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Dankwoord

Zie zo, hier zit ik dan, op dezelfde stoel waar ik meer dan een jaar geleden begon aan mijn
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van de realiteit. Bij deze maak ik dus nog even tijd om de nodige mensen te bedanken.

Ten eerste wil ik mijn promotor/tutor, Dr. Jan Baetens, van harte bedanken voor de

voortreffelijke begeleiding bij het maken van dit proefstuk. Zijn inbreng bood me telkens
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naast bedank ik ook graag mijn tweede promotor, Prof. Bernard De Baets, voor zijn kritische
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spreiden. Bij uitbreiding wil ik, naast mijn mede-thesisstudenten, iedereen aan de vakgroepen

KERMIT en BIOMATH bedanken. Om het met een (licht aangepast) filmcitaat te zeggen:

Ladies and gentlemen, it has been a privilege working with you this year.

Daarnaast wil ik nog even wat mensen van buiten de faculteitsmuren in de bloemetjes zetten.

Eerst en vooral heel de (Belgisch-Britse) ska/punk scene, en in het bijzonder alles en iedereen

in en rond Koala Commission, Chrandesyx en El Topo Bookings, want music is love, music

is life. Vervolgens bedank ik al mijn geeky vriendjes om samen dank memes uit te wisse-

len, fossielen te gaan zoeken en ons te verliezen in eindeloze D&D sessies. Ook iedereen die

op regelmatige basis mijn klaagzangen heeft mogen/moeten aanhoren, zij het op kot, in de

frietketel of eender waar, mag ik niet vergeten te vermelden.

Ten slotte wil ik mijn familie en vooral mijn ouders, Koen en Linde, bedanken. Naast het

feit dat jullie de (enige) reden zijn dat ik hier in de eerste plaats rondloop, staan jullie al heel

mijn leven met woord en daad voor me klaar. Hier kan ik niet dankbaar genoeg voor zijn.

And now for something completely different. . .
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Summary

Wildfires pose, despite their seemingly minor importance in Belgium, a serious threat to our

few remaining nature reserves and the residential areas in their proximity. Hence, the need

for an effective management and suppression arises. Wildfire models—and more specifically

wildfire spread models—could be useful tools for the latter, as they try to simulate the spread

of a wildfire. During the past decades, a multitude of said models has been developed, yet

none of them have been evaluated in a Belgian context.

In this dissertation three wildfire spread models are selected from the available models and

these are evaluated in a Belgian context. For this purpose, a dataset is used containing seven

documented wildfires in Belgium and the Netherlands. The goal is to asses whether or not

these models are readily applicable in a Belgian context, and this for the sake of operational

purposes. The evaluation is subdivided in two main parts. Firstly, we evaluated two publicly

available simulators, namely FARSITE and ForeFire. Secondly, we tested the model proposed

by Depicker et al. (2016)—which is a cellular automaton—through model calibration, simu-

lations and a sensitivity analysis with the available data.

It was ascertained that none of the simulations obtained with these models could provide any

information which would be relevant in an operational setting. This was mainly attributed to

the poor quality of the data available. Furthermore, the lack of a (detailed) documentation

of the progression of the wildfires hampered both the calibration of the CA-based model and

the thorough analysis and mutual comparison of the models in general.
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Samenvatting

Natuurbranden vormen, ondanks hun eerder beperkt voorkomen in België, een ernstige bedreig-

ing voor enkele van onze weinige natuurgebieden en de hieraan grenzende woongebieden. Bi-

jgevolg steekt de nood aan doeltreffende beheer- en bestrijdingsmatregelen de kop op. Natu-

urbrandmodellen – en meer specifiek brandverspreidingsmodellen – kunnen bij dit laatste een

belangrijk hulpmiddel zijn, aangezien ze het verloop van een natuurbrand pogen te voor-

spellen. Gedurende de voorbije decennia werden ettelijke van deze modellen opgesteld, echter

geen werd reeds getest voor natuurbranden in België.

In deze thesis werden, uit de hele schare aan bestaande modellen, drie brandverspreidingsmod-

ellen geselecteerd en beoordeeld in een Belgische context. Hierbij werd gebruik gemaakt van

een dataset bestaande uit zeven gedocumenteerde natuurbranden in België en Nederland. Het

doel hiervan is om na te gaan of deze modellen voldoende ontwikkeld zijn om operationeel

toegepast te worden in onze contreien. De evaluatie is opgedeeld in twee onderdelen. In eerste

instantie hebben we twee modellen uit de literatuur getest, met name FARSITE en ForeFire.

In tweede instantie evalueerden we het model voorgesteld door Depicker et al. (2016) – een

cellulaire automaat – aan de hand van een kalibratie, gevoeligheidsanalyse en simulaties met

de beschikbare dataset.

Hierbij hebben we vastgesteld dat de simulaties die bekomen werden met deze modellen, ons

geen informatie konden verschaffen die bruikbaar zou zijn voor operationele doeleinden. Dit

werd voornamelijk toegeschreven aan de lage kwaliteit van de beschikbare data. Bovendien

werd, naast de kalibratie van het CA-gebaseerde model, een grondige analyse en onderlinge

vergelijking van de drie modellen belemmerd door het ontbreken van een (gedetailleerde)

beschrijving van het verloop van de natuurbranden.
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CHAPTER 1
Introduction

Even though wildfires are key natural processes that shape ecosystems and influence natural

cycles, they are mostly associated with their devastating impacts on both humans and their

environment. In the past year, two major wildfire events occurred in both Chile and Portu-

gal, which caused the death of 75 people, while laying in ashes homes and several thousands

hectares of natural land. Belgium, too, has had its own catastrophic year in 2011, when sev-

eral wildfires swept through more than 2000 ha of nature reserves—luckily without the loss

of human lives. Yet, it was a close call, as a fire truck was lost in the fire on the Kalmthout

Heath and its passengers had to flee the flames on foot. Furthermore, some residential areas

are located in the near proximity of these heathlands. Hence, (slightly) different weather

conditions might have meant the loss of homes and, again, lives. In order to effectively guard

ourselves and our surroundings against such disasters, a key aspect is to understand and pre-

dict a wildfire’s behaviour. In this respect, mathematical wildfire models could be effective

tools, as they try to capture the mechanics behind this phenomenon and provide predictions

that can serve as a basis for decision making. This dissertation will revolve around such

models, and more specifically those that simulate the wildfire dynamics in real-time.

Chapter 2 will give a brief general description of wildfires, with a focus on the main drivers

and key processes behind, and the impacts and prevalence of these fires. Next, an overview

of the different types and aspects of wildfire modelling is presented in Chapter 3. The core of

this thesis encompasses on the one hand a review of two renowned wildfire simulators, namely

FARSITE and ForeFire (Chapter 5), and on the other hand, the calibration, evaluation and

sensitivity analysis of a CA-based model (Chapter 6). This is done on the basis of a dataset

comprising seven wildfires in Belgium and the Netherlands, of which an overview is given in

Chapter 4, alongside a description of the evaluated models. The main goal of all this is to

asses whether or not these models are readily applicable in a Belgian context, and this for the

sake of operational purposes (i.e. the faster than real-time prediction of wildfire spread after

ignition).





CHAPTER 2
Wildfires: a brief description

Wildfire is a global natural phenomenon that has influenced biogeochemical cycles and ecosys-

tem patterns throughout the history of terrestrial life (Bowman et al., 2009; McKenzie and

Perera, 2015). Ever since the appearance of the first terrestrial plants—about 420 million

years ago—the Earth’s biosphere has been intrinsically flammable. This is due to the com-

bination of combustible vegetation, a high atmospheric oxygen level (right in the so-called

“fire window” of 13-26%), periodically dry seasons, and a high frequency of ignition causes

(e.g. lightning) (Scott and Glasspool, 2006; Bowman et al., 2009). Despite its frequent occur-

rence and ecological and socio-economic impacts, there is still a big gap in our knowledge of

wildfire behaviour. Nevertheless, the extensive research on the topic during the last century

has revealed some of the underlying mechanisms. A general description of the concept and

its key processes will be provided in Section 2.1. Sections 2.2 and 2.3 will briefly discuss the

impact and occurrence of wildfires and the strategies for wildfire management, respectively,

since these subjects were already covered in a previous dissertation (Depicker et al., 2016).

2.1 General description

2.1.1 Definition and scales

The definition of wildfire depends on the perspective of its user. From a fire management

point of view, wildland fire is defined as: “any non-structure fire that occurs in vegetation or

natural fuels, which includes prescribed fire and wildfire” (The National Wildfire Coordinating

Group, 2015). The distinction between these last two lies in whether the fire is intentionally

ignited and used as a management tool (as is the case in the former) or unwanted and beyond

any human control (as is the case in the latter). Throughout the remainder of this dissertation

this distinction will not be made, since the processes which control the fire dynamics stay the

same. Hence, wildfire will be used as a synonym for wildland fire.
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Sullivan (2009a) defines a wildfire more mechanistically as: “the complicated combination

of energy released (in the form of heat) due to the chemical reactions (broadly categorised

as oxidation reactions) in the process of combustion and the transport of that energy to

surrounding unburnt fuel, and the subsequent ignition of that fuel”. This definition reveals

the two broad categories in which the processes governing wildfire can be subdivided, namely:

chemical combustion on the one hand and physical heat transfer and fluid mechanics on the

other hand. Note that these processes occur at different spatio-temporal scales, ranging from

millimetres and milliseconds to kilometres and hours (Table 2.1). This already hints to a

major difficulty in the study of wildfire behaviour. Furthermore, wildfires can be described

at different levels, ranging from flames to fire regimes (Figure 2.1).

Table 2.1: Indicative spatio-temporal scales of the main processes and compo-

nents in wildfires, adapted from Sullivan (2009a).

Type Time scale (s) Vertical Horizontal

scale (m) scale (m)

Combustion reactions 0.0001 – 0.01 0.0001 – 0.01 0.0001 – 0.01

Fuel particles – 0.001 – 0.01 0.001 – 0.01

Fuel complex – 1 – 20 1 – 100

Flames 0.1 – 30 0.1 – 10 0.1 – 2

Radiation 0.1 – 30 0.1 – 10 0.1 – 50

Conduction 0.01 – 10 0.01 – 0.1 0.01 – 0.1

Convection 1 – 100 0.1 – 100 0.1 – 10

Turbulence 0.1 – 1000 1 – 1000 1 – 1000

Spotting 1 – 100 1 – 3000 1 – 10000

Plume 1 – 10000 1 – 10000 1 – 100

.

2.1.2 Spread mechanism

Unlike fire in human-made structures, where the flames spread over solid surfaces, the fuels

of wildfires consist of discrete particles separated by air spaces (Williams, 1977). Thus, since

the early beginnings, wildfire spread is described as a succession of sustained ignitions of fuel

particles (Fons, 1946). The subsequent combustion can occur with or without flames, the

latter being referred to as smouldering (see Section 2.1.4). The flame propagation over the

wildland surface occurs via so-called diffusion flames, characterized by the following positive

feedback loop (Saito, 2001; Ward, 2001):
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Figure 2.1: Spatio-temporal scales of fire, from Moritz et al. (2005) (Keane, 2015)

1. pre-ignition (preheating, dehydration, and volatilisation of organics) and thermal de-

composition (pyrolysis) of unburnt condensed phase fuel with the production of highly

flammable, volatile components (pyrolysates);

2. evaporation of pyrolysates and subsequent diffusion into the high-temperature flame;

3. combustion of the inflammable gases, resulting in combustion products and heat;

4. transfer of (part of) the heat to unburnt solid fuel.

If the heat transfer from step 3 is sufficiently high, the loop restarts and becomes self-

supporting. A schematic representation of these processes is shown in Figure 2.2.

The dynamics resulting from this feedback loop can be described using some important char-

acteristics (the cited definitions are adapted from the glossary of The National Wildfire Co-

ordinating Group (2015)). The rate of spread (ROS) is the rate at which new fuel begins

to burn (Williams, 1982), generally characterised by an initial acceleration and subsequent

transition to a quasi-steady state (Rothermel, 1972). It thus marks the forward spread of the

fire front–the part of a fire within which continuous flaming combustion is taking place. The

fire intensity is the energy output from the fire. This can be expressed by metrics such as

fireline intensity, reaction intensity, temperature, radiant energy, or residence time (Keeley,

2009). The fireline intensity is defined as the rate of heat release per unit time per unit

length of fire front, while the reaction intensity is the rate of heat release, per unit area of

the flaming fire front. The residence time is the total length of time that the flaming front of

the fire occupies one point.
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Figure 2.2: Schematic representation of the different steps in the feedback loop

of diffusion flames spreading through a heterogeneous fuelbed, adapted from Mor-

van and Dupuy (2001): step 1: pre-ignition and pyrolysis; step 2: evaporation and

diffusion of pyrolysates; step 3: combustion; step 4: heat transfer (due to radia-

tion, convection and embers in the smoke plume). The blue arrows indicate the

convective movement of surrounding air.

Due to the release of hot, buoyant gases and particles during the combustion processes,

atmosphere, biosphere, and hydrosphere are all connected at the flame front (Bowman et al.,

2009). Therefore, the dynamic fire behaviour simultaneously depends on and influences a

vast amount of highly variable environmental processes and parameters. This leads to a

high degree of unpredictability and forms a source of uncertainty (Cruz and Alexander, 2013;

Thompson and Calkin, 2011). Consequently, two fire events will rarely be the same; in fact,

when studying fire regimes (i.e. the fire behaviour at landscape level over a time-span of

several years or decades), every observed wildfire could be considered as a single realisation

of a stochastic process (McKenzie et al., 2011).

2.1.3 Fuels

One of the three basic requirements for fire – next to oxygen and a heat source – is fuel, so,

unsurprisingly, this parameter has a major impact on fire behaviour. In a wildfire context, the

fuel consists of live and dead biomass (mostly vegetation). A detailed description of different

wildland fuels is provided by Keane (2015), which forms the basis of this section.

Since wildland fuels again comprise a wide spatial scale range (Table 2.1), they can be de-

scribed at different levels, each characterised by a set of physico-chemical properties. The

smallest fuel element is an individual fuel particle (e.g. a leaf or log), which can be classified

into different fuel components and types (such as litter or woody biomass). The coarsest scale
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of fuel description is the so-called fuelbed, which is defined by Keane (2015) as the complex

array of biomass types for a given area. The higher levels are characterised by bulk properties,

which are mostly statistical summaries of those of individual particles. There are numerous

particle and bulk characteristics, and they often have a dynamic nature. Most of them influ-

ence wildfire behaviour in some way or another through complex interactions that are often

still poorly understood (Nelson, 2001; Finney et al., 2013). Therefore, only some properties

that are generally considered to be (the most) crucial will be discussed here.

Particle properties

At the particle scale, wildland fuels have the widest range of properties, which can be of a

chemical or physical nature. Relevant chemical properties are the chemical composition (and

foremost the fuel moisture content) and heat content. Since most wildland fuels are live or

dead plant biomass, the organic constituents are (in descending order of abundance) cellu-

lose, hemicellulose, and lignine next to some extractives (such as oils and proteins), while the

inorganic comprise minerals (ash) and water. The relative proportions of these components

depend on numerous biochemical processes and vary between species, plant parts, live and

dead fuels, and seasons (Keane, 2015; Finney et al., 2013). Due to its disproportional impor-

tance, the influence of water will be discussed separately. The other components can affect

the fire behaviour by changing the heat content (h), expressed as the heat of combustion

released per mass unit of burned fuel [kJ kg-1], or by altering the combustion reactions (see

Section 2.1.4). So-called ether extractives (such as oils and resins) may, for example, increase

the heat content (Philpot, 1969), while the silica-free inorganic fraction can influence pyrol-

ysis reactions, acting as inhibitor (or catalyst) (Philpot, 1970; Di Blasi, 1998; Williams, 1982).

In addition to the chemical properties of a fuel particle, also its physical characteristics play a

profound role in wildfire dynamics. These include thermal properties (e.g. heat capacity and

conductivity), geometric properties, such as the surface-area-to-volume ratio (σ) and particle

diameter (dp), and particle density (ρp). In short, the physical properties will mostly affect

the heat transfer between the fire front and the surrounding fuel and the dynamic behaviour

of the moisture content. More particularly, the geometry and density determine whether a

given fuel mainly promotes a fast fire spread (fine fuels, with short residence times and a

rapid ignition) or intense fires (coarse, dense fuels, with long residence times).
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Spatial structure and bulk properties

As mentioned earlier, the properties at a higher level of fuel description are derived from those

of the particles that make up this level, and if applicable, account for its spatial structure.

In a fuelbed, this spatial structure involves a vertical and horizontal dimension (Simeoni,

2016). Vertically it is generally stratified into three fuel layers: ground, surface and canopy

or crown fuels (Figure 2.3). A related metric is the canopy base height (CBH) that can

be defined as the lowest height above the ground at which there is sufficient canopy fuel to

propagate fire vertically through the canopy (Scott and Reinhardt, 2001). The definition of the

boundaries between these layers is largely arbitrary and therefore variable in literature (Keane,

2015). Moreover, in reality these layers can overlap, forming a so-called fuel ladder, which can

transport fire from the surface to the crown layer, resulting in intense fires. The horizontal

fuel distribution, on the contrary, strongly influences the fire spread since it represents the

fuel density and the connectivity between different fuel patches.

Some important bulk properties include the fuel loading (W), which is the dry weight mass of

the fuelbed or fuel component per unit area [kg m-2], the bulk density ρb, fuelbed depth (dfb)

and packing ratio (β). The latter is defined as the ratio ρb
ρp

and represents the compactness

of the fuelbed (Rothermel, 1972).

Fuel moisture

The fuel moisture content (FMC) is perhaps the most critical fuel characteristic for wildfires,

since it influences most fire processes in some way (Finney et al., 2013; Nelson, 2001; Simard,

1968). First of all, it increases the heat of pre-ignition and thus the preheating time of the

fuel due to the latent heat that has to be provided for the endothermic evaporation of water.

Next to that, the high thermal conductivity of water hampers the ignition of high moisture

fuels by an increased conduction of supplied heat trough and away from the fuel particles.

Furthermore, the released water vapour dilutes the air oxygen, thus limiting combustion and

lowering the flame temperature. The combined result of these interactions is the limitation

of ignition and combustion, favouring of smouldering over flame reactions, and a decreased

fuel consumption.

The FMC is highly dynamic due to its link with other environmental processes. Moreover, it

is necessary to make a distinction between live and dead fuels, since their moisture dynam-

ics are fundamentally different (Saito, 2001; Simeoni, 2016). The live FMC is governed by

ecophysiological processes with diurnal and seasonal variations. Dead fuel moisture content,

on the contrary, is mostly governed by evaporation. Hence, it relies on short-term changes in

weather conditions (temperature and humidity) that alter the equilibrium moisture content.

To ease the description of these dead fuel moisture dynamics, the time-lag concept was intro-

duced. It is defined as the time needed (under specified environmental conditions) for a fuel
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Figure 2.3: Representation of a typical fuelbed (Keane, 2015). This fuelbed is

vertically stratified into three layers: ground, surface, and canopy or crown layer,

which are all composed of different fuel types (such as herbs, shrubs, litter and

woody biomass in the case of the surface layer).

particle to lose 63% of the difference between its initial moisture content and its equilibrium

moisture content, while assuming an exponential drying function (Keane, 2015). For woody

fuel particles the time-lag increases logarithmically with the particle density, while it depends

on many biophysical factors (e.g. stage of decomposition) for litter and duff.

