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Samenvatting

Een arts uit Frankrijk had in de jaren 1950’ een grote populatie konijnen op zijn landgoed, wat

niet naar zijn zin was. Zoekend naar een manier om van de diertjes af geraken, kwam hij te

weten dat myxomatose, een dierenziekte, succesvol was gebleken om konijnenpopulaties onder

controle te houden in Australië. Deze waren daar gëıntroduceerd voor de jacht, door Britse

kolonisten, waarna ze, door hun bovenmaats reproductief vermogen, uitgegroeid waren tot een

enorm ecologisch en economisch probleem. Dit wetende, liet de arts een paar konijnen, genfecteerd

met myxomatose, los. Dit was voldoende om van zijn konijnenprobleem verlost te zijn, maar had

catastrofale gevolgen voor de wilde konijnenpopulaties in Europa. De ziekte verspreidde zich

ook naar België. Het toenmalig Ministerie van Landbouw heeft in een document, genaamd het

Bulletin Sanitaire genoteerd waar en wanneer er ziektehaarden van myxomatose gevonden waren

in België. In deze thesis baseren we ons op dit document om de introductie van myxomatose in

België te reconstrueren met een ruimtelijk expliciet ziektemodel. Ter ondersteuning daarbij zullen

een sensitiviteitsanalyse en een literatuurstudie worden uitgevoerd.

Uit de literatuurstudie werd nuttige kennis verworven over de eigenschappen van myxomatose en

de populatiedynamica van konijnen. Daarnaast werden de beschikbare ziektemodellen uitgebreid

besproken. Dan werd de data geanalyseerd, waaruit bleek dat myxomatose vanuit vijf uitbraken

België is binnengetreden. Vervolgens werd het verloop van de epidemie gereconstrueerd. Nadat

we hadden bevestigd dat het ruimtelijk expliciet model een ziektegolf kan simuleren, werd er een

sensitiviteitsanalyse op toegepast, waardoor we konden bepalen welke parameters van het model

het belangrijkst zijn voor de verspreiding van de ziekte. Er werd ook aangetoond dat er informatie

kan gewonnen worden uit een ruimtelijke gevoeligheidanalyse, die in een niet-ruimtelijke verborgen

blijft. Gesterkt door de hierbij gewonnen kennis en de informatie uit de literatuurstudie, waren

we in staat parameters te infereren, die in het model in staat stelden een ziektegolf the produceren

die in voldoende mate op die uit de data lijkt, waarmee de onderzoeksvraag beantwoord werd.
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Summary

In the 1950s, a French physician wanted to get rid of the rabbits on his estate. He found out that

a disease, called myxomatosis, had been successful at controlling rabbits in Australia. They had

become an ecological and economical problem, due to their notorious reproductive capacity, after

they had been introduced for hunting purposes. Having learned this, the physician inoculated a

few rabbits with myxomatosis and released them. This got rid of his problem, and the majority

of the European rabbit population. During its spread across the continent in the following years,

myxomatosis also entered Belgium. The Ministery of Agriculture kept reports on its spread in a

document called the Bulletin Sanitaire, which contains the number of nidi that were reported and

their location for every two weeks. In this thesis, based on the data of the Bulletin Sanitaire, we

reconstruct the introduction of myxomatosis in Belgium with a spatially explicit model, backed

up by a profound sensitvity analysis and a thorough literature review.

From the literature review, we were able to obtain useful knowledge on the properties of myx-

omatosis, the population dynamics of rabbits, as well as getting a review of different epidemic

models. After that, we analysed the data form the Bulletin Sanitaire, from which we learned that

myxomatosis entered Belgium in five different outbreaks. We also reconstructed the progress of

the epidemic. After confirming that the spatially explicit model can simulate an epidemic wave,

we performed a sensitivity analysis on it, from which we were able to identify the parameters that

are the most important for the progress of the epidemic wave. We also showed that a spatial

sensitivity analysis can discover information that is hidden in a non-spatial sensitivity analysis.

Aided by the knowledge gathered by the sensitivity analyses and the literature review, we were

able to infer parameters for the spatially explicit model that enabled it to simulate an epidemic

wave that resembles the data in a general sense, answering the research question.
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CHAPTER 1
Introduction and Problem Statement

1.1 Introduction

In the 1950s, a French physician wanted to get rid of the rabbits on his estate. He had learned

that, in the previous year, a disease called myxomatosis had been successful at controlling rab-

bit pests in Australia. The herbivores had become an ineradicable problem when a nobleman

introduced some game at his estate, hoping to establish a population for the hunt. His order of

five hares, seventy-two partridges and some sparrows also included twelve grey rabbits, which,

after introduction, promptly became an ecological and economical disaster due to the species’

notorious reproductive capacity. Knowing this, the physician inoculated a few rabbits he caught

with a strain of myxomatosis and released them. This proved to be a successful way to solve his

rabbit problem. So successful in fact, that he also got rid of the majority of the European rabbit

population in the years that followed. This caused major problems for their natural predators,

and for the rabbit farms, who now had to vaccine their rabbits. The disease also entered Belgium,

where the Ministery of Agriculture kept reports on its spread. This document, called the Bulletin

Sanitaire, contains the location and number of nidi they found for every two weeks.

1.2 Research objectives

The primary objective of this dissertation, is to use the data from the Bulletin Sanitaire to recon-

struct the spread of myxomatosis in Belgium using an epidemic model. The secondary objective

is to perform a sensitivity analysis on said model, which is often overlooked for spatio-temporal

models. To do this we will first perform a literature study about the history and biology of the

European rabbit, myxomatosis, and the different epidemic models that are available. Using this

knowledge, we will analyse the data of the Bulletin sanitaire. After that we will explain the details

of an existing spatio-temporal epidemic model. Following on that we will perform an extensive sen-

sitivity analysis, to gain knowledge on the model behaviour and the relations between its outputs

and parameters. This will enable us to perform a calibration using the analysed data, after which

we will examine whether the calibrated model is able to reconstruct an epidemic and simulate

some scenarios.



2 1.2 RESEARCH OBJECTIVES

It may seem strange, to investigate an epidemic that happened more than fifty years ago. However,

modelling this event may further understanding of the processes governing the introduction of

novel pathogens into an animal population. These events have become inevitable in the globalized

society we live in today and although myxomatosis does not pose a threat for humans, there are

other animal diseases that do so, e.g. rabies and the black plague. Besides, there is a huge amount

of information available about the disease dynamics, virulence and history of myxomatosis, which

can help us model the disease in a more accurate way.



CHAPTER 2
Epizootics in Rabbits

In this chapter we will provide some general information about epizootics, after which we will

proceed to discuss the biology, history and importance of the European rabbit (Oryctolagus cu-

niculus). After that we will discuss the two most important diseases in rabbits and their respective

histories: myxomatosis and rabbit haemorrhagic disease.

2.1 Introduction to epizootics

2.1.1 What are epizootics?

To assess the impact of myxomatosis on rabbits, it is important that some terms are explained

in relation to animal diseases. An animal disease is typically enzootic, meaning that it occurs

in a population at a regular, predictable or expected rate. An epizootic, the equivalent of an

epidemic for animals, occurs when there is an unexpected and irregular increase in the number of

cases for a specific population, place and time [111]. The term outbreak, which is often associated

with epizootics, has a different meaning. Outbreaks of botulism, for instance, occur annually in

waterfowl with predictable regularity and are as such not epizootic [111]. An important term

associated with epizootic diseases and their importance for human healthcare is a zoonose. This

is a disease that can be transferred from vertebrates to humans [102].

2.1.2 Importance of epizootic diseases

The study of epizootic diseases is of great importance for human healthcare as of all pathogens

infecting humans, 61% are zoonotic [102]. Some have caused widespread panic when they emerged

as epizootics, for example, the crisis following the development of Creutzfeldt-Jakob disease in

humans that had eaten meat of cattle infected with bovine spongiform encephalopathy [49]. Other

well-known zoonotic diseases are rabies, which is present in several mammals, the bubonic plague,

transferred to humans from rats with flea bites, toxoplasmosis, which can damage the embryo in

pregnant women [58] and the influenza strain H5N1, also referred to as the bird flu [102]. Epizootics

can also emerge when a foreign pathogen enters a native host species that is not adapted to it. If

this happens in native species from an ecosystem, it can cause enormous damage. The introduction



4 2.2 THE EUROPEAN RABBIT

of chytridiomycosis in Australia, for instance, caused big drops in amphibian populations and led

some species to the brink of extinction [10]. An important example for Europe is the accidental

introduction of myxomatosis and rabbit haemorrhagic disease in rabbits. A beneficial aspect of

diseases that can develop to epizootics is their potential for controlling vertebrates in areas where

they do not belong [96]. For this purpose the same pair of diseases has been used to control rabbits

in Australia (see Section 2.4 and 2.6).

