
observations (pair). 

 
⟨x, x′⟩ =  ∑ 𝑥𝑘𝑥′𝑘

𝑝

𝑘=1

 (3) 

The equation of the linear support vector machine hyperplane is given in Eq. 4. 𝛼𝑖, … , 𝛼𝑛 
correspond to the coefficients for the 𝑛 observations, 𝛽0 to the intercept, and 𝑥 to the 
observation to classify. In a binary classification problem, the label of the positive class is set 
to +1 and the label of the other (negative) class to -1. An observation 𝑥 that is presented to 
the classifier will be assigned to the positive class if the function returns a positive value. 

 
𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖

𝑛

𝑖

⟨𝑥, x′⟩ (4) 

Knowing this, we can move beyond linearity by using a generalization of the inner product 
which is called a kernel function. A kernel function noted 𝐾(𝑎, 𝑏) is a measure of the similarity 
between two objects: 𝑎, 𝑏. The kernel can be either linear (Eq. 5) or non-linear (Eq. 6). φ(𝑥𝑖) 
corresponds to the observation 𝑥𝑖  seen in the enlarged feature space φ.  

 𝐾(𝑥, 𝑥′) =  ⟨𝑥, 𝑥′ ⟩  (5) 

 

 𝐾(𝑥, 𝑥𝑗) =  ⟨φ(𝑥), φ(𝑥′))⟩  (6) 

 

In the case a linear kernel is used, a linear decision function will be fit, it will be non-linear if a 
non-linear kernel is used (Eq. 7). Examples of kernel functions are string kernels, which 
compute the similarity score of a pair of sequences. Four different string kernels are described 
in the Materials and Methods. Another non-linear kernel is the radial kernel, which requires 
tuning of another parameter besides C, γ. This parameter describes the distance up to which 
training examples have an influence for fitting the hyperplane. 

 
𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖

𝑛

𝑖

𝐾(𝑥, 𝑥′) (7) 

The fact that only the inner product of the observations is needed allows to build a non-linear 
decision function that may derive from an infinite dimensional feature space φ. Moreover, 
the hyperplane is fit in a computationally efficient setting as we can operate in the enlarged 
feature space by only computing the kernel for each pair of observations.  
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On contrary to LR, SVM does not predict probabilities for the new observations and directly 
assigns the class. A method that can be used to compute the probabilities is to apply a sigmoid 
function that accounts for the distance between an observation and the hyperplane. 

1.3.3. Stacking 
In binary classification, stacking is a technique used to combine the predictions of two or more 
models (base models). The predictions of the base models are used to train another model 
that will give the final predictions. The predictions of the base model are referred to as meta-
features. The advantage of this method is that it may result in better performance when each 
model taken separately performs better on a different subset of the data. Each model 
estimates the class to which an observation belongs. Then, the predictions are combined by a 
stacking model. This model will determine the best way to combine the predictions to result 
in a better (or equal) performance than each model would reach independently.  

Stacking is also used to improve the performance in a multilabel classification problem by 
learning from the relations between targets. How this is done practically is explained in 
Materials and Methods. Those relations can be i.e. exclusions. In this example, the model used 
on top of the predictions of the first step may determine that the first label will be negative if 
the second label is positive. A negative relation exists between the first and the second label. 
Hence, the stacking model will assign a negative weight to the meta-feature (probability) of 
the second label when it must make predictions for the first label. In contrary, if a positive 
relation between the labels exist, the weight assigned to both predictions of the base models 
may be positive. Thus, if both labels are predicted to be positive by the base models, the 
certainty of the final prediction (after stacking) may be higher for each label. 

1.3.4. Cross-validation 
A simple method which can be used to evaluate the performance of a model initially separates 
the observation into a training set and a test set. The training set is used to train the model 
and the test set is used to evaluate how well the model performs on unseen data. 

However, models often require hyperparameters to be tuned. Hyperparameters are user-
defined values, they are not determined by the learning algorithm contrarily to the model 
coefficients (parameters). An example of hyperparameter is C of SVM. Several values must be 
evaluated in order to determine the one that may give the best performance. However, 
repeatedly training a model using a different value and assessing its performance on the test 
cannot be done. Indeed, determining the optimal value for a hyperparameter on the test data 
would consist in overfitting the model on this part of the data. In other words, the parameter 
is tuned such that it will perform well on this part of the data but not on other observations. 
Hence, this setup cannot be used to tune the parameters of a model. Note that overfitting 
also consists in including more parameters (features) than necessary in the model (Babyak, 
2004). Including too many parameters will make the model more complex, it will follow the 
training observations too closely and will be less performant on new observations. 

Another possibility is to randomly split the data into 3 datasets. One of them, the hold-out set, 
is kept apart from the data and the two others are used as explained above. One is used for 
training and the other is used to evaluate the performance for a given value of the 
hyperparameter. The set on which the performance is evaluated is called the validation set. 
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The value that gave the best performance on the validation set is then used to evaluate the 
model on the hold-out data. The problem here is that only part of the data is used as a 
validation set. This subset may not be representative of all the data, leading to high 
performance difference between the validation and the hold-out set. So, on what part of the 
data should the model be validated? In fact, it should be validated on all the available data, 
except the hold-out set, to have a reliable estimation of the best hyperparameter value. The 
method that allows us to do that is cross-validation. 

The idea is to iteratively fit a model on the training set and evaluate it on the validation set 
until all the data has been used for validation. To do so, the dataset (except the hold-out set) 
is separated into k-folds i.e. k=3, 5, 10.  At each iteration, a different fold is used as a validation 
set. At the end, the average performance across the k folds is computed. This is repeated for 
each value of the hyperparameter. The estimation of the average performance is more reliable 
than without cross-validation. Then, we can evaluate the performance on the hold-out set 
(test set) after training on the combined training and validation (tuning) set (Figure 10). 

 
Figure 10. Cross-validation method for tuning parameters followed by the evaluation of the performance. 

 

1.4. Transcription factor binding site identification 
Transcriptional regulatory networks are directed graphs that represent regulatory interactions 
between transcription factors (TFs) and their target genes (Babu et al, 2004). Those networks 
are a straight-forward way to visualize transcriptional regulation. Moreover, they allow to 
analyze downstream or upstream effects due to a perturbation in a node. Building those 
networks first requires determining the specificity of promoters towards TFs. This can be done 
experimentally or computationally.  

1.4.1 Experimental approaches 
The experimental technique for the direct identification of TF binding sites (TFBS) is a 
combination of chromatin immunoprecipitation and sequencing (ChIP-seq) (Valouev et al, 
2008). Chromatin is DNA complexed with proteins and RNA (Bernstein & Allis, 2005). ChIP-seq 
allows to study in vivo interactions between DNA and proteins. ChIP isolates portions of DNA 
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interacting with the proteins of interest (Nelson et al, 2006). The interactions between 
molecules in the cell (in vivo) are cross-linked so that transient interactions are permanently 
fixed. Afterwards, DNA is sheared so that regions interacting with proteins are not cleaved. 
Then, DNA regions interacting with the protein(s) of interest are isolated with specific 
antibodies. Cross-linking is reversed to purify DNA prior to sequencing. Sequencing allows to 
determine the sequences of the isolated DNA regions. In this case, the proteins of interest 
correspond to transcription factor interacting with DNA on TFBS. The sequencing step can be 
replaced by a DNA microarray (chip). However, this technique introduces bias and lacks 
reproducibility (Steger et al, 2011). Moreover, it requires to know the genome of the species 
under study beforehand. Sequencing can be performed de novo (Li et al, 2010).  

Performing ChIP-seq/chip experiment is tedious and takes several days (Nelson et al, 2006). 
Alternatively, it is possible to predict the output of such experiments without the need of 
doing them. Computational methods allow to bypass wet lab work by making use of 
interaction data produced by previous experiments. 

1.4.2. Computational approaches 
Computational techniques for the identification of TFBS are divided into two main groups:  de 
novo discovery of motifs and prior knowledge based identification. A motif is a pattern shared 
across binding sites. Discovery of motifs requires the knowledge of the sequences upstream 
the TSS of genes. Overrepresented patterns in promoter regions make it possible to determine 
motifs. Promoters sharing common motifs are likely to be co-regulated by the same TF. Based 
on that, a cluster analysis on motifs can be performed to give an overview of the regulatory 
network of the species under study (Ma et al, 2013). As this method does not require prior 
knowledge of interactions between TF and promoters, it is qualified as de novo. On the 
contrary, prior knowledge based identification of TFBS makes use of known interactions to 
train a model. Afterwards, the model is used to further scan new sequences for TFBS. ChIP can 
be combined with quantitative real-time polymerase chain reaction (qRT-PCR) to assess the 
binding of a protein of interest with predicted binding sites (Read, 2017). qPCR is more reliable 
as compared to a microarray experiment (chip). 

Mutations appear at a certain rate in organisms. The mutations allow them to evolve and 
adapt to continuously changing environments. It is possible that certain organisms of a species 
become too different from their siblings and form two separate species. The genome of both 
sister species is different but still similar. Indeed, functional sequences, like genes or 
regulatory elements, evolve more slowly than non-functional ones (Cliften et al, 2003). 
Functional regions should thus be conserved across sister species. That is why, considering 
promoters, the functional regions, which correspond to TFBS, should be conserved (Down et 
al, 2007). Thus, besides construction of models, it is also possible to screen for TFBS by using 
a  comparative genomics approach (Rodionov, 2007; Lenhard et al, 2003). Note that TFBS do 
not always correspond to regulatory elements. For example, a σ factor might bind a non-
regulatory region if the sequence contains a binding sequence. Those TFBS should not be 
conserved across both sister species as they have no functional purpose. 
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1.4.3. Previous studies 
There is a multitude of tools that have been developed to predict interactions (classification) 
or even affinity (regression) between σ factors and DNA sequences. Apart from the machine 
learning model that is used (or not), methods differ from each other by how sequences are 
transformed into features. Indeed, raw sequences cannot be used directly to build most 
models. Examples of features are: scores towards position weight matrices (PWM) (Foat et al, 
2006), dinucleotide weight matrices (Siddharthan, 2010), k-mers (Annala et al, 2011) and 
pseudo k-mers (Lin et al, 2014). Dinucleotide weight matrices consider dinucleotides instead 
of one nucleotide. Some methods combine the different sort of features (Riley et al, 2015).  

Position weight matrices (PWM) 
PWMs allow to easily see and characterize the conserved motifs in a set of sequences (Xia, 
2012). A PWM is a graphical representation of a set of sequences in matrix form: 𝑝 rows and 
𝑁 columns, where 𝑁 corresponds to the length of the sequences and p corresponds to the 
number of possible letters. Considering DNA, sequences are made up to four different 
nucleotides, making 𝑝 equal to four. At each position of the PWM, the four letters are shown. 
The size of the letter allocated to a nucleotide depends on its frequency at this position across 
the set of sequences. Input sequences can be scored towards a certain PWM and classified as 
TFBS if the score is higher than a certain threshold. However, TFBS are not always conserved 
across different species and the promoters interacting with a given transcription factor do not 
always share common motifs (Scherf et al, 2000). The same importance is given to each input 
sequence as PWMs are frequency based. This method assumes that each nucleotide 
contributes independently to specific interactions. There is no consensus that determines 
whether this statement is true or not (Annala et al, 2011). Some studies showed independent 
contributions (Benos et al, 2002), whereas others showed interdependent contributions 
(Bulyk et al, 2002). Hence, PWMs are less reliable for predicting TFBS because of the issues 
explained above.  

 
Figure 11. Example of the PWM of the promoters binding σ54. (Cho et al, 2014) 

K-mers approach 
K-mer based methods circumvent the problems stated above. Indeed, they capture short-
range interdependencies between nucleotides by taking substrings of the sequences into 
account (Wu & Bartel, 2017). A k-mer is a word of length k taken from the pool of all the 
possible words of length k. K-mer based methods create one feature per possible word (Table 
2). As there are four nucleotides, 4k features are created for a k-mer pool. Features are 
extracted from a sequence by looking at the occurrence of each word in this sequence. The 
dimensionality of the data gets high if large k-values are considered. Furthermore, the number 
of dimensions gets even higher if all the information about the order of the k-mers in the 
sequence is included in the model (Annala et al, 2011). However, excluding this positional 
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information allows not to make assumptions about position dependence, variable gap length 
between TFBS or multiple binding motifs (Weirauch et al, 2013). 

Table 2. Example of 2-mer representation of sequences. One feature is created per possible 2-mer, resulting in 
a 16-dimensional feature space. The sequences are then represented by the number of occurrences of each 2-
mer.  

 AA AC AG AT … CG GA 
AAGATAT 1 0 1 2  0 1 
ACGATCG 0 1 0 1  2 1 

 

Pseudo k-mers approach 
Pseudo k-mers approaches do not lose the order information completely. The order of the k-
mers in the sequence is approximated with a set of order correlated factors called θ (Chen et 
al, 2014b). Those factors are computed using physiochemical properties of the k-mers in a 
sequence and the proximity between k-mers. The first-tier correlation factor considers the 
most contiguous k-mers (shift of one nucleotide), the second-tier correlation factor considers 
the second most contiguous k-mers (shift of two nucleotides), etc. up to the (𝐿 − 𝐾)th -tier 
maximum (Figure 12). 𝐿 is the length of the sequence and 𝐾 is the length of the k-mer 
considered. The last tier considers maximum up to the 𝐿 − 𝐾 most contiguous k-mers (shift 
of 𝐿 − 𝐾). Thus, pseudo k-mers composition increases the dimensionality of the data by 
adding at most (𝐿 − 𝐾)* 𝐾 parameters compared to a basic k-mers approach. Indeed, for each 
possible k-mer length, a maximum of 𝐿 − 𝐾 parameters are added. A major limitation of this 
method is the availability of physiochemical parameters for the considered length of k-mers.  

 
Figure 12. Example for the pseudo k-mers approach. The sequence is decomposed into the 3-mers that compose 
it. Then, the correlation (corr.) factors are computed based on the proximity of the sequences and 
physiochemical properties of the 3-mers. In this case 𝑳 = 8 and 𝑲 = 3. In this case, up to the fifth-tier correlation 
factor (8-3), which creates five more features for each sequence as compared to the k-mers approach. 

BacPP tool 
BacPP was developed in 2011. It is an example of a tool that can be used for σ factor specific 
assignment of input sequences (de Avila e Silva et al, 2011). The model was built with a dataset 
of 1034 promoter sequences from Enterobacteriaceae as positive instances. Those sequences 
had a length of 80 bp length. As negatives, a set of 1034 sequences of the same length were 
taken more than 80 bp upstream the TSS. They used this experimental setup to test the 
performance of their model. However, due to way the dataset was constructed, a bias may 
have been introduced, overestimating the model performance. Indeed, when evaluating the 
model for σx, they omit promoter sequences that do not interact with σx. Those sequences 
interact with other σ factors and resemble more to the σx-binding promoters than the 



23 
  

sequences in their negative set. Thus, the actual number of positives that are incorrectly 
predicted may be larger, which lowers the performance. 
This tool makes use of a machine learning model called “neural networks”. This model was 
used to identify the ideal prototype for each σ factor. The prototype is represented by a PWM. 
Then, each nucleotide of a sequence is scored towards the prototype of a given σ factor. The 
scores are weighted by intervals with an integer (e.g. +2 for scores between 0.4 and 0.49, -1 
for scores between 0.1 and 0.19). Lastly, a cutoff is used on the sequence score to discriminate 
between positive and negative observations. The cutoff is different for each σ factor. It is 
determined by looking at the intersection of the distributions of both classes. The distribution 
is plotted with the sequences’ score on the x-axis and the number of sequences with that 
score on the y-axis. 

iPro54-PseKNC tool 
iPro54-PseKNC was developed in 2014. It is a tool specialized in predictions of σ54 binding sites 
(Lin et al, 2014). It makes use of pseudo k-mers composition for vector characterization of the 
sequences together with support vector machines (SVMs). The physiochemical properties that 
are considered in this tool are related to the local structure of dinucleotides in the sequences; 
angular-twist, -tilt and -roll and translational-shift, slide and rise. These parameters have been 
calculated by Goñi et al (Goñi et al, 2007). A pseudo k-mers based approach produces a high 
number of parameters. Thus, there is a higher risk of overfitting. For this reason, a subset of 
the most discriminative features was selected. That is, features that individually allow to 
separate both classes the best. The positive set used consists of promoter sequences of 81 bp 
length going up to position +20 relative to the TSS. A negative set was created by taking 
sequences from intergenic and coding regions.  
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CHAPTER 2: AIMS 
The purpose of this master thesis is to use machine learning to predict interactions between 
σ factors and DNA sequences. In this chapter, we present the different classification problems 
for which machine learning models were built. In the next pages of this work, we will first 
analyze the data and the labels to explain how the classification problems have been 
determined. Analyzing the data also allows to explain the performance of the different 
classifiers. Afterwards, we will present the performance of the models for each classification 
problem. In this chapter, we will already highlight how the problem was subdivided. An 
explanation of the two major classification schemes is given. Multiple models have been built 
to evaluate the performance of each type of classification problem separately. Training 
multiple models separately allows to determine key points for the problematic under study. 
The classification schemes were built to evaluate the performance of the models while 
combining their predictions for research applications. We will determine which classification 
scheme outperforms the other in the next chapter. 