Fuel condition and flammability

The combined influence of the fuel characteristics is often expressed as the fuel condition.

This is the relative flammability of the fuel based on type and environmental conditions, in

which the flammability is the relative ease at which the fuels burn regardless of the amount

(The National Wildfire Coordinating Group, 2015). To correctly quantify and interpret these

concepts, one has to take the whole spatio-temporal context of the fuels into account, which

can rarely be done in standardized tests. Moreover, Keane (2015) notes that these concepts

are vaguely defined and consequently interpreted differently all over the world, so they should

be used as qualitative rather than quantitative fuel descriptions.
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2.1.4 Combustion reactions

In Section 2.1.2, the basic feedback loop of diffusion flames was discussed (Figure 2.2), in

which the main reaction phases were identified as pre-ignition, pyrolysis and combustion.

During pre-ignition the condensed fuel is heated causing the release of volatile organics and

water (dehydration). The pyrolysis phase starts when enough heat is added to induce thermal

degradation of the fuel components. The corresponding reaction schemes are very complex—

with over a hundred reactions and fifty species for the pyrolysis of cellulose alone (Zhou and

Mahalingam, 2001)—due to the diversity in fuels and reaction conditions. Cellulose, the main

constituent of wildland fuels (see Section 2.1.3), is characterised by two competing pyrolysis

mechanisms (Williams, 1982; Di Blasi, 1998; Drysdale, 2011):

1. dehydration, with the formation of char;

2. depolymerisation, which produces tar (primarily levoglucosan) that subsequently forms

volatile, combustible pyrolysates.

These pathways are controlled by physico-chemical feedbacks in which the first pathway is

favoured in moist conditions and at relatively low heating rates, while the second occurs at

dry conditions and—due to its higher activation energy—high heating rates (Sullivan, 2009a).

The dominating pathway subsequently determines the type of combustion. During combustion

fuel is combined with an oxidiser (i.e. oxygen of the surrounding air) in an exothermic reaction

to produce the so-called products of complete combustion (PCC) and products of incomplete

combustion (PICC) (Saito, 2001):

[fuel] + [oxidiser]→ [PCC] + [PICC] + Q, (2.1)

where the released heat (Q) can support further pyrolysis.PICC are formed when the re-

action is terminated before complete combustion has occurred. This happens frequently in

wildfires, especially during fast and turbulent combustion (Saito, 2001). These components

will then condense to form the smoke particles (Drysdale, 2011). If char formation is favoured

during pyrolysis, the solid char will be the fuel of smouldering combustion. In this type of

combustion char is oxidized at its surface without the emission of flames. If, on the other

hand, depolymerisation is favoured, combustion will take place in the gas phase, resulting in

flaming combustion (cfr. the diffusion flames discussed in Section 2.1.2). The transition from

pre-ignition to self-sustained combustion is called ignition. It is often (approximately) quan-

tified by a critical temperature that the condensed fuel surface has to reach before burning

starts (Williams, 1982). This ignition temperature is assumed to be fuel specific.
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2.1.5 Heat transfer

Williams (1982) identifies nine possible heat transfer mechanisms in a fire, that are reclassified

by Sullivan (2009a) into four classes:

1. Diffusion at the molecular level (diffusion of radiacals and heat conduction through gas

and condensed materials);

2. Convection (heat transfer through the motion of gases);

3. Radiation (from flames and burning fuels surfaces);

4. Solid fuel transport (which accounts for fuel deformation and firebrand transport, i.e.

glowing particles capable of igniting unburnt fuel)

Assessing the contribution of these different heat transfer mechanisms is, however, far from

straightforward, since they are mutually dependent, which can be illustrated by the following

observation. Combustion of fuel produces hot gases that start to rise due to their increased

buoyancy, which creates a turbulence. This turbulence can mix the hot gases with unburnt

fuel (class 2), but can as well carry these gases away and thus cool the vegetation. Moreover,

the upward motion can transport firebrands downwind of the fire front (class 4). If the

firebrands are still burning upon landing on unburnt, flammable vegetation, they can ignite

new fire fronts. This phenomenon is called spotting.

Generally speaking, radiation and convection are considered to be the dominant heat transfer

mechanisms in wildfires (Sullivan, 2009a). Radiative heat transfer is mainly controlled by

temperature, emissivity, absorptivity and geometric effects (quantified by the view factor)

(Williams, 1982). Convection is governed by fluid dynamics—which on their turn depend on

local weather conditions, fuel particle geometry, drag forces inside the fuelbed and the fire

behaviour itself (Sullivan, 2009a; Williams, 1982).

Both mechanisms are heavily affected by wind and topography. The main effect of wind is

often attributed to the tilting of the flames which results in a closer contact with the unburnt

fuels (Baines, 1990; Beer, 1991; Simeoni, 2016). Moreover, wind alters the relative importance

of the main heat transfer mechanisms, resulting in two spread regimes (Morandini and Silvani,

2010; Morvan, 2011; Rothermel, 1991). Under low or no-wind conditions the fire is plume-

dominated. This is associated with a vertical, buoyant convection column (caused by the fire

itself) and with a radiation-dominated fire spread. At stronger lateral wind speeds, the fire is

wind-driven and controlled by radiation and convection. Topography (and more specifically,

slope) has a similar effect as wind, in that it brings fuel closer to the flames, resulting in a

faster spread uphill (Baines, 1990; Sharples, 2008; Simeoni, 2016). Moreover, topography also

influences local wind patterns. It should be stressed, however, that these are all simplified

descriptions of a complex reality, which is not yet well understood and much under debate

(Baines, 1990; Finney et al., 2013).
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In fact, most of the previously discussed mechanisms were derived from the study of surface

fires, since most wildfires will spread in the surface layer (Keane, 2015). However, other types

of wildfire can be distinguished.

2.1.6 Phenomenology

Depending on the fuel layers that are burning, wildfires are generally classified into ground,

surface and crown fires. Ground fires burn in the duff layer (see Figure 2.3), which is charac-

terised by a higher density, moisture content and mineral fraction than surface fuels, due to

the higher state of decomposition. Consequently, these fires are associated with smouldering

combustion and slow spreading rates. This, however, does not make them less dangerous,

since they can burn for much longer and possibly reignite surface fires (Rein, 2009). More-

over, they consume (and heat up) the (in)organic soil to a far greater extent than surface

fires, which causes severe damage to the soil biota (Hartford and Frandsen, 1992).

When the conditions are right, a surface fire can ignite the canopy layer in a forest fuelbed.

This phenomenon is called a torching and results in a crown fire (Figure2.4). This type of

wildfire is associated with high intensities, large flame heights and an increased firebrand pro-

duction which can cause spotting. Crown fires can be classified following the theory proposed

by Van Wagner (1977):

1. Passive crown fires rely fully on the heat generated by the surface fire, resulting in an

ROS equal to that of the surface fire;

2. Active crown fires generate a substantial extra heat feedback from crown to surface (but

still depend on the heat of the surface fire), resulting in a higher surface (and crown)

ROS;

3. Independent crown fires are fully self-sustained and spread faster than the surface fire.

The last category is very rare and unstable, since its required conditions (such as a very low

canopy FMC) are hard to attain in practice. Finally, some extreme fire behaviours can be

observed under specific conditions (Simeoni, 2016). Eruptive or blow up fires occur mainly in

canyons and are characterized by a sudden, sharp acceleration (Viegas and Simeoni, 2011).

Fire whirls (Figure2.4) and even fire tornadoes can emerge in plume-dominated fires due to

the strong buoyant convection (Morvan, 2011; McRae et al., 2013). These can generate larger

firebrands than usual, having a higher spotting potential.
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(a) (b) (c)

Figure 2.4: Example of a surface fire (a), crown fire (b) and fire whirl (c), by

Knapp (2002), Forest Service Northern Region (2011) and Willingham (2016).

2.1.7 Remaining questions

As was mentioned several times throughout this chapter, some key questions related to wild-

fire dynamics still remain unanswered. Finney et al. (2013) point out that because of this

knowledge gap, a fundamental, generally accepted theory on the subject is lacking. In their

critical review, they put forward a non-exhaustive list of some areas in wildfire spread that

are still under debate, mainly concerning the ignition of fine fuel particles. Firstly, they chal-

lenge a widespread assumption that radiation is often the dominant heat transfer process in

wildfire spread (Sullivan, 2009a; Williams, 1982), based on critical voices coming from the

forest science community (Anderson, 1969; Byram et al., 1964; Beer, 1991; McCarter and

Broido, 1965; Rothermel, 1972; Van Wagner, 1977). Moreover, they put forward the analysis

by Baines (1990) of the experimental work of de Mestre et al. (1989), in which he suggests that

the radiant heating of the fine-sized fuel particles is balanced by convective cooling, making

it insufficient to cause ignition. This behaviour was confirmed by Finney et al. (2015), who

additionally observed that ignition occurs due to non-steady flame convection, produced by

the interaction of buoyancy and inertia in the flame zone. Nevertheless, it should be noted

that these experiments all included wind and that the role of convection in wind-driven fires

was already recognised (see Section 2.1.5). Secondly, Finney et al. (2013) reject the use of

a critical ignition temperature (see Section 2.1.4) and a total heat balance to describe fuel

ignition, stating that these are physically inconsistent. Last but not least, they conclude that

although there is a substantial difference in burning characteristics between living and dead

fuels—as was already pointed out in Section 2.1.3— a physical understanding of live fuel

ignition processes is currently still missing.
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2.2 Prevalence and impact

2.2.1 Global

Based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard

the Terra and Aqua satellites, Randerson et al. (2012) estimate that on average 4.64 million

km2/yr were burnt between 2001 and 2010, corresponding to approximately 4% of the global

land area. These authors do not discriminate between wildfires and intentional fires (e.g.

used for pastoral activities in rural areas). The spatial distribution of these fires is shown in

Figure 2.5. From this figure it is clear that there are significant differences in fire prevalence

across the globe resulting from different human practices (e.g. slash and burn) and fire regimes.

Figure 2.5: Average annual burnt area between 2001-2010 for each 0.25 degree

grid cell, expressed as percentage (Randerson et al., 2012).

Many articles report expected changes in fire regimes due to climate change. Flannigan et al.

(2013) predict, for instance, a significant increase in fire season length based on simulation

results of three General Circulation Models and three emission scenarios for the 21st century.

However, the effects on other fire regime characteristics (such as burnt area and fire frequency),

are expected to vary greatly between different regions in the world (Flannigan et al., 2009;

Krawchuk et al., 2009; Pechony and Shindell, 2010). Furthermore, to reliably predict the

impacts of climate change, the fire-climate feedbacks will also have to be accounted for,

which is not a trivial task (Bowman et al., 2009). Current data do not indicate a global

increase in burnt area (Doerr and Sant́ın, 2016). On the contrary, Giglio et al. (2013) even

report a decreasing trend between 2000 and 2012. Moreover, due to missing or inaccurate

global data and/or insufficient knowledge, characteristics such as fire frequency, intensity and
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severity cannot be reliably assessed at the moment (Doerr and Sant́ın, 2016; Flannigan et al.,

2009). Consequently, global trends and future wildfire impacts remain uncertain.

Humans have always coexisted with wildfires, but the sometimes devastating consequences

(such as large economic losses, health issues and even losses of human lives) have gained

the phenomenon a bad reputation. Doerr and Sant́ın (2016) conclude, however, that this

negative perception is not caused by an increase in direct losses, but rather by an increased

public attention to these effects (e.g. due to mass media). Besides, in many parts of the

world the traditional Western European mentality is upheld—with its main goal being the

active repression of wildfires (Pyne, 2016; Raftoyannis et al., 2014). The latter results in an

unsustainable management of fire-prone areas (Donovan and Brown, 2007; North et al., 2015),

as will be discussed in Section 2.3. What is already an emerging problem, however, is the

spread of the wildland urban interface (WUI) and the increasing number of people living in

fire-prone areas, leading to higher fire hazards (Doerr and Sant́ın, 2016; Moritz et al., 2014;

Morvan, 2011).

2.2.2 Europe and Belgium

Since the 1970s, several European countries have been collecting data on wildfires indepen-

dently, but since 2000 the European Forest Fire Information System (EFFIS) has been provid-

ing harmonized information on this phenomenon (San-Miguel-Ayanz et al., 2012). Between

2000 and 2015 on average 73000 wildfire incidents per year were reported, burning approxi-

mately 430000 ha (San-Miguel-Ayanz et al., 2016). As shown in Figure 2.6 most of these fires

(about 70%) occured in five Mediterranean countries (i.e. Portugal, Spain, France, Italy and

Greece). Moreover, the burnt area in these countries accounted for 88% of the total. The

other European countries mentioned are Austria, Bulgaria, Croatia, Cyprus, Czech Republic,

Estonia, Finland, Macedonia, Germany, Hungary, Latvia, Lithuania, Norway, Poland, Roma-

nia, Slovakia, Slovenia, Sweden and Switzerland.

For what concerns Belgium, Depicker et al. (2016) assessed the prevalence of wildfires, based

on data in digital archives of Belgian newspapers and data provided by the Directorate-

General of the Federal Public Internal Service Affairs. This resulted in a map of 261 reported

ignitions between 1995 and 2015 and a frequency distribution of 744 wildfire ignitions, re-

ported between 1911-1950 and 1995-2015 (Figure 2.7). An additional 113 ignitions were

registered between 1995 and 2015 without geographical coordinates. The Belgian fire season

falls within the standard of Europe (i.e. between March and October (Schmuck et al., 2015)),

with a peak at the beginning of spring and an increased occurrence at the end of summer

(Figure 2.7(b)).
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(a) (b)

Figure 2.6: Annual reported number of wildfires (a) and burnt area (b) in Europe

between 2000 and 2015, adapted from the European Fire Database.
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Figure 2.7: Wildfire prevalence in Belgium (a) and relative frequency of the 744

wildfire ignitions between 1911-1950 and 1995-2015 (b), adapted from Depicker

et al. (2016).
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2.3 Wildfire management

Since the prevalence and impact of wildfires vary strongly between regions, also management

differs. In general, fire suppression policies can be categorized in preventive measures and

operational interventions (Simeoni, 2016). The aim of wildfire prevention is the reduction

of fire hazard and risk, mainly via fuel treatment to reduce the ignition probability or the

intensity and ROS in case of a fire incident. This also comprises strategic measures, such

as the efficient organization of available resources. Operational interventions, on the other

hand, take place in case of a fire outbreak by means of active fire fighting and evacuating

areas at risk. Fire fighting absorbs the bulk of the financial and human resources for wildfire

management in most countries (Rigolot et al., 2009). However, Simeoni (2016) points out that

there is always a threshold in ROS and intensity, above which fire fighters are overwhelmed

by the fire, leading to very dangerous situations.

As was pointed out in Section 2.2, our social perceptions of fire are Western biased, which

resulted in aggressive fire suppression policies in many regions, aiming at total fire exclusion

(Doerr and Sant́ın, 2016; Rigolot et al., 2009). This led, however, to fuel accumulation in

fire-prone areas, giving rise to more catastrophic, large-intensity fires. In combination with

the increasing WUI, this stresses the importance of a transition towards sustainable fire

management (Doerr and Sant́ın, 2016; Moritz et al., 2014).





CHAPTER 3
Wildfire modelling

From the general description of a wildfire in Chapter 2 it should be clear that it is an extremely

complex phenomenon. Unsurprisingly, wildfire management is challenged by many issues and

uncertainties. Nevertheless, Sections 2.2–2.3 highlighted the increasing importance of an

effective, sustainable fire management. Wildfire models can be an important quantitative

tool for aiding fire managers. This chapter will provide the reader with an introduction to

wildfire modelling, starting with some general modelling considerations (Sections 3.1). Then,

Sections 3.2–3.6 will give an overview of the currently available wildfire models, and Section 3.7

will briefly discuss wildfire modelling in the Belgian context.

3.1 General considerations

3.1.1 Wildfire model usage

A clear definition of the intended use of a model is a very important—if not the most

important—step in its development, since it largely determines the scope and the required

degree of complexity. This is not different for wildfire models. These can be of a purely

theoretical nature or of a more practical one, namely the development of tools for wildfire

managers that aid them in executing an effective fire suppression policy (Pastor et al., 2003).

Finney et al. (2013) make a clear distinction between both model types. While a theoretical

model tries to describe the underlying mechanisms of wildfires by comparing its outcomes

to experiments of the actual phenomenon, an operational model just needs to make useful

predictions, based on a set of relevant input data.

As explained in Section 2.3, fire management can be divided into two broad categories, being

prevention policies and operational interventions. In both cases wildfire behaviour models

can be used as support, but since they act on different levels, the model use will differ con-

siderably. Preventive policies require information on fire regimes, while people conducting
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operational interventions (i.e. fire fighters) require insight into the spatio-temporal dynam-

ics of individual fires. Table 3.1 compares the properties of fire regimes and individual fire

events. Fire regimes are typically described by static or dynamic models working over large

temporal scales (i.e. years) and resulting in risk maps or predictions of long-term effects of

land management strategies. Fire events, on the contrary, use dynamic models that cover

shorter temporal scales (i.e. from minutes to weeks). This work will focus on the latter.

Table 3.1: Comparison of individual wildfire events and wildfire regimes (Falk

et al., 2007; McKenzie and Perera, 2015).

Fire event Fire regime

Material Fuel properties Vegetation properties

Atmosphere Weather conditions Climate conditions

Process Fire behaviour and effects Fire-ecology interactions

Spatial extent Burnt area, Fire size distribution,

fire perimeter annual burnt area

Temporal extent Fire date(s), Fire frequency,

burning duration fire season

The aim of fire event models is to predict the spread of a wildfire across the landscape under

specific environmental conditions. They can be used in real-time decision support systems or

as training tools for fire fighters (Gollner et al., 2015; Sullivan, 2009c). Some land management

tools also make use of simple wildfire-spread submodels, with the goal of creating a range of

hypothetical individual fire events in silico that are subsequently used to simulate fire regimes

and predict their impact on landscapes and ecosystems. An example thereof is the LANDSUM

submodel in Fire-BGCv2 by Keane et al. (2011).

3.1.2 Hurdles in wildfire modelling

A model that is intended to be used in operational tools has to fulfil a number of requirements.

Firstly, it has to be validated with experimental data, which can be collected from field or

laboratory experiments. The former have the advantage of including all the interactions

between the different compartments (i.e. fire, fuel, atmosphere and topography), but are costly

and hard to control (Sullivan, 2009a,b). The latter, on the contrary, can be relatively cheap

and easy to control, but may exclude relevant processes (e.g. fire-atmosphere interactions),

which hampers the upscaling of these data (Sullivan, 2009b). Secondly, the model input data

should be easily accessible to the end user. Thirdly, the resources of the end user should be

able to cope with the computational cost of solving the model equations within a practical

time frame. Last but not least, the spatio-temporal domain and boundary conditions of the
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model should match those of the end user. For example, a model describing the fire spread

over a fuel patch of one by one meter during a few seconds is useless for a fire manager who

requires information on the fire behaviour at landscape level.