2.2 The European rabbit

2.2.1 Biology

The European rabbit (Oryctolagus cuniculus) is a small mammal, a rabbit species that belongs to

the lagomorph (lagomorpha) order together with hares, e. g., the brown hare (Lepus europaeus),

and pikas (Ochotona sp.), small animals resembling guinea pigs. They share a trait with the rodent

order (Rodentia), i.e., they both have gnawing incisors that never stop growing. A key difference

between these families is the presence of two additional peg-like teeth next to the upper incisors

of lagomorphs. Still, they are often misclassified as rodents [16, 71]. Lagomorphs consist of two

families: the leporids (Leporidae), containing the rabbits and hares, and the pikas (Ochotonidae).

The difference between hares and rabbits can be confusing as they look very similar. The clearest

way to distinguish them is by investigating their reproductive behaviour. The young of rabbits

are called kittens or sometimes pups and are altricial, meaning they need the care of their parents

at birth to survive as they are born naked, and with closed eyes. The young of hares, called

leverets, are born precocial, meaning they are open-eyed, fully furred and do not need much care

from their parents [71]. All lagomorphs are herbivores, feeding on grasses, leaves, bark, seeds and

roots. To get the most out of this low-quality diet they pass their meals through their digestive

tract twice, using a process called coprophagy, which essentially means that they eat their own

feces. They are hindgut fermentors, implying that they use micro-organisms in their hindgut to

digest compounds that their own enzymes cannot break down. For that purpose, their guts are

large, especially their caecum and appendix, where most of the fermentation processes take place

[16, 71]. Most hares and rabbits are solitary animals, but the European rabbit is an exception.

It is one of the two social leporid species that live in burrows, the other being the pygmy rabbit

(Brachylagus idahoensis) [71]. These underground tunnel networks, called warrens, can occupy

up to two acres of land [16]. They are territorial animals, active at dusk, that live and forage

in colonies of up to 20 adults, but most groups contain three to five males and three to seven

females [16, 71]. European rabbits can breed throughout the year if conditions are favourable,

which is uncommon among leporids. Yet, there are seasonal peaks of high and low reproductive

activity [71]. They are induced ovulators, so the stimulus of courtship and copulation is required

to ovulate. After a gestation period of about 31 days [16], the females give birth to about four–five

young at a time [109], which leave the warren in less than a month. A female can produce several

(3–8) nests a year of which 70% are born between April and June [109], resulting in about 14 to

28 young per female per year. Females reach sexual maturity in 3.5 months, males around four

months and they can live up to nine years [71] but the average life expectancy of adult rabbits is

about 1.5 years [23]. Estimates of how many rabbits survive until their first reproductive season

differ from 3 to 14 % [109] to 20 % [68].
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2.2.2 Geographic range and habitat

The European rabbit is now found around the globe due to human intervention (see Section 2.3),

but its natural range used to be limited. It is the last species remaining of the Oryctolagus genus

which used to be present as different species across Europe. After the glaciations in the pleistocene

era, they got confined to the Iberian peninsula in south-western Europe, some parts of northern

Africa and southern France [15, 27, 71, 104]. All lagomorphs have two fundamental requirements

to survive in their environment: they need places for shelter and places to eat, preferably in close

proximity to one another, forming a mosaic of open patches and shrubs. Shelter provides both

protection from predators and a way to keep themselves warm or cool. European rabbits also

prefer soft soil to dig their burrows. In open areas, like grassland, they are more susceptible

to predation from birds of prey, while in scrubland, they are more susceptible to predation by

mammals [70, 71]. The habitat type has a big influence on how rabbits cohabit, their population

density and the transmission of diseases [70, 108] . Lombardi et al., (2003) [70] conducted a

study in Spain in three habitats: scrubland, with dense vegetative cover but low food availability,

grassland, with low cover with high forage abundance and an intermediate habitat, the ecotone

[70]. The highest rabbit densities are present in the ecotone habitat, followed by grassland, while

the number of burrows are the highest in the ecotone, followed by the scrubland. Burrows are

distributed randomly in the latter, while they are aggregated in the other two habitats (see Figure

2.1). There is no significant difference in mortality due to predation between the three habitats,

while mortality due to disease was only present in habitats with an aggregation of burrows. There

is a significant link between aggregation and mortality due to contagious diseases, like myxomatosis

and RHD [70].

For the rabbits’ dietary requirements, the plant species composition of a given area is less important

than the general availability of edible plants throughout the year. This dietary flexibility is partly

accountable for the success of the European rabbit in areas that do not have a single plant species

in common [62, 71]. Rabbits show a high tolerance for dehydration, according to [47]. They can

survive for two months on dry pastures in summer without drinking water, losing up to 48% of

their body weight in water in the process [47]. This enables them to survive the dry environment

of the Australian outback and Iberian peninsula [16, 47].

2.2.3 Importance of rabbits

In their natural ranges, lagomorphs are often important for the ecosystem. They are not exclusively

a good food source for predators, given that their grazing behaviour keeps the natural vegetation

in a traditional state. Across the Iberian peninsula, European rabbits are considered a keystone

species [27], a species that has a disproportionately large effect on an ecosystem and whose loss

would cause significant changes in other species’ populations and ecosystem processes [71]. Their

grazing behaviour creates an open scrubland with open areas and tight shrubs, essentially an ideal

rabbit habitat. Several animal species seek shelter in their empty burrows, and at least 72 plant

species’ seeds are dispersed by rabbit pellets [27, 71]. There are forty predators present on the

Iberian peninsula that prey on the European rabbit. This list contains four reptiles, 19 birds of

prey and 17 mammals of which several specialize in rabbits as their primary food source. For

example, the diet of the critically endangered Iberian lynx (Lynx pardinus) consists of 80% rabbit.
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Figure 2.1: Vegetative cover and distribution of rabbit burrows (circles) at Coto

del Rey, Spain, in a) scrubland, b) grassland, and c) an ecotone. Squares represent

50-by-50 metres areas of open land (white) and scrubland (dark) [70].

The decline of rabbit populations due to the introduction of myxomatosis and rabbit haemorrhagic

disease (RHD) (See sections 2.4 and 2.6), in addition to the destruction of natural habitat, is

believed to be the main cause of this species’ decline, and several others, including the Spanish

imperial eagle (Aquila heliaca) [27, 71]. The European rabbit is the only lagomorph species to

have been domesticated (see Section 2.3.1). They are kept as pets all over the world. In the United

States, estimates suggest that there are about five million pet rabbits living in about two million

homes. They are generally easy to care for as pets [71]. Domestic rabbits are also bred for shows.

Breeder organizations recognize more than 50 breeds worldwide [71]. However, the importance of

rabbits is not limited to being a source of entertainment or aesthetic pleasure. Rabbits and hares

have been an important food source throughout history [27]. There is evidence that our ancestors

turned to hares and rabbits as a source of meat whenever larger game or easier to capture animals

like shellfish and turtles’ populations declined [26]. While they may be small, populations recover

quickly from hunting due to their high reproductive rate. Their meat is high in protein and low

in cholesterol and fat, which makes it a healthy choice of meat. The consumption and production

of domesticated rabbits for their meat has increased to about 857 million rabbits a year of which
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most are reared in China, Italy and France. Rabbits and hares are also hunted for sport in many

countries [27, 71, 104]. After meat, fur is the most prominent rabbit product. It is a cheaper

alternative to more expensive mammal furs. Rabbit skins from meat production are not suitable

as furs for clothing, however, the hair can still be processed into felt and the skins can be turned

into glue or fertilizer. The fur from long-haired angora rabbits is in a completely different category

and is used in luxurious clothing because of its fineness and luster [71].

Domestic rabbits have been used since the early 1800s as subjects for scientific experiments that

have led to several important discoveries, such as the discovery of the Graffian follicle and the first

embryo transplantation. They are easy to obtain and docile to handle and the prominent veins

in their ears make it easy to draw blood [16, 71]. Their short gestation periods are an advantage

for studies related to reproduction. Rabbits display or can be induced to display some of the

same diseases and genetic abnormalities occurring in humans, including diabetes, tuberculosis

and cancers, making them good test animals for those diseases [13, 71].