2.1. Promoters and non-promoters 
When parsing DNA sequences, the first thing that can be accomplished consists in predicting 
whether a sequence is a promoter or not. A promoter will interact with at least one σ factor 
whereas non-promoter sequences do not interact with σ factors. This is a binary classification 
problem. A promoter sequence is defined as “positive” and is labeled with a 1, whereas a 
sequence that is not a promoter is defined as negative and is labeled with a 0.  

2.2. Phase prediction 
2.2.1. Activity of the sequence during the exponential phase 
A sequence may be recognized by a σ factor during the exponential phase or not. It is also a 
binary classification problem. A sequence is active (positive) in the exponential phase if a σ 
factor interacts with it during the exponential phase. It is inactive if no σ factor interacts with 
it during that growth phase (negative). A model was built to classify DNA sequences based on 
their activity during the exponential phase. 

2.2.2. Activity of the sequence during the stationary phase 
A sequence that is not active during the exponential phase may be active during the stationary 
phase. Hence, a model was built to predict the activity during the stationary phase. In this 
case, a sequence that is active during the stationary phase is a sequence that interacts with a 
σ factor during the stationary phase. It is inactive if no σ factor interacts with it during that 
growth phase. 

2.3. Interaction with σ factors 
We have built three types of classifiers to assign σ factors to DNA sequences. That is, 
determining whether a σ factor interacts with a given sequence. One classifier predicts 
interactions during the exponential phase, another during the stationary phase and the last 
one predicts interactions with σ factors without regard to the growth phase.  
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2.3.1. Interaction while phases are grouped 
For the prediction of interactions with σ factors while phases are grouped, the phase during 
which the interaction occurs is not considered. In this case, we only try to establish whether 
the recognition of the sequence by a given σ factor may occur or not. It is a multilabel 
classification problem because we can assign several σ factors (labels) to a given sequence. 
The labels are not mutually exclusive. A promoter may be recognized by all or few of the σ 
factors. 

2.3.2. Interactions with σ factors in function of the growth phase 
In most of the cases, a promoter will show a different interaction pattern with σ factors in 
function of the growth phase considered. Hence, we built a model that predicts interactions 
between a DNA sequence and σ factors for each growth phase.  

2.4. Classification schemes to predict interactions with σ factors in 
function of the growth phase 

The so-called classification schemes are in fact two models stacked on top of each other. Each 
model is trained to make predictions and, at the end, the predictions of each model are 
combined. The purpose for using the classifications schemes is twofold. Firstly, it allows us to 
analyze the effect that the predictions made in the first step have on the overall performance 
of the model. Secondly, it allows to improve the certainty of the predictions, and more 
particularly on the top predictions. The top predictions are the observations for which the 
model returns the highest probabilities. For instance, the second model may predict for a 
sequence an interaction with σ70 during the exponential phase. On the contrary, the first 
model may predict that the sequence is inactive during the exponential phase. On one side, it 
is classified as a positive but on the other side it is classified as a negative. Hence, the certainty 
on the final prediction for this sequence is low. Combining both models enables more robust 
predictions for further experimental analysis. It gives an idea about the usefulness of the 
model i.e. for research purposes. For instance, if one wants to screen sequences that could be 
used as synthetic promoters, it is important to determine what σ factors will interact with it 
and the growth phase during which the interaction will occur. It is possible that a model 
performs poorly on the overall data, but that top predictions are mostly correct. In this case, 
the researcher can extract the promoters from the top predictions and verify the interactions 
experimentally, on a smaller subset of sequences.  

Two classification schemes are possible depending on what class is predicted first. The “phase-
σ” classification scheme consists in determining the growth phase(s) during which a promoter 
is active first. Subsequently, σ factors are assigned to the promoters based on the growth 
phase(s) during which they are active (Figure 13, left). However, those predictions can be 
made the other way around. The “σ-phase” scheme starts determining which σ factors 
interact with a given DNA sequence. Then, for each σ factor interacting with this sequence, 
the growth phase during which the interaction occurs is predicted (Figure 13, right). For both 
schemes, we will evaluate and compare the performance after the combination of the 
predictions.  
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Figure 13. Overview on the classification schemes. Left: Phase-σ scheme. Right: σ-phase scheme. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1. Data analysis 
In this section, we will describe the available dataset and analyze it. The analysis of the data 
was performed in order to determine the different classification problems. Moreover, it 
allowed us to find the reasons for the performance of each of the classification problems that 
were tackled. The dataset used is presented in the Materials and Methods. 

3.1.1. Determination of the classification problems 
In this subsection, we will analyze the data to consider the different possibilities for 
determining the interactions between DNA sequences and σ factors.  

Promoters and non-promoters 
The first model that was build is used to discriminate promoter from non-promoter 
sequences. The dataset of positives includes sequences that were not active for both growth 
phases considered. That is, they did not interact with any of the five σ factors during the 
exponential and stationary phases. Those promoters were removed from the dataset. The 
purpose of this classifier is to determine whether a 51 bp sequence is a promoter for at least 
one of the five σ factors studied (Figure 14).  

 
Figure 14. Promoter classification from sequences of 51 bp. 

Overlap between σ factors 
The data was also grouped by σ factor and “merged”. That is, each promoter is said to interact 
with a σ factor if it does so during at least one phase. The number of overlapping promoters 
varies in function of the phase. Table 3 shows the number of overlapping promoters between 
pairs of σ factors for each growth phase and for grouped phases.  

We can distinguish from two groups of σ factors Table 3. The first group represents the house-
keeping σ factor and σ38, which recognize most of the promoters binding to other σ factors 
(>90% and >60% respectively). The second group represents σ factors that recognize only few 
promoters interacting with other σ factors (<26%). This cluster includes σ54, σ32 and σ28.  
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Table 3. Percentage of overlap between promoters with regard to the σ factors by which they are recognized. 
a) Overlap during the exponential phase. b) Overlap during the stationary phase. c) Overlap when the exponential 
phase and the stationary phase are grouped. For instance, it can be read from table a) that 94% of the promoters 
recognized by σ38 are also recognized by σ70. 60% of the promoters recognized by σ70 are also recognized by σ38. 

a) 

Exp. phase 
are also recognized by  Promoters 

recognized by 

 

σ70 σ38 σ32 σ54 σ28 

%
 o

f p
ro

m
ot

er
s 

re
co

gn
iz

ed
 b

y σ70 100% 60% 21% 9% 4% σ70 1808  

σ38 94% 100% 24% 12% 5% σ38 1161 Total 

σ32 93% 67% 100% 8% 3% σ32 413 1916 

σ54 90% 73% 18% 100% 7% σ54 187  

σ28 96% 85% 16% 19% 100% σ28 67  
 

b) 

Stat. phase 
are also recognized by  Promoters 

recognized by 

 

σ70 σ38 σ32 σ54 σ28  

%
 o

f p
ro

m
ot

er
s 

re
co

gn
iz

ed
 b

y σ70 100% 60% 22% 11% 3% σ70 2364  

σ38 93% 100% 26% 13% 4% σ38 1520 Total 

σ32 92% 69% 100% 12% 2% σ32 560 2517 

σ54 93% 72% 25% 100% 5% σ54 279  

σ28 93% 77% 14% 17% 100% σ28 81  
 

c) 

Grouped 
phases 

are also recognized by  Promoters 
recognized by 

 

σ70 σ38 σ32 σ54 σ28  

%
 o

f p
ro

m
ot

er
s 

re
co

gn
iz

ed
 b

y σ70 100% 60% 22% 10% 4% σ70 3299  

σ38 94% 100% 25% 13% 5% σ38 2120 Total 

σ32 93% 69% 100% 11% 3% σ32 783 3500 

σ54 92% 72% 22% 100% 6% σ54 370  

σ28 94% 80% 18% 20% 100% σ28 123  
 

 

The classification problem arising here is to build a model that assigns σ factors to DNA 
sequences correctly. That is, determining with which σ factor a given sequence interacts, for 
three different cases: the exponential phase, the stationary phase and “grouped” phases 
(Figure 15). 

We can also see that contrarily to what has been explained in Subsection 1.2.4, the dominance 
of σ38 over σ70 is not increased when switching from the exponential phase to the stationary 
phase. Indeed, the ratio of the number of promoters interacting with σ38 over the number of 
promoters interacting with σ70 remains 64% during both growth phases. 
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Figure 15. Assignment of the sequences to σ factors for 3 different conditions. We consider the exponential 
phase, the stationary phase and both phases grouped. 

General overlap of the promoters between phases 
Among the 3500 promoter sequences interacting with the σ factors under study, some are 
active during the exponential phase, others during the stationary phase and some during both 
phases. The Venn diagram below (Figure 16) shows the number of promoters that are active 
only during the exponential phase, the stationary phase or during both phases. 

 
Figure 16. General overview of the activity overlap of promoters between exponential and stationary phase. 
The arrow at the top gives the increase in the number of active promoters while switching from the exponential 
phase to the stationary phase. The bottom arrow gives the proportion of promoters (%) that become active 
compared to the number of promoters that become inactive during the growth phase switch.  

The number of promoters that are active during both growth phases is 933. More promoters 
are active during the stationary phase than during the exponential phase. Indeed, 1916 
promoters interact with a σ factor during the exponential phase (983 + 933) and 2517 during 
the stationary phase. This represents an increase of 31%. The set of promoters that are active 
in each phase is different. The targeting of the σ factors towards a new set of promoters is 
called “promoter switching” and is visible in the data. Indeed, 983 promoters are abandoned 
by the σ factors while entering the stationary phase and 1584 new promoters become active. 
That is, 161% of the promoters are activated compared to the number of promoters 
inactivated. Thus, for 100 promoters abandoned while entering the stationary phase, 161 new 
promoters become active (+61%). As the set of active promoters change between growth 
phases, we will also build a model to classify promoters based on the phase during which they 
are active (Figure 17). 
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Figure 17. Assignment of promoters to the phase(s) during which they are active. 

 

Detailed overlap of the promoters between phases for each σ factor 
We will now look at the overlap of the promoters between phases into more details. We will 
analyze this overlap for each σ factor separately. Figure 18 gives a closer view on the transition 
between both phases with respect to each σ factor.  

 
Figure 18. Detailed overview of the activity overlap of promoters for each σ factor. The red circles represent 
the number of promoters interacting with a given σ factor during the exponential phase. The green circles 
represent the number of promoters interacting with a given σ factor during the stationary phase. The overlap 
between the circles represent the number of promoters interacting with a given σ factor during both growth 
phases. 

We can cluster σ factors into 3 groups regarding the quantitative and qualitative variation of 
the promoters that each σ factor binds while switching growth phase. The first group shows a 
high increase in the number of promoters it regulates (quantitative point of view) and high 
promoter switching (qualitative point of view). The second group shows a small increase in 



33 
 

the number of promoters it regulates but high promoter switching. Finally, the last group 
shows a small increase in the number of promoters it regulates and small promoter switching. 
The cutoff distinguishing high from small is at 50%. The first group includes σ70, σ38 and σ54. 
The second group includes σ32 and the third group includes σ28. We have built a model to 
predict whether a σ factor interacts with a given sequence during a certain growth phase. 

The dataset also shows that a promoter which is “deserted” by a σ factor while switching 
phase will not be recovered by any other σ factor. On the contrary, a promoter that becomes 
active during the stationary phase is usually recognized by at least another σ factor. This is the 
case for 42% of σ70-binding promoters, 41% for σ38, 34% for σ32, 33% for σ54 and 31% for σ28. 
The proportion of promoters binding several σ factors during the stationary phase is 66%. This 
proportion is the same as in the exponential phase. Next to that, the proportion of promoters 
that are active in both phases is only 27%. Thus, we believe that predicting first the phase 
during which a promoter is active and secondly the σ factors with which it interacts might 
result in better performance (Figure 19). Hence, two classification schemes were built to 
combine predictions from both steps (layers). For each layer, stacking was used to learn from 
relations between the labels. Those relations between σ factors are present in 66% of the 
cases during each growth phase. However, a relation should exist initially between the 
features that are used (sequences) and the classes (σ factors interacting with a given 
sequence). This will be analyzed in Subsection 3.1.2. The phase-σ scheme starts with the 
determination of the period of activity of each promoter. Afterwards, promoters are assigned 
to the σ factors with which they interact during this period. The σ-phase scheme starts with 
determination of the σ factors with which each promoter interacts. Subsequently, the growth 
phase during which the interaction occurs is determined for each σ factor. 

 
Figure 19. Classification scheme. Left: Determination of the period of activity of a promoter prior to the σ 
factor assignment. Right: Assignment of the σ factor of a promoter prior to determining when the recognition 
occurs. 

3.1.2. Graphical analysis of the relation between sequences and classes 
For each classification problem, the correlation of the sequences with their corresponding 
class was analyzed graphically with a dimensionality reduction tool (t-SNE). The practical 
explanations are given in the chapter Materials and Methods. The sequences could thus be 
shown in a 2D space. Thereafter, each observation was assigned to its corresponding label and 
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the separation of the different classes was observed with the crosses on those graphs. The 
crosses represent the barycenter of each class. 

Relation between sequences and the class to be predicted 
A graphical analysis allowed to analyze whether a correlation existed between sequences and 
their class. For the classes of σ factors, only promoters that bind a single σ factor were taken 
to allow specific labelling of each promoter. Those sequences are the more specific ones 
towards the σ factor with which they interact. If a relation between sequences and σ factors 
exists, the barycenters of each class should be separated in the plot (Figure 20).  

  

 
Figure 20. Graphical analysis of the relation between sequence and class. Left: both classes considered are 
promoter sequences and non-promoter sequences, right: classes are σ factors with the growth-phase specified, 
bottom: promoters are decomposed in 3 classes based on their period of activity. For clarity, the barycenter of 
the stationary phase-active promoters was marked with a dark cross. 

Considering the promoter classification problem (Figure 20, left), we can see that each 
barycenter (one barycenter per class) seems to be separated from the other. This shows that 
the relative distances between promoters are smaller than the relative distances between 
promoter and non-promoter sequences. Indeed, t-SNE keeps observations that are close from 
one another in the initial space close from each other in the reduced space. This suggests that 
the sequences may be used to discriminate promoters from non-promoters. Indeed, the 
distribution of each class is not completely separated in 2D but may be separated in a higher 
dimensional space that we cannot visualize (4D, 5D, …). However, such plots give an insight 
into the ability of the string kernel to discriminate between classes.  
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Considering the plot for the classification of σ factors (Figure 20, right), the separation of the 
barycenters is less clear as compared to the first graph analyzed. However, a separation is still 
present. Also, the barycenter of a σ factor for a given phase is separated from the other phase. 
We believe there may be a link between a sequence and the phase during which a promoter 
interacts with a given σ factor. However, conclusions related to this link cannot be made here 
as the analysis does not include all promoters binding a given σ factor. This will be analyzed 
with the performance of the models. 

Considering the prediction of the activity of a sequence in function of the phase (Figure 20, 
bottom), barycenters of each class seem to be well separated. The decomposition of 
promoters into 3 classes (stationary phase-active, exponential phase-active and active during 
both growth phases) shows that stationary phase-active promoters look more similar to non-
promoters than the two other classes do. Hence, discriminating sequences that are stationary 
phase-active or inactive might be more difficult as compared to the same problem for the 
exponential phase. This hypothesis will be confirmed by the scores for the performance of the 
models that will be given in Table 5. 

3.1.3. Graphical analysis for each classification scheme 
Here, we will consider both possibilities of the classification scheme depicted in Figure 19. The 
data that was used to make the plots for each classification scheme is explained in the chapter 
Materials and Methods.  

Phase-σ scheme 
We will first describe the “phase-σ” classification scheme (Figure 21). The first plot considers 
the promoters labeled on basis of the growth phase during which they are active. We can 
clearly see that the barycenters of each class are separated. Promoters that are active in the 
exponential phase (exp.-active) seem to differ from the promoters active in the stationary 
phase (stat.-active). Promoters that are active during both phases show more similarity 
towards exp.-active promoters than stat.-active promoters.  Moreover, when looking at 
relative distances towards stat.-active promoters, exp.-active promoters seem to be closer 
than promoters active in both phases. An explanation for this might be that on one hand, both 
sets of single-phase active promoters show a certain specificity. But on the other hand, the 
specificity required for a promoter to be exclusively stationary phase-active is blurred when a 
promoter is active during both growth phases. Also, promoters that are active for both growth 
phases may resemble more to promoters that are exclusively exponential phase-active. 
Another explanation may be that the dataset has been incorrectly labeled. This hypothesis 
may be tested if other data is available. 