As stated in Chapter 2, fire behaviour is governed by a vast number of coupled processes that

act across a wide range of spatio-temporal scales, and which depend on many highly variable

environmental conditions. These three aspects make wildfire modelling a very challenging task

(Simeoni, 2016). The incorporation of many physical processes, interacting at different scales,

results in extremely complex and computationally demanding models. Simpler models, on the

other hand, tend to oversimplify the intrinsically complex behaviour of wildfires. Moreover,

collecting data for calibration and validation is also a hurdle, due to the practical problems

in measuring the involved variables at the required detail during field experiments and the

limited upscaling potential of laboratory data (Papadopoulos and Pavlidou, 2011; Sullivan,

2009b). Therefore, wildfire models can be extremely hard or even impossible to calibrate and

validate, which limits the trust of the end user in their predictions.

3.2 Wildfire models

3.2.1 History

The study and modelling of wildfire behaviour and spread was initiated in the beginning of

the previous century by foresters and other land managers, in order to protect their lands

(Sullivan, 2009a). Ever since, the scientific community has become more and more interested

in this study area. Initially, research focused on defining the main processes and variables

that influence wildfires, and implementing them into models. These studies were mainly

conducted by forestry agencies of (western) countries with vast fire-prone areas, such as

the US, Australia and Canada (Sullivan, 2009b). These first modelling attempts resulted

in physically-based models on the one hand—starting with the one of Fons (1946)—and in

(quasi-)empirical models on the other hand, intended for direct usage in (simple) operational

tools—such as the rotating discs based on the work of McArthur in the 1960s (Pastor et al.,

2003). Generally, these first models aimed at predicting the ROS in the direction of the head

fire (i.e. that portion of the wildfire with rapid spread and higher intensity, mostly aligned

with the wind and/or slope direction (The National Wildfire Coordinating Group, 2015)).

The uprise of computer science and technology in the 1980s and of remote sensing and ge-

ographical information systems (GIS) in the 1990s opened new horizons. Catalysed by the

increasing computational power and easy access to geographical data, the one-dimensional

models could be extended to predict fire spread across (two-dimensional) landscapes. This

led to the development of fire spread simulation software, such as FARSITE (Finney, 2004).

Moreover, the development of computational fluid dynamics (CFD) made it possible to in-

clude more (detailed) physics into the models (Morvan, 2011).
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All these developments have resulted in a large number of wildfire models, which comprise a

broad spectrum of model structures.

3.2.2 Classification

Over the years, several reviews on wildfire modelling have been conducted—most notably the

ones by Sullivan (2009a,b,c) and Pastor et al. (2003), that will form the basis of following

sections. Wildfire models can be classified based on different aspects, such as the nature

of the equations, the predicted variables, and the modelled phenomenology (Pastor et al.,

2003). Here, we opt for a classification following the one proposed by Sullivan (2009a,b,c). It

subdivides the whole range of models into five classes:

1. Physically based models: attempt to mechanistically represent the physics (and chem-

istry) of fire spread;

2. Empirical models: have no physical basis and are generally only of a statistical nature;

3. Quasi-empirical models: use some form of physical framework upon which to base the

chosen statistical modelling;

4. Simulation models: implement (one or more of) the preceding types of models in order

to simulate the spread of wildfires across a landscape;

5. Analogue models: use other models to simulate the spread of wildfires across a landscape.

From these definitions a clear distinction follows between classes 1 to 3 and classes 4 and 5.

While the former try to predict one or more fire characteristics (mostly the ROS and fire line

intensity I) from a given set of conditions, the latter try to simulate how the fire spreads across

a landscape. The remainder of this chapter will detail these different modelling approaches and

provide some examples. It should be noted that the majority of these models were developed

for surface fires, as these are the most abundant and thus well studied (see Section 2.1).

3.3 Physically based models

The first general modelling approach boils down to the mathematical representation of the

underlying physico-chemical processes of wildfire dynamics (Section 2.1) and subsequently

combining the resulting equations into a system of (partial) differential equations. The solu-

tion of this system, for a set of initial and boundary conditions, yields a quantitative prediction

of (some of) the fire spread variables, most notably the ROS and I. As the mechanics behind

wildfires are universal, the physically based models rely on the same basic theoretical princi-

ples, such as the conservation of mass, momentum, and energy (Pastor et al., 2003; Sullivan,

2009a). Still, they can differ considerably.
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A first distinction is based on whether or not the chemical combustion reactions are ex-

plicitly included, referred to as physical and quasi-physical models, respectively (Sullivan,

2009a). The latter rely on higher-level (empirical) submodels to determine the amount of

energy released and the flame characteristics (Pastor et al., 2003; Sullivan, 2009a). Secondly,

the physically based models vary in the considered processes, their implementation, their

assumptions, and the used (numerical) solution methods (Finney et al., 2013; Pastor et al.,

2003; Sullivan, 2009a). This results again in a multitude of models with a varying degree of

complexity.

Model complexity

All physically based models start from an idealisation of the fuel and flame front. The simplest

one is the so-called one-dimensional, steady fire line spread hypothesis (Pastor et al., 2003).

It assumes a combustion interface and an inclined, flat, isothermal flame front to be moving

through a homogeneous fuel bed, characterised by some bulk properties (Section 2.1.3), at

a stationary (constant) ROS (Figure 3.1). It is clear that this greatly reduces the system

complexity, and relies on strong assumptions. The resulting models generally do not calcu-

late the (local) air flow and thus rely on submodels to determine the wind fields and flame

characteristics (Simeoni, 2016). Moreover, radiant heat transfer is mostly assumed to be the

controlling spread mechanism, as opposed to convection, which is often treated ambiguously

or even completely ignored (Finney et al., 2013; Pastor et al., 2003).

Figure 3.1: Schematic representation of the one-dimensional, steady fire line

spread hypothesis (Pastor et al., 2003).
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The last three decades, there is a trend to include more physics and complexity into wildfire

models, in order to make them more generally applicable (Morvan, 2011). The foundations

hereof were laid by Grishin (1997). He treats the fuel bed as a heterogeneous, multi-phased and

multi-storied medium (thus also accounting for canopy layers) in three dimensions. Detailed

models generally calculate the turbulent flow fields by means of CFD (Morvan, 2011; Simeoni,

2016). Furthermore, some authors include fire-atmosphere interactions by coupling models

for wildfire spread and atmospheric flows. Examples hereof are FIRETEC (Linn, 1997) and

WUI Fire Dynamics Simulator (WFDS) (Mell et al., 2007) (Figure 3.2).

Figure 3.2: Example of the visualised output of WFDS (b), compared to an areal

photo of the modelled experimental fire (a) at the same time after ignition (Mell

et al., 2007).

Performance

The varying complexity of physically based models influences their performance. In partic-

ular, detailed models are generally built to give high-resolution, (two- or) three-dimensional

descriptions of all variables. This comes, however, at the cost of high computational demands

and/or small working ranges, which makes them of no use for operational tools (Sullivan,

2009a). Moreover, Simeoni (2016) and Sullivan (2009a) note that the validation, calibration

and generation of input data (e.g. initial and boundary conditions) are extremely difficult.

Hence, the detailed models are often simplified to make them operationally usable. An ex-

ample hereof is the one-dimensional model of Balbi et al. (2009), which is derived from an

earlier three-dimensional model (Balbi et al., 2007).
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Although simpler models can be less computationally demanding and easier to operate, the

underlying assumptions make them less general, thus limiting the trust of end users in their

results (Simeoni, 2016; Sullivan, 2009a). The lack of a general wildfire theory as a basis for

these assumptions forms another major issue (see Section 2.1.7). Finney et al. (2013) argue

that many of the assumptions (of simplified, but also of detailed models) are made without

any experimental basis. The dominant role of radiation in many of these models and the

ignition process of fuel particles (e.g. via a critical temperature) are examples thereof.

3.4 (Quasi-)empirical models

(Quasi-)empirical models are derived from experimental data, using statistical methods.

These models emerged from the need of wildfire managers to quickly determine the fire be-

haviour, which could not be fulfilled by the (first) physically-based models (Keane, 2015;

Sullivan, 2009b). The purpose of the (quasi-)empirical models is to provide the key charac-

teristics of an advancing or head fire. Hence, these models are traditionally one-dimensional

(Sullivan, 2009b). The fire characteristics of interest are mostly the ROS R [m s-1] and the

fire line intensity I [kW m-1], due to their imposed danger on the fire fighters. They are

related by (Byram, 1959):

I = hẆR, (3.1)

with h [kJ kg-1] the fuel’s heat content and Ẇ [kg m-2] the fuel mass consumed per unit area.

The formulation of (quasi-)empirical models is a two-step process. Firstly, the environmental

variables with the most influence on fire behaviour have to be identified. Secondly, the

statistical relation between the key environmental and fire properties has to be established.

Concerning the first step, there is a consensus that the dominant variables are primarily

wind and slope, and to a lesser extent the FMC of the fine fuels (see also Section 2.1). The

formulation of the statistical models—with often complex, non-linear dependencies on these

and other variables—is, however, much less uniform.

Model structures

Most (quasi-)empirical models assume a steady ROS, so that one set of environmental condi-

tions results in a unique ROS value. Due to the lack of a general experimental methodology,

comparing these models is not trivial. First of all, a distinction can be made between the

empirical models, that are of a purely statistical nature, and quasi-empirical models, that

utilise some sort of physical framework. Sullivan (2009b) compares some of these models by

their functional relationships between the ROS and two main variables, namely the wind and

FMC. The wind conditions varied greatly among the considered models in this paper (with

the majority of the wind speeds being rather low), as did the wind measurements (e.g. at

2 m or 10 m above the ground). Nevertheless, all of them used either a power law or an
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exponential function to relate the wind speed to the ROS. Sullivan (2009b) concludes that

the choice of this function depends on the wind speed range and on whether zero wind speed

was included. In the latter case, the model assumes the same fire behaviour mechanisms irre-

spective of the wind speed. This is not physically consistent, because different heat transfer

processes dominate at high (wind-driven) as compared to low (plume dominated) wind speeds

(see Section 2.1.5). Sullivan (2009b) argues that the use of a threshold wind speed includes

physical knowledge in the model, making it quasi-empirical. This threshold wind speed is

defined by Cheney et al. (1998) as the wind speed at which fires spread forward consistently,

and is estimated to be 1.39 m s-1 (10 m above ground) for open grasslands. Moreover, model

fitting at low wind speeds can result in predicted ROS values that increase more rapidly than

when assuming a linear relationship between the wind speed and ROS. In wind-driven fires

this behaviour would be not physical (Beer, 1991). It is interesting to note that the mod-

els reviewed by Sullivan (2009b), with experimental wind speed ranges above the proposed

threshold of Cheney et al. (1998), result in a near-linear wind speed function, confirming the

linear relationship found by physically-based models (Sullivan, 2009a).

The functional forms which relate the FMC to the ROS vary substantially between the mod-

els. Sullivan (2009b) concludes that this could result from the different modelling approaches

of the wind function, but could also—and maybe more likely—reflect differences between

fuel types. Finally, it should be noted that most of the models combine the wind and FMC

functions via multiplication.

Performance

An advantage of the (quasi-)empirical models is that they give statistical predictions of fire

behaviour for a certain set of environmental conditions (Simeoni, 2016). This also points

out their major limitation, i.e. the limited range of conditions under which they can oper-

ate as they cannot be reliably extrapolated beyond it. Hence, their performance is highly

dependent on the experimental data. These data can be collected from experimental fires

or well-documented wildfires (Simeoni, 2016). The former, for which has been opted most

frequently (Sullivan, 2009b), can be conducted in either laboratory or field conditions. Lab-

scale experiments are cheaper and easier to carry out but they are limited to small scales

and controlled environments. Hence, the assumption that their findings can be upscaled

to large-scale environmental conditions is questionable (see e.g. the work of Cheney et al.

(1993)). Nevertheless, due to their simplicity and ease of use, (quasi-)empirical models have

been used in most operational wildfire management tools for calculating the forward ROS of

wildfires, especially in regions with relatively homogeneous environmental conditions. Some

examples include the empirical Fire Danger Rating Systems and the Red Book in Australia

(McArthur, 1965, 1967; Noble et al., 1980; Sneeuwjagt and Peet, 1985)—though the former

are now obsolete as they have been replaced by more accurate models (Cruz et al., 2015)—and

the Canadian Forest Fire Behavior Prediction System (FBP) (Forestry Canada Fire Danger
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Group, 1992). The quasi-empirical model of Rothermel (1972), developed in the USA, has

been by far the most influential, as it is included in the widely used fire behaviour calcu-

lation system BEHAVE (Andrews, 1986). Moreover, it is used in many simulation models

(Section 3.5), including FARSITE, which is generally considered to be the most complete and

accurate wildfire simulator (Papadopoulos and Pavlidou, 2011; Pastor et al., 2003; Sullivan,

2009c).

Rothermel’s model

In the quasi-empirical wildfire model proposed by Rothermel (1972), the forward ROS R [m

min-1] of a surface fire is expressed as the ratio of the heat flux received by the unburnt fuel

to the heat required for sustained fire spread. This ratio is based on the equations derived

from a thermal balance by Frandsen (1971), and has been modified over the years (e.g. by

Albini (1976)). It is given by:

R =
Ir ξ(1 + φw + φs)

ρb εQig
(3.2)

where Ir [kJ m-2 min-1] is the reaction intensity, ξ [-] is the propagating flux ratio (i.e. the

fraction of the heat of combustion reaching the surrounding fuel under no-wind, no-slope

conditions), φw [-] and φs [-] are the wind and slope correction factors, respectively, ρb [kg

m-3] is the fuel bulk density, ε [-] is the effective heating number defining the amount of fuel

which is available to sustain fire spread, and Qig [kJ kg-1] is the heat needed to bring the fuel

to ignition. The reaction intensity Ir depends on some key fuel parameters (see Section 2.1.3),

namely the FMC, surface-to-volume-ratio σ [m-1] of the fuel particles, packing ratio β [-], and

mineral fraction. The correction factors for wind and slope are given by:

φw = cU b (3.3a)

φs = a tan2 γs, (3.3b)

where U [m s-1] is the midflame wind speed, γs [-] is the slope angle in radians, and a(σ, β),

b(σ, β), and c(σ, β) are functions of the surface-to-volume-ratio and packing ratio. The use of

the latter functions can lead to a ROS larger than the wind speed, so the maximal wind speed

correction factor is artificially limited by a critical wind speed. Note that the basic model

by Rothermel (1972) only calculates the maximum fire spread and assumes the wind to be

blowing directly uphill. However, this has been extended to scenarios where wind and aspect

do not align and for any other direction than that of the head fire (Albini, 1976; Andrews,

1986; Finney, 2004). Using the ROS from Eq. (3.2), the fire line intensity I [kW m-1] can be

calculated as:

I =
12.61R

60σ
, (3.4)

which is a reformulation of Eq. (3.1) by Wilson (1980).
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3.5 Simulation and analogue models

3.5.1 Landscape level simulations

Over the last two decades, the further development of remote sensing and GIS applications,

along with the rise of (parallel) computers, have created new opportunities for wildfire mod-

elling. During this period, the focus has shifted from building fire behaviour models (as

discussed in Sections 3.3 and 3.4) to the simulation of fire spread across a landscape, typically

represented by one or more GIS layers (Sullivan, 2009c). This can either be achieved by using

existing fire behaviour models as submodels of a simulation model or by using a mathematical

construct with an analogous dynamical behaviour (see Section 3.2.2).

As was mentioned in Section 3.2, most operational simulators use (quasi-)empirical fire be-

haviour models that predict a steady ROS in the head fire direction (Section 3.4). Hence, in

order to run simulations across landscapes, the simulation model needs to extend this formu-

lation to all directions, while correcting for varying environmental conditions. Often this is

done by assuming local homogeneity in time and space (Trunfio et al., 2011).

Moreover, extra submodels can be included for modelling of, for example, the acceleration

from ignition and different fire phenomena (see Section 2.1.6). This requires special care,

as the different submodels can rely on different spread mechanisms and assumptions, thus

complicating their coupling. Yet, a chain is only as strong as its weakest link. Indeed, even

simulations that extend and couple their fire behaviour submodels “perfectly”, critically rely

on the quality and assumptions of these submodels and used input data (Sullivan, 2009c).

The latter will probably remain the biggest limitation on the accuracy of fire models, due to

the costs related to collecting high-quality, high-resolution data (Sullivan, 2009c).

3.5.2 Wind-slope correction

It should be clear that wind and slope play a crucial role in wildfire behaviour and modelling.

Their effect is mostly modelled by means of correction factors, which can be based on (quasi-)

empirical knowledge or more physically based assumptions. Sharples (2008) reviews some of

these correction factors and summarizes their similarities (Table 3.2). He subdivides them into

two classes, namely scalar and vector methods. The former are included in one-dimensional

fire behaviour models and correct the ROS in a specified (head fire) direction. They can be

introduced in a multiplicative or additive way. In the former, the wind-induced ROS (Rw)—

which already takes into account the effect of the wind vector (w)—is adjusted by multiplying

it with a slope correction factor (σs), which depends on the slope angle (γs), wind direction

(θw) and the topographic aspect (γa). The additive methods, on the other hand, add a term

correcting for both wind and slope to a base ROS (R0); Rothermel’s model is an example

hereof.
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Simulation models extend the scalar correction methods to vectors by taking into account the

directional effects of wind and slope. The multiplicative approach is vectorised by multiplying

the uphill component of the wind-induced ROS vector (Rw) with the slope correction factor

(σs), using a slope correction matrix (Σs). This approach has the drawback that it ignores

the slope effect when the wind vector is aligned perpendicularly to the slope. The additive

method is vectorised by means of an equivalent wind vector (Uws), which is the sum of the

wind vector and a vector accounting for the slope effect. This equivalent wind vector is added

to a unit vector (v̂) in the direction of the equivalent wind or normal to the fire front.

Table 3.2: General framework for wind-slope correction Sharples (2008).

Scalar Vector

Multiplicative Rw σs(γs, θw, γa) Rw Σs(γa, γs)

Additive R0 (1 + φws(‖w‖, θw, γs, γa)) R0 (v̂ + Uws)

3.5.3 Simulation models

The generation of a two-dimensional fire spread simulation from a one-dimensional fire be-

haviour model involves two steps (Sullivan, 2009c):

1. the representation of the fire perimeter;

2. the propagation of this fire perimeter with some kind of propagation algorithm.

It is obvious that these steps are linked. Generally, the fire front is idealised as the interface

between the burnt and unburnt areas. There are three main ways to represent a fire perimeter

(Mallet et al., 2009; Sullivan, 2009c), being so-called level set functions, vector, and raster

representations. These can be placed on a spectrum ranging from continuous to discrete

representations (Figure 3.3). Level set functions are continuous functions in time and space.

Cutting them by a plane parallel to the surface at a given time t, defines the fire perimeter

implicitly as the zero-isoline of the transect, in such a way that points with negative function

values comprise the burnt region and vice versa (Mallet et al., 2009; Osher and Fedkiw, 2003).

Vector representations discretise the fire perimeter into a limited number of vertices, which

move freely in space according to the propagation algorithm. Rasters are the most discrete

representations, in which the landscape is discretised in a regular or irregular grid. Its cells

comprise a certain area with homogeneous conditions and the fire perimeter constitutes of a

group of contiguous cells. It should be noted that there are also vector-raster hybrids (e.g.