On the other hand, there are also many problems associated with rabbits, the European rabbit

in particular. They are notorious for having caused enormous ecological and economical dam-

age, since their rapid reproduction and big appetite can put a lot of pressure on an unprepared

ecosystem (see Section 2.3.2). In several countries, the introduction of rabbits has caused other

animals that depend on local plants to disappear since these were eaten by the rabbits. In some

cases, they can cause local predator populations to increase due to the increased availability of

prey. This can reduce the number of other prey animals as the pressure from predators becomes

higher. This is called hyperpredation [11, 71]. Where rabbit numbers are too high, overgrazing

can cause the death of plants that are keeping the soil stable with their root systems, which leads

to severe erosion problems. Their selective grazing behaviour of native plant species can cause

introduced plants to increase in numbers [62]. In agriculture and forestry, they cause losses due

to their feeding on field crops and pasture and the ring-barking of young woody plants during

the winter [27, 71]. In addition, European rabbits have caused damage by tunnelling underneath

the foundation of buildings and ancient sites [27, 71]. Lagomorphs carry a variety of diseases,

some of which can be contracted by humans. Tularaemia, caused by the bacterium Francisella

tularensis, is a dangerous infectious disease. Humans are infected through tick bites, handling

diseased animals or eating their uncooked meat. Some species of cottontails and hares are also

known to be susceptible to the bubonic plague caused by the bacterium Yersinia pestis [71].

2.3 History of the European rabbit

2.3.1 Domestication of the European rabbit

The domestication of the European rabbit, the only domesticated lagomorph, started in the Roman

period. Romans kept rabbits, deer, hares and birds in leporia, enclosed spaces several acres in size

[26, 71]. Rabbits were hunted within leporia with muzzled ferrets, who chased the animals out of

their enclosures so people could catch them wielding nets, a technique still used to this day [70].

They did not domesticate rabbits, but were responsible for spreading the animals throughout

Europe since rabbits could easily dig under the walls surrounding leporia and escape into the

environment. As humans urbanised the landscape, life for rabbits became easier due to the increase

in food and the decline of predators, thus helping them establish successfully through Europe
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[26, 71]. Medieval French monks are credited with domesticating rabbits between 500 and 1000

CE. They had a taste for foetal rabbits, called laurices which they collected right after birth.

Because of the close monitoring of the pregnant females, they were put in more enclosed spaces

than the leporia. So they forced the rabbits to breed and give birth on the ground in high-walled

courtyards [26, 71]. Ironically, during the Middle Ages rabbits where considered rare animals,

prized for their meat, fur and hides. Because of their high value, maintaining and controlling

warrens was a privilege for the king and nobility. Around 1100, with the decline of beavers, bears

and other fur-bearing animals, land-owners started setting aside and carefully maintaining pieces

of land for keeping rabbits. Predators were eliminated, food was supplied and sometimes holes

were dug to facilitate their burrowing. Here, the selection for bigger size started as big females were

left to breed while smaller females and old males were caught for food and fur. Gradually, hutches

to contain rabbits were introduced, and, by about 1600, breeders were selecting for different fur

colours to provide variety for customers. The angora and lop-eared rabbits appeared in the 1700s

and it was not until the 1800s that the Belgian hare (Flemish giant) appeared. Only after the

1800s it was allowed for non-aristocratic people to keep rabbits and hunt them, so both rural and

urban people started keeping them in classic backyard hutches for food [26, 71].

2.3.2 Introduction of rabbits into Australia

The European rabbit has been introduced in many countries including New-Zealand, Australia

and parts of south-America. Of these, the introduction in Australia is best known for its disastrous

impact on endemic wildlife and agriculture [62]. Before the animal evolved into a pest, domestic

rabbits had been present for a long time in Australia after English settlers had arrived in Sidney in

1788. Many domestic rabbits were released by acclimatization societies which basically meant that

they wanted to make Australia more like Great-Britain. However, when wild rabbits from Great-

Britain were imported in 1859 and 1870 in Victoria and South-Australia, they started to reproduce

rapidly and in no time huge numbers spread across Australia. Under favourable conditions, they

moved about 125 kilometers per year, up to 300 along riverways. By 1910, despite attempts at

shooting and poisoning, and the introduction of predators like cats (Felis catus) and foxes (Vulpes

vulpes), rabbits had spread from Winchelsea in south eastern Australia, over 3000 km west to the

Indian ocean, and more than 2000 km north to the tropic of Capricorn. Rabbits were described

as a grey blanket covering Australia. Even the famous rabbit-proof fences could not stop their

invasion [56, 71, 96].

As mentioned in Section 2.2.2, European rabbits are well adapted to the Mediterranean climate,

which is similar to the climate of southern Australia. Burrows of several native marsupials such

as wombats (Vombatus ursinus), rat-kangaroos (Potoroidae) and the bilby (Macrotis lagotis) pro-

vided shelter. The rabbits also arrived with few parasites or diseases. Some natural predators

were present, but extensive control measures on these to protect sheep and cattle potentially re-

duced their effect on rabbits. The greatest ally of the rabbit invasion was the change in land cover

from shrubs and trees to grasses and annual herbs to feed cattle. This created a perfect graz-

ing environment for rabbits. Their browsing and grazing substantially modified the landscape by

preventing the regeneration of trees and shrubs, and encouraging weed invasion and soil erosion.

Rabbits were and still remain the most destructive vertebrate pest in Australia causing massive

agricultural losses and ecological damage. It was not until the introduction of myxomatosis that

the problem got under control (see Section 2.5) [56, 71, 96].
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2.4 Myxomatosis

2.4.1 Symptoms and disease progression

The myxoma virus or MYXV is a poxvirus naturally found in two American rabbit species (Sylvi-

lagus brasiliensis and Sylvilagus bachmani) in which it causes a small, localised fibroma. Yet, in

European rabbits, the virus causes myxomatosis, a serious disease, which is mostly lethal [34, 56].

Rabbits that get infected by virulent strains of the myxoma virus develop symptoms after ap-

proximately 4 days, which include conjunctivitis and an elevated rectal temperature. After 6 days

anogenital swelling is present and secondary lesions appear on the face and ears of the animal.

After 8 to 10 days rabbits with the acute form of the disease have developed the typical swollen

head and face, swollen, droopy ears, serous and later mucopurulent secretion from the eyes and

nose, and several cutanous swellings, sometimes called tumours or myxomas, ranging from a few

millimeters to several centimeters in diameter. The animals have difficulties breathing in this

stage. The anogenital region is swollen and oedematous. In males, the scrotum and testes are

extremely swollen (see Figure 2.2 ). The virus is similar to HIV because it also actively destroys

the immune system. Death occurs typically between 8 and 12 days after infection due to secondary

infections [34, 56, 96].

Figure 2.2: Myxomatosis in the European rabbit: (A) laboratory rabbit, with

swollen head, closed eyelids and lesions on head and ear (arrows), (B) primary

lesion after inoculating a laboratory rabbit about 10 days after infection (image Dr

S. M. Best), (C) Oedema of scrotum 10 days after infection, and (D) cut section of

primary lesion 10 days after infection (scale bar = 1 cm) [56]
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2.4.2 Disease transmission and virulence

The virus is mostly transmitted by biting arthropods, like mosquitoes and fleas. The virus adheres

to their mouthparts when they probe through the virus-rich epidermis of the fibromas and lesions.

The virus can then be released passively into a new host when the arthropod takes its next blood

meal. This enables the spread between different populations since the virus can stay alive in the

parasite even when no rabbits are present [34, 56]. The secreted mucus also contains a lot of virus

particles and enables the direct transmission between individuals by the respiratory route which is

responsible for close-range transmission between colony members [17]. The disease is most severe

in young rabbits and peaks during summer [71].