Considering the two other plots, the clusters were formed based on the interaction pattern of 
the promoters with σ-factors for each growth phase (Materials and Methods). The 
barycenters of the clusters appear nearly on top of each other for the exponential phase-
active promoters. Barycenters are more scattered for the stationary phase-active promoters. 
For the latter observation, this means that promoters can be grouped according to their σ 
factor interaction pattern. Those plots show that it might be more difficult for a model to 
assign σ factors to sequences for the exponential phase compared to the stationary phase. 
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This hypothesis will be refuted by the scores from the performance of the models that will be 
given in Table 8. 

  

Sequence similarity of promoters: 

• Top left: labeling based on period of activity. 
• Top right: active during the exponential phase, 

labeling based on clustering results. 
• Bottom right: active during the stationary phase, 

labeling based on clustering results. 

The clusters obtained for each plot on the right-hand side 
are not the same. Indeed, the set of promoters on which 
clustering was performed is different. The plot at the top 
(bottom) is for exponential (stationary) phase active 
promoters.  

Figure 21. Graphical analysis for the “phase-σ” scheme.  

σ-phase scheme 
The first plot of the “σ-phase” scheme depicts barycenters on top of each other (Figure 22). 
Thus, sequences seem to be hardly grouped based on their interaction pattern. Note that 
here, the growth phase during which the interaction occurs is not considered when clustering. 
Indeed, the purpose of the first model in this classification scheme is to predict the σ factors 
interacting with a given promoter. The phase of growth during which the interaction occurs is 
considered at the next step of the scheme for each σ factor. The five other plots are used for 
the analysis of this next step. Those plots show that all σ factors except σ54 and σ28 have the 3 
barycenters stacked on top of each other. Thus, for σ70, σ38 and σ32, no dissimilarity appears 
between the sequences interacting with them during different growth phases. 

Contrary to the first classification scheme, the barycenter of the promoters active during both 
growth phases is as close as the other 2 barycenters (exp. active and stat. active) for each σ 
factor.  

Comparison of the results of both classification schemes 
From both graphical analyses, it can be highlighted that the dispersion of the barycenters 
seems to be higher when using the phase-σ scheme. This scheme might show better overall 
performance than the σ-phase scheme. Also, these results were produced using the equal 
elements string kernel and might have produced different results using another method for 
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feature creation. String kernels will be compared using the performance of the models that 
are built with each type of string kernel. 

 

  

  

  

Figure 22. Graphical analysis of the “σ-phase” scheme. The graph at the top-left shows promoters labeled with 
the cluster to which they belong. The other graphs show promoters that interact with a certain σ factor. The 
promoters are labeled based on the growth phase during which they interact with this σ factor. 
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3.2. Performances for the different problems 
In this section, we will present the test performances on the hold-out set of the different 
models (simple models) for each classification problem. Finally, we will compare the 
performance of both classification schemes, namely phase-σ and σ-phase. The performance 
expressed in terms of Area Under the Receiver Operating Characteristic curve (AUROC) is 
abbreviated by the term “AUC” in the presentation of the results. The explanations of the 
different performance measures, the extraction of the features from the sequences, the 
assignment of a threshold to the probabilities predicted and the experimental setups are given 
in Materials and Methods. 

3.2.1. The models 
For each classification problem, 11 models were trained. Three using logistic-regression (LR), 
and eight using support vector machine (SVM). One LR model was trained based on features 
extracted from the sequences (k-mers). The other 2 LR models were trained using the 
observations as seen in a 20D or 100D feature space after PCA dimensionality reduction 
(Materials and Methods). Considering the SVM models: three of them were trained using a 
linear kernel with the same setup as the LR models, one using a radial kernel, and four using 
two different string kernels: equal elements and weighted degree with shifts. Each string 
kernel exists of two different versions: the basic and improved version (Materials and 
Methods). There are two categories of models: k-mer based models and string kernel based 
models. For each problem, stacking was applied and the improvement of the performance 
was analyzed. 

Presentation of the models’ names 
The name of the models with their abbreviation are given here. These abbreviations are used 
in the presentation of the results. 

K-mer based models 
• LR_U20:  Logistic regression using the observations seen in a 20D feature 

space 
• LR_U100:   Logistic regression using the observations seen in a 100D feature 

space 
• LR_BOW:  Logistic regression using all the k-mers 
• SVM_rbf_U20: Support vector machines using the radial kernel and the k-mers 

seen in a 20D feature space 
• SVM_lin_U20:  Support vector machines using the linear kernel and the 

observations seen in a 20D feature space 
• SVM_lin_U100:  Support vector machines using the linear kernel and the 

observations seen in a 100D feature space 
• SVM_lin_BOW:  Support vector machines using the linear kernel and all the k-

mers 
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String kernel based models 
• SVM_EqEl:  Support vector machines using the equal elements string kernel 
• SVM_EqEl*:  Support vector machines using the improved version of the 

equal elements string kernel 
• SVM_WDS:  Support vector machines using the weighted degree kernel with 

shifts 
• SWM_WDS*:  Support vector machines using the improved version of the 

weighted degree kernel with shifts 

3.2.2. Promoter prediction problem 
Simple models 
Here, we describe the performance of the simple models used to classify promoters and non-
promoters. We can read from Table 4 that SVM_rbf_U20 is the least performant, with an AUC 
of 0.5 which is equivalent to a random decision.  This model is followed by LR and SVM_lin 
which perform similarly, with an average AUC of 0.74 for LR and SVM_lin. The best performing 
models are the SVM using string kernels, with an average AUC of 0.84. 

Table 4. Performance of the models for the promoter prediction problem.  

Performance for promoter prediction 

  

LR_U
20 

LR_U
100 

LR_BO
W

 

SVM
_rbf_U

20 

SVM
_lin_U

20 

SVM
_lin_U

100 

SVM
_lin_BO

W
 

SVM
_EqEl 

SVM
_EqEl* 

SVM
_W

DS 

SVM
_W

DS* 

AUC 0,72 0,74 0,77 0,5 0,72 0,74 0,77 0,85 0,85 0,83 0,82 

 

Considering both LR and SVM_lin, including more features to the model slightly increases the 
performance. The gain in performance as compared to the number of features added to the 
model is especially higher when switching from 20 to 100 features (U_20 and U_100). Indeed, 
we can see from Figure 23 that the cumulation of the explained variance rapidly increases 
when considering up to the 100th PC (64%) and then it stabilizes.  

The results for the SVM using different string kernels show slight differences (up to 0.03 AUC), 
with the advantage of EqEl on WDS. Also, both improved and standard versions of each string 
kernel show the same performances. 

Figure 24 shows the variation of the average performance (AUC) on the tuning set when 
testing for different C parameters. We see that the choice of C barely influences the 
performance. An explanation for SVM is that the hyperplane that is fit in an enlarged feature 
space lies at the overlap between both classes and that the overlap is high. Hence, tuning C to 
allow little or more misclassification does not change significantly the shape and position of 
the hyperplane to result in a difference of performance.  
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Figure 23. Analysis of the number of PC required to 
explain 80% of the variance in the observations. The x 
axis represents the number of first PC considered. The 
red curve represents the variance explained by each PC. 
The blue curve represents the cumulative variance (%) 
of the N first PC. For example, the cumulative variance 
when accounting for the 100 first PC is 63%. The 460 
first PC are needed to explain 80% of the variance in the 
data.  

 
Figure 24. Effect of the C parameter on the 
performance of 3 base models on the tuning set. 
The y-axis gives the performance in terms of AUC. 
The x-axis represents C-parameter values on the 
range considered.  

 

The poor performance of SVM_rbf is surprising as the graphical analysis from Subsection 3.1.2, 
(Figure 20, left) showed us that the distributions of each class do not overlap completely. 
Hence, an explanation of this result is that the choice of the default hyperparameter γ was 
inadequate. Indeed, after restarting computations for tuning γ, the AUC reached 0.72. 
Therefore, it can be informed that the choice of γ is of major importance for this kernel. 

Stacked models 
Stacking the predictions of LR_U100 and SVM_EqEl results in the same performance as with 
the best simple model (SVM_EqEl, AUC of 0.85). As there is no improvement in AUC score, we 
can deduce that SVM_EqEl simply outperforms LR_U100 on any subset of the data for this 
classification problem.  

3.2.3. Phase prediction problem 
We will now present the performances from the models used for the problem of determining 
the growth phase(s) during which a DNA sequence is active (multilabel classification). There 
are two labels, one describing exponential phase activity and a second one describing the 
stationary phase activity. Each label is binary as a sequence can be active (1) or inactive (0) for 
the growth phase (label) considered. 
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Simple models 
Table 5. Performance of the models for the phase prediction problem. 

PHASE PREDICTION 

 AUC 

LR_U
20 

LR_U
100 

LR_BO
W

 

SVM
_rbf_U

20 

SVM
_lin_U

20 

SVM
_lin_U

100 

SVM
_lin_BO

W
 

SVM
_EqEl 

SVM
_EqEl* 

SVM
_W

DS 

SVM
_W

DS* 

EXP 0,7 0,73 0,77 0,69 0,7 0,71 0,76 0,84 0,84 0,82 0,8 

STAT 0,66 0,67 0,67 0,64 0,66 0,67 0,67 0,75 0,75 0,73 0,73 

 

The results demonstrate that across all model types, the performance of determining whether 
a sequence is exponential active or not is better than for the stationary phase. The AUC scores 
are on average better by 0.08 for the exponential phase activity prediction as compared to 
the stationary phase. These results confirm the hypothesis that was made after the graphical 
analysis for this problem (Figure 20, bottom). Indeed, predictions for the stationary phase are 
more difficult to be made as compared to the exponential phase. This is because the similarity 
between stationary phase active promoters and non-promoters is higher as compared to the 
similarity between exponential phase active promoters and non-promoters. 

As for the promoter prediction problem, string kernel methods perform better than k-mer 
based methods. The AUC difference is on average 0.07 for the best performing methods of 
each class. The remarks about the number of features included for the promoter prediction 
problem still hold. The difference in AUC when using the 20 first PC compared to all features 
is 0.05. Previous remarks are also valid for the comparison between string kernels: the EqEl 
string kernel performs slightly better than WDS string kernel (+0.03 AUC on average) and there 
is no difference in performance between the improved and basic version of EqEl string kernel. 
Nevertheless, there is a fractional difference between the basic and the improved version of 
WDS (+0.01 AUC). 

A major limitation for the use of SVM_rbf and SVM_lin_BOW is the computational time. 
Considering the rbf kernel, each possible combination of the two hyperparameters (C and γ) 
must be tested to get decent results. SVM_lin_BOW models do not have this problem but the 
number of features included in the model is so big that computations become intractable, 
even if only the C hyperparameter must be tuned. For both the promoter prediction problem 
and the phase prediction problem, these two models did not outperform the best models 
(SVM with string kernels). Hence, because of limitations on time, we speculated that this 
would also be the case for the next classification problem and dropped those models.  

Stacked models 
Stacking the predictions of both LR_U100 and SVM_EqEl results in an insignificant increase in 
the performance for exponential phase activity prediction (+0.01 AUC). As discussed for the 
promoter prediction problem, we speculate that LR_U100 is outperformed by SVM_EqEl on 
each part of the data. A second explanation for this result is that stacking fails in finding 
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meaningful relations between the activities of promoters across growth phases. We did not 
expect this result as 27% of the promoters are common to both growth phases, which means 
that relations between promoters do exist. This may be due to the distribution of the different 
classes of promoters as explained for Figure 21, left.  

Discussion on the performance of the stacked models 
The results should be taken with care as non-promoter sequences are also included in the 
data. We believe that both types of the model can easily differentiate between promoters and 
non-promoter sequences. Indeed, the graphical analysis of this problem showed that non-
promoters may be easier to discriminate from active promoters as compared to inactive 
promoters. Hence, including non-promoter sequences may bias the estimation of the 
performance as the 𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅 is increased for a given TPR (true negative rate, false 
positive rate and true positive rate, Materials and Methods). 

Next to that, we assigned a threshold to the probabilities predicted after stacking to analyze 
the type of predictions made by the model. The proportion of incorrect predictions is 26% 
when using the Hamming loss and 44% with the zero-one-loss. Moreover, the proportion of 
sequences classified as active for both growth phases represents 83% of the predicted active 
sequences. This is a lot as when accounting the fact that only 28% of the active sequences are 
active for both growth phases. Those results lead us to think that the model works well for 
sequences that are active for both growth phases but fails for single-phase active promoters. 
In other words, the model works well for determining if a sequence is a promoter or not but 
it cannot truly determine when the promoter is active.  

We further pushed the analysis towards a multiclass classification approach. That is, only one 
label can be assigned of the 3 possible (exp. active, stat. active and active during both phases), 
which is the one for which the model has the most certainty. Hence, there is no need to set a 
threshold. As an example, an observation for which the model predicts 0.6 and 0.9 as 
probabilities to be active during the exponential and stationary phase respectively would be 
labeled as (1, 1) using a cutoff of 0.55 with the multilabel classification approach. But the 
multiclass classification approach may consider the label (0, 1) more suitable than (1, 1). This 
approach resulted in a Hamming loss of 21% (5% better) and zero-one-loss of 42% (2% better).  

3.2.4. σ factor assignment problem 
Now, we are going to present the performances of the models assigning σ factors to DNA 
sequences under the exponential phase, under the stationary phase and when growth phases 
are grouped. We will start with the description of the performances of the latter case (grouped 
phases) and cover the performances of each growth phase afterwards (exponential phase and 
stationary phase). 
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Grouped phases 
Simple models 
Table 6. Performance of the model for the σ factor assignment problem. 

Performance for σ factor assignment 

AUC 

LR_U
20 

LR_U
100 

LR_BO
W

 

SVM
_lin_U

20 

SVM
_lin_U

100 

SVM
_EqEl 

SVM
_EqEl* 

SVM
_W

DS 

SVM
_W

DS* 

σ70 0,74 0,76 0,71 0,74 0,76 0,83 0,83 0,81 0,81 

σ38 0,71 0,73 0,7 0,71 0,72 0,76 0,76 0,76 0,75 

σ32 0,66 0,65 0,66 0,66 0,67 0,69 0,69 0,69 0,68 

σ54 0,65 0,64 0,64 0,65 0,66 0,68 0,69 0,69 0,68 

σ28 0,64 0,58 0,66 0,63 0,62 0,65 0,65 0,69 0,67 

 

The performance of the models used to assign σ factors to DNA sequences without accounting 
for the phase is given in Table 6. Overall, SVM_lin slightly outperforms LR but both types of 
model are outperformed by string kernel methods. The difference in performance between 
string kernel methods and k-mer based methods depends on the σ factor. When accounting 
for the best models of each category, the difference is 0.07 for σ70, 0.03 for σ38, 0.02 for σ32, 
0.03 for σ54 and 0.03 for σ28. Considering U_20, LR and SVM_lin show similar performances. 
This is not the case for U_100, the AUC scores of SVM_lin are on average better by 0.03 as 
compared to LR when considering σ32, σ54 and σ28. The performances for the rest of the σ 
factors are the same. The performance for σ70 and σ38 drops when switching from LR_U100 to 
LR_BOW whereas it stabilizes for the other σ factors. An explanation for this may be that the 
model is too complex and starts overfitting on the tuning set for those σ factors. Indeed, we 
noticed that the average training performance raises by 0.01 AUC when including all the 
features whereas the test performance decreases by 0.05. These results motivate our 
hypothesis. 

Across all the σ factors, the top scoring model is SVM_WDS. It performs similarly as compared 
to the EqEl type for all σ factors but the AUC score is better by 0.04 for σ28. No difference in 
performance is recorded between EqEl and EqEl*. However, WDS outperforms WDS* by 0.01 
AUC on average. 

Stacked models 
For this problem, LR_BOW and SVM_WDS predictions were stacked as those models showed 
the best average training performance across σ factors. As compared to the best simple 
models, the performance after stacking is increased by 0.01, 0.03, 0.01 and 0 for σ70, σ38 and 
σ32 respectively. The performance does not change for σ54 and σ28 (Table 7).  
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Table 7. Performance of σ factor assignment after stacking (AUC score). The values on the left-hand side show 
the best performance across the simple models for a given σ factor. The values on the right-hand side show the 
performance after stacking. 