Clark et al. (2004); Peterson et al. (2009); Trunfio et al. (2011)), along with some other, less

frequently used representations (e.g. networks (Hajian et al., 2016)).
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Figure 3.3: Schematic overview of the three main fire perimeter representations,

adapted from Alexandrov (2004).

Vector-based simulation

Two main propagation methods are used with the vector representation. The first one is based

on Huygen’s wavelet principle (Anderson et al., 1982). This method considers each point of

a fire perimeter (mostly represented as vector) as a source of ignition (Figure 3.4(a)). From

each of these points, a hypothetical fire spreads during a time step ∆t, after which the new

fire perimeter is defined as the hull of the individual perimeters. The hypothetical fires are

assumed to ignite independently and under local homogeneous conditions. Their perimeter

shape and direction are derived from a predetermined shape template—with an eccentricity

that depends on the prevailing wind speed and slope (Alexander, 1985)—and the ROS of the

head fire, calculated using a fire behaviour submodel. The backing ROS (i.e. the ROS in the

opposite direction of the head fire) can be derived implicitly from the fire shape or can be

calculated independently (Finney, 2004).

Although the choice of the shape template is not physically underpinned (Fendell and Wolff,

2001), it is often assumed to be an ellipse, due to its relatively straightforward mathematics

(Van Wagner, 1969) and the observation that the resulting shapes reasonably fit real fire

shapes (Green, 1983). Richards (1990, 1995) and Knight and Coleman (1993) developed ana-

lytical equations for this approach. Figure 3.4(b) shows the elliptic template used by Richards

(1990), where a is the flanking ROS, and c+ b = R, with R the ROS of the head fire.

The wave propagation method does not distinguish burnt from unburnt areas, as the fire

perimeter vertices move freely and independently across the landscape. Hence, computation-

ally expensive algorithms are required to account for topological changes, in order to avoid

meaningless spread across already burnt areas (Finney, 2004). Moreover, the assumption of
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(a) (b)

Figure 3.4: Schematic representation of Huygen’s fire perimeter propagation (a)

with the elliptic shape template (b), adapted from Sullivan (2009c) and Richards

(1990). The fire perimeter at time step t (solid line) is expanded to a new perimeter

(dashed) at time t+ ∆t. The arrow indicates the forward ROS direction.

independent hypothetical fires ignores the effects of the fire line shape on its spreading be-

haviour. Still, despite these drawbacks, Huygen’s wavelet propagation method has proven its

usefulness, as it has been incorporated into a number of operational fire simulators, includ-

ing FARSITE (Finney, 2004), Prometheus (Tymstra et al., 2010), and PHOENIX Rapidfire

(Tolhurst et al., 2008), developed for the USA, Canada, and Australia, respectively. These

simulators are built upon the extension of a national quasi-empirical fire behaviour calculation

system—BEHAVE (Andrews, 1986), the FBP (Forestry Canada Fire Danger Group, 1992),

and the Australian Fire Spread Meters (Cheney and Sullivan, 2008; McArthur, 1965; Noble

et al., 1980), respectively—to landscape-level fire spread simulators. An output example is

given in Figure 3.5.

Figure 3.5: An example of fire perimeters obtained with FARSITE, compared to

the observed ones of four small (< 60 ha) fires in Iran (Jahdi et al., 2015).
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A second vector-based propagation method worth mentioning is Forefire (Filippi et al., 2009b,

2014a), which is a discrete event front tracking algorithm. This method considers the ver-

tices of the fire perimeter as agents with three state variables, namely their positions, the

environmental conditions at their positions, and a propagation vector. The latter is pointed

outward the perimeter and directed along the bisector of the angle with the two neighbouring

agents. Forefire does not rely on a predefined shape template, since it uses a simple physically

based fire behaviour submodel (Balbi et al., 2007), which is able to calculate the ROS in all

directions (and not only in the head fire direction). As opposed to Huygen’s wave propagation

method, the states of the agents are changed during discrete events which are scheduled at

specific times and ranked in a global time table. This approach treads time as a continuous

variable and results in an asynchronous movement of the vertices. The driving events are:

1. travelling a maximum (quantum) distance, which defines the maximum resolution of

the simulation;

2. collisions, i.e. movement into a different area or within a minimum distance of another

agent.

Asynchronous vertex displacement avoids the re-calculation of steady, slowly moving perime-

ter parts, due to the constraint on the time step by the fast moving head fire. Moreover,

the crossing algorithms only have to be applied for the agents that are triggered by collision.

Hence, this approach is especially computationally advantageous in very heterogeneous con-

ditions with a varying ROS along the fire perimeter. An example is presented in Figure 3.6.

Figure 3.6: An example of fire perimeters obtained with Forefire, compared to

observed ones of a fire buring around 800ha in France (Filippi et al., 2009b). The

black dots represent the ignition points at 9h40; the perimeters are recorded at

12h, 14h30 and 16h.
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Raster-based simulation

Raster simulations are generally based on near-neighbour proximity of cellular automata (CA)

(von Neumann, 1966). The fire is defined by a finite number of cell states, which can be as

simple as “unburnt”, “burning” or “burnt” (Sullivan, 2009c). A cell’s state is updated at

discrete time steps, based on the states of the cells in its neighbourhood at the previous time

step, using a simple set of rules, which are derived from the used fire behaviour model(s).

There are several approaches for implementing and extending CAs (Sullivan, 2009c). Green

(1983) identifies two main methods, i.e. cell contact and (heat) accumulation (Figure 3.7).

(a) (b)

Figure 3.7: Examples of the two main approaches of perimeter propagation

based on near-neighbour proximity. In (a), the cell contact method, the shading

indicates the burning cells, the ellipses show the calculated fire shapes, and the

arrows represent the wind field (Trunfio et al., 2011). In (b), the accumulation

method, the green, red and black cells represent unburnt, burning and burnt

cells, respectively, while the arrows indicate the heat received by cell A from its

neighbours (Johnston et al., 2006).

Kourtz and O’Regan (1971) laid the basis of the cell contact method, in which a fire behaviour

model and a shape template are used to calculate the time of arrival of the flame front moving

from a burning cell to its unburnt neighbours. An unburnt cell ignites when it is reached by

the fire front. This approach is actually very similar to the vector wave propagation, but has

two main differences. Firstly, the positions of the new ignition sources are fixed within the

adjacent cells. Secondly, the cell states explicitly indicate which cells are burning or burnt.

Two notable examples of this approach are IGNITE (Green et al., 1990) and FireStation

(Lopes et al., 2002). An example by Trunfio et al. (2011), in which the ignition source is

not restricted to the cell centre (as opposed to the previously mentioned examples), is shown

schematically in Figure 3.7(a). A weakness of the cell contact approach is that fire spread is

only determined by the neighbour with the fastest ROS (Green, 1983).
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The accumulation method, on the contrary, also accounts for the cumulative effect of multiple

neighbours, because it considers a cell to be ignited when a critical threshold of an accumulated

variable (e.g. a virtual heat) is reached (Green, 1983). This method is illustrated schematically

in Figure 3.7(b). Hfire (Peterson et al., 2009) is a notable simulator using this approach.

The advantage of the raster-based methods over their vector-based counterparts is that they

do not allow fire spread across burnt areas. So here is no need for crossover algorithms, as

such increasing the computational efficiency. A major drawback, however, is the possible

distortion of the fire shape, due to the limited number of spread directions, imposed by the

geometry of the grid (Ball and Guertin, 1992; French, 1992; Finney, 2004; Peterson et al.,

2009). Several ways to tackle this problem have been proposed over the years, e.g. the use of

larger neighbourhoods (Finney, 2002), irregular grids (Johnston et al., 2006), freely definable

ignition points in the cells (Trunfio et al., 2011) and optimisation algorithms (Ghisu et al.,

2015). However, since most of these models rely on Rothermel’s model for their fire behaviour

calculations, they share the same basis as FARSITE and often result in similar predictions

(Figure 3.8).

Figure 3.8: An example of fire perimeters obtained by the cell contact model

proposed by Trunfio et al. (2011), compared to the ones obtained with FARSITE.

Level set methods

Quite recently, level set methods (Osher and Fedkiw, 2003) have been used to simulate fire

front propagation (Mallet et al., 2009; Mandel et al., 2009). These methods use an Eulerian

approach, as opposed to the Lagrangian vector-based methods. The fire perimeter is repre-

sented as a closed curve Γ. The basic idea is to let Γ evolve using a so-called level set function

ϕ, such that

Γ(t) = {x ∈ R2 | ϕ(x, t) = 0}. (3.5)

In practice, the signed distance from the fire front Γ is used as level set function, i.e. points x

for which ϕ(x, t) lie outside the fire perimeter (Figure 3.9). The level set function is governed

by
∂ϕ

∂t
+ S‖∇ϕ‖ = 0 , (3.6)
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where S is the ROS normal to the fire front (Figure 3.9). The initial condition of Eq. (3.6) is

derived from the observed fire perimeter at t = 0, by calculating the distance of every point

to the fire front. The resulting initial-value problem can be solved using a suitable numerical

scheme. A more detailed description of this approach can be found in Mallet et al. (2009)

and Osher and Fedkiw (2003). Its main advantage is its ease to deal with topological changes

(e.g. front mergers), while still resulting in physically meaningful fire shapes (Mallet et al.,

2009). This comes at the cost of using the level set function, which has one extra dimension

than the fire front. Moreover, retrieving the initial value of ϕ is a computationally expensive

task (Hilton et al., 2015). These issues can, however, be dealt with by efficient algorithms

(e.g. Adalsteinsson and Sethian (1995); Sethian (1996)). The main drawbacks of this method

are caused by the numerical schemes that can induce numerical dispersion and are not proven

to converge for every problem (Mallet et al., 2009; Mandel et al., 2009). The level set method

is implemented in SFIRE (Mandel et al., 2009), which will be discussed in Section 3.5.4.

Figure 3.9: A schematic representation of the level set method. The grey area

represents the area enclosed by the current fire perimeter.

3.5.4 Coupled fire-atmosphere models

The majority of the simulators discussed in preceding sections only includes one-way inter-

action between wildfire and environment, i.e. the fire spread is described using a predefined

set of environmental conditions. This is often accomplished using a predefined (elliptical) fire

shape, which is an approximation of the small-scale fire-atmosphere interactions (Clark et al.,

2004; Sullivan, 2009c). Wildfires can, however, have a strong influence on the local weather

(see Section 2.1). Hence, excluding these fire-atmosphere feedback processes is known to

result in a lower model accuracy (in e.g. FARSITE), especially for extreme fire behaviours,

such as high-intensity, plume-dominated fires (Finney, 2004; Pastor et al., 2003). To overcome

this shortcoming, several authors propose to couple wildfire models and CFD-based weather

prediction models. In addition to the standard ROS prediction, this requires the specifica-

tion of heat and mass fluxes that influence the atmospheric behaviour and the burning time

of the fuel. Compared to the detailed physical wildfire behaviour models, this approach is
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computationally more efficient. This follows from the separation of large-scale local atmo-

spheric conditions and the smaller-scale fire front processes—which are modelled using the

simple physically based or (quasi-)empirical models (Gollner et al., 2015). However, it has to

be noted that the coupling with (quasi-)empirical fire behaviour models is not evident given

their assumptions, which results in having to rely on highly subjective parameters (Gollner

et al., 2015). Some notable examples of coupled fire-atmosphere models are WRF-Fire (Coen

et al., 2013) and WRF-SFIRE (Mandel et al., 2011, 2014), which are both based on Rother-

mel’s fire behaviour model, and MESO-NH/ForeFire (Filippi et al., 2009a), which is based

on the quasi-physical model by Balbi et al. (2009) (Figure 3.10).

Figure 3.10: An example of observed (red) and simulated perimeters of a fire

of 25 ha in Corsica (Filippi et al., 2011). The blue and green perimeters are

simulations of MESO-NH/ForeFire at t = 50 min and 240 min, respectively; the

yellow perimeter results from the uncoupled model (ForeFire) at t = 240 min.

3.5.5 Analogue models

A different approach in wildfire simulation is the use of so-called analogue models. The com-

mon thread of these models is that they evolve dynamics that share similarities with wildfire

spread (Frigg and Hartmann, 2012; Sullivan, 2009c), but are not based on fire behaviour

submodels. Many examples are presented in Sullivan (2009c), including several CA-based

models, artificial neural networks, Markov chains and reaction-diffusion models. These mod-

els can provide a different (theoretical) perspective on the subject (e.g. insights in critical

behaviour, self-organisation and the fractal character of the fire line), but hardly find their

way into practical tools. Moreover, analogues intended for operational use are hard to cali-

brate, since they are intrinsically empirical and thus rely on experimental or historical data

(Sullivan, 2009c).
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Two examples of stochastic simulators—with an intended practical use—are the CA model of

Alexandridis et al. (2008, 2011) (Figure 3.11) and the percolation model EMBYR (Hargrove

et al., 2000). Table 3.3 provides a brief summary of the main (dis)advantages of the discussed

modelling approaches.

Figure 3.11: An example of burnt areas of a fire in Spetse, Greece, obtained from

observation (left) and simulation (right), using a CA (Alexandridis et al., 2008)

Table 3.3: Main advantages and disadvantages of wildfire of different simulation

methods.

Model type Advantages Disadvantages

Vector-based • realistic fire shapes • difficulties with topologi-

cal changes

Raster-based • computationally efficient • fire shape distortions

Level set method • easily deals with topolo- • stability and convergence

gical changes of numerical schemes

• realistic fire shapes

• computationally efficient

Coupled fire-atmosphere • includes atmospheric • subjective coupling para-

feedbacks meters

• computationally demanding

Analogues • often stochastic • difficult calibration
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3.6 Uncertainty in wildfire modelling and simulation

From the general description presented in Chapter 2, it is clear that a wildfire is an extremely

variable, nonlinear and turbulent phenomenon. Moreover, the environmental data can be of a

very coarse (spatio-temporal) resolution as compared to their variability. Therefore, the study

and management of wildfires entails a lot of uncertainties (Thompson and Calkin, 2011). Yet,

the vast majority of fire behaviour models and simulators are deterministic in nature and

therefore do not account for uncertainty. In recent years, there is an increasing interest in

addressing this issue (Cruz and Alexander, 2013; Thompson and Calkin, 2011), mainly using

ensemble methods and data assimilation.

Ensemble methods—which are also applied for meteorological forecasts (Sivillo et al., 1997)—

incorporate stochasticity in the deterministic simulators by considering some of the input

variables as random variables with a known distribution. The resulting model is used for

a Monte Carlo simulation. Examples hereof are presented in, amongst others, Cruz (2010),

Finney et al. (2011), and Hajian et al. (2016). Since no stochasticity is implemented in

the deterministic model structure, the output of every single Monte Carlo simulation is still

considered to provide the best prediction under the given set of conditions. Hence, this

approach does not improve the model accuracy, but it does provide the possibility to perform

a quantitative risk assessment (Cruz, 2010; Finney et al., 2011).

Data assimilation methods, on the other hand, go one step further. The aim of these methods

is to increase the simulation accuracy, by repeatedly incorporating new observation data into

a running model and adjusting its simulation results (Cruz and Alexander, 2013). Of course,

while doing this, the uncertainty of the assimilated data has to be taken into account, for

instance using Ensemble Kalman Filters (Srivas et al., 2016).

3.7 Wildfire modelling in Belgium

Due to its high population density and long history of cultivating and building upon available

space, Belgium lacks vast wildlands. Consequently, wildfires are bounded to relatively small

areas and can quickly reach the WUI, thus imposing a threat to neighbouring communities.

Despite this risk, little research has been undertaken on (the modelling of) wildfires in Bel-

gium. Hence, fuel classification and model parametrisation for the local vegetation is still

lacking. Moreover, few data are available on historical wildfires in Belgium; only fairly big

(> 100 ha), recent (after 2011) wildfires have been documented in sufficient detail to allow

for testing of real-time wildfire simulators.
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The dissertation by Depicker et al. (2016) focuses on the development of a wildfire risk map for

Belgium based on recorded historical ignitions (Figure 2.7(a)). Several risk maps are proposed,

one of which is based on a logistic regression using the population density, land cover class

and sandy soil texture as predictors (Figure 3.12). Depicker et al. (2016) subsequently use

this risk map as a basis a CA-based model, which is tested on one historical wildfire. In the

next chapters, we will continue along this path.

0 50 10025 km

Zero
Very Low
Low
Intermediate
High
Very High Ü

Figure 3.12: A wildfire risk map for Belgium, based on logistic regression (De-

picker et al., 2016).





CHAPTER 4
Study areas and model description

After the general overview of wildfire models (Chapter 3), it is time to put these models into

practice. The aim of the present and the next chapters is to evaluate a number of available

wildfire simulators in an operational context for Belgium. This evaluation is done for seven

recent fires, which are discussed in Section 4.1. Section 4.2 will detail on the selected models

and their settings.

4.1 Case description

4.1.1 Overview

The basis of this dissertation is a dataset of registered fires, which was provided by the

European Forest Fire Information System (EFFIS). The latter is maintained by the Joint

Research Centre (JRC) of the European Commission (EC). This dataset consists of seven

fires that occurred between 2011 and 2015 in Belgium and the Netherlands (Table 4.1 and

Figure 4.1). Based on MODIS satellite imagery and the CORINE map, the following data

were available:

1. the start date of the fire;

2. the recorded perimeter in vector format;

3. fuel classes and canopy cover in raster format;

4. elevation, slope and aspect in raster format.

The spatial resolution of all the raster data is 100 m. In the remainder of this section a

summary of the selected wildfires is given; a complete overview of their features is presented

in Figures 4.9 through 4.22 at the end of this chapter.
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Table 4.1: Overview of the wildfire dataset.

Case Location Year Area (ha)

EFFIS Reports

1 High Fens 2011 1399 1365a

2 Kalmthout Heath 2011 555 448a

3 The Hoge Veluwe National Park 2014 396 350a

4 Meeuwen-Gruitrode 2011 226 350b

5 Büllingen 2015 80 -

6 Butgenbach 2015 29 -

7 Oldebroek Heath 2015 22 -

a fire report, b news report

1

2

3

4

5
6

7

Ü0 50 10025
km

Figure 4.1: Locations of the wildfires in Belgium (1,2,4,5,6; dark) and the Nether-

lands (3,7; light).

4.1.2 Wildfire perimeter

The final wildfire perimeters were determined on the basis of MODIS imagery with a spatial

resolution of 250 m (Joint Research Centre, 2015). These images are updated two times a day

and analysed by a combination of automatic and manual processes in EFFIS (Joint Research
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Centre, 2015). The perimeters are accompanied by a start and end date, which are the times

of the first and last update, respectively. However, these do not necessarily correspond to

the actual ignition and extinction times (Joint Research Centre, 2015). An example hereof is

illustrated in Figure 4.2; the perimeters of Case 1 were updated until 1 May 2011, although

the wildfire was reportedly under control 27 April 2011. For large wildfires (Cases 1–4) a fire

or news report could be found that documents the actual time of first sight and/or the time at

which the wildfire was under control. Furthermore, these reports also provide (approximate)

observations of the total burnt area (Table 4.1).