2.5 Introduction of myxomatosis in the European rabbit

2.5.1 Introduction of myxomatosis in Australia

An interesting aspect of the introduction of myxomatosis in the European rabbit is that it allows

to examine what happens when a novel pathogen gets grip of a completely naive mammalian host

species. Because of the short generation time of rabbits and their vast numbers in Australia, the

coevolution of the host and its parasite could be studied in real time. The use of myxomatosis as a

biological control agent has been suggested as early as 1919 and some early laboratory trials were

done, but no field releases were permitted [34, 56]. In the 1930s, investigations were undertaken

to determine the potential of MYXV. Although the virus reduced the populations in enclosure

experiments, it did not spread well in field trials. Only when native stickfast fleas (Echidnophaga

sp.) were present in the absence of European foxes (Vulpes vulpes), which removed sick rabbits,

local spread did occur [17]. Mosquitoes do not appear to have been present in sufficient numbers

to act as significant vectors in these trials, as they were conducted in dry country. However,

laboratory trials had demonstrated the potential of both mosquitoes and flies to transmit the

disease [17]. The conclusion from these trials was that MYXV was unlikely a good agent for

rabbit control, except maybe in areas with lots of vectors and no predators [17]. This shows how

difficult it can be to predict the impact of an emerging novel disease [56]. As rabbit numbers

had increased significantly in the 1940s, further trials were undertaken near the Murray valley

in northern Victoria and southern New South Wales to assess the role of mosquito vectors [90].

The virus spread only with low efficacy and seemingly disappeared, even in high density rabbit

populations. However, the virus persisted in the environment and in December 1950 it finally

emerged in its epizootic form (See Figure 2.3). Its emergence was driven by large irruptions

of mosquitoes along the flood plains of the Murray-Darling basin and the massive numbers of

susceptible rabbits present there [90]. The virus strain that was released here is referred to as

the Standard Laboratory strain (SLS). It was derived from an European rabbit in Brazil, and

subsequently supplied to researchers in the USA [33, 56].

2.5.2 Introduction in Europe

In the summer of 1952, a French physician, being tired of the damage to his garden, inoculated

two wild rabbits at his estate about 70 km west of Paris with a strain of MYXV he obtained at a
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Figure 2.3: Spread of myxoma virus in the summer of 1950/51 after introduction in

south-eastern Australia showing the rivers of the Murray-Darling basin.

Approximate spread of the virus along the river basin is shown by the red arrows

[34, 56, 90].



12 2.5 INTRODUCTION OF MYXOMATOSIS IN THE EUROPEAN RABBIT

lab in Lausanne, Switzerland. This strain of MYXV is referred to as the Lausanne strain or Lu

[33]. It has a similar case fatality as the SLS (see Section 2.5.1), as in lab test 100% of infected

rabbits die after 10-12 days. Despite attempts to stop the spread of the disease over the next

10 years, all areas in Europe inhabited by rabbits got infected. The Lu strain also spread into

the commercial and backyard rabbit industries, where it was partially controlled by vaccination

and quarantine measures [34, 77]. From continental Europe, MYXV was introduced into Britain

in 1953 where the virus also became enzootic, despite attempts at containing it [56]. Whereas

in Australia the main vectors were mosquitoes, the European rabbit flea Spilopsyllus cuniculi, a

parasite that can only reproduce on the European rabbit [71], was a major vector. In comparison

to the more seasonal mosquitoes this meant in Europe the disease could also spread in the winter

[56].

2.5.3 Impact of myxomatosis

In Australia, the virus first caused an enormous drop in rabbit populations. However, it became

less virulent in the following years, as rabbit populations became less susceptible (see Section

2.5.4) [56]. This is often referred to as an example of failed biological control, but this is an

oversimplification. The first epidemic wave reduced the population by approximately 90% [56].

The drop in rabbit numbers in 1950 provided ecological breathing space, allowed a rapid regener-

ation of plant species and an increase in agricultural productivity [34]. Although rabbit numbers

increased again the years after the release and again became a significant environmental problem,

myxomatosis continued to control the population and increased the effectiveness of conventional

control measures, like poisoning and habitat destruction [110]. In addition, predators like cats

(Felis catus), foxes (Vulpes vulpes) and dingos (Canis familiaries dingo) could keep populations

under control after they had substantially been reduced [110]. After the introduction of RHD (See

Section 2.6) the influence of myxomatosis on rabbit populations has become unclear [56].

In Europe, the impact on the rabbit populations was catastrophic. In France it has been estimated

that the population was reduced by 90 to 98% and in Britain it has been estimated that more

than 99% of the population was eliminated [104]. The rabbit occupied several sociological and

ecological functions. In forestry and farming it was a serious pest, but it was also a major source

for recreational hunting (See Section 2.2.3). Across the Iberian peninsula, rabbits are a keystone

species and the losses caused by myxomatosis, hunting and subsequent RHD infections have caused

several predator populations, like the European lynx (Lynx pardinus) and the Spanish imperial

eagle (Aquila adalberti) to decline [34, 71]. Rabbit grazing is crucial to maintaining the ecosystem

of the Iberian peninsula (See Section 2.2.3). In addition rabbit production costs increased due to

vaccination and quarantine measures, as well as ongoing production losses [56].

2.5.4 Evolution of myxomatosis

In the decades following the introduction of myxomatosis in Australia, it became less effective at

controlling the population [4, 71] because of two reasons. The first one is that the rabbits that

survived the epidemic had a more resistant genotype and passed their resistance genes down to

their offspring, which in turn were less susceptible to the disease [4, 71, 96]. The second reason

is that the virus became less virulent during the next decade [34]. During the years after the

introduction, several types of the virus with high virulence, intermediate and low virulence were
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present [4, 34]. High virulence is associated with high mortality in laboratory rabbits (>90%),

with lots of lesions on the skin and short survival times (about 11 days). Intermediate virulence

is associated with intermediate to high mortality (50 – 90%), still lots of lesions and intermediate

survival times in laboratory rabbits (14 – 26 days), whereas in low virulence strains most animals

recovered and few lesions were present [4, 34]. Table 2.1 shows that selection favours intermediate

strains. The latter still have high mortalities and lead to many virus-rich lesions, which makes

it easier for parasites to draw blood and spread the virus. However, disease duration is notably

longer, allowing a bigger time frame for the disease to spread before the rabbits die [4].

Table 2.1: Comparison of the virulence of field strains of the myxoma virus in

Great Britain, Australia and France expressed as relative frequencies. The strains I

and II are high virulence strains, IIIA and B are intermediate and IV and V are low

virulence [4].

Virulence Strain I II IIIA IIIB IV V

Great Britain

1953 100

1962-1967 3.0 15.1 48.4 22.7 10.3 0.7

1968-1970 0 0 78.0 22.0 0 0

1971-1973 0 3.3 36.7 56.7 3.3 0

1974-1976 1.3 23.3 55,0 11,8 8,6 0

1977-1980 0 30.4 56.5 8.7 4.3 0

Australia

1950-1951 100

1958-1959 0 25.0 29.0 27.0 14.0 5.0

1963-1964 0 0.3 26.0 34.0 31.3 8.3

France

1953 100

1962 11.0 19.3 34.6 20.8 13.5 0.8

1968 2.0 4.1 14.4 20.7 58.8 4.3

2.6 Rabbit haemorraghic disease

2.6.1 Symptoms and disease progression

Rabbit haemorraghic disease (RHD) is a viral disease caused by a calicivirus from the lagovirus

genus called RHD virus (RHDV). It causes viral hepatitis resulting in a quick death within two to

three days after infection. As opposed to myxomatosis, few symptoms can be observed apart from

the occasional bloody mucous discharge from the nose [22]. The disease is transmitted through

direct or indirect contact. Biting and non-biting arthropods are able to transmit the disease

because only a few virions are required for infection via the conjunctiva [41]. Only 10% of adult

rabbits survive infection while 40% of young rabbits recover [60, 107, 114]. The disease peaks

during the winter [71].
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2.6.2 History and impact of RHD

RHD was first observed in the People’s Republic of China in 1984 among angora rabbits. Within a

few months, the disease had spread widely across the country in commercial rabbit farms [114]. It

is not certain where the virus originated from, but since related, harmless lagoviruses are present

in Europe [60], it has been suggested it originated from there [71]. Despite measures to prevent

the spread of the virus to other regions, it appeared in Italy in 1986. It spread to other European

countries and subsequently appeared in wild populations in Spain in the summer of 1988, where

the disease increased the pressure on its rabbit populations [22]. The first outbreak in the Iberian

peninsula reduced populations already devastated by myxomatosis by an additional 50 to 70%

[107].

The impact of RHD in Europe sparked interest in countries where rabbits had been introduced,

as myxomatosis was becoming less effective at controlling populations [4, 71]. After a series of

experiments to test its effectiveness at controlling rabbits and if it would cause disease in other

animals [63], the virus spread beyond the quarantine fences of Wardang Island, a small 20 km

island close to the coast of southern Australia, where the experiments took place, crossed several

kilometres of sea to arrive in the dense inland rabbit populations, where it rapidly spread and

became a useful control agent [22]. The first outbreak of RHD reduced populations up to 95%,

spread initially 50 kilometres per week and was present in every part of Australia two years later

[1].