σ70 σ38 σ32 σ54 σ28 

0,83 Æ 0,84 0,76 Æ 0,79 0,69 Æ 0,7 0,69 Æ 0,69 0,69 Æ 0,69 

 

The ranking for the best-assigned σ factor is from first to last: σ70, σ38, σ32, σ54 and σ28. The 
difference in AUC across the models between the 1st and 2nd position, 2nd and 3rd, …, 4th and 
last is respectively: 0.05, 0.09, 0.01 and 0. The largest gap is found between σ38 and σ32. We 
could make 2 groups of σ factors based on the performance for assigning them to a DNA 
sequence. The first group would contain σ70 and σ38 and the second one would contain the 
others. Those two groups coincide with the groups constructed from Table 3, which represents 
the overlap between promoters recognized by pairs of σ factors. Hence, we presume that 
highly overlapping σ factors are assigned more effectively as compared to σ factors with a low 
overlap with other σ factors.   

Discussion on the performance of the stacked models 
For this problem also, results should be taken with care as the dataset included non-promoter 
sequences. The performance for σ70 is very close to the performance of the promoter 
prediction problem. Indeed, 94% of the promoters interact with σ70. Similarly, σ38, σ32, σ54 and 
σ28 interacts with 61%, 22%, 11% and 3% of the promoters respectively. Hence, we could 
conclude that the models are efficient for σ32, σ54 and σ28 given the performance related to 
their assignment and the small proportion of the promoters they bind. Indeed, the 
performances show that even if a sequence is a promoter, those σ factors won’t be “blindly“ 
assigned to it whereas this can be done for σ70 and σ38, in particular for σ70. The task of 
assigning σ32, σ54 and σ28 is more difficult as compared to σ70 and σ38 but the models manage 
to discriminate between promoters interacting with them or not, besides the non-promoters. 
We think that the proportion of inactive promoter should also be taken into account when 
evaluating the performance. Indeed, inactive promoters are more difficult to discriminate 
from active promoters as compared to non-promoters. This hypothesis will turn out to be true 
(except for σ28). The proof will be given when comparing the performance of our models with 
the BacPP tool.  
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Exponential phase and stationary phase 
Simple models 
Table 8. Performance of the models for assigning σ factors during the exponential and stationary phases. 

Performance for the assignment of σ factors during both growth phases 

 

phase 

LR_U
20 

LR_U
100 

LR_BO
W

 

SVM
_lin_U

20 

SVM
_lin_U

100 

SVM
_EqEl 

SVM
_EqEl* 

SVM
_W

DS 

SVM
_W

DS* 

σ70 Exp. 0,76 0,78 0,82 0,76 0,78 0,89 0,89 0,86 0,85 
Stat. 0,71 0,72 0,72 0,71 0,72 0,82 0,82 0,8 0,79 

σ38 Exp. 0,73 0,75 0,77 0,73 0,75 0,81 0,8 0,78 0,78 
Stat. 0,67 0,69 0,69 0,67 0,68 0,73 0,73 0,72 0,71 

σ32 Exp. 0,63 0,63 0,64 0,62 0,63 0,69 0,69 0,68 0,67 
Stat. 0,62 0,62 0,63 0,62 0,63 0,66 0,67 0,65 0,65 

σ54 Exp. 0,71 0,71 0,71 0,71 0,71 0,73 0,73 0,73 0,73 
Stat. 0,6 0,6 0,61 0,6 0,61 0,66 0,67 0,65 0,65 

σ28 Exp. 0,59 0,56 0,56 0,57 0,55 0,59 0,6 0,59 0,55 
Stat. 0,56 0,54 0,54 0,54 0,53 0,61 0,61 0,59 0,57 

 

Table 8 presents the results for the assignment of σ factors to promoters for each growth 
phase. String kernel based models outperform k-mer based models. The models based on k-
mers perform similarly (LR and SVM_lin) for a given number of features. This is the case for all 
σ factors except σ28, for which LR outperforms SVM_lin by 0.02 AUC on average. Including the 
100 first PCs instead of the 20 first PCs for a model (LR or SVM_lin) does not seem to affect 
the performance, except for σ28. Indeed, increasing the number of features to 100 PCs 
decreases the AUC score for σ28 by 0.02 AUC on average for both SVM_lin and LR. However, 
the behavior of the LR models for each growth phase is different considering the variation of 
the performance while including all k-mers instead of the 100 first PCs. For the exponential 
phase, the performance for assigning σ70, σ38 and σ32 increases by 0.04, 0.02 and 0.01 AUC 
respectively, but does not change for σ54 and σ28. For the stationary phase, including all the 
features increases the performance of the models by 0.01 AUC only for σ32 and σ54. This was 
also observed in the training results for both growth phases. Hence, we are not overfitting 
while increasing the complexity of the models. We saw that this was not the case for the 
assignment of σ factors when phases are grouped. We think that this is because the 
assignment of σ factors to promoters for a specific growth phase requires the model to be 
more complex as compared to when phases are grouped.  

On average, EqEl string kernels outperform WDS by 0.02 AUC. There is no difference between 
the improved and standard version of EqEl but the standard version of WDS outperforms its 
improved version by 0.01 AUC on average. The remark for WDS is especially true for σ28 
assignment, for which the performance of the standard version is better by 0.03 AUC. 
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For both growth phases, using the best SVM_string kernel instead of the best k-mer based 
model results in an increase of the performance by 0.05 AUC on average. The difference 
between both types of models is slightly more expressed for the stationary phase, for which 
the AUC scores are increased on average by 0.06. The difference of performance between the 
best models of each category is the most remarkable for σ70, for which the AUC score differs 
by 0.07 and 0.1 for the exponential phase and the stationary phase respectively. For the other 
σ factors, the difference is of 0.04 AUC on average. These results lead us to think that string 
kernels combined with SVM allow to fit a better decision function (hyperplane) to separate 
the classes as compared to the k-mer based model.  

The performances of the models for the exponential phase constantly exceed the scores for 
the stationary phase, except for σ28 when using string kernel based models. The largest 
differences are recorded for k-mer based models. Indeed, AUC scores are on average better 
by 0.06 and 0.04 for k-mer based models and string kernel based models respectively. The 
difference between the performances for each growth phase may be explained by the 
distribution of each class of promoters (Figure 25). The dataset related to each phase did not 
contain promoter sequences that are only active during the other phase. Hence, we see from 
this figure that removing the promoters that are only active for the phase that is not 
considered decreases the overlap between the positive and the negative class. The overlap 
with the distribution of the non-promoters is smaller for the exponential phase active 
promoters as compared to stationary phase active promoters.  Thus, this overlap is decreased 
the most when removing the promoters that are only active during the stationary phase. 
therefore, the FPR should also be the most diminished. This may be an explanation for the 
difference between performances across growth phases. 

 
Figure 25. distribution of the sequences seen in a 1D feature space. t-SNE dimensionality reduction was applied 
on the similarity matrix resulting from the sequence alignments with the equal elements string kernel. The 
observations were reduced to a 1D feature space and the distribution of the values was plotted for each class. 
“exp. active” and “stat. active” labels represent promoters that are active during the exponential phase and 
active during the stationary phase respectively. 
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Stacked models 
The best training scores were recorded for LR_BOW and SVM_EqEl for the exponential phase 
models and for LR_U100 and SVM_EqEl* for the stationary phase models. Therefore, those 
models were used for stacking. The results are given in Table 9. 

Table 9. Performance of σ factor assignment after stacking (AUC score). The values on the left-hand side show 
the best performance across the simple models for a given σ factor. The values on the right-hand side show the 
performance after stacking. 

 σ70 σ38 σ32 σ54 σ28 

Exp 0,89 Æ 0,91 0,81 Æ 0.82 0,69 Æ 0,71 0,73 Æ 0,76 0,60 Æ 0,63 

Stat 0,82 Æ 0,82 0,73 Æ 0.75 0,67 Æ 0,68 0,67 Æ 0,70 0,61 Æ 0,62 

 

The biggest improvement of performance after stacking is recorded for the exponential phase. 
The difference of AUC score improvement as compared to the stationary phase is 0.01. The 
improvement of the AUC score lies between 0.01 and 0.03 for the exponential phase and 
between 0.00 and 0.02 for the stationary phase. The effect of stacking is bigger for σ54 and σ28 
as compared to the other σ factors for the exponential phase. Considering the stationary 
phase, stacking increases the AUC score the most for σ38 and σ54. On the contrary, the 
performance does not change for σ70 and σ32. 

Figure 26 shows that the value for the parameter C has no influence on the average training 
performance for the tuning set. This was also the case for the promoter prediction problem 
and our hypothesis with regard to this problem is the same. 

 
Figure 26. Effect of C on the performance of the model stacking predictions (LR). 

The importance of the predictions of the simple models for assigning a σ factor to a sequence 
during a certain phase was analyzed. This allowed us to understand the behavior of the 
stacked model. The stacked model will consider the predictions made by the simple models 
for all the σ factors in order to improve the performance for a given σ factor. To this end, we 
analyzed the coefficients assigned to each prediction by the stacked model. 
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The coefficient assigned to a certain prediction can be either positive or negative. Therefore, 
we analyzed the absolute value of the coefficients to determine their relative importance. The 
importance of the coefficient for a σ factor reflects the relation found by the stacked model 
between that σ factor and the σ factor to be assigned. For instance, the coefficient that the 
stacked model assigns to the prediction of SVM_EqEl for the label σ70 may have 40% 
importance for predicting if a sequence interacts with σ38. Figure 27 shows the result of this 
analysis for the predictions of the exponential phase and the stationary phase.  

We can read from the bar plot for the exponential phase that, over all the predictions, the 
most weight is given to predictions for σ70, σ38 and σ32. This is the case for the predictions of 
both simple models. On average the importance assigned to the predictions of σ70, σ38, σ32, 
σ54 and σ28 are 48%, 30%, 11%, 7% and 4% respectively. We noticed that the importance of 
the coefficients assigned to the predictions of σ32, σ54 and σ28 for both models were the least 
important to predict an interaction between a sequence and one of those σ factors. However, 
this allows to increase the performance for their prediction by 0.03 AUC on average. The 
predictions resulting from SVM_EqEl on σ70 are considered to be the most important to predict 
the interaction between a sequence and any σ factor. An explanation for this is that most of 
the promoters recognized by a certain σ factor (>90%) will also interact with σ70.  Similarly, 
predictions made by SVM_EqEl on σ38 are the second most important for any σ factor except 
σ70. σ38 is the second σ factor that recognizes most of the promoters recognized by other σ 
factors (>67% for σ32, σ54 and σ28). It is thus relevant that the stacked model mainly focuses on 
σ70 and σ38 to improve the predictions. 

Overall, more importance is assigned to the predictions made by SVM_EqEl as compared to 
LR_BOW. The stacked model assigns on average 40% of importance to the predictions made 
on LR_BOW (60% for SVM_EqEl predictions). Hence, it is probable that the k-mer based model 
performs better on a subset of the data as compared to the string kernel based method. 
Otherwise, less importance would have been given to LR_BOW predictions as compared to 
SVM_EqEl. The stacked model values more LR_BOW predictions for the assignment of σ70 
(60% importance) as compared to other σ factors. Also, the predictions of LR_BOW on σ32 and 
σ54 have a major importance to label σ70 (17% and 22% respectively, <5% for the other σ 
factors). The stacked model has probably found meaningful relations with regard to σ32 and 
σ54 as the performance for the assignment of σ70 is increased by 0.02 AUC. Moreover, the 
importance of the coefficients given by the model to the predictions of SVM_EqEl σ32 and σ54 
are smaller than 3% for σ70 assignment. We do not understand this behavior as this is not 
observed for the stacked models related to the other σ factors.   

Regarding the stacking model for the stationary phase, the relative importance of both simple 
models is more balanced as compared to the exponential phase. The importance given to 
LR_U100 and to SVM_EqEl* predictions are 46% and 54% respectively.  
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Exponential phase 

 

Stationary phase phase 

 

Figure 27. Importance of the predictions for each simple model (LR and SVM) for the exponential phase and 
the staionary phase. The bars represent the importance of the coefficient (in %). That is, the importance of the 
prediction made by the simple model for a given σ factor. Each σ factor has a specific color assignment. For a 
particular σ factor, the height of the bars of its color correspond to the importance of each coefficient. The x-axis 
represent the predictions considered. For example, we can read from the first bar plot that for the assignment 
of σ38 (orange bars) to a sequence, the predictions made by LR_BOW for σ70 and SVM_EqEl for σ38 have 16% and 
25% importance respectively. 
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Comparison with BacPP tool 
We will now compare the performance of our model with BacPP. In order to make their 
performance somewhat comparable to ours, we used the same experimental setup that the 
researchers used (4.1.3). First, we analyzed the “improvement” of the performances in terms 
of AUC to compare the scores with the performances that were obtained with the previous 
setup. The results are given in Table 10. 

Table 10. Performances (AUC score) after stacking when removing promoters that do not interact with the σ 
factor considered. X Æ Y represent the performance before and after removing promoters that do not interact 
with the σ factor to be assigned. 

 σ70 σ38 σ32 σ54 σ28 

Exp 0.91 Æ 0.91 0.82 Æ 0.91 0.71 Æ 0.87 0.76 Æ 0.89 0.63 Æ 0.76 

 

On average, the performance is increased by 0.11 AUC. This confirms what we explained in 
the presentation of BacPP tool in the introduction. Also, it supports the hypothesis explained 
in the discussion of the performance for the assignment of σx in the “grouped phases” case 
after stacking. σx binding promoters are more difficult to discriminate from other promoters 
as compared to non-promoters. Hence, removing the promoters that do not interact with σx 
for evaluating the performance for σx assignment increases the performance. We think that 
this may be due to the fact that the overlap between the positive class (promoter) and the 
negative class (non-promoters or inactive promoters for a given σ factor) is reduced. According 
to those results, our thoughts considering the performance for σ32 and σ54 turned out to be 
true. Removing promoters that do not bind those σ factors results in performances such as 
that of σ70 and σ38. However, this is not the case for σ28. In conclusion, the problem of 
discriminating σx binding promoters from non-promoters show similar performances across 
all the σ factors in this setup, except for σ28. 

The comparison between both tools is given in Table 11.  

Table 11. Comparison between BacPP performance and our performances. Acc. is the accuracy, Spe. is the 
specificity and Sens. is the sensitivity. Stack corresponds to our model. 

 σ70 σ38 σ32 σ54 σ28 

 Stack BacPP Stack BacPP Stack BacPP Stack BacPP Stack BacPP 

Acc. 0,848 0,805 0,848 0,866 0,772 0,923 0,815 0,952 0,656 0,971 

Spe. 0,849 0,808 0,848 0,808 0,777 0,940 0,826 0,966 0,687 0,981 

Sens. 0,847 0,803 0,848 0,924 0,767 0,907 0,804 0,938 0,625 0,962 

 

Overall, BacPP works better than our model. This is especially true for σ32, σ54 and σ28. They 
display an accuracy, specificity and sensitivity that scores better by 0.2, 0.2 and 0.2 
respectively as compared to our model for σ32, σ54 and σ28. However, this trend is reversed for 
σ70 and σ38, for which our model scores better on accuracy and specificity by 0.01 and 0.04 
respectively. However, the performance of BacPP in terms of sensitivity is higher by 0.02 as 
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compared to our model. The choice of a better threshold to determine each performance 
metric may have given different results. Those results are especially informative. No 
conclusions can be made as the dataset that was used is different.  

We analyzed the graphical representation of the position weight matrices of the σx dependent 
promoters for each σ factor of our dataset to find an explanation for this difference (Appendix 
1). It appeared that there is no true difference in the overrepresented motifs across the 
promoters specific for a certain σ factor. There are two explanations that may explain that. 
First, the promoter sequences might have not been properly aligned and it would explain the 
degeneracy of the PWMs. We think that this is not probable as the WDS string kernel would 
have shown better performance in that case. Indeed, WDS takes the shifts between aligned 
sequences into account. The second explanation is that the overlap between promoters 
recognized by any σ factor and σ70 is bigger than 90% for all the σ factors. σ70 specific 
promoters have in theory overrepresented motif around position -10 and -35. This means that 
the specificity of σx binding promoters may be blurred by the subset of the sequences that 
interact also with σ70. However, this is unlikely given that it is not because σ70 binds a promoter 
recognized by another σ factor that this promoter contains the overrepresented motif(s). 
Hence, we believe that the most probable explanation would be that the assignment of σ 
factors to promoters after the ChIP-chip experiment has been unproperly performed.  