SPW

Ü
0 1,5 30,75

km

26/04/2011
29/04/2011
01/05/2011

Figure 4.2: Three recorded perimeters of Case 1.

For Cases 1 and 2, the two biggest wildfires in the dataset, a more detailed perimeter was

available, based on high-resolution satellite imagery. This enabled an accuracy check of the

EFFIS perimeters (Table 4.2 and Figure 4.3). In both cases, the EFFIS perimeter overes-

timates the actual burnt area. Moreover, small unburnt enclaves inside the fire perimeter

are not mapped, which is a known limit of the EFFIS data (Joint Research Centre, 2015).

Some burnt areas are, however, still left unaccounted for (approximately 10% of the reported

burnt area). The maximal distance between the unregistered perimeter part and the EFFIS

perimeter is 536 m and 454 m for Case 1 and 2, respectively. In conclusion, the coarse resolu-

tion of the MODIS imagery (approximately 40 ha) leads to significant errors on the recorded

perimeter. The impact of this discrepancy is expected to be relatively larger for the other

fires as these are smaller. Especially the quality of the two smallest fire perimeters is highly

questionable, since their burnt area is lower than the resolution (Joint Research Centre, 2015).

Note that most Belgian wildfires are smaller than the resolvable area given by this resolution,

hence the reliability of this method for wildfire perimeter registration is limited in the Belgian

context.
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Table 4.2: Comparison of the wildfire perimeters registered by EFFIS and those

in the fire reports of Cases 1 and 2. The values are expressed as area percentages

of the envelope of both perimeters.

Case 1 Case 2

True + 80.6 66.1

False + 10.8 25.8

False − 8.6 8.1

Reported perimeter
EFFIS perimeter

True Positive
False Negative
False Positive

Case 1 Case 2

0 1 20,5
km

Ü

Figure 4.3: Comparison of the wildfire perimeters registered by EFFIS and those

in the fire reports of Cases 1 and 2.

4.1.3 Fuel complex

The fuel maps in Figures 4.9 to 4.15 originate from the JRC FUELMAP project (Joint

Research Centre, 2011). This project aimed at the development of a unified pan-European fuel

mapping and classification system, by combining different (remote sensing) datasets, which

resulted in 42 fuel classes—from here referred to as JRC classes—at a spatial resolution of

250 m (Toukiloglou et al., 2013). The JRC also provided a table to convert these classes into

the USDA National Forest Fire Laboratory (NFFL) fuel classes (Anderson, 1982), which are

used by most wildfire simulators. The reader is referred to Appendix A for a full description

of these classifications.
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Figure 4.4 presents the distribution of fuel classes according to the JRC FUELMAP (hor-

izontal axis) and NFFL (color scheme) classification, within the wildfire perimeters. Note

that all cases are dominated by the same two JRC classes, namely classes 1 and 8, which

represent peat bogs and temperate moors and heathlands, respectively. This prevalence does

not come as a surprise, since these fuels can dry out very fast, which is necessary to sustain

a big wildfire in the moist climate of Belgium. Moreover, temperate heathlands in Belgium

are being colonised by the invasive grass species Molinia caerulea (Marrs et al., 2004). These

grasses do not only cause extensive fuel built-up, but they also thrive after a wildfire, as was

the case in the Kalmthout Heath (Case 2) after the fires in 1996 and 1997 (Jacquemyn et al.,

2005).
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Figure 4.4: Overview of fuel classes according to the JRC FUELMAP (horizontal

axis) and NFFL (bar colors) classification, as percentages of the burnt area. See

Appendix A for a full description of these classifications.

Notice in Case 2 the relatively high percentages of urban and barren areas (JRC class 53)

inside the fire perimeter. These correspond to areas in the Kalmthout Heath that are actually

dunes (JRC class 40, Figure 4.5(b). This error is expected to have a considerable impact on

the fire spread simulation as dune fuels should be reclassified to the NFFL class “Short Grass”,

while the urban and barren classes do not support fire propagation in the simulations.
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(a) (b)

Figure 4.5: Landscape of the Kalmthout Heath (Case 2), with areas of heathland

(a) and dunes (b).

4.1.4 Topography and street maps

The maps of slope and aspect in Figures 4.9 to 4.15 show that the wildfires in Flanders and

the Netherlands (Cases 2, 3, 4 and 7) all occurred on practically flat terrain. Note, however,

that the coarse spatial resolution of 100 m has a smoothing effect and local variations in

elevation and slope remain unresolved. Figure 4.1.3 illustrates this for Case 2. Thus, only the

data of wildfires in The Ardennes (Cases 1, 5 and 6) show significant average slopes (> 1%).

Case 1 is located on top of a hill and is thus subjected to the prevailing weather to a greater

extent, while Cases 5 and 6 are located in valleys.

Only Cases 1 and 3 reached large, asphalted, roads. In both cases, the EFFIS perimeters

indicate that the fires crossed these roads at some point. Yet, this seems very unlikely, since

such wide roads act as fire corridors that can only be crossed by extreme (spotting) fires.

Moreover, these roads are used by the fire department as strategic blockades from which they

can launch their attacks. The reports of these cases mention indeed that the wildfires were

stopped at the big roads, which again points out a drawback of the coarse resolution of the

EFFIS perimeters. Moreover, in all cases the (burnt) area is transected by numerous dirt

roads, walking paths, cycle trails and even a small river (Case 1) which can all act as barriers

or retardants for the spreading surface fire, but are not included in the data.
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4.1.5 Weather

For the use of a dynamical wildfire simulator in an operational context, one would have to rely

on weather forecasts using a (mesoscale) weather model. However, weather forecast data by

the European Centre for Medium-Range Weather Forecasts (ECMWF) are available only for

fire cases after August 2011. Hence, historical data of the wind vector, cloud cover, relative

humidity (RH), and temperature from nearby weather stations are used instead in this work

(Figures 4.16 to 4.22). Precipitation data are not included, as no weather stations recorded

any precipitation for either of the cases during the period of interest. These dry conditions

are also reflected by the low RH values, when comparing these to the long-term monthly

average of around 73% for a normal month of April or May in Belgium (KMI, 2017). This is

of course expected, as the risk of (large) wildfires increases in dry weather conditions.

The weather data are extracted from Wolfram Mathematica’s database (Wolfram Research

Inc., 2016). For most cases, these data come from the weather station closest to the centroid

of the fire perimeter, as determined using ArcMap (ESRI, 2011). Only for Case 1 and 4, the

data were interpolated between the two and three closest stations, respectively, via inverse

distance weighing (De Smith et al., 2007). For every case, the start of the time series is set

three days prior to the ignition, in order to account for the weather conditions leading up

to the wildfire. As the original temporal resolution varied between stations and observations

(with time steps ranging from 1 minute up to 1 hour and more), all time series were resampled

to a single temporal resolution of 30 minutes by linear interpolation.

As is common for all these weather variables, their observed values vary significantly, with

clear day-night variations. Thus, larger fires (Cases 1–4) show, unsurprisingly, more variation

during their (longer) burning periods than the smaller fires (Figure 4.6). It might be reason-

able to expect relatively high wind speeds during large wildfires and vice versa, but this is

not clearly observed.
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Figure 4.6: Plot of average wind speed and standard deviations during the wild-

fires versus the burnt area.
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4.1.6 Wildfire ignition and progress

As the observed MODIS perimeters only provide a very rough idea of ignition times and

locations, these data are preferably retrieved from other sources. For Cases 1–4 news or fire

reports are available. These document the time of first sight, which is here assumed to be

the time of ignition. Ignition locations can be derived from a reported map (Cases 1–3),

or estimated based on the location description (Case 4). Since a news report on the latter

case states that the fire started when a burning car was towed through the heath towards a

nearby road (Houben, 2011), the ignition source may be envisaged as a line instead of a point.

For the small fires (Cases 5–7), however, no news of fire report is available, so the ignition

time has to be based on the MODIS observations. For these cases, the ignition location is

estimated as the centroid of the section of the burnt area facing the average wind direction.

Table 4.1 and Figure 4.7 provide an overview of the results hereof.

There is a large variability in available information concerning the progress and duration of

the wildfires between the different cases—even more than for what concerns the ignition data.

For example, only for Case 1 there are multiple fire perimeters available, but as was mentioned

before, these could not reliably be used as time-stamped snapshots of different stages of the

wildfire. Moreover, a news report of Case 4 mentions the recurrence of several fire hotspots

after the fire was reportedly under control, but there are no details on the locations thereof

(Houben, 2011). Last but not least, the interventions by fire fighters are only documented

(at a reasonable level of detail) in the fire reports of Cases 2 and 3. Hence, for the sake of

comparability, all wildfires are assumed to spread continuously during their burning period,

while ignoring the actions of fire fighters.

For Cases 1–4, it is assumed that the fire spreads from the first time it is spotted, until

the time it was reportedly under control by the fire fighters. The rationale behind this is

to perform a simulation of the worst case scenario, which would typically be done by the

fire department at the start of a wildfire. It is expected that the simulations will (strongly)

over-estimate the size of the wildfire, especially in regions were the fire fighters were active.

For Cases 5–7, the simulations are run until the observed burnt area is reached, as there are

no reliable data on the duration of these wildfires. These simulations are therefore regarded

as worst case scenarios, but rather serve as an extra way to compare the simulations in terms

of ROS and shape of the final perimeter.
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Table 4.3: Overview of the fire dataset, provided by the JRC.

Case Area Ignition Duration Ignition location

(ha) Date Time (h) Lon (°E) Lat (°N)

1 1399 2011/04/25 16:26a 38a 6.124846 50.539370

2 555 2011/05/25 11:56a 55a 4.434590 51.383916

3 396 2014/04/20 08:41a 12a 5.874427 52.095529

4 226 2011/05/07 14:00b 8b 5.511101* 51.050103*

5.509102* 51.050312*

5 80 2015/04/23 12:30c - 6.265952 50.455384

6 29 2015/04/21 12:30c - 6.242140 50.477850

7 22 2015/04/14 12:27c - 5.976461 52.418578

based on afire report, bnews report, or cperimeter meta-data
*estimated line ignition between two points

SPW
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EFFIS wildfire perimeter

ignition
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Figure 4.7: Fire perimeters and approximate ignition locations for the selected

wildfires (Table 4.3).
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4.2 Model description and settings

In this chapter, three wildfire simulators are evaluated using the dataset described in Sec-

tion 4.1, namely FARSITE (Finney, 2004), ForeFire (Filippi et al., 2009b, 2014a), and the

CA-based model (Depicker et al., 2016). A general overview of these models is presented in

Table 4.4. The rest of this section will detail on their underlying mechanics, settings and

usage.

Table 4.4: Overview of the evaluated wildfire simulators.

Name Model type Level of Reference

development

FARSITE simulation model operational Finney (2004)

ForeFire simulation model research phase Filippi et al. (2009b, 2014a)

CA analogue analogue model early research phase Depicker et al. (2016)

4.2.1 FARSITE

In Chapter 3, FARSITE is named as the current standard of wildfire simulation models. It is

implemented in free, open source software with a graphical user interface (GUI). It is based on

the fire behaviour model BEHAVE (Andrews, 1986), which includes the quasi-physical model

of Rothermel (1972) and fuel moisture models (e.g. Rothermel et al. (1986)), and Huygen’s

wavelet principle, as implemented by Finney (2004). This basis module is extended with

additional submodels describing crown fire, spotting, point-source fire acceleration (Finney,

2004). Yet the more complicated the model, the more data and/or parameters are needed.

Hence, in addition to the surface spread (and fuel moisture) model, only the acceleration

model is used here. Several options regarding settings and types of input data are available,

but only those that were used in this work are discussed.

Fire acceleration and fuel moisture submodel

The fire acceleration model is adapted from the FBP (Alexander et al., 1992). It corrects for

the time lag between ignition and reaching the equilibrium ROS, given by the fire behaviour

model. This model assumes a negative exponential function that reaches by default 90%

of the equilibrium ROS at 20.02 and 7.68 min for point and line ignitions, respectively.

Finney (2004) notes that the ROS in FARSITE is often overestimated due to the continuously

accelerating and decelerating wildfire (as a result of the highly variable wind). Hence, besides

the acceleration model, also a subjective adjustment factor can be specified per fuel class.
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The dead FMC is critical in determining the fire behaviour (see Sections 2.1 and 3.4), but

hard to measure due to its highly dynamic nature. FARSITE thus makes use of dead fuel

moisture models to estimate this parameter for different fuel types (e.g. the one by Rothermel

et al. (1986) for fine fuels). These models make use of the time lag concept (Section 2.1.3) and

the equilibrium moisture content. The latter strongly depends on the local weather conditions

(air temperature, RH, solar radiation, and precipitation), which are in turn affected by local

topography and site conditions (e.g. the canopy cover). Hence, in order to account for spatial

variability of the FMC at the time of ignition, the FARSITE user can run the dead fuel

moisture model for a specified amount of time prior to the ignition (the so-called conditioning

period). FMC of live fuels is assumed to remain constant at its initial value throughout the

simulation.

Model inputs and settings

FARSITE requires several input data and parameters to be specified in a project file, which

forms the basis of a simulation. The input data include landscape, wind, and weather files,

which consist of the data discussed in Section 4.1 (see Table 4.5). A file containing the

initial FMC of the present fuel classes also has to be provided. Since no data are available of

the latter, default values are used, which are tuned by considering the previously discussed

conditioning period. This period is set to three days, as it is assumed that this is sufficient to

estimate the FMC of fine fuels (time lag classes 1 h and 10 h), which are the most important

for the ROS (Section 2.1.3). Besides these input data, the parameters of the present fuel

classes, including the previously discussed ROS adjustment factor, are also specified in the

project file. These are all kept at their default values.

Apart from the parameters in the project file, some additional model parameters are specified

prior to starting the FARSITE simulation. These include the wildfire duration, time step,

spatial resolution and the selection of the submodels used. The time step, i.e. the maximal

period in which the environmental variables are considered to be constant (Finney, 2004),

is set at 30 min, which is the temporal resolution of the wind data. The spatial resolution

is determined by the perimeter and distance resolution, which define the maximal distance

between the perimeter vertices and the maximal horizontal spread before new landscape in-

formation is used, respectively. Both are set to 50 m, since no additional meaningful precision

is gained at values lower than half of the spatial resolution of the landscape data (Finney,

2004).
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Table 4.5: Overview of the input data, needed in a FARSITE project.

Landscape Wind Weather

Data type static (GIS rasters) dynamic (spatially uniform) dynamic (spatially uniform)

Variables Elevation [m] Hour [hhmm] Precipitation [mm/d]

Slope [degrees] Wind speed [km/h] Precipitation start and

Aspect [degrees] Wind direction [degrees] end [hhmm]

Canopy cover [%] Cloud cover [percentage] Daily Tmin and Tmax [°C]

Fuel classes Daily RHmin and RHmax [%]

Times of daily Tmin

and Tmax [hhmm]

Elevation [m]

4.2.2 ForeFire

In Section 3.5 the discrete event front tracking algorithm of ForeFire was presented as an alter-

native for Huygen’s wavelet principle, though it has not yet reached the level of development

of FARSITE. Besides a web application with limited functionality, and which is moreover

restricted to wildfires in France (Demo ForeFire API V1, 2017), there is no software available

with a GUI like FARSITE. The open-source code is available for researchers and developers

via a git repository (ForeFire API). This code can be compiled to, among others, a C++

simulation core with a Python/NumPy interface. Since the web application is the closest

thing to an operational ForeFire tool, we opted to use its settings in the Python/NumPy

interface. ForeFire is implemented in a modular software architecture, with the possibility to

extend and couple it with different submodels (Filippi et al., 2014a). Moreover, the user can

choose from a set of different fire behaviour models or can implement new ones.

Fire behaviour model

The physically-based Balbi model (Balbi et al., 2009), which was modified by Filippi et al.

(2014b), is used in combination with ForeFire, as this is also the model used in the ForeFire

web tool. Just as Rothermel’s model, it is built around an energy balance, yet the components

of this balance are derived from physical/geometrical considerations, rather than experimental

data. These derivations rely on the following assumptions (Balbi et al., 2009):

1. the fire front is a radiative panel with a triangular cross-section;

2. the radiative heat transfer is dominant (at long range);

3. (radiative) preheating of the vegetation takes place only under the flame;
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4. the fraction of energy emitted as radiation by the flame (χ) is a decreasing function of

the flame surface-to-volume ratio (σ);

5. the velocity vector into the flames is a combination of the wind vector and natural

convection of the flame;

6. the gasses are ideal, the thermodynamic transformations isobaric;

7. there exists an average flame temperature and ignition temperature;

8. the gas inflow into the flame is stoichiometric (at a constant ratio of 8.3 kg air/kg

pyrolysis gas);

9. the fuel distribution is locally homogeneous;

10. the mass exchange rate due to pyrolysis is constant.

Note that some of these are strong assumptions (e.g. Assumptions 2, 3, 7; see Section 2.1.7).

The resulting model is a single algebraic equation that links the stationary ROS to the tilt

angle (γ) of the fire front towards the unburnt fuel. The latter depends on the wind, slope,

and the front normal. This model has been modified by Filippi et al. (2014b) to account for

the effect of the local front depth (λ) and curvature (κ) on the ROS (R):

R = Rfuel +Rflame, (4.1)

where Rfuel and Rflame are the contribution of the fuel undergoing pyrolysis (i.e. short range

heat transfer) and of the flames (i.e. long range heat transfer), respectively. These components

are given by:

Rfuel =

(
1− e

λβd(β)

4

)
εf B Ti

4 dfb

2W [cp,f (Ti − Ta) +M hw]
, (4.2a)

Rflame = χh σ̇ f(γ, κ, λ), (4.2b)

where βd(β) [-] is a radiation dumping ratio that depends on the packing ratio, εf [-] the fuel

emissivity, B [W m2 K4] the Stefan-Boltzmann constant, cp,f [J kg-1 K-1] the heat capacity

of the fuel, Ti and Ta [K] the ignition and air temperature, M [%] the FMC, hw [J kg-1] the

latent heat, σ̇ [kg m-2 s-1] the mass exchange rate due to pyrolysis, and f(γ, κ, λ), a function

depending on the local front characteristics.
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Model inputs and settings

Similarly to a FARSITE project file, most input data for ForeFire are packed into a netcdf

file, containing GIS rasters of the elevation, fuel classes, and wind vector field(s). Note the

more limited data requirements compared to FARSITE. This is because the current ForeFire

distribution does not include submodels (such as the dead fuel moisture model), apart from

the fire behaviour model. Hence, all fuel parameters are static and defined in a fuel table

file for every fuel class. The fuel classification/parametrisation used here is the one from the

ForeFire web-application, based on the CORINE land cover (LC) classes (Tables 4.6 and 4.7).

Note that this parametrisation is still premature as only the fuelbed depth (dfb) varies between

the burnable fuel classes. Hence, (spatial) variability of important parameters such as the

FMC is left unaccounted for.