2.6.3 RHDV2

In 2010, a new type of RHDV, called RHDV2, was discovered in northern France, infecting rabbits

susceptible to RHDV as well as vaccinated animals. The estimated mortalities are unusually high

at 80 to 90 %, similar to the mortalities during the first spread of RHDV [61]. The virus gives

similar disease symptoms as RHDV but is classified as another genus of the Lagovirus indicating

that it did not evolve from RHDV. There are two hypotheses explaining the origin of the virus.

One is the evolution from a non-pathogenic lagovirus species, while the other is the species jump

from another host animal to the European rabbit. Yet, none of these hypotheses has been proven

[60]. Infections by RHDV2 last longer and are more variable, while the development of chronic

disease instead of acute was more frequent. The disease spreads very fast, as the virus was already

confirmed in Spain and Italy in 2011 [60]. RHDV2 has already replaced most of the RHDV

isolates in France. The moderate virulence of RHDV2 can explain its selective advantage over

more virulent RDHV strains (See Section 2.5.4) [60].



CHAPTER 3
Modelling Epidemical Diseases

In this chapter we will briefly outline the general principles of epidemical modelling after which

some foundational epidemic models will be discussed. After that we will expand epidemic mod-

elling into a spatial context after which a few examples of recent developments in epidemic mod-

elling will be discussed. For the remaining chapters we will not differentiate between epizootics

and epidemics since the processes governing them are similar.

3.1 General principles

There is a variety of mathematical approaches to epidemiology, but first some general principles

need to be outlined. An epidemic can be characterized as the evolution of an infectious disease

within a given population of individuals. The first group of assumptions concern the structure, dy-

namics and composition of the population are needed. This concerns the fact whether it consists of

one homogenous group, multiple homogeneous strata that interact, or a completely heterogeneous

group, which means that all individuals are different. For what concerns the population dynamics,

a choice needs to be made between closed systems with a fixed number of individuals, or open

systems, where individuals can migrate, die and/or give birth. The population composition is

important to classify the individuals according to their disease status. More precisely at any time

individuals are either susceptible to the disease, incubating it, infected, infected but without any

symptoms i.e., a carrier, or removed, which means that they have been infected or a carrier but

are so no longer, either through death, immunity or isolation. The second group of assumptions

concern the disease itself. For instance, how does it spread and what is the mechanism for recovery

or removal if this occurs. The third group of assumptions concern the mathematics necessary to

specify the population and disease mechanics [25]. An important basis for epidemic modelling is

the Law of Mass Action, postulated by Guldberg and Waage [42], which states that for a homo-

geneous system, the rate of chemical reaction is proportional to the active masses of the reacting

substances [42]. This law can be applied in other contexts, including population processes. If

the individuals in a population mix homogeneously, the rate of interaction between two different

subsets of the population is proportional to the product of the numbers in each of the subsets

concerned. This principle can be applied to deterministic and probabilistic epidemic models [25].
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3.2 Foundational epidemic models

3.2.1 Contagious diseases

In deterministic models, the sizes of susceptible, infected and removed populations are assumed

to be either functions of discrete time (t = 0, 1, 2, ...) or differentiable functions of continuous

time (t ≥ 0). These approximations to the true, integer-valued numbers are a prerequisite for

the derivation of systems of difference or differential equations governing the epidemic dynamics.

The results of deterministic processes should be regarded as an approximation of the expected

values of a random process [25]. One of the oldest and most frequently studied deterministic

models is the model for the general epidemic by Kermack and McKendrick, describing a basic

susceptible-infected-recovered model (SIR-model) [25, 55]. It is a simple system of differential

equations describing an epidemic within a population of fixed size N , consisting of susceptibles

S(t), infected I(t) and recovered individuals R(t). By relying on the homogeneous mixing principle

for continuous time the following system is obtained [55]:

dS

dt
= −β S I,

dI

dt
= β S I − γ I,

dR

dt
= γ I,

(3.1)

subject to the initial conditions (S(0), I(0), R(0)) = (S0, I0, 0). In this system β [T−1] is the

transmission rate that depends on the interaction between infected and susceptible individuals,

while γ [T−1] is the removal rate, quantifying the rate at which infected subjects become immune.

In cases where death or isolation occurs, R(t) represents all removals from the population [25, 55].

The second equation of System (3.1) can be rewritten as:

dI

dt
= β I (S − γ

β
). (3.2)

From this, it follows that the population of infected individuals I cannot increase if S <
γ

β
. This

is called the threshold phenomenon [46, 48, 55]. Another important property relates to the basic

reproductive number:

R0 =
β S

γ
. (3.3)

This is the average number of secondary disease cases caused by one primary disease case in

a completely susceptible population [46, 48]. If R0 < 1, the population of infected individuals

cannot grow [48]. Furthermore, in a closed population, an infectious disease can only invade if
I0
N0

>
1

R0
[46].
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System (3.1) assumes that there is no reproduction. In most populations, however, individuals

can reproduce or die. Taking population dynamics into account the following system is obtained:

dS

dt
= r (S + I +R)− β SI −mS,

dI

dt
= β SI − (α+m+ ν) I,

dR

dt
= ν I −mR,

(3.4)

with r[T−1] the per capita birth rate, assumed here to be the same for susceptible, infected and

recovered individuals, m [T−1] the mortality, which is assumed to be the same for susceptible and

recovered individuals. The removal parameter γ from System (3.1) is replaced by α+m+ ν with

α [T−1] the death rate due to the disease and ν [T−1] the rate at which infected individuals become

resistant [32, 78]. The basic reproduction number R0 for System (3.4) is

R0 =
β S

α+m+ ν
. (3.5)

System (3.1) can also be expanded to a generic epidemic in a stratified population, where several

homogeneous populations interact. Assume the population is divided in m strata, then we define

pairwise transmission rates βij [T−1] for an infective in the i-th sub-population or stratum to infect

a susceptible in the j-th stratum for i, j = 1, ...,m. In addition, it is assumed that each stratum j

has per capita removal rates γj [T−1] and Rj(t) denotes the cumulative number of such removals

at time t. In analogy with System (3.1) the following system is obtained

dSj

dt
= −Sj

m∑
i=1

βij Ii,

dIj
dt

= Sj

m∑
i=1

βij Ii − γj Ij ,

dRj

dt
= γj Ij ,

(3.6)

for j = 1, ...,m with initial conditions (Sj(0), Ij(0), Rj(0)) = (Sj0, Ij0, 0). A stratified SIR-model

has been used to determine the effect of the combination of myxomatosis and RHD on population

dynamics of wild rabbits [39]. The study concluded from the simulations that concurrent infections

of RHD and myxomatosis lowered the maximum number of rabbits infected with RHD. Simulation

results are shown in Figure 3.1.

Systems (3.4) and (3.6) are, however, only two ways to expand System (3.1). Other ways include

the generation-wise spread of an epidemic or the consideration of a carrier-borne disease, where

individuals can spread the disease, but do not develop symptoms [25]. Models of the SIR type

and extensions thereof have been used in many epidemiological studies including the spread of

cholera in Haiti [6, 113], the effect of vaccinations on epidemiological patterns [5], the spread of

rabies through fox populations [98] and the dynamics of measles [12]. A SIR-model with stratified

populations has also been used to determine the effect of different types of RHDV on the genetic

diversity in rabbits [37].
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Figure 3.1: Simulation of the model without natural birth and death rates. N(t)

refers to the number of rabbits remaining. IcT is the total prevalence of RHD while

ImT refers to the total prevalence of myxomatosis. The blue dashed line is the

simulation with RHD without initial myxomatosis. The solid lines are simulations

with both infections present. Only in the simulation resulting in the red curve the

concurrent infection of RHD and myxomatosis is allowed [39].

3.2.2 Vector-borne diseases

The models introduced in Section 3.2.1 have one restriction in common in that they model the

spread of a disease that is transmitted via direct contact, such as HIV, measles and smallpox.

A vector-borne disease, like malaria, where the parasite responsible for the infection spends a

part of its life cycle in Anopheles mosquitoes, needs a different approach since contact between

infected and susceptible individuals does not transmit the disease [25, 74]. For that purpose two

populations are considered, namely the population of hosts and the population of vectors, which

are assumed to be of constant size N1 and N2. Removals from both populations are neglected.