3.2.5. General conclusions on the models 
Number of features used 
The complexity of the problem seems to have an influence on the performance of the models 
when describing the observations with more features. The assignment of σ factors to 
promoters for a specific growth phase requires more information in the data as compared to 
the same problem when phases are grouped. Similarly, the problem of classifying promoters 
and non-promoters is more complex when the phase must be accounted for. Hence, the 
performance is better when the sequences are represented by all the k-mers as compared to 
their 20D or 100D representation.  

String kernel based models and k-mer based models 
The models that use string kernels constantly outperform k-mer based models. K-mer based 
models perform overall similarly when using LR or SVM with the same data representation. 
The most simple kernel (EqEl) performs better than the more complex one (WDS). We 
speculate that this is due to the fact that the shift between a match when aligning sequences 
brings bias to the model as the sequences are aligned to the TSS. This may be a form of 
overfitting, as the information provided by this kernel is not biologically relevant anymore. A 
match that is shifted between two sequences (up to 5 positions) does not imply that those 
sequences behave similarly. That is, it does not mean that they will interact with the same σ 
factor or that they will be active during the same phase. The fact that the results are overall 
better using the greedy search version (WDS) of the kernel as compared to the exhaustive 
version (WDS*) (Materials and Methods) supports this hypothesis. Considering EqEl and EqEl*, 
we believe that the fractional difference in performance advantaging EqEl* may be due to the 
fact that there are no outstanding overrepresented motifs across the sequences of σx binding 
promoters. 



52 
 

Stacked models 
Overall, stacking the predictions of the simple models does not seem to greatly improve the 
performance. We saw that this could be caused by the inability of the model to find 
meaningful relations between the labels. Also, because string kernel methods simply 
outperform k-mer based methods. It may be interesting to combine string kernels with other 
approaches such as BacPP as this may give better results. 

The dataset 
The fact that no difference between the overrepresented motifs were found across σx binding 
promoters is a key result that may explain the performance of the models for all the problems 
considered, except the promoter prediction. Indeed, if the labels of the sequences are not 
correctly assigned from the beginning, it may be hard to build a model that would work. The 
PWMs we obtained are contrary to the information that can be found in the literature. 
However, we cannot conclude this before testing our models with a different dataset. 

3.3. Analysis of the classification schemes 
In this section we will analyze the performance resulting from the combination of the 
predictions of each step. The way predictions were combined is explained in the Materials and 
Methods. We will first give an overview on the performance for the single model (no 
combination of the predictions). The single model is the one that is presented for the σ factor 
assignment for both growth phases. The only difference stands in the dataset that was used 
with the model. Afterwards, we will present the AUC scores that result from the combined 
predictions for each classification scheme and compare them with the scores obtained for the 
single model. Then, we will analyze the precision of the top predictions for each classification 
scheme. 

3.3.1. Single model 
The performances of the assignment of σ factors for the right growth phase when including 
only promoter sequences is given in Table 12. The scores correspond to the performances 
using stacked models (SVM_EqEl and LR_U100). We see that the performance is greatly 
affected (-0.15 AUC score on average) when removing non-promoter sequences from the 
data. This is because the probability that a randomly chosen positive (promoter interacting 
with σx) ranks above a randomly chosen negative (promoter that do not interact with σx and 
non-promoters) is smaller when non-promoter sequences are removed. As seen in the 
previous classification problems, non-promoter sequences are the easiest ones to 
discriminate from other sequences by the model. The average performance variation related 
to the predictions for the exponential phase and the stationary phase are -0.14 and -0.15 
respectively. The performance for σ28 assignment for both growth phases is unaffected by the 
removal of non-promoter sequences from the data. An explanation for this is that the overlap 
between the distribution of σ28 binding promoters and non-promoter sequences is inexistent 
in the enlarged feature space where SVM_EqEl fits the separating hyperplane. Hence, 
removing the non-promoter sequences does not affect the FPR. For this setup, the best 
averaged performance across both growth phases results from the assignment of σ70 and σ28 
to promoters.  
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Similarly, the performance for predicting the activity of a promoter during the exponential 
phase and the stationary phase decreases to 0.72 and 0.58 AUC respectively. 

Table 12. Performance of the models for the assignment of the growth phase during which each σ factor 
interacts with a promoter. The first row represents the performance in terms of AUC score. The second row 
represents the variation of the performance (AUC) when removing non-promoters from the data. 

 σ70 σ38 σ32 σ54 σ28 
 Exp Stat Exp Stat Exp Stat Exp Stat Exp Stat 
Performance 0,71 0,54 0,64 0,56 0,55 0,54 0,59 0,54 0,64 0,62 
Variation -0,2 -0,28 -0,18 -0,19 -0,16 -0,14 -0,17 -0,16 0,01 0 

 

3.3.2. Comparison between both classification schemes  
Before presenting the results for both classification schemes, it is important to understand 
how they work. Each scheme combines two layers of predictions and only one layer differs 
from both schemes. In fact, determining the phase during which a promoter interacts with a 
certain σ factor for all the σ factors or determining the σ factors interacting with a promoter 
for each phase is the same problem. There are 10 labels to be assigned as there are 5 σ factors 
per phase and 2 phases per σ factor. The layer they have in common is the simple model 
described in Subsection 3.3.1. For phase-σ scheme, the other layer contains the predictions 
for the phase during which a promoter is active (2 labels). For the σ-phase scheme, the other 
layer contains the predictions for the σ factors interacting with a certain promoter (5 labels). 
The layers that are not common to each scheme are referred to as first layer. The one they 
have in common is referred to as second layer. The way the predictions were combined is 
explained in the chapter Materials and Methods.  

In order to compare both classification schemes and the single model, we will first analyze the 
general performance of each scheme. We will also compare the performance of the schemes 
with regard to the single model. Finally, we will analyze the results for the top 𝑁 predictions 
on the test set. 

General performance 
Table 13 indicates the performances of each classification scheme together with the 
performance of the single model. On average, the single model performs similarly as the 
phase-σ scheme on the test set (average AUC score of 0.59). However, the performance for 
phase-σ with regard to the assignment of σ28 for the exponential phase is lower by 0.11 as 
compared to the single model. We speculate that this result might be due to a lower 
performance for determining the activity during the stationary phase for σ28 binding 
promoters. Hence, combining the predictions for those promoters with the ones from the 
single model decreases the performance. Nevertheless, the performances of the assignment 
of all the other σ factors for any phase are on average better for the phase-σ scheme as 
compared to the single model. We believe that this might be due to a better performance for 
assigning the phase during which a promoter is active as compared to making the same 
predictions for each σ factor separately. Therefore, combining both layers of predictions 
improve the certainty on the final predictions. Across both schemes, the performance of the 
assignment of the σ factors during the exponential phase is always better as compared to the 
stationary phase. As explained for the results from Table 8, this seems to depend on the 



54 
 

distribution of the different types of promoters (active during the exponential phase, during 
the stationary phase or during both phases). 

Table 13. Performance of each classification scheme. The two last rows indicate the performances of each 
classification schemes and the first row indicates the performance of the model described in the previous 
Subsection (3.3.1). 

 σ70 σ38 σ32 σ54 σ28 

 Exp Stat Exp Stat Exp Stat Exp Stat Exp Stat 

Single model 0,71 0,54 0,64 0,56 0,55 0,54 0,59 0,54 0,64 0,62 

Phase-σ 0,73 0,55 0,64 0,55 0,57 0,57 0,59 0,54 0,64 0,51 

σ-phase 0,58 0,53 0,58 0,55 0,53 0,52 0,53 0,51 0,54 0,55 

 

The results show that the performances of the σ-phase scheme are close from a random 
decision. Indeed, the performance for assigning any σ factor for any growth phase is always 
smaller or equal to 0.55, except for σ70 and σ38 during the exponential phase. At this stage of 
understanding, we believe that this is due to the poorer performance of the first layer of this 
scheme (which assigns σ factors without regard to the phase) as compared to the first layer of 
the phase-σ scheme (0.75 to 0.85 AUC for the phase prediction and 0.69 to 0.79 for the σ 
factor assignment). The fact that the predictions of the first layer for σ-phase are low as 
compared to the ones for phase-σ scheme may explain that the overall performance is 
decreased while combining predictions. 

Precision of the top predictions for the first layer of each classification scheme 
It is not because a model performs poorly on the average data that the performance on the 
predictions behave similarly. Indeed, the top predictions should be the ones for which there 
is the most certainty. Hence, even if there is a high overlap in the distributions of 2 classes, 
the observations that lie the farthest from the overlap may be classified correctly and with 
higher confidence. First, we analyze the precision of the top 𝑁 predictions of the layer that 
both schemes do not have in common. That is, the phase prediction layer (phase-σ) and the σ 
factor prediction layer (σ-phase). The top predictions are positive predictions. They are a 
subset of 𝑁 promoters for which the model has the most certainty that they are active for the 
phase considered or that interacts with a certain σ factor (phase prediction layer and σ factor 
prediction layer respectively). That is, the 𝑁  promoters for which the predicted probabilities 
are the closest from 1. 

We can see from Figure 28 that some labels are correctly predicted in the first layer whereas 
others are not. Considering the phase prediction layer (phase-σ), the top predictions for the 
activity during the stationary phase are 90 % correct up to the top 300 predictions. This is not 
the case for the exponential phase. The precision of the very top prediction is correct but 3 
predictions out of 10 are incorrect afterwards. However, the next predictions are correctly 
predicted as positives with a precision around 83% until the top 300 predictions. The 
proportion of promoters active during the stationary phase and the proportion of promoters 
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active during the exponential phase in the test set are 54% and 71% respectively. This means 
that randomly selecting promoters from the test set as top predictions would have given 54% 
and 71% precision on average. Hence, both first layers perform better than a random decision. 
Selecting the 30 top predictions for each model results in 90% and 95% precision for the 
exponential phase and the stationary phase respectively. Thus, without regard to the σ factor 
with which a promoter interacts, a researcher can efficiently screen for 30 promoters that are 
active during the stationary phase and the exponential phase. Those results are good as this 
experimental setup is the one for which the estimation of the performance is the lowest. If 
non-promoter sequences would have been added to the data, the “random” model would 
have had a lower performance. Moreover, given the performance variation in terms of AUC 
shown in Subsection 3.3.1, our hypothesis is that the precision on the top predictions would 
not have been significantly affected. 

Phase prediction layer (Phase-σ) σ factor prediction layer (σ-phase) 

  

Figure 28. Analysis of the top predictions for the first layer of each classification scheme. The y-axis represents 
the proportion of correctly predicted interactions in function of the number of top predictions that are 
considered. 

Considering the assignment of σ factors without regard to the phase, we see that it is correct 
in more than 50% of the top 50 predictions only for σ38 and σ70. The very top prediction for σ70 
is inaccurate but the next 20 ones are correct. The shape of this curve is only due to the fact 
that the prediction that ranked above all the others was a false positive. The precision is close 
to 95% for the top 50 predictions for σ70. However, this result is not as good as it appears as 
the proportion of promoters that interact with σ70 is 94%. This means that randomly selecting 
50 promoters from the test set and labeling them as positives would have been correct in 94% 
of the cases on average. Hence, we conclude that the model does not perform well for σ70. 
This is the same for σ38. Indeed, the precision on the top 50 predictions is close from 60% and 
the proportion of the promoters interacting with σ38 is 59%. However, the very top prediction 
is correct. 

The performance of the top predictions for σ32 behave similarly as for σ70. Taking the top 5 
predictions for this σ factor results in a precision of 50%. As the proportion of promoters 
interacting with σ32 in the test set is 22%, we are of the opinion that the model may be used 
more effectively than a random model to screen for promoters that interact with this σ factor. 
However, further tests on another dataset should be made to confirm this hypothesis. The top 
predictions for the promoters that are said to interact with one of the other σ factors are also 
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inaccurate (σ54 and σ28). Next to that, if the purpose of the researcher is to screen for 
sequences rather than promoters, we speculate that the precision of the model on the top 
predictions would not have been affected significantly as compared to the “random” model 
that would randomly pick top predictions from the data. In fact, we tend to believe that this 
model works well for determining whether a sequence is a promoter but not for assigning σ 
factors to promoters. 

We speculate that those poor performances may be due to the fact that the distribution of 
the promoters interacting with one σ factor completely overlaps with the distribution of 
promoters binding to other σ factors. Moreover, each class may be evenly distributed inside 
the overlapping region. This causes the model to become unable to rank a promoter 
interacting with σx higher than a promoter that does not interact with it. Hence, there is no 
more certainty on σx binding promoters as compared to promoters that do not bind σx, making 
the top predictions unprecise. Figure 29 shows the overlap between the σx binding promoters 
and the density distribution of each type of promoters. We see that the distributions of the 
promoters binding to a certain σ factor greatly overlaps with promoters that interact with 
other σ factors. However, we cannot make conclusions on this plot which only considers 1D. 

 
Figure 29. Overlap between the σx binding promoters. The x-axis represents the possible values in a 1D space 

after t-SNE dimensionality reduction. 

Comparison of the top 𝟑𝟎 predictions for each classification scheme and the single model 
General precision 
At his point, we are going to compare the top 𝑁 predictions for each classification scheme and 
for the single model. That is, we are going to study the precision of the top 𝑁 predictions 
resulting from the combination of the predictions of both layers. In this case, the 10 labels can 
either be positives or negatives. Hence, the precision was computed using the Hamming loss 
(Materials and Methods). 

The results of the single model represent the performance when the predictions of the second 
layer (10 labels) are not combined with the predictions of the first layer. We are first going to 
compare the general performance of each type of model. The general performance is the 
precision of the top 𝑁 predictions when all the labels are considered. Previously, we only 
considered the certainty towards one label. Hence, a top prediction is a promoter for which 
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the model has the most certainty about all the labels it was assigned. Afterwards, we will 
analyze the top predictions for each label separately (the 5 σ factors), for each growth phase. 

Figure 30 shows the general performance of each type of model (single, phase-σ and σ-phase). 
The phase-σ scheme seems to perform better than σ-phase and the single model on the top 
30 predictions. Indeed, ~65% of the labels are correctly assigned on the top 30 predictions 
whereas the precision is of ~55% and 45% for the single model and for the σ-phase scheme 
respectively. For the three cases, none of the top 30 predictions have all the labels correct, 
except for the 10th prediction of the σ-phase scheme. 

The single model is the most balanced with regard to its predictions. For the top 30 promoters, 
positive labels are assigned exclusively to one growth phase in 50% of the cases. The σ-phase 
model assigns positive labels for both growth phases with a frequency of 90%. On the contrary, 
the phase-σ model is the most exclusive with regards to the interactions predicted in the top 
30 predictions. Indeed, it assigns labels to only one growth phase in 100% of the cases. This 
does seem to depend on the combination of the predictions. 

   

Figure 30. Analysis of the general precision on the top 30 predictions for each classification scheme and for the 
single model. Left: Single model. Center: Phase-σ scheme. Right: σ-phase scheme. 

Precision for each σ factor on the top 𝑁 predictions 
Now we are going to analyze the precision of the top 𝑁 predictions for each model across σ 
factors Figure 31. For each plot, 𝑁 corresponds to the number of positive observations in the 
test set for the σ factor and the phase considered. Overall, the precision is better when using 
the classification schemes as compared to the single model. This proves that combining 
predictions allows to increase reliability of top predictions for each σ factor independently. 
Contrary to the classification schemes, the single model has a performance close to the 
random model or smaller than the random model in two out of the 10 cases. The difference 
in performance between the classification schemes and the single model is more important 
for the exponential phase. Considering σ32, σ54 and σ28, the top predictions are not precise 
(around 10%) for any of the models. However, there is always at least one model that 
performs better than random. Considering the top predictions for the exponential phase, the 
phase-σ scheme has a better averaged performance than the others. However, the σ-phase 
scheme performs better on σ38 for the stationary phase. Accounting for the very top 
predictions (~10%) during the stationary phase, the models that perform the best for σ70, σ38 
and σ32 are the phase-σ scheme, the σ-phase scheme and the single model respectively. 

Overall, the precisions between σ factors are not comparable as the proportion of positive 
samples changes between σ factors. However, there is a greatest difference on the top 20 
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predictions between the random model and the classification schemes for σ70 and σ38 (around 
20% precision difference). 