ForeFire is run from a Python script in which the simulation parameters and ignition infor-

mation (coordinates, date and time) are specified. Since it only accepts closed perimeters

as ignitions sources, the simulations start from a triangular perimeter, of which the centroid

coincides with the ignition point, or a polygon surrounding the ignition line (Table 4.3). Im-

portant parameters again include the perimeter and distance resolution, yet the effect of these

parameters is different than in FARSITE. The perimeter resolution now also determines the

minimal size of the triangular ignition perimeter, so it is set to a smaller value (20 m). As was

explained in Section 3.5, ForeFire is event driven, yet the size and number of time steps have

to be specified to produce perimeters at regular time intervals (here, 30 min). Consequently,

the distance resolution now also determines the maximal error between the simulated and the

produced perimeter at a given time. To make this error practically negligible, the distance

resolution is kept at 1 m.
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Table 4.6: CORINE LC classes with the corresponding JRC fuel classes and

ForeFire parameters.

fuel class ID CORINE FMC W [kg fuel m-2] dfb [m]

CORINE JRC class description dead live dead live

111 53 Continuous urban fabric 0.15 0.5 0 0 0

231 3 Pastures 0.13 0.5 0.6 1.28 2

241 51 Annual crops associated 0.13 0.5 0.6 1.28 1.6

with permanent crops

243 52 Agriculture with 0.13 0.5 0.6 1.28 1.6

natural vegetation

311 32 Broad-leaved forest 0.13 0.5 0.6 1.28 1.6

312 24, 27 Coniferous forest 0.13 0.5 0.6 1.28 1.6

313 37 Mixed forest 0.13 0.5 0.6 1.28 1.6

322 1, 2, 8, 17 Moors and heathland 0.13 0.5 0.6 1.28 2.6

512 55 Water bodies 0.13 0.5 0.6 1.28 0

Table 4.7: ForeFire parameters that are constant for all present fuel classes.

Parameter Value Units

ρb 500 [kg m-3]

σ dead 2400 [m-1]

live 5700 [m-1]

ρa 1 [kg m-3]

Ta 300 [K]

Ti 600 [K]

cp,f 1800 [J kg-1 K-1]

hw 2300000 [J kg-1]

h 15000000 [J kg-1]

χ 0.3 [-]
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4.2.3 CA-based model

The final model selected for reviewing has been proposed by Depicker et al. (2016). It is

a CA-based model using a square two-dimensional grid. The state of a cell ci at time t,

denoted as S(ci, t), reflects the number of time steps after the ignition of cell ci. So, at time

t, ci is unburnt if S(ci, t) = 0, burning if S(ci, t) > 0 and S(ci, t) < nburn, and burnt if

S(ci, t) ≥ nburn, where nburn is the number of time steps to completely burn the fuel enclosed

in a cell. The state of every cell is governed by a stochastic transition function, which is

evaluated at discrete time steps, and is given by

S(ci, t+ 1) =


S(ci, t) + 1, if S(ci, t) > 0,

1, if S(ci, t) = 0 ∧ ε < pi,

0, otherwise,

(4.3)

with ε a random number between 0 and 1 and pi the probability that cell ci will ignite in the

next time step. The latter depends on the cell’s neighbourhood Ni and is calculated as

pi = pveg

1−
∏
cj∈Ni

(1− pj)

 , (4.4)

where pveg and pj are the intrinsic ignition probability and the probability that the wildfire

spreads from a neighbouring cell cj to cell ci, respectively. The factor between parentheses

thus denotes the total probability that a fire will spread from at least one of the cells in Ni

to ci. Here, Ni is the Moore neighbourhood, i.e. the eight cells surrounding ci, while pveg and

pj are given by

pveg =
(
1 + e2.283−2.413x1−1.884x2−2.020x3−2.545x4−2.143x5

)−1
, (4.5a)

pj =


1

(1 + ψ1 e−ψ2 w.v̂) (1 + ψ3 e−ψ4 γs)
, if S(cj , t) > 0andS(cj , t) < nburn

0, if S(cj , t) = 0orS(cj , t) ≥ nburn
(4.5b)

Equation (4.5a) was derived on the basis of a logistic regression (Depicker et al., 2016), taking

into account five categorical predictors, namely the LC classes shrubland (x1), broadleaved

forest (x2), mixed and coniferous forest (x3), wetland (x4), and the sandy soil texture class

(x5). Since categorical predictors can only take a value of 0 or 1, Eq. (4.5a) can yield ten

different values greater than zero (Table 4.8). As this equation is constructed from a dataset

of ignition locations of historical fires, the (strong) assumption is made that the ignition

probability during a wildfire is the same as the wildfire risk before ignition. Hence, we

slightly modified Eq. (4.4), by replacing pveg by p′veg, where

p′veg = min(αpveg, 1), (4.6)
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with α a scaling factor greater than 0. This way it is assumed that the intrinsic ignition

probability during a wildfire is proportional to the wildfire risk, up to a value of 1. This

modified modified model will be referred to as CA2, and the original one as CA1. pj is

calculated as a function of the component of the wind vector (w) in the direction of wildfire

spread (denoted by the unit vector v̂) and the slope angle (γs). Moreover, Eq. (4.5b) contains

four parameters (ψ1,2,3,4), whose value should be obtained through model calibration.

Table 4.8: Possible values for pveg, according to Eq. (4.5a).

Land cover class

Texture Others Shrubland Broadleaved Coniferous\ Wetland

forest mixed forest

Not sandy 0.093 0.532 0.402 0.435 0.565

Sandy 0.465 0.907 0.851 0.868 0.917

Model inputs and settings

The main inputs of CA1 and CA2 are geographic (raster) data of elevation, LC classes, and

soil texture, wind vector data during the whole wildfire duration and the ignition perimeter.

In order to preserve comparability, the LC classes are again derived from the fuel maps of the

JRC (Section 4.1). The soil texture maps are also provided by the JRC and originate from

Ballabio et al. (2016). Since the calibration and evaluation of the CA-based model will be

confined to Cases 1–4 (see Chapter 6), only the soil texture (Figure 4.8(a)) and pveg maps

(Figure 4.8(b)) of these cases are shown here. Contrary to FARSITE and ForeFire, which

rely on pre-determined parameters for the fuel classes, the few model parameters α, ψ1,2,3,4,

and nburn are yet to be calibrated (see Chapter 6). Note that nburn should preferably depend

on the state of the fuels within a cell. Yet, as the studied cases involve more or less the same

fuel types (see Section 4.1), it is assumed that this parameter is approximately the same for

all cells. Besides, there are two important parameters that have to be specified, namely the

temporal resolution of the simulation (∆t), and the grid size, defined by the spatial reso-

lution (∆x) and the number of grid cells (ncells). These parameters not only have a large

influence on the computation time, but also determine the maximal ROS, which is limited to
∆x
∆t . Moreover, ∆t affects the interpretation of pi, since the latter is the probability that a

cell ignites during one time step. ∆x is fixed by the spatial resolution of the input data (100

m), while ∆t is fixed at 7.5 min, limiting the maximal ROS to 800 m/h. Finally, ncells was

set to 120x120, 100x100, 80x80 and 40x40 cells for Cases 1–4, respectively. These choices are

mainly based on practical considerations regarding the computational demands of the current

model implementation.
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Figure 4.8: Soil texture (a) and pveg (b) maps of Cases 1–4, together with the

rasterized burnt areas.
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Case 1: High Fens
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Figure 4.9: Geographical data of wildfire Case 1.
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Case 2: Kalmthout Heath
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Figure 4.10: Geographical data of wildfire Case 2.
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Case 3: The Hoge Veluwe National Park
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Figure 4.11: Geographical data of wildfire Case 3.
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Case 4: Meeuwen-Gruitrode
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Figure 4.12: Geographical data of wildfire Case 4.
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Figure 4.13: Geographical data of wildfire Case 5.
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Figure 4.14: Geographical data of wildfire Case 6.
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Figure 4.15: Geographical data of wildfire Case 7.
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CHAPTER 5
A evaluation of FARSITE and ForeFire

In this chapter FARSITE and ForeFire (Chapter 3 and Section 4.2) are reviewed in terms of

how they perform in a Belgian context. In Section 5.2 benchmark simulations are carried out,

using the (readily) available data. Section 5.3 then focuses on two specific cases, incorporating

relevant terrain information and assessing the impact thereof.

5.1 Model evaluation

The model evaluation will be based on the simulated area at the end of the documented

wildfire duration, throughout the remainder referred to as “End”, and the time at which

the simulated area has reached the same size as the observed burnt area. The latter usually

cannot be observed directly, since the perimeters are simulated at fixed time steps. It is thus

inferred from a linear interpolation between the time instances leading to the last (“Inner”)

simulated areas smaller than, and the first (“Outer”) larger than the observed burnt area. The

area that is burnt between those time points is from here on referred to as the “Inter” area.

These two characteristics are compared qualitatively and quantitatively with the observed

perimeters, using maps and accuracy measures, respectively. The latter reflect the areas

that are correctly simulated (True +), falsely simulated (False +), and falsely left unaffected

(False − ). These measures are expressed as area percentages of the hulls that enclose the

observed and simulated (End or Outer) burnt areas.
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5.2 Benchmark simulations

The rationale of a benchmark simulation, using the data and settings as described in Chap-

ter 4, is to evaluate the models (in their currently available state) in what would be an

operational setting. The results are first discussed per model, and a general discussion is

presented in Section 5.4. Finally, since the wildfire duration is available only for the larger

wildfires (Cases 1–4), these will be discussed separately from the smaller ones (Cases 5–7).

5.2.1 FARSITE

Cases 1–4

The results of the benchmark simulations for Cases 1–4 are presented in Figure 5.1 and

Tables 5.1 and 5.2. It is apparent that FARSITE generally underestimates the burnt area

during the documented wildfire duration (End); only for Case 1 the observed burnt area is

reached in silico within the recorded time frame. In order to reach a simulated area that

agreed with the observed one, the simulated time for Cases 2–4 had to be the double of the

wildfire duration. Yet, the results beyond the documented end are highly speculative since

these also passed the end of the recorded weather data. These results are rather surprising,

as FARSITE is known to generally overestimate the ROS and burnt area (Finney, 2004).

Table 5.1: Burnt areas simulated with FARSITE and corresponding wildfire du-

rations for Cases 1–4, as shown in Figure 5.1.

Case End Inner Inter Outer Observed

1 Area (ha) 1544 1382 1399 1415 1399

Duration (min) 2280 2040 2055 2070 2280

2 Area (ha) 257 554 555 557 555

Duration (min) 3300 7920 7929 7950 3300

3 Area (ha) 279 393 396 400 396

Duration (min) 720 1620 1633 1650 720

4 Area (ha) 116 219 226 226 226

Duration (min) 450 1020 1049 1050 450
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Table 5.2: Accuracy measures of FARSITE simulations for Cases 1–4, expressed

as area percentages of the hull enclosing the simulated perimeters.

Case 1 Case 2 Case 3 Case 4

End Outer End Outer End Outer End Outer

True + 26.7 27.5 29.5 27.4 29.2 29.5 43.1 66.5

False + 39.8 36.6 11.5 36.4 24.2 35.6 5.3 16.7

False − 33.6 35.9 58.9 36.1 46.6 34.9 51.6 16.8

Case 4: Meeuwen-GruitrodeCase 3: Hoge Veluwe

Case 1: High Fens

0 1 20,5
km

Simulated perimeters during duration of wildfire

Inner simulated perimeter

Outer simulated perimeter

Observed burnt area

0 0,5 10,25
km

Ü
0 0,5 10,25

km

Case 2: Kalmthout Heath

0 1 20,5
km

Figure 5.1: Results of FARSITE simulations for Cases 1–4.
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From Figure 5.1 and Table 5.2 it is also clear that the simulated perimeters are of a poor

quality. Within the recorded duration of the wildfire the true positives vary between 26.7 %

and 43.1 %, while the false negatives go from 33.6 % up to 58.9 %. Simulations stretching

beyond the observed wildfire duration only improve the quality for Case 4, raising the cor-

rectly simulated portion of the (outer) hull area to 66.5 %. For the other cases, increasing

the simulation time does not significantly increase the percentage of true positives. On the

contrary, it is even lowered by 2.1 % for Case 2. When we compare the in situ and in silico

perimeters to the wind data (Figures 4.16–4.19), it is clear that the former closely align with

the prevailing wind direction at the start of the wildfire (roughly the first half of the burning

period), while the latter align with the wind direction at the end of the wildfire (roughly the

second half of the burning period).

This can be explained as follows. Wildfires can initially spread relatively fast as they are

not yet fought by fire fighters. When these commence their suppressive actions, the wildfire

spread gets retarded, until it is eventually stopped. This is of course not a gradual process,

as larger fires are more difficult or even impossible to stop and changing weather conditions

can cause re-ignitions and sudden outbursts in different directions. Still, for our cases it can

be stated that the larger part of the burnt area was reached in the first half of the burning

period. However, as was mentioned before, no data regarding the actions of the fire fighters

could be included in the simulations. This makes that the simulated spread is only governed

by the weather data. Especially in Cases 1 and 2, the wind direction and speed change

considerably in the second half of the burning period, which clearly affects the shape of the

simulated fire perimeter. Moreover, due to the use of the acceleration submodel, the wildfire

also spreads—under the same environmental conditions—at a higher ROS later on in the

simulation.

Finally, the effects of the coarse fuel map resolution can clearly be observed for Case 2.

This is due to the fact that the land cover in and around the Kalmthout Heath is relatively

heterogeneous, as it is located very close to the WUI (Figure 4.10). Moreover, in Section 4.1

it was already explained that some dune areas inside the observed perimeter are (wrongly)

classified as “urban and barren”. Since urban land is considered unburnable, the simulations

are abruptly stopped when the fire front reaches such areas, as can be observed in Figure 5.1.

Cases 5–7

The results of these simulations are presented in Figure 5.2 and Tables 5.3 and 5.4. They are

remarkably better in terms of the shape of the simulated perimeter. For the outer perimeters

(Outer), the proportion of true positives varies between 57.7 % and 63.3 %, while the false

negatives vary between 3.0 % and 16.7 %. Keep in mind, however, that these simulations

are not restricted by a recorded burning period, like Cases 1–4, as no wildfire duration was

recorded. Hence, it is expected that the simulated burning periods overestimate the true

ones.
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Table 5.3: Burnt areas simulated with FARSITE and corresponding wildfire

durations for Cases 5–7, as shown in Figure 5.2.

Case Inner Inter Outer Observed

5 Area (ha) 80 80 120 80

Duration (min) 240 240 270

6 Area (ha) 27 29 42 29

Duration (min) 150 153 180

7 Area (ha) 11 22 23 22

Duration (min) 90 118 120

Table 5.4: Accuracy measures of FARSITE simulations for Cases 5–7, expressed

as area percentages of the hull enclosing the simulated perimeters.

Case 5 Case 6 Case 7

Inner Outer Inner Outer Inner Outer

True + 69.1 57.7 75.2 63.3 50.2 62.8

False + 15.4 37.0 10.1 33.7 0.0 20.4

False − 15.5 5.3 14.6 3.0 49.8 16.7

Case 7: OldebroekCase 5: Büllingen

0 250 500125
m

Simulated perimeters during duration of wildfire

Inner simulated perimeter

Outer simulated perimeter

Observed burnt area Ü

0 250 500125
m

Case 6: Bütgenbach

0 250 500125
m

Figure 5.2: Results of FARSITE simulations for Cases 5–7.
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5.2.2 ForeFire

Cases 1–4

The results of the benchmark simulations for Cases 1–4 with ForeFire are presented in Fig-

ure 5.3 and Tables 5.6 and 5.5. In contrast to the FARSITE simulations, these results do

not underestimate the perimeter at the end of the documented wildfire periods (End). The

observed burnt area is always reached within this time frame. Especially for Cases 1–2 these

simulated times (13 and 10h, respectively) seem fairly realistic. For Cases 1–3 this leads to

a proportion of true positives for Outer that is respectively 17.7 %, 7.2 % and 8.1 % higher

than those obtained for the FARSITE simulations, whereas it is 4.5 % lower for Case 4. The

proportion of false negatives is between 2.8 % and 8.9 % lower as compared to FARSITE.

Hence, the ForeFire simulations of these cases are more accurate than those by FARSITE.

Table 5.5: Burnt areas simulated with ForeFire and corresponding wildfire dura-

tions for Cases 1–4, as shown in Figure 5.3.

Case End Inner Inter Outer Observed

1 Area (ha) 11657 1333 1399 1420 1399

Duration (min) 2280 750 773 780 2280

2 Area (ha) 16287 511 555 568 555

Duration (min) 3300 570 593 600 3300

3 Area (ha) 1994 388 396 461 396

Duration (min) 720 330 333 360 720

4 Area (ha) 542 212 226 256 226

Duration (min) 450 240 250 270 450

Cases 5–7

The results of the ForeFire benchmark simulations for Cases 5–7 are presented in Figure 5.4

and Tables 5.8 and 5.7. These results are, in terms of true positives and false negatives, less

accurate than those obtained with FARSITE. Moreover, it can be noticed that the shape of the

western perimeter boundary for Case 5 is more accurately captured by FARSITE (Figure 5.2).

Since the area beyond this boundary has a higher canopy cover percentage (Figure 4.13), the

better performance of FARSITE in this respect can be attributed to its fuel moisture model.

On average, the observed burnt area is reached approximately 30% faster with ForeFire, as

compared to FARSITE.
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Table 5.6: Accuracy measures of ForeFire simulations for Cases 1–4, expressed

as area percentages of the hull enclosing the simulated perimeters.

Case 1 Case 2 — Case 3 Case 4

End Outer End Outer End Outer End Outer

True + 12.0 45.2 3.4 34.6 16.8 37.6 41.8 62.0

False + 88.0 27.9 96.6 33.5 80.6 36.4 58.2 24.0

False − 0.0 26.9 0.0 31.9 2.5 26.0 0.0 14.0

Case 4: Meeuwen-GruitrodeCase 3: Hoge Veluwe

Case 1: High Fens

0 2,5 51,25
km

Simulated perimeters during duration of wildfire

Inner simulated perimeter

Outer simulated perimeter

Observed burnt area

0 1 20,5
km

Ü
0 0,5 10,25

km

Case 2: Kalmthout Heath

0 2,5 51,25
km

Figure 5.3: Results of ForeFire simulations for Cases 1–4.



80 5.2 BENCHMARK SIMULATIONS

Table 5.7: Burnt areas simulated with ForeFire and corresponding wildfire dura-

tions for Cases 5–7, as shown in Figure 5.4.

Case Inner Inter Outer Observed

5 Area (ha) 63 80 90 80

Duration (min) 150 169 180

6 Area (ha) 22 29 39 29

Duration (min) 90 102 120

7 Area (ha) 11 22 25 22

Duration (min) 60 84 90

Table 5.8: Accuracy measures of ForeFire simulations for Cases 5–7, expressed

as area percentages of the hull enclosing the simulated perimeters.

Case 5 Case 6 Case 7

Inner Outer Inner Outer Inner Outer

True + 59.7 61.1 69.9 62.8 47.6 49.4

False + 10.5 24.3 3.9 30.7 1.8 30.2

False − 29.8 14.5 26.2 6.5 50.6 20.3

Case 7: OldebroekCase 5: Büllingen

0 250 500125
m

Simulated perimeters during duration of wildfire

Inner simulated perimeter

Outer simulated perimeter

Observed burnt area Ü

0 250 500125
m

Case 6: Bütgenbach

0 250 500125
m

Figure 5.4: Results of ForeFire simulations for Cases 5–7.
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5.3 Incorporation of detailed terrain information

In Section 4.1 it was revealed that the available geographic data are of a coarse spatial

resolution and thus do not capture important details, such as roads. Hence, the relatively

low accuracy of the simulation results in Section 5.2 should not come as a surprise. In order

to improve the accuracy of the simulations for the two largest wildfires (Cases 1 and 2), their

fuel maps are both adjusted to better reflect the terrain conditions.