So, the populations Nk are divided in a susceptible Sk(t) and infected Ik(t) population in such a

way that Sk(t) + Ik(t) = Nk for k = 1, 2. A human infected with malaria loses infectivity at rate

µ1 [T−1] and infected mosquitoes die at rate µ2 [T−1]. Because the populations are assumed to be

of constant size, the dying mosquitoes are replaced with new uninfected individuals. A mosquito

depends on biting a host, in this case a human, for a blood meal during which can ingest infected

blood if the host is malarial. Subsequently, it can infect a susceptible host [9, 25]. Applying the

Law of Mass Action, the following equation is obtained for the hosts:

dI1
dt

= ζ β21 I2
S1

N1
− γ1 I1, (3.7)

and for the vectors:
dI2
dt

= ζ β12 S2
I1
N1
− γ2I2, (3.8)

with ζ [T−1] the feeding rate per mosquito and βij [T−1] the disease transmission rate of an infected

individual of type i with a susceptible of type j.
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These equations can be reformulated in terms of proportions xk = Sk/Nk = 1− yk for k = 1, 2,
dy1
dt

= ζ β21 y2 x1
N1

N2
− γ1 y1

dy2
dt

= ζ β12 y1 x2 − γ2 y2.
(3.9)

This is only a basic description of a vector-borne epidemic and can be improved in similar ways

as non-vector borne epidemics (See [9]). Similar models have been used to study the transmission

of the Chagas disease [106].

3.2.3 Discrete-time models

In Sections 3.2.1 and 3.2.2, the functions describing the epidemics were considered to be continuous.

However, since epidemic data is gathered at discrete time instances, it makes sense to resort to

discrete models [25]. An example of a discrete model is the model of Saunders [97]. It describes

the evolution of myxomatosis (see Section 2.4) in a fixed population of European rabbits (see

Section 2.2.1). It assumes that a rabbit gets infected on day t, enters a latent period of length

l when the virus is incubating, and subsequently becomes infectious on day t + l and remains so

until day t+ l + k − 1, after which it dies. Suppose It1 is the number of infectious rabbits on day

t. These were infected on day t − l and remain infectious until day t + k − l. Consequently, the

total number of infectives on day t is

It =

k−1∑
j=0

I
(t−j)
1 , (3.10)

since any rabbits becoming infectious before day t − k + 1 have died by day t. Starting with S0

susceptibles at time t = 0, the remaining number of susceptibles at time t is

St = S0 −
t+l∑
j=1

Ij1 , (3.11)

while the number of rabbits in the latent state is

W t =

l∑
j=1

It+j
1 , (3.12)

such that the total number of living rabbits on day t is given by N t = St + It + W t. Saunders

relies on homogeneous mixing to arrive at

It+l
1 =

a

N t
It St , (3.13)

with a [T−1] the number of rabbits a diseased rabbit makes contact with each day.

Continuous models can also be discretized. For example, the model given by System (3.1) can be

discretized for t = 0, 1, ... leading to
St+1 = St − β St It,

It+1 = It + β St It − γ It,

Rt+1 = Rt + γ It,

(3.14)
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with St + It +Rt = N , and β [T−1], γ [T−1] are the infection and removal parameters, which may

differ from those of the corresponding continuous models [25].

A discrete SIR-model based on (3.14) has been used to analyse a measles outbreak on a university

campus and to determine the rate at which a population needs to be vaccinated to prevent an

outbreak [3]. They concluded that more than 98 percent of a population needed to be immune to

prevent an outbreak. A simulation of the model is given in Figure 3.2.

Figure 3.2: Simulation results of a discrete epidemic model for measles (thick line)

compared to collected data (dashed line) [3].

Discrete models have also been used to study the outbreak of SARS and its transmission in China

[115] among others.

3.2.4 Stochastic models

Deterministic models are adequate to characterize disease spread in large, uniform populations.

In small populations, a stochastic approach is needed, especially if the population consists of only

a few individuals. An example of a frequently used stochastic approach to epidemic modelling [25]

is Markov chain analysis. Since the methods for analysis of Markov chains are quite elaborate, we

will not discuss them further but refer the reader for detailed information and analytical solutions

to [25]. The following approach is, however, suitable to analyse epidemics in small populations. If

Y denotes the number of secondary infections that follow from a single infected individual, then

the probability density function f(y) describing the distribution of Y is referred to as the offspring

distribution [43]. The number of secondary infections depends on the infectiousness of the first

case over the time τ since it got infected, represented by a function β(τ). Now, the probability

that an infective will infect a susceptible individual between time τ and t+ dτ is

β(τ)s dτ, (3.15)

with dτ the length of a short time period and s [−] the probability that the other subject is

susceptible to the disease [43].
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Integrating Eq. (3.15) over the time since infection onset yields the expected number of offspring:

E(Y ) = s

∫ ∞
0

β(τ)dτ. (3.16)

In a population where contact between infectious and susceptible individuals is random, E(Y )

is the same as the reproduction number of an infection R [43, 48]. In an entirely susceptible

population (s = 1), this is called the basic reproduction number R0 (see Section 3.2.1). If a group

of individuals has the same infectiousness, then the number of secondary infections caused by each

individual is Poisson distributed with mean R [43]. Another important quantity is the time τ

that has elapsed between one individual getting infected and that individual infecting another.

The distribution of this time, also called the generation-time distribution w(τ), is related to the

infectiousness β(τ) after rescaling by the reproduction number R:

w(τ) = β(τ)/R. (3.17)

Equations (3.15) and (3.17) can be used for analysing and modelling the evolution of an epidemic

in a population [43, 55]. Let I(u) denote the number of newly infected individuals at time u,

while at some later time point t = u + τ the infectiousness of these individuals is β(τ), then the

number of susceptibles that they will infect during the next time step of duration δτ follows a

Poisson distribution with mean I(t− τ)β(τ)δτ . The total expected number of infected people at

time t, is obtained by summing this quantity over all possible values of τ [43]:

I(t) =

∫ ∞
0

I(t− τ)β(τ) dτ. (3.18)

This formula is called the renewal equation. Using Eq. (3.17) to substitute β(t) in Eq. (3.18),

and recasting the resulting equation provides an estimator for the reproduction number R [38]:

R(t) =
I(t)∫ ∞

0

I(t− τ)w(τ) dτ

. (3.19)

This type of model is also used to analyse data and to analyse transmission trees (see Figure 3.3).

Stochastic methods have been used for the analysis of the SARS outbreak in Singapore [21, 67],

the spread of HIV-1 among risk groups and the spread of measles [43] among others.

3.3 Spatial models

Hidden in the proportionality aspect of the Law of Mass Action (See Section 3.1) is the assumption

that all individuals interact equally likely with each other. Clearly, in reality this is not always the

case. Another concern with the models in Section 3.2 is that they do not improve the understanding

of how the wave-front of a an epidemic progresses [82]. In the remainder of this chapter different

approaches to spatio-temporal modelling of epidemics will be discussed.

3.3.1 Reaction-diffusion models

Individuals moving through space and time can be envisaged as a diffusion process of particles

through time and space. This process is governed by the diffusion equation [35, 52]:

∂ψ

∂t
= D∇2 ψ, (3.20)
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Figure 3.3: Transmission tree of an SARS outbreak in Singapore in 2003. The dots

represent infected individuals connected by arrows showing which individual have

infected each other [21].

with ψ(x, y, z, t) the concentration of a compound at (x, y, z) at time t, D [L2, T−1] the diffusion

coefficient, here assumed to be constant and

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(3.21)

the Laplacian operator denoting the divergence of the gradient of a function in Euclidean space

[52]. Equation (3.20) has a variety of applications, and is also used in population modelling [84]

and epidemic modelling [82] to incorporate spatiality. A diffusion-based SIR-model has been used

to successfully model the general wave-like spread of rabies among foxes [82]. The system used in

[82] in reads: 

∂S

∂t
= −β I S + (r −m) (1− N

K
)S

∂E

∂t
= β I S − σ E + [m+ (r −m)

N

K
]E

∂I

∂t
= σ E − α I − [m+ (r −m)

N

K
] I +D∇2I ,

(3.22)

with N = S + E + I the total number of foxes, S [−] the number of susceptible foxes, E [−]

the number of infected foxes that do not show symptoms yet and I [−] the number of infectious

foxes. It is assumed that the spatial dispersal of rabies originates from the random wandering

of rabid foxes [82]. It is also assumed that the population follows a logistic population dynamic

instead of an exponential one, contrary to System (3.4) from Section 3.2 for example. Therefore

the carrying capacity K [−] is added, denoting the maximum number of foxes in the environment.