 Exponential phase Stationary phase 

σ70
 

  

σ38
 

  

σ32
 

  

σ54
 

  

σ28
 

  
Figure 31. Comparison between the different models for σ factor assignment for both growth phases. 
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3.4. General conclusions 
In conclusion, we believe that the models we built have proven their effectiveness for 
identifying promoters in E. coli based on a sequence of 51 bp. However, the problematic of 
assigning the right growth phase(s) during which a promoter may be active still needs to be 
solved. Also, the models used for the task of predicting the interactions between a promoter 
and all the σ factors did not prove great effectiveness given the results of the top predictions 
(zero-one-loss metric). We have seen that there was no significant difference between the 
overrepresented motifs of promoters binding to a certain σ factor. This is opposed to the 
information that is found in the scientific literature over the subject. Ideally, in order to 
achieve good performances, a dataset with differences between overrepresented motifs 
should be used. Accounting for that, we believe that our models may have allowed to 
accomplish both the assignment of σ factors to promoters and the prediction of the growth 
phase during which they are active. In this case, the predictions of the models could be used 
for the construction of a transcriptional regulatory network. However, this should be further 
confirmed using another dataset. Beside this, selecting a set of promoters that may interact 
with a given σ factor during a specific growth phase is made possible for σ70, σ38 and σ32 by 
using the classification schemes. The latter increase reliability of top predictions as compared 
to the single model. 

The models that use string kernels are more effective as compared to k-mer based methods. 
The models build on the latter method can be trained by using the observations transformed 
in a reduced dimensional space without significantly affecting the performance as compared 
to the computational efficiency.  

The classification schemes increase reliability of top predictions as compared to the single 
model which performs better on the overall data. Hence, combining the predictions of the 
different layers is found to outperform the single model for research purposes, except for σ32 
during the stationary phase. The phase-σ scheme is the best choice for screening promoters 
that interact with a certain σ factor during the exponential phase. Considering the stationary 
phase, screening for promoters that interact with σ70, σ38 and σ32 should be performed using 
the phase-σ scheme, the σ-phase scheme, and the single model respectively. Any of the 
classification schemes can be used for screening promoters that interact with σ54 and σ28. 
However, it would not be as effective as for the three other σ factors but it may already narrow 
the set of promoters that should be tested for the interaction experimentally. 

For researchers who read this thesis and would like to apply our method, we propose the 
following pipeline to screen for promoters that may interact with a given σ factor during a 
specific phase. However, this should be done after training on another dataset. 

1. Use SVM_EqEl to identify promoters in a set of sequences and extract all the predicted 
positives 

2. Apply the classification scheme that match application on the predicted promoters 
3. Take the top predictions for a given σ factor and test the interactions experimentally 
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CHAPTER 4: MATERIALS AND METHODS 

4.1. Experimental setup 
In this section, we present the data and the experimental setups that were used for each 
classification problem. In total, four different setups were used. We will describe each one of 
them and the reasons for which they were chosen.  All the codes together with their output 
can be found on https://github.ugent.be/mmisonne/Thesis-Martin. 

4.1.1. The dataset 
The bacterial strain studied is E. coli K12 MG1655. The interaction between σ factors and their 
binding regions was determined by Cho et al (2014). They performed a ChIP-chip assay and 
processed the resulting data with a peak-finding algorithm to determine σ factor binding 
regions. Then, those regions were aligned to the TSS by using experimental TSS information. 
The final dataset with the information about the interactions between sequences and each σ 
factor was downloaded from the supplementary files of Cho et al (2014) (Additional file 7: 
Table S6). 

The dataset consists of a positive and a negative set. The positive set contains 4724 promoter 
sequences of the E. coli strain whereas the negative set contains 50,000 non-promoter 
sequences. Non-promoter sequences derive from the E. coli genome. In the positive set, 3500 
sequences interact with at least one of the five σ factors. The other 1224 sequences consist of 
promoters that were not active during the exponential or the stationary phase, or that were 
binding another σ factor than the five ones considered. Those sequences were removed from 
the dataset as they are of no interest with regard to the problems considered. The positive 
samples in the data consist of promoter sequences of 51 bp length aligned to the TSS. For each 
promoter, binary interaction information for five σ factors is provided: the house-keeping σ 
factor (σ70) and four alternative σ factors (σ38, σ32, σ54 and σ28). For each σ factor, interaction 
information is provided for the exponential phase and the stationary phase. This results in 10 
labels (5 σ factors per growth phase) which are not mutually exclusive. Indeed, a promoter 
can be recognized by several σ factors and during both growth phases.  

4.1.2. Classification of promoters and non-promoters, phase prediction and σ factor 
assignment 

In this subsection, we describe the experimental setup that was used for evaluating the 
performance of the models for the classification of promoters and non-promoters, the 
prediction of the phase during which a sequence may be recognized by a σ factor and the 
prediction of the σ factors that may interact with a sequence. The same dataset was used to 
determine the performance of those classification problems. That is, we sampled 3500 
negative sequences from the negative set to have an equal number of promoter and non-
promoter sequences (7000 sequences in total). As a matter of fact, we want to evaluate the 
performance of the models when any sequence from the E. coli genome is presented to the 
models. 
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4.1.3. Assignment of σ factors for each growth phase 
We have used two different datasets to evaluate the models for the prediction of interactions 
between σ factors and sequences depending on the growth phase. For the assignment of σ 
factors during the exponential phase, we sampled the promoters that bind to a σ factor during 
this growth phase and an equal number of sequences from the negative set (1916 sequences 
for each class). We did the same for the evaluation of the performance during the stationary 
phase (2517 sequences of each class). This was done to determine the performance of the 
model when screening sequences for determining if a sequence interacts with a given σ factor. 
The results showed that removing promoters that are not active for the growth phase 
considered may overestimate the performance. Hence, we used this more strict experimental 
setup for the final classification problem.  

Comparison with BacPP tool 
The setup we described in the previous paragraph is not the one for which the performance 
of the models is overestimated the most. We can also remove the promoters that do not 
interact with σx when assessing the performance for the assignment of σx to sequences. For 
instance, promoters that interact with any other σ factor except σ70 are discarded from the 
dataset when evaluating the performance of the model for σ70 assignment. The choice of the 
threshold for this problem is given in Subsection 4.2.2. We used promoters that were active 
for the exponential phase as the researchers evaluated the performance for this growth 
phase. 

4.1.4. Evaluation of the classification schemes 
The most strict approach for determining the performance of the models is to only use 
promoter sequences as those sequences are more similar to each other. We used this 
experimental set up for the evaluation of the performance of the classification schemes and 
the single model (σ factor assignment for each growth phase). Indeed, the purpose of this 
analysis is to screen a set of sequences and determine whether an interaction with a σ factor 
will occur and for which growth phase. Hence, non-promoter sequences were not included in 
the dataset in order to get a reliable estimation of the performance for this problem for 
research applications. 

4.2. Performance evaluation 
The way a model is evaluated depends on the purpose for which machine learning is used. In 
this section, we will present the performance metrics that were used and the reason for which 
a metric was chosen instead of another. Those metrics are used for classification problems. 
The output from a model is given in terms of probabilities of belonging to the positive class, 
as explained in the first chapter for LR and SVM. 

4.2.1. Receiver Operating Characteristic curve (ROC) 
True positive rate and false positive rate 
In a binary classification problem, a model will predict positives and negatives. The true 
positive rate (TPR), also called sensitivity, refers to the proportion of positive observations 
that are recovered by the model (Eq. 8). That is, the proportion of correctly predicted 
positives, or true positives (TP) over the total number of positive observations (positives). The 
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number of positives can be calculated from the sum of TP and false negatives (FN). FN refers 
to negative observations incorrectly classified as such.  

 𝑇𝑃𝑅 =  
𝑇𝑃

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 (8) 

The false positive rate (FPR), is the proportion of incorrectly predicted positives (FP) over the 
total number of negative observations (negatives) (Eq. 9). The number of negatives can be 
calculated by the sum of FP and true negatives (TN). TN refers to negative observations 
correctly classified as such. 

 𝐹𝑃𝑅 =  
𝐹𝑃

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=  

𝐹𝑃
𝐹𝑃 + 𝑇𝑁

 (9) 

ROC curve 
In order to determine the performance of the model in terms of TP, FP, TN and FN, one needs 
to assign a threshold to the probabilities assigned by the model to the observations. 
Depending on the threshold that was chosen, the TP, FP, etc. will be different. As the FPR and 
TPR are interdependent, the choice of the threshold will depend on the purpose for which the 
model is used. A ROC curve allows to analyze the performance of a model without requiring a 
threshold. The curve is a plot of the TPR (y-axis) in function of the FPR (x-axis) resulting from 
the assignment of all possible thresholds. The area under this curve (AUC) is a direct 
estimation of the performance of the model. It gives the probability that a randomly chosen 
positive will rank above a randomly chosen negative. The AUC is not dependent of class 
imbalance, which makes this metric of particular interest in our case. Indeed, there are labels 
in our data for which there are much more positive observations as compared to the number 
of negative observations and vice versa. A perfect model will have a TPR of 1 for a FPR of 0 
and results in an AUC of 1, there are no FN and no FP. Every instance in the data is correctly 
predicted. The ROC curve for such a model follows the y-axis while maintaining 0 on the x-
axis. A model classifying observations randomly will have an AUC of 0.5. An example of ROC 
curve together with the AUC is given in Figure 32.  

 
Figure 32. Example of ROC curve. LR_U20 on the promoter prediction problem. 

4.2.2. Accuracy 
The accuracy refers to the proportion of correct predictions, either positives or negatives. The 
comparison with the BacPP tool required to assign a threshold as the authors evaluated their 
model using the accuracy, the specificity and the sensitivity. There are plenty of methods for 
determining the optimal cutoff for a classifier and the choice is arbitrary. The method that can 
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be used to assign a threshold for the probabilities of a classifier consists in choosing the point 
where the TPR is high as compared to the FPR. That is, the threshold for which  
|𝑇𝑃𝑅 − (1 − 𝐹𝑃𝑅)| is minimum.  

 

4.2.3. Precision 
Precision refers to the proportion of correctly predicted positive observations. The 
computation of this metric is different in a binary classification approach than in a multilabel 
classification approach. In binary classification the precision is given by Eq. 10. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 

Multilabel classification case 
In a multilabel classification approach the precision of the predictions can be computed with 
different metrics. We present here the zero-one-loss and the hamming loss. 

The zero-one-loss gives the proportion of observations that do not have all their labels 
correctly predicted. It was used informatively to analyze the top 𝑁 predictions of the single 
model and the classification schemes. This metric is too strict for this problem given that the 
performances of the models and that 10 labels need to be correctly assigned. A less strict 
metric is the hamming loss. It gives the proportion of incorrectly predicted labels for an 
observation. The precision over all the observations is given by 1 − 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠. That is, 
the proportion of correctly predicted labels. For instance, the precision for the prediction (0, 
0, 1, 1, 1) if the true labels are (1, 0, 0, 1, 1) is 60%.  

4.3. Feature extraction from the sequences 
In this section, we present the methods that were used to extract features from the sequences 
as the latter cannot be used directly to train an SVM or a LR model. We used two methods: a 
k-mer based method and string kernels.  

4.3.1. Extraction of k-mers from the sequences 
For the k-mer based approach, we used a bag of word representation of the sequences in the 
training set. That is, we extracted all the possible subsequences of length 1 to 7. The maximal 
length was chosen after the literature study. We set the maximal length of the words to 7 in 
order to be sure to detect potential overrepresented motifs in the sequences. The bag of 
words representation creates one parameter per subsequence (word) found in the training 
set. Then, it creates a feature vector for each sequence which contains the occurrences for 
each word. This resulted in 21.735 features for the biggest dataset that was employed in this 
research (7000 observations). Hence, a dimensionality reduction approach was used to 
represent the observations in a smaller feature space. This allowed to increase the 
computational speed for fitting the models. Moreover, most of those features do not explain 
much variability and may thus not be useful to discriminate between different classes of 
observations.  



65 
 

Principal components Analysis (PCA) 
Principal components analysis is an orthogonal transformation of the data allowing to 
represent the data in a reduced dimensional space of linearly uncorrelated variables. 
Moreover, those parameters point in the direction that explains the most variance between 
the observations. It was used to reduce the dimensionality of the problem and analyze the 
effect on the performance of the number of features used to build a classifier. 

4.3.2. String kernels 
A kernel is a function that describes the similarity between two observations. In this case, the 
kernel is a string kernel as it measures the similarity between aligned sequences. The result of 
the alignment of all the pairs of sequences in the observations with the string kernel is a 
similarity matrix of size (𝑁 𝑥 𝑁). This matrix gives the score for each pair of sequence. In this 
subsection, we present the four string kernels that were used for this master thesis.  

Equal Elements (EqEl)  
The EqEl is the most simple string kernel. It compares two sequences position by position and 
returns the number of occurrences of a match across all the positions. A match increases the 
score of an alignment by 1. Hence, the maximum score for an alignment is 51 (length of the 
sequence) and the lowest score is 0. As the sequences are aligned to the TSS, it should not be 
required to account for shifts between matches. A particularity of this method is that it does 
not take into account the position at which the match occurred. We acknowledge the fact that 
there are discussions as to whether positional information should be included to the model or 
not. Hence, we decided to build an ‘improved” version of this string kernel that partially takes 
positional information into account. 

Improved version of the EqEl (EqEl*) 
In order to account for positional information, we screened the sequences from the training 
set and extracted the relative frequency of each nucleotide at each position. This is the same 
approach used as to build a PWM. A position that has low importance shows a similar 
frequency across all the nucleotides (0.25). On the contrary, a position that is important will 
show a higher frequency for one of the nucleotides (up to 1). Indeed, if a nucleotide is 
conserved among the promoters for a certain position, it is more likely that it plays a role for 
the interaction. Afterwards, the maximal frequency was extracted for each position and put 
into a weight vector. The only difference as compared to the standard version of EqEl is that 
each match (1) is multiplied by the weight relative to its position. 

Weighted degree with shifts (WDS) 
Improved version of WDS (WDS*) 
The EqEl string kernel does not account for a potential shift in the aligned sequences. 
However, a sequence that is completely identical to the one with which it aligned but is shifted 
of one position will result in a very low similarity score. Therefore, we used a string kernel that 
was proposed by Ratsch et al (2005) called the WDS*. This string kernel takes both the length 
and the shift of a match into account to compute the similarity score (Figure 33). The maximal 
length of a match (word) and the shift allowed are both user-defined parameters. The WDS* 
string kernel is given by Eq. 11. 
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𝐾(𝑥1, 𝑥2) =  ∑ 𝛽𝑘

𝑑

𝑘=1

∑ ∑ 𝛿𝑠 µ𝑘,𝑖,𝑠, 𝑥1, 𝑥2

(𝑠+𝑖 ≤𝑑)
𝑆

𝑠=0

𝑙−𝑘+1

𝑖=1
 

µ𝑘,𝑖,𝑠, 𝑥1, 𝑥2 =  𝐼(𝑢𝑘,𝑖+𝑠 (𝑥1) =  𝑢𝑘,𝑖 (𝑥2)) +  𝐼(𝑢𝑘,𝑖 (𝑥1) =  𝑢𝑘,𝑖+𝑠 (𝑥2)) 

(11) 

 

Where 𝑥1and 𝑥2 correspond to the 2 sequences aligned, 𝑑 corresponds to the maximal length 
of a word, 𝛽𝑘 = 2(𝑑 − 𝑘 + 1)/(𝑑(𝑑 + 1)) is the weight assigned to the match and depends 
of the length of the match, 𝑙 corresponds to the length of the sequences aligned, 𝑆 
corresponds to maximal shift and 𝛿𝑠 = 1/(2(𝑠 + 1)) is the weight assigned to the match 
depending on the shift. µ𝑘,𝑖,𝑠, 𝑥1, 𝑥2 indicates whether matches exist for a given position and 
shift when comparing 𝑥1 with 𝑥2 and 𝑥2 with 𝑥1. It can be equal to 0, 1 or 2 (no match, match 
only in one direction, match in both directions). 𝐼(. ) evaluates whether the equality in 
between brackets and returns 1 or 0 if it is true or false respectively. 

 
Figure 33. WDS string kernel illustration. 𝜸𝒌,𝒔 represents the contribution to the similarity score of 
the match of length 𝒌 shifted from 𝒔 between both sequences.  

WDS* performs an exhaustive search of the matches for all the possible shifts and is therefore 
computationally intensive when considering larger shifts. 

Basic version 
The difference between the basic version that we propose and the actual WDS proposed by 
Ratsch et al (2005) is that only the first match is accounted for while parsing positions. In the 
example of Figure 33, a match of length 6 occurs between positions 1 and 3 of both sequences 
(shift of 2). Moreover, another match of length 4 occurs between positions 1 and 7 (shift of 
6). This match is not accounted for in this more basic version of WDS*. It is a greedy algorithm 
for aligning 2 sequences faster as compared to WDS*. The limitation of this method is that a 
larger match which may be important for the classification problem can be missed. 

For both WDS and WDS* a maximal word length of 7 was considered for the same reason as 
for EqEl. We arbitrarily chose a maximal shift of 5. Because multiple models and classification 
problems were evaluated, we decided not to investigate on the optimal choice for both 
parameters. This may be done in a further research.  