5.3.1 Case 1

In this case, we added the main road at the west side of the observed perimeter, which acts as

a barrier. The river Helle at the East side is also partly included. For the latter, we assumed

that it acted as a barrier up to the point where it was crossed by the observed perimeter.

These barriers were specified as separate GIS vector files in FARSITE. For ForeFire, they

had to be included in the fuel map, of which the spatial resolution was increased to 10 m.

These adjustments are presented along with the resulting simulation results in Figure 5.5.

Tables 5.9 and 5.10 again provide the simulated areas and fire durations, and accuracy mea-

sures, respectively. The most obvious effect of including these barriers is the retardation of the

simulations. Contrary to the benchmark simulations, the FARSITE simulations do now not

reach the observed burnt area within the wildfire duration (Table 5.9). When comparing the

outer simulated areas (Outer), a slight improvement in accuracy for both models is observed.

Indeed, the proportion of true positives is approximately 4 % higher, while the proportions

of false positives and negatives are both approximately 2 % lower.

Based on these results, adding barriers looks promising, since this wildfire was indeed stopped

at the road and river (with or without the help of fire fighter actions). Furthermore, we

could have included more (smaller) roads that coincide with the wildfire perimeter, as such

increasing the accuracy of the (outer) perimeters. However, in reality, these roads will not

always stop wildfires, as they could be crossed by spotting or, when overgrown by weeds for

example, even by surface fires. Hence, including them in fuel maps that are to be used for

operational purposes, should not be done without expert knowledge.

Table 5.9: Burnt areas simulated with FARSITE and ForeFire and corresponding

wildfire durations for Case 1 with adjusted fuels, as shown in Figure 5.5.

Model End Inner Inter Outer

FARSITE Area (ha) 1070 1392 1399 1425

Duration (min) 2280 2640 2646 2670

ForeFire Area (ha) 4813 1330 1399 1409

Duration (min) 2280 810 836 840
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Table 5.10: Accuracy measures of FARSITE and ForeFire simulations for Case 1

with adjusted fuels, expressed as area percentages of the hull enclosing the simu-

lated perimeters.

FARSITE ForeFire

End Outer End Outer

True + 33.0 31.1 29.0 49.4

False + 24.6 35.0 70.9 25.6

False − 42.4 33.9 0.1 25.1

Case 1: Baelen

Ü
0 2,5 51,25

km

ForeFireFARSITE Adjusted fuels

Fuel legend
1
2
3
6

17
24
32
38

53
54
55

Simulation legend
Inner simulated perimeter
Outer simulated perimeter
Simulated perimeters during duration of wildfire
Observed burnt area

Observed perimeter

Figure 5.5: Results of FARSITE and ForeFire simulations for Case 1 with ad-

justed fuels.
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5.3.2 Case 2

For this case, the original fuel data was adjusted by reclassifying the dune areas in the

Kalmthout Heath from urban and barren to dune fuels (Figure 5.6). This increases the

quality of the simulations for both models (Figure 5.6, Tables 5.11 and 5.12). The proportion

of true positives of the outer simulated perimeters is approximately 15 % higher, as compared

to those obtained with the original data (Table 5.2). This is due to the fact that the simulated

fire is slowed down, rather than completely stopped when reaching dune areas. Hence, the

simulations are also markedly sped up, as the observed burnt area is reached 23 % and

17 % faster with FARSITE and ForeFire, respectively (Table 5.11). From these results we

may conclude that, given the coarse resolution of the available fuel maps, care should be

taken when including unburnable wildland fuel classes, since these can act as impenetrable

blockades. Mainly in areas close to the WUI, urban fuel types, such as large gardens, should

be classified as burnable fuels.

Table 5.11: Burnt areas simulated with FARSITE and ForeFire and correspond-

ing wildfire durations for Case 2 with adjusted fuels, as shown in Figure 5.6.

Model End Inner Inter Outer

FARSITE Area (ha) 294 546 555 553

Duration (min) 3300 6030 6069 6060

ForeFire Area (ha) 18649 525 555 585

Duration (min) 3300 480 495 510
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Table 5.12: Accuracy measures of FARSITE and ForeFire simulations for Case 2

with adjusted fuels, expressed as area percentages of the hull enclosing the simu-

lated perimeters.

FARSITE ForeFire

End Outer End Outer

True + 32.0 43.0 3.0 48.8

False + 13.7 28.4 97.0 27.6

False − 54.3 28.6 0.0 23.6

Case 2: Kalmthout Heath

Ü
0 1 20,5 km

ForeFireFARSITE Adjusted fuels

Fuel legend
4
8
17
24
37

41
51
52
53
54

55 Adjusted areas
Observed perimeter

Simulation legend
Inner simulated perimeter

Outer simulated perimeter

Simulated perimeters during duration of wildfire

Figure 5.6: Results of FARSITE and ForeFire simulations for Case 2 with ad-

justed fuels.
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5.4 General discussion and conclusion

Here we will present a more general discussion regarding the performance of FARSITE and

ForeFire in an (operational) context for Belgium. The models will be evaluated on the basis

of their simulations and their usability.

5.4.1 Simulation results

The simulations results obtained with FARSITE and ForeFire (Sections 5.2 and 5.3) are

generally characterized by low accuracies, especially those for the two largest wildfires (Cases

1 and 2). This becomes even more striking when comparing our results with examples found

in literature (see Figures 3.5 and 3.6). The reasons behind these low accuracies are hard to pin

down, but the poor quality of the available data (see Section 4.1) clearly plays a major role.

This relates to the coarse resolution of the GIS raster layers, uncertainty of the weather data

(especially the wind vectors), and the limited and uncertain information on the progression

of the wildfires (e.g. the ignition location, wildfire duration, recorded perimeters, and lack of

data on fire fighter actions). Mainly the latter is troublesome for this study, as few conclusions

can be drawn regarding the simulated wildfire dynamics.

Due to the coarse resolution of the available data, important terrain data such as roads are not

included in the simulations, which also contributes to the low accuracies. Indeed, the (ad hoc)

adjustments for Cases 1 and 2 (Section5.3), resulted in (significantly) improved accuracies.

Furthermore, the fuel models used by both simulators are not adequately calibrated for the

Belgian fuels. These are based on classifications which were developed on continental scales

and strongly simplify the actual fuel complex (Keane et al., 2001; Duka and Ioannilli, 2016).

The development of detailed fuel maps will thus be a necessary step in making more effective

wildfire simulators for Belgium. Indeed, Arca et al. (2007) and Salis (2008) also conclude from

their evaluations of FARSITE in a Mediterranean context that reasonably accurate simula-

tions are only to be expected when adapted fuel models are used. For the four Italian wildfires

that were simulated with such models, the reported simulation results are significantly more

accurate than the simulated (End and Outer) perimeters that were presented here, with on

average 62 % true positives and 2 % false negatives. Since most (large) wildfires in Belgium

and the Netherlands are located in moors and heathlands, a focus on mapping and classifying

these vegetation types might be a good starting point.

In contrast to the geographical data, the uncertainty of weather data is only expected to in-

crease in an operational context. In the presented simulations, this uncertainty stems mainly

from measuring and interpolation errors of the historical data. In an operational context,

the meteorological data will come from extrapolated on-site measures or mesoscale weather

models, which are characterized by even higher uncertainties.
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There is a large difference between the FARSITE and ForeFire simulations, mostly with

respect to their dynamics. The simulations with ForeFire overestimate the burnt area within

the documented fire duration—as was expected in these worst-case simulations—while those

with FARSITE generally underestimate the spread. As was mentioned, the latter comes as

a surprise, when comparing with the literature. Indeed, Salis (2008) performed simulations

with the standard fuel models for four Italian wildfires between 19 ha and 145 ha, and reports

simulated areas that are 1.5 up to 15 times the observed ones. Moreover, the simulations

by Jahdi et al. (2015) also resulted on average in (slight) overestimations of the burnt areas

(Figure 3.5). For the optimal combination of standard fuel models, they report simulated

burnt areas that are on average 14 % larger than the observed ones. A possible reason for the

underestimation observed here might again be the poor quality of the (fuel) data used, since

FARSITE relies on complex and data-driven submodels. Moreover, it can not be ruled out

that for some of the latter, suboptimal default settings for the were used. ForeFire, on the

other hand, is in its current version much simpler than FARSITE and relies on fewer data

inputs. Hence, it is mostly affected by wind speed and direction. This brings us to another

main conclusion. The presented simulations do not provide more relevant information than

the fact that the wildfires will spread mainly along the prevailing wind direction, so their

added value in an operational context would be very limited.

5.4.2 Usability

An important aspect concerning the practical usability of operational real-time wildfire simu-

lators is their computational cost. In this aspect, FARSITE and ForeFire scored comparably

well, as the corresponding simulations are completed much faster than real-time on a desk-

top machine. Perimeters smaller than 1500 ha are, at the current settings and resolutions,

simulated within a minute. However, if more detailed data—with a higher spatio-temporal

resolution—would be used, the required computational power and simulation time are ex-

pected to increase. Furthermore, we only accounted for the simulation time, while neglecting

the time spent on (manual) preparatory work (e.g. generating simulation files) or commu-

nication. This brings us to the second and final aspect, namely the ease of use, which was

generally bad for both models. Although FARSITE is the most user-friendly, it still requires

training and expert knowledge. This is due to the fact that there are numerous options, set-

tings, and data requirements. Moreover, it is not regularly updated and still contains bugs.

ForeFire, on the other hand, is still in the early development stage. Hence, it requires (basic)

programming knowledge and is thus only usable for researchers and developers.

From all this, we may conclude that both models are not yet ready to be used in an operational

setting for Belgium.



CHAPTER 6
Calibration and evaluation of the

CA-based model

As described in Section 4.2.3, the CA-based model by Depicker et al. (2016) still requires

calibration before it can be applied for simulation purposes. Depicker et al. (2016) have made

a first attempt in doing so, using the three perimeters of the Baelen wildfire (Case 1) and

a repeated hill climbing algorithm (Russell and Norvig, 2010) that minimises the difference

between the observed and simulated burnt areas. Yet, this calibration has two main weak-

nesses. Firstly, it lacks a validation step, due to the very limited dataset. Secondly, it uses

the three observed EFFIS perimeters (Figure 4.2) as time-stamped snapshots, while it was

shown in Section 4.1 that these are not reliable. Hence, Sections 6.1–4 aim at recalibrating the

CA-based model and evaluating it in the light of its applicability in an operational context.

In Section 6.4 we will asses the sensitivity of the calibrated model, with respect to uncertainty

in the wind data inputs, by means of a global sensitivity analysis. Finally, Section 6.5 we will

give some concluding remarks on the results of this chapter.

6.1 Evaluation of pre-calibrated parameters

Before recalibrating the CA-based model, the parameter set obtained by Depicker et al. (2016)

is evaluated for the new data of Case 1 (Table 4.3, Figures 4.9 and 4.16). These parameter

values (α = 1, ψ1 = 9.3, ψ2 = 7.9, ψ3 = 6.6, ψ4 = 5.7, and nburn = 15) were obtained under

the assumption that the dates in the meta-data of the three EFFIS perimeters are real time

stamps. Hence, the simulated period between the first and last perimeter is 5 days, which is

more than three times the reported wildfire duration (Table 4.3). Since ∆t and the wildfire

duration—and thus the resulting number of simulated steps (nsteps)—derived from the new

data differ from those in Depicker et al. (2016), the parameter interpretations also differ (see

Section 4.2.3). This is most notably for nburn, and its value is therefore rescaled, so that

the ratio nburn to nsteps remains constant, resulting in a new value of 19. A burn frequency



88 6.2 CASE-DEPENDENT CALIBRATION

map resulting from 100 repeated simulations using this modified parameter set is shown in

Figure 6.1. The value of each cell ci in this map is the fraction (fi) of the simulations in

which the cell had ignited by the last time step. Average accuracy measures are obtained by

taking the sum of fi over the truly predicted, overestimated and underestimated areas, and

subsequently dividing these values by the area (Sh) of the hull enclosing the observed (O)

and simulated burnt cells. These measures are thus given by

T+ =
∑
i|ci∈O

fi
Sh
, (6.1a)

F+ =
∑
i|ci /∈O

fi
Sh
, (6.1b)

F− =
∑
i|ci∈O

1− fi
Sh

(6.1c)

Sh =
∑
O

1 +
∑
i|ci /∈O

fi. (6.1d)

As such, no subjective thresholds had to be employed for determining which parts of the burn

frequency maps are considered to be burned or not. Equations (6.1a–c) resulted in 15% true

positives (T+), 3% false positives (F+), and 82% false negatives (F-), which is considerably

less accurate than the measures reported by Depicker et al. (2016) (i.e. approximately 61%,

23%, and 17%, respectively). This can be attributed to following reasons. Firstly, the average

wind speed during the wildfire is 36% lower in the new data. Secondly, ψ1,2,3,4 are not rescaled,

though the number of time steps (and hence their practical interpretation) differs. Last but

not least, the fact that Depicker et al. (2016) calibrated starting from a well-developed initial

perimeter has probably the largest effect on the parameter values, since this calibration did

not include the initial acceleration phase of the wildfire.

6.2 Case-dependent calibration

6.2.1 Method

The next step in the calibration of the CA-based model is to perform a similar procedure as

Depicker et al. (2016) on the larger and more accurate dataset containing Cases 1–4 (Sec-

tion 4.1). The goal is to asses for every case if there exists a parameter set that results in

accurate simulations of the observed burnt area. This problem of finding an optimal param-

eter set is tackled by minimizing an objective function (Ω):

Ω =
F− + F+

T+
. (6.2)
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Figure 6.1: Burn frequency map of Case 1 resulting from 100 repeated simulations

of the CA-based model with α = 1, ψ1 = 9.3, ψ2 = 7.9, ψ3 = 6.6, ψ4 = 5.7, and

nburn = 19.

A quick assessment of the variability of Ω was done by evaluating this function ten times for

different numbers of simulations (Figure 6.2). This was performed or Case 4, using the rescaled

parameter set found by Depicker et al. (2016). Note that the variability of the values of Ω

seems to become relatively limited from 24 repetitions. Based on this result and practical

considerations regarding the available computational power, this number of repetitions is

used when evaluating Ω during the calibration stage. The resulting burn frequency maps,

obtained with the optimal parameter set, are generated on the basis of 48 runs, for the sake

of (smoother) visualisation.
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Figure 6.2: Variability of the values of Ω with respect to the number of repeated

simulations.
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Additionally, some constraints are imposed when solving the optimisation problem, namely

that all parameters are positive and that nburn is an finteger smaller than nsteps. The Nelder-

Mead method (Nelder and Mead, 1965), as implemented in Wolfram Mathematica(Wolfram

Research Inc., 2016), is used for finding the (global) minimum of this constraint minimisation.

The optimal parameters of the calibration by Depicker et al. (2016) are used as a starting

point for this method, with the exception of nburn, for which the initial value nsteps/2 is

chosen. Finally, the calibration was performed for both CA1 and CA2 (Section 4.2.3).

6.2.2 CA1

Two things immediately catch the eye, when observing the evolution of the Ω-values versus

the number of evaluations of the Nelder-Mead algorithm (Figure 6.3). Firstly, all but Case 2

convergence to (relatively) stable Ω-values within 50 evaluations. Secondly, there is a large

difference between Cases 1 and 4 on the one hand, and Cases 2 and 3, on the other hand,

both in terms of the optimal Ω value and the variability after convergence. Only for Case 4

the optimal Ω value found is lower than 1, meaning that there are more true positives than

falsely simulated cells, and for Case 1 this value is just above 1. For Case 2 and 3, the optimal

values are considerably higher. This distinction between the cases is also visible in the values

of ψ1,2,3,4 of the optimal parameter sets (Table 6.1). These values are very similar for Cases

1 and 4, but differ considerably from those of Cases 2 and 3, which are much higher. The

latter leads to spread probability values (pj) that are very close to 1, when wind and slope are

aligned with the spread direction, and very close to 0 when this is not the case (Eq. (4.5b)).

Conversely to ψ1,2,3,4, nburn varies greatly between all cases, leading to cell burning durations

between 6 h and 22 h.

The burn frequency maps, obtained with the optimal parameter sets are presented in Fig-

ure 6.4 and Table 6.2. For all cases, the most distinctive feature of these maps is the generally

round shape of the burnt areas. This indicates that the simulated wildfire spread depends

little on the wind data, which is caused by the high ψ1,2,3,4 values.

Note that the shapes and accuracy measures of the burn frequency maps for Cases 1, 3,

and 4 are still similar to those of the outer simulated perimeters obtained with FARSITE

(Figure 5.1, Table 5.2), and—to a lesser extent—to those obtained with ForeFire (Figure 5.3,

Table 5.6). The latter is probably due to the fact that the CA-based model was calibrated

using the entire reported wildfire durations, whereas the outer perimeters of ForeFire are

reached (much) sooner. The burn frequency map for Case 2 differs more from the ones found

with both FARSITE and ForeFire, since the CA-based model is less affected by heterogeneous

fuel map of this case, than the other models. Yet, the patterns of the underlying pveg data are

still visible (Figure 4.8(b)). Finally, the burn frequency maps overestimate the observed burnt

areas, except for Case 3, which is slightly underestimated. This overestimation is greatly due

to the roundness of the simulated perimeters.



CHAPTER 6 CALIBRATION AND EVALUATION OF THE CA-BASED MODEL 91

0 50 100 150 200 250
0

1

2

3

4

5

Evaluation number

O
F
va
lu
e

optimal OF value: 1.2
Case 1

(a)

0 50 100 150 200
0

1

2

3

4

5

Evaluation number

O
F
va
lu
e

optimal OF value: 2.2
Case 2

(b)

0 50 100 150 200 250
0

1

2

3

4

5

Evaluation number

O
F
va
lu
e

optimal OF value: 2.1
Case 3

(c)

0 50 100 150 200
0

1

2

3

4

5

Evaluation number

O
F
va
lu
e

optimal OF value: 0.54
Case 4

(d)

Figure 6.3: Value of the objective function Ω (OF) versus the number of evalua-

tions by the Nelder-Mead algorithm in the case-dependent calibration of CA1 for

Cases 1–4.

Table 6.1: Optimal parameter sets for the case-dependent calibration of CA1.

Case α ψ1 ψ2 ψ3 ψ4 nburn

1 1 13.66 11.46 12.58 7.50 177

2 1 52.05 39.12 35.74 31.13 78

3 1 19.77 17.71 15.74 10.71 60

4 1 13.90 11.77 11.72 6.71 49
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Table 6.2: Accuracy measures and burnt areas of the simulations obtained with

the case-dependent calibrated parameter set of CA1 for Cases 1–4.