The parameters are similar to those of System (3.4), with the addition of σ [T−1] denoting the rate

at which infected foxes become rabid and D [L2, T−1] the diffusion parameter. The parameter ν

is not incorporated since it is assumed that foxes do not develop resistance and never recover from

rabies [82]. The model was used to simulate the wavefront following an introduction of rabies in

fox populations in the southern half of England with known fox densities (see Figure 3.4).
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Figure 3.4: The position of the wavefront every 120 days following the introduction

of rabies in southern England [82].

Another example is the epidemic model of the spread of a pathogen in insect populations by [31],

where the system of PDEs reads:

∂S

∂t
= −β P S +D∇2S,

∂I

∂t
= β P S − γ I +D∇2I,

∂P

∂t
= λ I − µP,

(3.23)

with P [L−2] the density of pathogen particles, β [T−1] the rate at which contact between suscep-

tible individuals and pathogens causes infection through ingestion of pathogen particles by the

insects (note the similarity with System (3.2.2)), S [L−2] and I [L−2] the density of susceptible and

infected individuals, respectively, γ [T−1] the death rate of infected individuals, and λ [T−1] and

µ [T−1] the dispersal rate of pathogen survival stages from diseased individuals and the death rate

of the pathogens, respectively [31]. Diffusion-based epidemic models have also been used in the

analysis of an Avian-human influenza system [57] and the spread of human influenza [95], among

others. This approach to spatial modelling, however, has a few limitations. First, the equations

need to be solved numerically since they do not have a closed-form solution. Second, they are

not suitable to model complex patterns that sometimes arise in spatial processes, due to the fact

that the variability of the environment that causes these patterns is neglected [86]. Third, they

still represent an approximation of a stochastic process, limiting diffusion-based epidemic models

to epidemics in large, uniform populations [51] and fourth, they assume that infected individu-

als move from regions of higher densities of infected individuals to regions with lower densities,

which is sometimes not the case. For example, rabbits infected with myxomatosis become highly

immobile (see Section 2.4).
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3.3.2 Agent-based complex systems

An epidemic is typically governed by a large number of individuals that make autonomous deci-

sions, have their own distinct behaviour and interact with the environment. It is one example of a

process governed by autonomous, adaptive agents, like cells of the immune system, stock market

investors, and so on [45]. Systems governed by such agents are called agent-based complex sys-

tems (ACSs) [45]. Their interaction gives rise to complex patterns that are not easily modelled by

standard mathematical methods like differential equations. An ACS has three elements: the first

being a set of agents, their attributes and behaviours; the second being a set of agent relationships

and methods of interaction describing how and with whom agents interact among themselves, and

the third being the environment with which the agents interact [72]. Models with this bottom-up

approach have been developed for several types of ACSs, especially in ecology. The bottom-up

approach has two big challenges: the complexity of the models and the uncertainty of the output

[44, 45]. These models are often computationally expensive, limiting their use in the past due to

limited computing power [112].

Individual-based models

An individual-based model (IBM) tries to model phenomena caused by the interaction of multiple

individuals by modelling them as single agents and letting them mutually interact and with their

environment. An example of a well-known basic IBM is the boids model [91]. This model re-

produces schooling behaviour through simple rules in that individual boids try to avoid collision,

match the velocity of neighbouring individuals and stay close to their neighbours [45, 91]. In

epidemiology an IBM has been used to model the spatio-temporal spread of malaria in a Peru-

vian village in the rainforest. It is based on the interaction between mosquitoes and humans in

a spatially explicit way. The modelled environment includes: climate, peoples houses and their

positions, and elevation. The changes in the mosquito breeding areas because of flooding is also

included [88]. The individuals follow a decision tree each time step to determine their next action

(see Figure 3.5 and 3.6). By letting the mosquito agents interact with the human hosts and the

environment during subsequent time steps this model simulates the process of malaria incidence

in a rainforest village in great detail. It is clear that this model has complicated interactions with

a variety of possible actions that each individual human or mosquito can take [88]. This however,

also introduces some random factors, which inadvertently makes the model outcome harder to

predict, but is also closer to a real epidemic, which is the result of a random process [25]. The

results of a simulation of this model are given in Figure 3.7.

IBMs have been used to model bioattacks [20], the spread of HIV [103] and the epidemiological

and evolutionary dynamics of influenza viruses [92] among others. IBMs are very suitable to model

spatial patterns, but modelling the entire life history of each individual in time and space generates

an enormous complexity of information, making the results sometimes difficult to interpret and

limiting their applications [51]. They are typically very good at generating data, but finding

parameter values that approximate experimental data sufficiently is typically very hard for this

type of models [66].
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Figure 3.5: Decision tree of the mosquitoes [88].

Figure 3.6: Decision tree of the humans [88].

Cellular automata

For the study of systems that lead to complex patterns cellular automata (CAs) have become

quite popular. They are based on a discretized 2D or 3D grid. Each of those cells bears one of a

finite number of states [2, 112], and has a number of cells in its neighborhood Ni with which they

can interact. After assigning an initial state to each cell, every cell gets a new state according to

a fixed rule that that depends on the state of the cell ci considered and the cells cj ∈ Ni in its

neighbourhood in subsequent discrete time steps t = 1, 2, 3, ... [112]. CAs are agent-based systems

in the sense that each individual cell can be considered an autonomous agent interacting with its

neighbourhood [72]. The best known example of a CA is Conway’s Game of Life [40], but CAs

have found their way in a multitude of applications, including chemistry, microbiology, geology,
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Figure 3.7: Oviposition sites and malaria cases during the simulation period [88].

geography and epidemiology [2, 112]. In epidemic modelling, an example is the CA-like model

that has been used to model the pattern formation in red fox (Vulpes vulpes) populations following

an outbreak of rabies [51]. It is based on a spatial grid of fox home ranges that feature a healthy

population, an infectious population or no population at all. It is not a pure cellular automaton

since it also features an IBM to model the dispersal of young foxes and wandering rabid foxes [51].

A schematic representation of the model is given in Figure 3.8. The cells in the grid shown in

this figure are home ranges of foxes. The local dynamics in a fox home range are aggregated into

three discrete states: the cells with a healthy population denoted by H, the cells with an infected

population denoted by I, and the empty cells denoted by E. Transitions between those states

occur throughout the year with certain probabilities (transition from I to either E or H and from

H to I through infection by neighbouring infected home ranges), or only during dispersal of young

foxes governed by the IBM (transition from H to I through infection by rabid, young foxes and

transition from E to H by arrival of healthy, young foxes).

Using this model, the effect of the dispersal function on the disease front was observed (see Figure

3.9). They concluded that the dispersal of young foxes in a random direction along a straight line

was neccesary to develop a disease front [51].

CAs have been used to simulate the spatial dynamics of foot and mouth disease outbreaks in feral

pigs in Australia among others [28]. They are restricted in the sense that the cells can only be

assigned one out of a finite set of discrete states. The latter can be overcome by resorting to

so-called coupled-map lattices (CMLs), often called continuous CAs. They are similar to CAs in

the sense that they are also based on the subdivision of space and time, but they feature a set of

continuous state variables [53]. ABSs in general are very good at simulating patterns, but can get

computationally expensive. They are also not suitable to infer general epidemic theories [45].
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Figure 3.8: Schematic representation of the rabies model with transition

probabilities [51].
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Figure 3.9: Large-scale pattern formation using different dispersal functions and

their one-dimensional projections. a) Dispersal of young foxes along a straight line

starting from a random direction. b) No dispersal of young foxes. c) Dispersal using

a random-walk model. Healthy home ranges are green, infected home ranges black,

and empty home ranges white [51].



CHAPTER 4
The 1953-1954 Myxomatosis Epidemic in

Belgium

4.1 The dataset

4.1.1 The Bulletin Sanitaire

As mentioned in Section 2.5.2, myxomatosis was introduced in the European mainland in 1952.

According to the Bulletin Sanitaire [80], the disease spread into Belgium from the French border

in September 1953. The Bulletin Sanitaire is a report that was published every two weeks from

1929 to 1983 by the Ministery of Agriculture of the Belgian government about animal diseases

that are harmful for agriculture. Since September 1953 these also included myxomatosis [80]. For

this disease, every two weeks, the number of nidi were reported together with the towns where

they were found. A nidus is a pathogen reservoir from which one or more cases of a disease

originate. It was also mentioned if these were nidi in wild or domesticated rabbits. This data was

collected from the Bulletin Sanitaire for the period of 15 September 1953, till 31 December 1956.