4.3.3. Visualization of the data 
We used the t-distributed stochastic neighbor embedding (t-SNE) to visualize the data in a 1D 
or 2D space (Van Der Maaten & Hinton, 2008). This tool allows to keep similar observations in 
the initial space close to each other in the reduced space. In contrast, PCA transforms the 
observation to keep dissimilar observations far from each other. Hence, we used this method 
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to have similar observations close from each other in the reduced space. This allows to get a 
more reliable estimation of the position of the barycenter of each class in 2D as the density 
distribution within each class of sequence is higher. t-SNE was applied on the similarity matrix 
built with the EqEl string kernel.  

Graphical analysis of the classification schemes 
For the graphical analysis of the classification schemes, the 3500 promoter sequences from 
the positive set were employed for the first layer of each classification scheme. Afterwards, 
the subset of promoters corresponding to the second classification step was taken.  

Phase-σ 
For the analysis of the phase-σ scheme, the first step (layer) consists in predicting the phase 
during which a promoter is active. Hence, promoters were labeled based on their period of 
activity. For the second layer, the σ factors with which a promoter interact during one phase 
are predicted. Hence, we took the subset of the promoters that are active during the 
exponential phase (resp. stationary phase) and labeled them with the cluster to which they 
belong. Indeed, one sequence can interact with several promoters. As we want one label per 
sequence, promoters were clustered based on their interaction pattern with σ factors and 
labeled accordingly. Hierarchical agglomerative clustering based on Ward’s method and 
Euclidean distances was used and 5 clusters were formed. The principle behind this is that the 
interaction of a promoter with a σ factor is based on how close its sequence is from the 
“optimal” sequence. Thus, clustering promoters based on their interaction pattern makes 
sense. Indeed, sequences within a same cluster should have higher sequence similarity as they 
show similar interaction patterns. 

σ-phase 
For the analysis of the σ-phase scheme, the first step consists in predicting the σ factors 
interacting with a certain promoter. The second step consists in assigning the phase during 
which the interaction with a given σ factor occurs. Hence, promoters were labeled based on 
the cluster to which they belong for the same reason as for the second step of the phase-σ 
scheme. For the second step, the promoters that interact with a given σ factor where labeled 
based on the growth phase(s) during which they interact with this σ factor (exponential phase, 
stationary phase or both phases).  

4.4. Selection of the optimal parameters 
4.4.1. Parameter range 
The optimal parameters (C, for both LR and SVM) were tested on the tuning set using a log 
scale going from [10-4, 50] by taking 50 steps in between. The results showed that this was 
somehow exaggerated, taking 4 steps in between the same limits gives the same results. One 
limitation for testing 50 parameters for each model is the computational time. Moreover, the 
“L1” penalty and “L2” penalty were also tested when tuning LR models. They refer to different 
regularization methods to reduce the complexity of the model. L1 and L2 correspond to the 
L1-norm (not squared) and L2-norm (squared) loss functions.  
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4.4.2. Cross-validation with (multilabel) stratification 
For all the problems, the training (tuning) and test set were split using a multilabel 
stratification approach to conserve the proportions of each class in both datasets. This allow 
to work with a training (tuning) set and test set that do not differ too much to have better 
estimation of the performance. Similarly, we used multilabel stratification to split the tuning 
set into k folds (stratified k-fold cross-validation, k=3) for minimizing the variance of the results 
in terms of performance across the k validation sets. Moreover, this technique makes it 
possible to obtain folds for which positives will always be present. Indeed, some of the labels 
have only few positives instances in the data (σ54, σ28). Using a random approach for splitting 
the dataset may lead to folds for which no single positive sequence is present.  For each model, 
we extracted the parameter that gave the best average performance on the k validation sets 
of cross-validation. Afterwards, we trained the model with the optimal parameter value on 
the whole tuning set and evaluated it on the test set. 

We are aware that nested cross-validation may have led to even more reliable results. 
However, we speculated that the size of our dataset combined to the stratification approach 
would allow reliable performance estimations to be generated. Hence, we decided not to 
investigate it. 

4.5. Selection of the stacked models 
For each classification problem, the predictions resulting from two models were stacked. We 
always used only one model from each type of models (k-mer based or string kernel based). 
Moreover, the models were chosen based on a combination of two properties. First, it had to 
outperform the other models of its class on the training set. Secondly, it had to be 
computationally efficient. We arbitrarily set a balance between both parameters. In fact, a 
model that outperformed another was not chosen if the difference in performance was too 
small as compared to the computational time required. We used logistic regression to stack 
the predictions of both models. The parameters also had to be tuned for this model and this 
is performed similarly as for the other models. The test set used to evaluate the base models 
and the one used to evaluate the stacked models is the same and hence the results are 
comparable. This method requires predictions (probabilities) to be made for the tuning set. 
Practically, this was done with 4-fold cross-validation. One of the folds is left out and the base 
models are fit on the 3 other ones. This is repeated until predictions are made for all the tuning 
set. The probabilities for the observations in the test set are predicted as usual. Finally, the 
model used for stacking (LR) is fit on the predictions for the tuning set (after cross-validation 
to determine the optimal parameters) and final predictions are made on the test set.  

4.6. Combination of the predictions of the classification schemes 
In this section, we present the method that we set up to combine the predictions of each layer 
of a classification scheme and how we determined the top 𝑁 predictions. The top predictions 
were analyzed for each label separately and for the labels combined (general prediction). 

The final predictions for each of the 10 labels were computed by multiplying the probabilities 
obtained in the first layer with their corresponding label in the second layer. For instance, the 
probability for an observation to be active during the exponential phase was multiplied with 
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the probability to interact with σx during the exponential phase. Then, the top 𝑁 predictions 
(promoters) for each label were taken separately to plot the precision-top 𝑁 curve. The top 
predictions are the promoters for which the final probability to interact with a given σ factor 
during a certain phase is the highest. Hence, there is no need for assigning a threshold. 

The approach that was used to extract the top 𝑁 general predictions is different. Indeed, the 
promoters in the top predictions do not necessarily interact with all the σ factors during each 
phase. Moreover, the certainty on each label is not necessarily the highest one. However, the 
certainty across the labels is in generally high. As negative labels (0) could also be present in 
the top predictions, the assignment of a threshold on the predictions was required. The 
thresholds for each label were applied separately in each layer. Afterwards, the final labels of 
each observation were computed by multiplying the labels in the first layer with their 
corresponding labels in the second layer. Hence, both layers required to agree on the 
assignment of a positive label to make the final label positive. Afterwards, the certainty on the 
whole labels that were assigned to an observation was computed. This was done by 
multiplying the certainty across the labels for each observation. The certainty for a label is 
given by Eq. 12. 

 
{

𝑝𝑓𝑖𝑛𝑎𝑙(𝑙𝑎𝑏𝑒𝑙)              𝑖𝑓 𝑙𝑎𝑏𝑒𝑙 = 1
1 − 𝑝𝑓𝑖𝑛𝑎𝑙(𝑙𝑎𝑏𝑒𝑙)      𝑖𝑓 𝑙𝑎𝑏𝑒𝑙 = 0 (12) 

 

A limitation for this method is that the first layer may greatly influence the final label. In the 
phase-σ scheme, one label of the first layer influences half of the predictions in the second 
layer. In the σ-phase scheme, a prediction in the first layer (σx) influences only 2 labels in the 
second layer. If the probability for a label is below the threshold in the first layer, all the labels 
depending on that label will be set to 0, even if the certitude on a label was high in the second 
layer. The error made in the first layer is transferred to the second layer. 

The threshold that was assigned to the predicted probabilities in each layer was 0.5. Indeed, 
the optimal thresholds that were computed for the comparison with the BacPP tool never lay 
far from 0.5 [0.48, 0.52]. Next to that, we thought that selecting the top predictions 
automatically picked up observations that had overall probabilities closer from [0, 1] in each 
layer. However, there is a risk that some of the labels for which there is not much certitude 
are then incorrectly classified in the top predictions. Thus, this method can be discussed and 
is likely not be the optimal one. However, we decided not to investigate computationally on 
other results that may arise using a different threshold for each label. As a further research, 
we thought of a method that may be more reliable for estimating the precision of the top 𝑁 
predictions across all the labels. Instead of optimizing the thresholds for the predictions in 
each layer, we could simply take the final probability and determine the optimal threshold on 
the 10 labels afterwards. 
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Figure 34. Combination of the predictions for the phase-σ scheme. 

  



71 
 

Alberts B, Lewis J, Johnson A, Morgan D, Raff M, Roberts K & Walter P (2015) Molecular Biology of the Cell 6th 
ed. Alberts B Johnson A Lewis J Morgan D Raff M Roberts K & Walter P (eds) Garland Science 

Andersen KB & Von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by 
respiration? J. Bacteriol. 144: 114–123 Available at: http://www.ncbi.nlm.nih.gov/pubmed/6998942 
[Accessed May 1, 2018] 

Annala M, Laurila K, Lähdesmäki H & Nykter M (2011) A Linear Model for Transcription Factor Binding Affinity 
Prediction in Protein Binding Microarrays. PLoS One 6: e20059 Available at: 
http://dx.plos.org/10.1371/journal.pone.0020059 [Accessed May 16, 2018] 

Artsimovitch I, Patlan V, Sekine SI, Vassylyeva MN, Hosaka T, Ochi K, Yokoyama S & Vassylyev DG (2004) Structural 
basis for transcription regulation by alarmone ppGpp. Cell 117: 299–310 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15109491 [Accessed May 1, 2018] 

Assunção MD, Calheiros RN, Bianchi S, Netto MAS & Buyya R (2015) Big Data computing and clouds: Trends and 
future directions. J. Parallel Distrib. Comput. 79–80: 3–15 Available at: 
https://www.sciencedirect.com/science/article/pii/S0743731514001452 [Accessed May 10, 2018] 

de Avila e Silva S, Echeverrigaray S & Gerhardt GJL (2011) BacPP: Bacterial promoter prediction—A tool for 
accurate sigma-factor specific assignment in enterobacteria. J. Theor. Biol. 287: 92–99 Available at: 
https://www.sciencedirect.com/science/article/pii/S0022519311003675?via%3Dihub [Accessed May 13, 
2018] 

Babu MM, Luscombe NM, Aravind L, Gerstein M & Teichmann SA (2004) Structure and evolution of 
transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14: 283–291 Available at: 
https://www.sciencedirect.com/science/article/pii/S0959440X04000788 [Accessed May 17, 2018] 

Babyak MA (2004) What you see may not be what you get: A brief, nontechnical introduction to overfitting in 
regression-type models. Psychosom. Med. 66: 411–421 

Bar-Nahum G & Nudler E (2001) Isolation and characterization of sigma(70)-retaining transcription elongation 
complexes from Escherichia coli. Cell 106: 443–51 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11525730 [Accessed February 22, 2018] 

Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL & Breaker RR (2005) 6S RNA is a widespread regulator of 
eubacterial RNA polymerase that resembles an open promoter. RNA 11: 774–784 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15811922 [Accessed May 3, 2018] 

Benos P V, Bulyk ML & Stormo GD (2002) Additivity in protein-DNA interactions: how good an approximation is 
it? Nucleic Acids Res. 30: 4442–51 Available at: http://www.ncbi.nlm.nih.gov/pubmed/12384591 
[Accessed May 17, 2018] 

Berg J, Tymoczko J & Stryer L (2012) Biochemistry 7th ed. W. H. Freeman and Company Available at: 
http://www.researchgate.net/profile/James_Zimmerman/publication/264657044_Biochemistry/links/54
cd5dca0cf298d6565d5962.pdf 

Bernardo LMD, Johansson LUM, Solera D, Skarfstad E & Shingler V (2006) The guanosine tetraphosphate (ppGpp) 
alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma54-dependent 
transcription. Mol. Microbiol. 60: 749–764 Available at: http://www.ncbi.nlm.nih.gov/pubmed/16629675 
[Accessed April 27, 2018] 

Bernstein E & Allis CD (2005) RNA meets chromatin. Genes Dev. 19: 1635–55 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/16024654 [Accessed May 18, 2018] 

Brennan CA, Dombroski AJ & Platt T (1987) Transcription termination factor rho is an RNA-DNA helicase. Cell 48: 
945–952 Available at: http://www.ncbi.nlm.nih.gov/pubmed/3030561 [Accessed April 10, 2018] 

Browning DF & Busby SJW (2004) The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2: 57–
65 Available at: http://www.ncbi.nlm.nih.gov/pubmed/15035009 [Accessed February 16, 2018] 

Bulyk ML, Johnson PLF & Church GM (2002) Nucleotides of transcription factor binding sites exert 
interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res. 30: 1255–61 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/11861919 [Accessed May 17, 2018] 

Cai Y & Sun Y (2011) ESPRIT-Tree: Hierarchical clustering analysis of millions of 16S rRNA pyrosequences in 



72 
 

quasilinear computational time. Nucleic Acids Res. 39: e95 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/21596775 [Accessed May 7, 2018] 

Carbonell I (2016) The Ethics of Big Data in Big Agriculture. Available at: 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2772247 [Accessed May 10, 2018] 

Cavanagh AT, Sperger JM & Wassarman KM (2012) Regulation of 6S RNA by pRNA synthesis is required for 
efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res. 40: 2234–2246 Available 
at: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkr1003 [Accessed May 3, 2018] 

Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA & Darst SA (2017) 
6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase. Mol. Cell 68: 388–397.e6 
Available at: https://www.sciencedirect.com/science/article/pii/S1097276517306548 [Accessed May 3, 
2018] 

Chen M, Mao S & Liu Y (2014a) Big Data: A Survey. Mob. Networks Appl. 19: 171–209 Available at: 
http://link.springer.com/10.1007/s11036-013-0489-0 [Accessed May 10, 2018] 

Chen W, Lei T-Y, Jin D-C, Lin H & Chou K-C (2014b) PseKNC: A flexible web server for generating pseudo K-tuple 
nucleotide composition. Anal. Biochem. 456: 53–60 Available at: 
https://www.sciencedirect.com/science/article/pii/S0003269714001249 [Accessed May 18, 2018] 

Cho B-K, Kim D, Knight EM, Zengler K & Palsson BO (2014) Genome-scale reconstruction of the sigma factor 
network in Escherichia coli: topology and functional states. BMC Biol. 12: 4 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24461193 [Accessed February 16, 2018] 

Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA & Johnston M (2003) 
Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science (80-. ). 301: 
71–76 

Crooks GE, Hon G, Chandonia JM & Brenner SE (2004) WebLogo: A sequence logo generator. Genome Res. 14: 
1188–1190 Available at: http://www.genome.org/cgi/doi/10.1101/ [Accessed June 11, 2018] 

Dove SL, Darst SA & Hochschild A (2003) Region 4 of σ as a target for transcription regulation. Mol. Microbiol. 48: 
863–874 Available at: http://doi.wiley.com/10.1046/j.1365-2958.2003.03467.x [Accessed February 22, 
2018] 

Down TA, Bergman CM, Su J & Hubbard TJP (2007) Large-Scale Discovery of Promoter Motifs in Drosophila 
melanogaster. PLoS Comput. Biol. 3: e7 Available at: http://dx.plos.org/10.1371/journal.pcbi.0030007 
[Accessed May 11, 2018] 

Epshtein V, Dutta D, Wade J & Nudler E (2010) An allosteric mechanism of Rho-dependent transcription 
termination. Nature 463: 245–249 Available at: http://www.ncbi.nlm.nih.gov/pubmed/20075920 
[Accessed April 10, 2018] 

Farnham PJ & Platt T (1980) A model for transcription termination suggested by studies on the trp attenuator in 
vitro using base analogs. Cell 20: 739–48 Available at: http://www.ncbi.nlm.nih.gov/pubmed/6998564 
[Accessed April 10, 2018] 

Finn RD, Orlova E V, Gowen B, Buck M & Van Heel M (2000) Escherichia coli RNA polymerase core and 
holoenzyme structures. EMBO J. 19: 6833–6844 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11118218 [Accessed February 15, 2018] 

Foat BC, Morozov A V. & Bussemaker HJ (2006) Statistical mechanical modeling of genome-wide transcription 
factor occupancy data by MatrixREDUCE. Bioinformatics 22: e141–e149 Available at: 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btl223 [Accessed 
May 16, 2018] 

Glyde R, Ye F, Darbari VC, Zhang N, Buck M & Zhang X (2017) Structures of RNA Polymerase Closed and 
Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation. Mol. Cell 67: 
106–116.e4 Available at: http://www.ncbi.nlm.nih.gov/pubmed/28579332 [Accessed February 26, 2018] 

Goñi JR, Pérez A, Torrents D & Orozco M (2007) Determining promoter location based on DNA structure first-
principles calculations. Genome Biol. 8: R263 Available at: 
http://genomebiology.biomedcentral.com/articles/10.1186/gb-2007-8-12-r263 [Accessed May 15, 2018] 