Case 1 Case 2 Case 3 Case 4

True + 44.5 27.4 29.3 62.5

False + 16.5 52.7 35.2 25.8

False − 39.0 19.9 35.6 11.7

Area (ha)

Simulated 1912 937 395 273

Observed 1398 553 397 229

Case 4: Meeuwen-GruitrodeCase 3: Hoge Veluwe

Case 1: High Fens

0 2 41 km

0 1 20,5
km

Ü
0 1 20,5

km

Case 2: Kalmthout Heath

0 2 41
km

Burn frequency
1

0
observed burnt area

Figure 6.4: Burn frequency maps obtained with the case-dependent calibrated

parameter set of CA1 for Cases 1–4.
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6.2.3 CA2

The calibrated parameters of CA2 are presented in Table 6.3. The evolution of the Ω values

differs little from the one of the calibration of CA1, ans is thus not reported explicitly. Yet,

the number of evaluations before convergence is about 1.5 times higher for all cases.

Looking at the calibrated α-values, we again perceive a distinction between Cases 1 and 4, and

Cases 2 and 3. While the α-values of the former two cases stay relatively close to unity, those

of the latter, are more extreme. For Case 3, this cancels the effect of pveg (Figure 4.8(b)).

Introducing the extra parameter also has an effect on the other parameters. This is most

striking for Case 2, for which ψ1–4 are all approximately 80% lower, while nburn is almost

three times higher, compared to the values for CA1 (Table 6.1). It is also the only case for

which the new parameter set significantly affects the resulting burn frequency map, largely

by increasing the simulated burnt area (Figure 6.5, Table 6.4).

Table 6.3: Optimal parameter sets for the case-dependent calibration of CA2.

Case α ψ1 ψ2 ψ3 ψ4 nburn

1 0.94 16.96 13.12 11.90 9.18 236

2 0.29 10.08 7.64 8.03 6.18 306

3 4.21 25.37 20.06 17.20 13.23 76

4 1.36 19.14 15.57 13.52 10.73 51
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Table 6.4: Accuracy measures and burnt areas of the simulations obtained with

the case-dependent calibrated parameter set of the CA2 for Cases 1–4.

Case 1 Case 2 Case 3 Case 4

True + 44.6 27.3 28.8 62.1

False + 37.3 65.9 37.2 26.0

False − 18.1 6.8 34.0 11.9

Area (ha)

Simulated 1826 1512 417 273

Observed 1398 553 397 229

Case 4: Meeuwen-GruitrodeCase 3: Hoge Veluwe

Case 1: High Fens

0 2 41
km

0 1 20,5
km

Ü
0 1 20,5

km

Case 2: Kalmthout Heath

0 2 41
km

Burn frequency
1

0
observed burnt area

Figure 6.5: Burn frequency maps obtained with the case-dependent calibrated

parameter set of CA2 for Cases 1–4.
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6.3 Overall calibration

As a last step in the calibration, the predictive power of the CA-based model is assessed.

Considering our small dataset, we opt for a leave-one-out-cross-validation method, which uses

three cases for calibration and subsequently validates with the remaining case. During this

calibration stage, the three cases are evaluated simultaneously in every evaluation, and the Ω

is now the average of the objective function that was used for the case-dependent calibration

(Eq. 6.2). As the latter is defined as a ratio of areas, all cases are treated regardless of their

size or duration.

Figure 6.6 shows that the Nelder-Mead algorithm converges within 50 evaluations for all

cases. Note that, if Case 2 is included in the calibration (Figures 6.6(a),(c),(d)), Ω converges

to values between 2.6 and 3.1, while a significant improvement in the (optimal) Ω-value is

observed when it is left out (Figure 6.6(b)). The resulting parameter set is also markedly

different from the others (Table 6.5), as is the resulting burn frequency map (Figure 6.7 and

Table 6.6). Including Case 2 in the calibration dataset results in substantial underestimations

of the burnt area, and when used for validation, the burnt area is overestimated. This does not

really come as a surprise, since similar observations were made with the ForeFire simulations

(Figure 5.3).

The overall calibration was also performed for CA2. However, since the results thereof did

not provide more relevant information, these are not further discussed here.

Table 6.5: Optimal parameter sets for the overall calibration of CA1.

Case α ψ1 ψ2 ψ3 ψ4 nburn

1 1 28.60 25.08 23.60 13.62 77

2 1 17.61 15.89 13.42 9.31 133

3 1 23.81 18.64 20.70 10.80 266

4 1 26.46 23.22 21.08 13.08 245
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Figure 6.6: Value of the objective function Ω (OF) versus the number of evalua-

tions by the Nelder-Mead algorithm in the case-dependent calibration of CA1 for

Cases 1–4, using the remaining three cases as calibration data.
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Table 6.6: Accuracy measures and burnt areas of the simulations obtained with

the overall calibrated parameter set of CA1 for Cases 1–4.

Case 1 Case 2 Case 3 Case 4

True + 23.8 10.1 27.1 38.2

False + 8.1 89.9 19.6 5.4

False − 68.1 0.0 53.2 56.4

Area (ha)

Simulated 485 5476 231 106

Observed 1398 553 397 229

Case 4: Meeuwen-GruitrodeCase 3: Hoge Veluwe

Case 1: High Fens

0 2 41 km

0 1 20,5
km

Ü
0 1 20,5

km

Case 2: Kalmthout Heath

0 2 41
km

Burn frequency
1

0
observed burnt area

Figure 6.7: Burn frequency maps obtained with the overall calibrated parameter

set of CA1 for Cases 1–4.
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6.4 Sensitivity analysis

As was mentioned throughout this dissertation, wildfire spread models are characterised by

many uncertainties. Hence, it is informative to examine how these uncertainties propagate

through the simulations and what their main sources are. The designated method for this pur-

pose is a combined uncertainty and global sensitivity analysis (GSA) (Lilburne and Tarantola,

2009; Ligmann-Zielinska, 2013; Saltelli et al., 2008). Depicker et al. (2016) have performed

a GSA of the calibrated model parameters of their CA-based wildfire model (Section 4.2.3).

This GSA was not spatially explicit, in that it used aggregated statistics of the simulations,

rather than their outputs (Ligmann-Zielinska, 2013). Here, we will perform a spatially explicit

GSA of the wind direction and speed for the Case 2 (Figure 4.17(a)). The goal is to construct

sensitivity maps that reveal whether or not the (calibrated) model outputs are sensitive to

uncertainties in the wind (direction and speed) data inputs, and if so, which areas are most

affected by these uncertainties.

6.4.1 Method

Ligmann-Zielinska (2013) proposes a spatially-explicit GSA, which is used in this section.

The method is model-independent, meaning that it does not rely on assumptions regarding

the model structure. The GSA is based on repeated simulations with varying inputs, which

are sampled from probability distributions. The model’s sensitivity to the involved inputs is

subsequently assessed by assigning proportions of the total variance in the outputs to these

inputs. Finally, these variances are used to compute sensitivity index (SI) values, so that a

high SI value indicates a high sensitivity of the model to the input. As the GSA is spatially-

explicit, SIs are calculated independently for each of the cells. Hence, the result is a sensitivity

map for all input parameters under study.

Parameter sampling

In our GSA the sensitivity of CA1 is analysed with respect to two inputs, namely the wind

direction and wind speed. Their perturbations are obtained by adjusting the wind data

(Section 4.17(a)) as follows

w̃ = δU

[
cos δθ − sin δθ

sin δθ cos δθ

]
.w. (6.3)

As such, the wind vector w is rotated counter-clockwise by δθ degrees and rescaled by a factor

δU . The values of δU and δθ are constant as we want to asses the model’s sensitivity for a

constant bias on the wind data (e.g. due to interpolation or measurement errors). In order to

find appropriate distributions for these parameters, we compared the average wind direction

and speed, during the entire wildfire duration of Case 2, of the ten weather stations closest to
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the observed perimeter (Figure 6.8). The widths of the ranges of these averages are 38° and

2.94 ms-1, respectively. In order to prevent preferential sampling, we chose to sample the

adjusted wind direction and speed within ranges around the original values, that are of the

same width as the those of the values in Figure 6.8. Hence, δθ and δU are randomly sampled

from the uniform distributions U(−19, 19) and U(0.6, 1.4), respectively.
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Figure 6.8: Mean wind direction (a) and speed (b) data during the entire wildfire

duration of Case 2, from ten weather stations (station 1 is closest to the observed

perimeter, 10 is the furthest). Minimal and maximal values are marked with

dashed lines.

Calculation of sensitivity maps

For calculating the sensitivity indices, the method of Sobol’ was used (Sobol’, 1993), which

consists of four steps. Firstly, two matrices A and B, of dimensions (N, 2), are constructed by

sampling N sets (δθ, δU ). Here, we have chosen N to be 1000. Secondly, two extra matrices

C1 and C2 are created using the first and second column from A, respectively, and the other

column from B. Thirdly, the CA-based model is evaluated for the N parameter sets in A, C1,

and C2 by constructing the burn frequency map with 48 repeated simulations, as described

in Section 6.2. As such, we also account for the intrinsic stochasticity of the model. We used

the parameter set resulting from the case-dependent calibration of CA1 (Table 6.1). The

resulting outputs are vectors of length N , denoted as yA, yC1 , and yC2 , for every cell of the

grid. Hence, for every cell ci, the jth element of yM , denoted as y
(j)
M , corresponds with its

burn frequency value fi in burn frequency map resulting from the jth input set in matrix M .
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In the fourth and final step, the so-called first-order sensitivity indices are estimated as

Ŝi =

1

N

N∑
j=1

y
(j)
A y

(j)
Ci
−

 1

N

N∑
j=1

y
(j)
A

2

1

N

N∑
j=1

(
y

(j)
A

)2
−

 1

N

N∑
j=1

y
(j)
A

2 . (6.4)

Following Ligmann-Zielinska (2013) we only calculated Ŝi for cells where fi varies considerably

across the N evaluations of matrix A, since Eq. (6.4) becomes unstable at low variances due

to values near zero in the denominator. As such, only cells for which the variance in yA

exceeds 0.01 are considered in the GSA.

6.4.2 Results and discussion

Figure 6.9(a) illustrates the burn frequency map, obtained with the original wind data, along

with the burn frequency variance map, calculated from yA. The latter indicates that the

highest variances are located in areas where the burn frequencies are approximately 0.5, which

is expected when most of the uncertainty in the model output results from the model’s intrinsic

variability. However, also some regions with high variances correspond to low burn frequency

values, mainly in the north(-western) corner of the observed perimeter. This suggests that

still some part of the variance can be related to uncertainty in the wind data. The sensitivity

maps in Figure 6.9(b) indicate that the model is mostly sensitive to variations in the wind

direction and largely insensitive to those in the wind speed.

It should be noted that the Si values of some cells dropped below zero or exceeded unity, which

is, according to the theory, impossible, as the Sis are fractions of the total variance (Sobol’,

1993). These values were set to 0 and 1, respectively, in making the maps in Figure 6.9(b).

There are two complementary explanations for this. Firstly, we did not calculate Si directly,

but rather the estimator Ŝi, thus leaving the possibility of numerical errors. Secondly, as the

intrinsic variability of the stochastic simulations cannot be fully grasped with 48 simulations,

it is expected that this might jeopardise the calculations of the Ŝi. Yet, this issue should not

undermine the conclusions drawn.
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Figure 6.9: Burn frequency map and burn frequency variance map (a) and the

sensitivity maps (b) of Case 2. S1 and S2 are the estimated first-order sensitivities

of the wind direction and wind speed, respectively.
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6.5 Conclusions

Two main conclusions can be drawn from the calibration results of the CA-based model. The

first is that it is no easy task, even for the case-dependent calibrations. We may state that this

is partly due to the model structure, causing the Ω to have a lot of local optima. Evidence

hereof is the (very) rapidly converging optimisation algorithm—especially considering that

there are 5 to 6 parameters to be optimised—the intrinsic variability of Ω due to the model’s

stochastic nature, and the equifinality of different parameter sets. The latter is caused by

non-linear interactions between the different parameters (see Eqs. (4.4)–(4.6)). Hence, in-

troducing an additional parameter α only makes the optimisation problem more difficult to

solve, without a significant effect on the resulting (accuracy of the) simulation.

Moreover, the high uncertainty of the data used also burdens the model calibration. This

mainly applies to the data on the progression of the wildfires, since these are expected to have

a great impact on the simulated fire dynamics. For example it was mentioned that the used

wildfire durations are worst-case scenario’s, and thus overestimations of the real durations

(Section 4.1.6). Calibrating with such data leads to parameter sets which underestimate the

actual ROS. Moreover, as the wind data vary over time, longer wildfire durations also imply

that new wind data are used in the simulations. If these new data strongly differ from the

old ones, the wind dependency of the calibrated model will also differ.

This is indeed what we observed for Case 2—which had the longest reported fire duration of

all cases (Table 4.3). The burn frequency variance and sensitivity maps (Figure 6.9) indicate

that the case-dependent calibrated CA1 for this case is only slightly sensitive to variations in

the wind direction and largely insensitive to those in the wind speed. This is also consistent

with the results discussed in Section 6.2.2, as the high calibrated values of parameters ψ1,2

(Table 6.3) result in a practically binary response of the model to the wind vector. Even

very small wind components in the fire spread direction result in pj values near unity. Hence,

the model is—with the calibrated parameter set—only sensitive to perturbations of very

low wind speeds. A possible way to quantitatively asses the effect of the estimated wildfire

duration on the calibration would be to calibrate the CA-based model for different durations

(possibly combined with a GSA such as the one in Section 6.4). Yet, this would require many

simulations.

As was discussed in Section 4.2.3, the CA-based model has some fundamental shortcomings.

These include its empirical nature, the fixed ∆t, and the fact that nburn is fixed for all cells and

calibrated separately from the vegetation data. However, despite these issues the resulting

burn frequency maps are of a similar quality with respect to the perimeters obtained with the

two publicly available simulators that were tested in Chapter 5. This adds evidence to the

second main conclusion, namely that, for the studied dataset, complex models do not lead to

significantly better results.



CHAPTER 7
Conclusions and perspectives

In this dissertation, we have evaluated three real-time dynamic wildfire simulators regarding

their operational usability in a Belgian context. The models comprised two (nearly) opera-

tional deterministic wildfire simulators, namely FARSITE and ForeFire, and one stochastic

CA-based model in early research phase. For the evaluation of these models, a dataset, con-

sisting of seven recent wildfire cases in Belgium and the Netherlands, was used.

In Chapter 5, we evaluated the simulation results obtained with both FARSITE and ForeFire

for all wildfire cases. We concluded that neither of them simulated the considered wildfires

with a sufficient level of accuracy to be useful in an operational setting. Although FARSITE

is generally considered to be the standard reference model, it performed considerably worse

than ForeFire for the presented dataset. FARSITE mostly underestimated the wildfire spread,

which is inconsistent with findings in literature, where it generally (grossly) overestimates the

ROS. We concluded that this may be due to FARSITE’s high data demand in combination

with the poor quality of the available (fuel) data. Both simulators did simulate the wildfires

faster than real-time, yet, their cumbersome (and time-consuming) application requires expert

knowledge and again limits their operational usability.

In Chapter 6, the CA-based wildfire model developed by Depicker et al. (2016) was cali-

brated and evaluated by means of simulations and a global sensitivity analysis. Although

this model is much simpler than FARSITE and ForeFire, it proved to be very hard to cali-

brate. The latter was attributed to the model’s stochastic nature, the equifinality of different

parameter sets and, last but not least, the poor quality of the calibration data. Mainly the

limited information on the progression of the wildfires seemed troublesome in this respect.

The parameter sets that were found through calibration resulted in simulated wildfires that

depend little on the wind data, as illustrated in both the simulated burn frequency maps and

the global sensitivity maps of the wind speed and direction. Yet, accuracies of these burn

frequency maps were not significantly lower than those obtained with FARSITE and ForeFire.
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Finally, we may conclude that, given the available input data, none of the evaluated wildfire

simulators are applicable in a Belgian context. Moreover, without detailed data on the pro-

gression of wildfires in a Belgian environmental context, no relevant calibration and validation

of these models are possible. Hence, future wildfire events should be monitored in more detail,

e.g. based on airborne thermal infra-red imagery (Valero et al., 2017), so that time-stamped

snapshots of the fire progression are available for model testing and development.
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APPENDIX A
Fuel classifications

Table A.1: JRC fuel classification and corresponding NFFL classes.

JRC classification NFFL classification

ID Class ID Class

1 Peat bogs 5 Brush

2 Wooded peatbogs 6 Dormant brush

3 Pastures 1 Short Grass

4 Sparse grasslands 1 Short Grass

5 Mediterranean grasslands and steppes 2 Grass and understory

6 Temperate, Alpine and Northern grasslands 1 Short Grass

7 Mediterranean moors and heathlands 5 Brush

8 Temperate, Alpine and Northern moors and heathlands 5 Brush

9 Mediterranean open shrublands (sclerophylous) 2 Grass and understory

10 Mediterranean shrublands (sclerophylous) 4 Chaparral

11 Deciduous broadleaved shrublands (thermophilous) 5 Brush

12 Alpine open shrublands (conifers) 6 Dormant brush

13 Shrublands in Mediterranean conifer forests 7 Southern rough

14 Shrublands in Mediterranean sclerophylous forests 4 Chaparral

15 Shrublands in Mediterranean montane conifer forests 7 Southern rough

16 Shrublands in thermophilous broadleaved forests 5 Brush

17 Shrublands in beech and mesophytic broadleaved forests 5 Brush

18 Northern open shrublands in broadleaved forests 5 Brush

19 Shrublands in Alpine and Northern conifer forests 7 Southern rough

20 Mediterranean long needled conifer forest 10 Timber

(mediterranean pines) (litter and understory)
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21 Mediterranean scale-needled open woodlands 8 Closed timber litter

(juniperus, cupressus)

22 Mediterranean montane long needled conifer forest 10 Timber

(black and scots pines) (litter and understory)

23 Mediterranean montane short needled conifer forest 8 Closed timber litter

(firs, cedar)

24 Temperate conifer plantations 8 Closed timber litter

25 Alpine long needled conifer forest (pines) 10 Timber

(litter and understory)

26 Alpine short needled conifer forest (fir, alpine spruce) 8 Closed timber litter

27 Northern long needled conifer forest (scots pine) 10 Timber

(litter and understory)

28 Northern short needled conifer forest (spruce) 8 Closed timber litter

29 Mediterranean evergreen broadleaved forest 4 Chaparral

30 Thermophilous broadleaved forest 9 Hardwood litter

31 Mesophytic broadleaved forest 9 Hardwood litter

32 Beech forest 9 Hardwood litter

33 Montane beech forest 10 Timber

(litter and understory)

34 White birch boreal forest 10 Timber

(litter and understory)

35 Mixed mediterranean evergreen broadleaved 4 Chaparral

with conifers forest

36 Mixed thermophylous broadleaved with conifers forest 9 Hardwood litter

37 Mixed mesophytic broadleaved with conifers forest 10 Timber

(litter and understory)

38 Mixed beech with conifers forest 9 Hardwood litter

39 Riparian vegetation 5 Brush

40 Coastal and inland halophytic vegetation and dunes 1 Short Grass

41 Aquatic Marshes 3 Tall Grass

42 Agroforestry areas 2 Grass and understory

50 Agriculture unburnable 0 Not fuel

51 Agriculture 0 Not fuel

52 Agriculture with natural vegetation 0 Not fuel

53 Urban and barren 0 Not fuel

54 Urban discontinuous 0 Not fuel

55 Water bodies 0 Not fuel
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