73 
 

Gourse RL, Ross W & Gaal T (2000) UPs and downs in bacterial transcription initiation: the role of the alpha 
subunit of RNA polymerase in promoter recognition. Mol. Microbiol. 37: 687–95 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/10972792 [Accessed February 15, 2018] 

Gunnelius L, Hakkila K, Kurkela J, Wada H, Tyystjärvi E & Tyystjärvi T (2014) The omega subunit of the RNA 
polymerase core directs transcription efficiency in cyanobacteria. Nucleic Acids Res. 42: 4606–4614 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/24476911 [Accessed February 16, 2018] 

Hastie T, Tibshirani R & Friedman J (2009) Unsupervised Learning. In The Elements of Statistical Learning pp 485–
585. Springer, New York, NY Available at: http://link.springer.com/10.1007/978-0-387-84858-7_14 
[Accessed May 10, 2018] 

Jacobson Ralph (2013) 2.5 quintillion bytes of data created every day. How does CPG &amp; Retail manage it? - 
IBM Consumer Products Industry Blog. Available at: https://www.ibm.com/blogs/insights-on-
business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-
manage-it/ [Accessed May 7, 2018] 

James G, Witten D, Hastie T & Tibshirani R (2000) An introduction to Statistical Learning 

Jiang M, Ma N, Vassylyev DG & McAllister WT (2004) RNA displacement and resolution of the transcription bubble 
during transcription by R7 RNA polymerase. Mol. Cell 15: 777–788 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15350221 [Accessed February 27, 2018] 

Jishage M, Kvint K, Shingler V & Nyström T (2002) Regulation of σ factor competition by the alarmone ppGpp. 
Genes Dev. 16: 1260–1270 Available at: http://www.ncbi.nlm.nih.gov/pubmed/12023304 [Accessed May 
1, 2018] 

Kang J, Hahn M-Y, Ishihama A & Roe J-H (1997) Identification of sigma factors for growth phase-related promoter 
selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res. 25: 2566–2573 
Available at: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/25.13.2566 [Accessed April 
27, 2018] 

Kang JY, Mishanina T V., Bellecourt MJ, Mooney RA, Darst SA & Landick R (2018) RNA Polymerase Accommodates 
a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. Mol. Cell 69: 802–
815.e1 Available at: https://www.sciencedirect.com/science/article/pii/S1097276518300479 [Accessed 
May 21, 2018] 

Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S & Ebright RH (2006) INITIAL TRANSCRIPTION BY RNA 
POLYMERASE PROCEEDS THROUGH A DNA-SCRUNCHING MECHANISM: Single-molecule fluorescence-
resonance-energy-transfer experiments establish that initial transcription proceeds through a ‘scrunching’ 
mechanism, in which RNA polymerase. Science 314: 1144–1147 Available at: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754788/ 

Keuth S & Bisping B (1994) Vitamin B12 production by Citrobacter freundii or Klebsiella pneumoniae during 
tempeh fermentation and proof of enterotoxin absence by PCR. Appl. Environ. Microbiol. 60: 1495–9 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/8017933 [Accessed April 26, 2018] 

Kien NB, Kong I-S, Lee M-G & Kim JK (2010) Coenzyme Q10 production in a 150-l reactor by a mutant strain of 
Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol. 37: 521–529 Available at: 
http://link.springer.com/10.1007/s10295-010-0699-4 [Accessed April 26, 2018] 

Lenhard B, Sandelin A, Mendoza L, Engström P, Jareborg N & Wasserman WW (2003) Identification of conserved 
regulatory elements by comparative genome analysis. J. Biol. 2: 13 Available at: 
http://jbiol.biomedcentral.com/articles/10.1186/1475-4924-2-13 [Accessed May 18, 2018] 

Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J & Wang J (2010) De 
novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20: 265–
72 Available at: http://www.ncbi.nlm.nih.gov/pubmed/20019144 [Accessed May 11, 2018] 

Lin H, Deng EZ, Ding H, Chen W & Chou KC (2014) IPro54-PseKNC: A sequence-based predictor for identifying 
sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 42: 
12961–12972 Available at: http://academic.oup.com/nar/article/42/21/12961/2902492/iPro54PseKNC-a-
sequencebased-predictor-for [Accessed February 26, 2018] 



74 
 

Ma S, Shah S, Bohnert HJ, Snyder M & Dinesh-Kumar SP (2013) Incorporating motif analysis into gene co-
expression networks reveals novel modular expression pattern and new signaling pathways. PLoS Genet. 
9: e1003840 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24098147 [Accessed May 18, 2018] 

Van Der Maaten L & Hinton G (2008) Visualizing Data using t-SNE. J. Mach. Learn. Res. 9: 2579–2605 Available 
at: http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf [Accessed June 8, 
2018] 

Maeda H (2000) Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core 
RNA polymerase. Nucleic Acids Res. 28: 3497–3503 Available at: https://academic.oup.com/nar/article-
lookup/doi/10.1093/nar/28.18.3497 [Accessed April 9, 2018] 

Monsion B, Incarbone M, Hleibieh K, Poignavent V, Ghannam A, Dunoyer P, Daeffler L, Tilsner J & Ritzenthaler C 
(2018) Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV 
B2 Protein. Front. Plant Sci. 9: 70 Available at: 
http://journal.frontiersin.org/article/10.3389/fpls.2018.00070/full [Accessed May 21, 2018] 

Mukhopadhyay J, Kapanidis AN, Mekler V, Kortkhonjia E, Ebright YW & Ebright RH (2001) Translocation of 
sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for 
movement relative to DNA. Cell 106: 453–63 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11525731 [Accessed February 22, 2018] 

Murakami KS (2015) Structural Biology of Bacterial RNA Polymerase. Biomolecules 5: 848–864 Available at: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496699/ 

Nagai H & Shimamoto N (1997) Regions of the Escherichia coli primary sigma factor sigma70 that are involved in 
interaction with RNA polymerase core enzyme. Genes Cells 2: 725–34 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/9544701 [Accessed February 22, 2018] 

Nandy Mazumdar M, Nedialkov Y, Svetlov D, Sevostyanova A, Belogurov GA & Artsimovitch I (2016) RNA 
polymerase gate loop guides the nontemplate DNA strand in transcription complexes. Proc. Natl. Acad. Sci. 
113: 14994–14999 Available at: http://www.ncbi.nlm.nih.gov/pubmed/27956639 [Accessed February 22, 
2018] 

Nelson JD, Denisenko O, Sova P & Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids 
Res. 34: e2–e2 Available at: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gnj004 
[Accessed May 18, 2018] 

Paget MS (2015) Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. 
Biomolecules 5: 1245–65 Available at: http://www.ncbi.nlm.nih.gov/pubmed/26131973 [Accessed 
February 16, 2018] 

Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I & Vassylyev DG (2004) 
Regulation through the secondary channel - Structural framework for ppGpp-DksA synergism during 
transcription. Cell 118: 297–309 Available at: http://www.ncbi.nlm.nih.gov/pubmed/15294156 [Accessed 
May 1, 2018] 

Pletnev P, Osterman I, Sergiev P, Bogdanov A & Dontsova O (2015) Survival guide: Escherichia coli in the 
stationary phase. Acta Naturae 7: 22–33 Available at: http://www.ncbi.nlm.nih.gov/pubmed/26798489 
[Accessed April 26, 2018] 

Raffaelle M, Kanin EI, Vogt J, Burgess RR & Ansari AZ (2005) Holoenzyme Switching and Stochastic Release of 
Sigma Factors from RNA Polymerase In Vivo. Mol. Cell 20: 357–366 Available at: 
https://www.sciencedirect.com/science/article/pii/S1097276505016813 [Accessed May 19, 2018] 

Ratsch G, Sonnenburg S & Scholkopf B (2005) RASE: recognition of alternatively spliced exons in C.elegans. 
Bioinformatics 21: i369–i377 Available at: https://academic.oup.com/bioinformatics/article-
lookup/doi/10.1093/bioinformatics/bti1053 [Accessed June 8, 2018] 

Read JE (2017) Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein 
of Interest to Identified Predicted Binding Sites Within a Promoter. In Methods in molecular biology (Clifton, 
N.J.) pp 23–32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28801897 [Accessed May 18, 2018] 

Reddy G, Altaf M, Naveena BJ, Venkateshwar M & Kumar EV (2008) Amylolytic bacterial lactic acid fermentation 



75 
 

— A review. Biotechnol. Adv. 26: 22–34 Available at: 
https://www.sciencedirect.com/science/article/pii/S0734975007000961 [Accessed April 26, 2018] 

Riley TR, Lazarovici A, Mann RS & Bussemaker HJ (2015) Building accurate sequence-to-affinity models from high-
throughput in vitro protein-DNA binding data using FeatureREDUCE. Elife 4: Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26701911 [Accessed May 16, 2018] 

Roberts JW (1969) Termination factor for RNA synthesis. Nature 224: 1168–1174 Available at: 
http://www.nature.com/doifinder/10.1038/2241168a0 [Accessed April 10, 2018] 

Rodionov DA (2007) Comparative Genomic Reconstruction of Transcription Regulatory Networks in Bacteria. 
Chem. Rev. 107: 3467–3497 Available at: https://pubs.acs.org/doi/abs/10.1021/cr068309+ [Accessed May 
18, 2018] 

Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck 
MW & Hinton JCD (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth 
and involves transient metal accumulation. J. Bacteriol. 194: 686–701 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/22139505 [Accessed April 26, 2018] 

Ross W, Ernst A & Gourse RL (2001) Fine structure of E. coli RNA polymerase-promoter interactions: α subunit 
binding to the UP element minor groove. Genes Dev. 15: 491–506 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11238372 [Accessed February 20, 2018] 

Saecker RM, Record MT, Dehaseth PL & deHaseth PL (2011) Mechanism of bacterial transcription initiation: RNA 
polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of 
RNA synthesis. J. Mol. Biol. 412: 754–71 Available at: http://www.ncbi.nlm.nih.gov/pubmed/21371479 
[Accessed February 22, 2018] 

San K ‐Y & Stephanopoulos G (1989) Optimization of fed‐batch penicillin fermentation: A case of singular optimal 
control with state constraints. Biotechnol. Bioeng. 34: 72–78 Available at: 
http://doi.wiley.com/10.1002/bit.260340110 [Accessed April 26, 2018] 

Sanderson A, Mitchell JE, Minchin SD & Busby SJ. (2003) Substitutions in the Escherichia coli RNA polymerase 
σ70factor that affect recognition of extended -10 elements at promoters. FEBS Lett. 544: 199–205 Available 
at: https://www.sciencedirect.com/science/article/pii/S0014579303005003 [Accessed February 20, 2018] 

Scherf M, Klingenhoff A & Werner T (2000) Highly specific localization of promoter regions in large genomic 
sequences by PromoterInspector: a novel context analysis approach. J. Mol. Biol. 297: 599–606 Available 
at: https://www.sciencedirect.com/science/article/pii/S0022283600935897 [Accessed May 13, 2018] 

Shimada T, Tanaka K & Ishihama A (2017) The whole set of the constitutive promoters recognized by four minor 
sigma subunits of Escherichia coli RNA polymerase. PLoS One 12: e0179181 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/28666008 [Accessed February 16, 2018] 

Siddharthan R (2010) Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing 
the Position Weight Matrix. PLoS One 5: e9722 Available at: 
http://dx.plos.org/10.1371/journal.pone.0009722 [Accessed May 16, 2018] 

Steger D, Berry D, Haider S, Horn M, Wagner M, Stocker R & Loy A (2011) Systematic Spatial Bias in DNA 
Microarray Hybridization Is Caused by Probe Spot Position-Dependent Variability in Lateral Diffusion. PLoS 
One 6: e23727 Available at: http://www.ncbi.nlm.nih.gov/pubmed/21858215 [Accessed May 11, 2018] 

Structure and Function of DNA (2016) web page Available at: 
https://courses.lumenlearning.com/microbiology/chapter/structure-and-function-of-dna/ [Accessed May 
21, 2018] 

Toulokhonov I, Artsimovitch I & Landick R (2001) Allosteric control of RNA polymerase by a site that contacts 
nascent RNA hairpins. Science (80-. ). 292: 730–733 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11326100 [Accessed March 1, 2018] 

Typas A, Barembruch C, Possling A & Hengge R (2007) Stationary phase reorganisation of the Escherichia coli 
transcription machinery by Crl protein, a fine-tuner of sigmas activity and levels. EMBO J. 26: 1569–78 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/17332743 [Accessed April 27, 2018] 

Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM & Sidow A (2008) Genome-wide 



76 
 

analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5: 829–834 Available 
at: http://www.nature.com/articles/nmeth.1246 [Accessed May 11, 2018] 

Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH & Artsimovitch I (2007) Structural basis for transcription 
elongation by bacterial RNA polymerase. Nature 448: 157–162 Available at: 
http://www.nature.com/articles/nature05932 [Accessed May 21, 2018] 

Vuthoori S, Bowers CW, McCracken A, Dombroski AJ & Hinton DM (2001) Domain 1.1 of the σ70subunit of 
Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. J. 
Mol. Biol. 309: 561–572 Available at: http://www.ncbi.nlm.nih.gov/pubmed/11397080 [Accessed February 
20, 2018] 

Wassarman KM & Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101: 613–23 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/10892648 [Accessed April 27, 2018] 

Weaver R (2011) Molecular Biology 5th ed. McGraw-Hill Available at: http://doi.wiley.com/10.1002/bmb.8 

Weirauch MT, Cote A, Norel R, Annala M, Zhao Y, Riley TR, Saez-Rodriguez J, Cokelaer T, Vedenko A, Talukder S, 
Bussemaker HJ, Morris QD, Bulyk ML, Stolovitzky G, Hughes TR, Chang CW, Chen C-Y, Chen Y-S, Chu Y-W, 
Grau J, et al (2013) Evaluation of methods for modeling transcription factor sequence specificity. Nat. 
Biotechnol. 31: 126–134 Available at: http://www.nature.com/articles/nbt.2486 [Accessed May 17, 2018] 

Weixlbaumer A, Leon K, Landick R & Darst SA (2013) Structural basis of transcriptional pausing in bacteria. Cell 
152: 431–41 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23374340 [Accessed March 1, 2018] 

Wu X & Bartel DP (2017) kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences. 
Nucleic Acids Res. 45: W534–W538 Available at: https://academic.oup.com/nar/article-
lookup/doi/10.1093/nar/gkx323 [Accessed May 17, 2018] 

Xia X (2012) Position weight matrix, gibbs sampler, and the associated significance tests in motif characterization 
and prediction. Scientifica (Cairo). 2012: 917540 Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/24278755 [Accessed May 17, 2018] 

Yakhnin A V & Babitzke P (2010) Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection 
and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol. 
Microbiol. 76: 690–705 Available at: http://www.ncbi.nlm.nih.gov/pubmed/20384694 [Accessed March 1, 
2018] 

Yarnell WS & Roberts JW (1999) Mechanism of intrinsic transcription termination and antitermination. Science 
(80-. ). 284: 611–615 Available at: http://www.ncbi.nlm.nih.gov/pubmed/10213678 [Accessed April 10, 
2018] 

Zaslaver A, Kaplan S, Bren A, Jinich A, Mayo A, Dekel E, Alon U & Itzkovitz S (2009) Invariant Distribution of 
Promoter Activities in Escherichia coli. PLoS Comput. Biol. 5: e1000545 Available at: 
http://dx.plos.org/10.1371/journal.pcbi.1000545 [Accessed April 30, 2018] 

 

  



77 
 

APPENDICES 
Appendix 1. Number of overlapping promoters between σ-factors for 3 different conditions. 

Grouped 
phases  S70 S38 S32 S54 S28 

S70 3299      
S38 1986 2120     

S32 726 539 783    

S54 342 265 83 370   

S28 116 99 22 24 123 

      
 Exp. 

phase S70 S38 S32 S54 S28 

S70 1808      
S38 1091 1161     

S32 385 278 413    
S54 169 137 33 187   

S28 64 57 11 13 67 

      
 Stat. 
phase S70 S38 S32 S54 S28 

S70 2364      

S38 1420 1520     

S32 513 389 560    
S54 259 201 69 279   

S28 75 62 11 14 81 
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Appendix 2. Overrepresented motifs. From top to bottom: σ70, σ38, σ32, σ54 and σ28 promoters during the 
exponential phase. (Crooks et al, 2004) 
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Appendix 3 Venn diagrams for the overlap between promoters recognized by certain σ factors. From left to 
right: promoters active when phases are grouped and during the exponential phase. Bottom: Promoters active 
during the stationary phase.  

 
 

 

 

 

 

 

 

 

 

 