Separate datasets were generated for domesticated and wild rabbits, containing the number of

nidi at subsequent points in time. From these datasets it was also possible to derive the number

of nidi that have been reported per town up to a point in time.

The model that will be used to reconstruct the introduction of myxomatosis (see Chapter 5) only

takes short range disease transfer into account. Nidi, that could not have been caused by such

short-range interactions, were eliminated as follows. If a nidus appeared in a town for the first

time and if none were reported in the same town or its neighbours for the next four weeks, then

the data point was eliminated. It should also be noted that, since the data were collected more

than sixty years ago, the conclusions drawn from the analyses should be interpreted with care.

4.1.2 Data exploration

In Figure 4.1 the number of reported nidi in Belgium over time and the cumulative number of nidi

are plotted for both wild and domesticated rabbits. There is a clear difference in the number of

nidi and the timing of the peaks between Figures 4.1(a) and 4.1(c), and 4.1(b) and 4.1(d). That is,

for wild rabbits, the number of nidi peaks at about 50 weeks after the introduction and decreases
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quickly after that resulting in a smooth sigmoid curve for the corresponding cumulative disease

cases (see Figure 4.1(c)). For domestic rabbits, the number of nidi peaks directly after the start of

the epizootic, decreasing quickly afterwards with sudden and short-lasting rises every fifty weeks.

This results in a stepwise sigmoid curve for the cumulative number of nidi.

0 50 100 150
0

10

20

30

40

time (weeks)

nu
m
be
r
of
C
as
es

(a) wild rabbits

0 50 100 150
0

50

100

150

200

time (weeks)
nu
m
be
r
of
ca
se
s

(b) domesticated rabbits

0 50 100 150
0

100

200

300

400

time (weeks)

cu
m
ul
at
iv
e
ca
se
s

(c) wild rabbits

0 50 100 150
0

200

400

600

800

time (weeks)

cu
m
ul
at
iv
e
ca
se
s

(d) domesticated rabbits

Figure 4.1: nidi of myxomatosis in the 1953-1954 epidemic

Figure 4.2 displays the percentage of the towns in Belgium where at least one nidus in wild or

domesticated rabbits was reported. Normally, one would expect that after some time, all towns

of Belgium would have been infected, but this is not the case. It seems that after about 50 weeks,

only a few additional towns got infected. This could be attributed to underreporting once the

disease had become commonplace. It is clear, however, that the number of towns with a nidus

in wild rabbits is at least the double of those with a nidus in domesticated rabbits, though, for

those, more nidi were reported in total. This suggests that the reports of wild rabbits contain

more information on the spatial spread of myxomatosis.

Figures 4.3 and 4.4 show the observed spatial distribution of nidi for the first four seasons after

the introduction of myxomatosis for wild and domesticated rabbits respectively. In the former,

we can see that in autumn, the epidemic wave enters Belgium at different points along the French

border, after which it spreads to the center of Belgium during the subsequent winter and spring.

In the summer it seems the disease is present in large parts of Belgium, although not uniformly

across all towns. In the latter, we see many nidi at the coast, but not much changes afterwards.

It follows from comparing Figures 4.3 and 4.4 that nidi in domesticated rabbits are clustered in

the North of West Flanders with only sporadic occurrences in other parts of the country, while
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Figure 4.2: Relative number of towns with at least one nidus.

the nidi of wild rabbits are distributed more evenly across the country. These maps show that

the dataset of the wild rabbits contains the most information concerning the spatial spread of

myxomatosis.

(a) Autumn (b) Winter

(c) Spring (d) Summer

Figure 4.3: Cumulative number of nidi during the first four seasons of the

1953-1954 epidemic: wild rabbits.
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(a) Autumn (b) Winter

(c) Spring (d) Summer

Figure 4.4: Cumulative number of nidi during the first four seasons of the

1953-1954 epidemic: domesticated rabbits.

4.1.3 Epidemic progress

Based on the observations in Section 4.1.2, we can investigate how the disease spread through

Belgium. Since the nidi in wild rabbits are the most informative for what concerns the spatial

disease dynamics, these will be used for this analysis. Roughly speaking, the disease spread from

the French border to the other side of the country. However, the disease did not spread gradually

into Belgium along the French border. To distinguish between the infected areas a hull enclosing

the infected towns was constructed each time point during the first year after the introduction.

Similar procedures have been performed to construct epidemic wave fronts from historic data of a

rabies epidemic in France [73, 82] and the progression of the Black Death across Europe [59, 82].

On the basis of observations during the first few weeks, four primary outbreaks were identified; the

first in the province of West Flanders, near the coast, the second in the southern part of Hainaut,

and the third at the indent of the French border in the province of Namur. Shortly thereafter a

fourth outbreak occurred at the northern part of Hainaut, near the city of Tournai. Starting from

the second, third and fourth primary outbreaks the disease quickly spread towards the center of

Belgium. The outbreak in West-Flanders remained isolated for a few weeks before fusing with the
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other three epidemic waves. At the end of November, the disease suddenly appears in wild rabbits

in Antwerp (Figure 4.6(c)). A possible cause for this could be the outbreak of myxomatosis in

domesticated rabbits in the north of Antwerp (Figure 4.6(a)). Since the travelling wave seems to

have skipped a bunch of towns before appearing in Antwerp, we assumed that, in the preceding

weeks, the nidi in Antwerp were caused by a fifth outbreak, which supposedly originated from

the border with the Netherlands. If the infected towns from the different primary outbreaks are

still discernible, a separate disease hull was constructed for each outbreak, otherwise they were

merged. The edges of the hulls were constructed such that if a town got infected, at least part

of the towns’ area is included in the disease hull. Moreover, the edges also have to move at least

move some distance every two weeks since the epidemic wave should keep moving if there is no

external interference. Sometimes large areas got infected at once without any prior infections in

the vicinity. We presume that the disease was already present beforehand, such that areas were

enclosed in the hull without any reported nidi. After the last outbreak, the epidemic wave slowed

down in winter, during which the wave from Antwerp fused with the other outbreaks. New nidi

appeared in the summer and following autumn, after which no uninfected areas remained, apart

from the southernmost part of Belgium, which remains seemingly uninfected, except for the city

of Arlon. From middle of the autumn of 1954 on, not much changes. Therefore, we assumed that

the disease had infected most of Belgium by that time. The disease hulls and infected towns are

given in Figure 4.7. In Figure 4.7(a) the first two outbreaks and their respective disease hulls are

given. In Figure 4.7(b) the third outbreak is presented and in Figure 4.7(c) the fourth and fifth

outbreaks appear, while, at the same time, the hulls from the second and third outbreak merge.

In Figure 4.7(d) the fourth outbreak merges with the second and third outbreak. The result of

merging the first outbreak and the combined hull of the second till the fourth outbreak is shown in

Figure 4.7(e). The appearance of the nidi in Antwerp and the resulting hull are shown in Figure

4.7(f). Furthermore, for each disease hull every two weeks, the surface area was calculated (see
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Figure 4.5: Total area enclosed in the epidemic wave.

Figure 4.5). The surface area follows a sigmoid curve that rises steadily, with a slight increase at

40 weeks.
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(a) Domesticated rabbits (b) Wild rabbits

(c) Wild rabbits

Figure 4.6: A nidus in a town in the North of the province of Antwerp in

domesticated rabbits (a) is followed by nidi in wild rabbits in other towns in

Antwerp in the following weeks (c) whithout a nidus in wild rabbits beforehand (b).

The maps display the towns where at least one nidus case took place up to that

point.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Epidemic wavefronts during the first three months.
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4.2 Myxomatosis and land cover

4.2.1 Overall analysis

As mentioned in Section 2.2.2, rabbits behave and cohabit differently in different habitats [69, 70,

71, 87]. This also influences the dynamics of myxomatosis [70], as well as RHD [18, 70]. Therefore

it makes sense to investigate the land cover of the towns where myxomatosis was reported. For

that purpose, a map of the land cover from 2006 was used. It would make more sense to use an

older land cover map, but a digital version of such a map was not available, and constructing it

from scratch would have required a disproportionate amount of resources and time.

The CORINE map divides Europe in polygons covered by one out of 44 possible different classes.

The 44 classes were reduced to six main classes (Figure 4.8) for the sake of this work: urban area,

which contains residential areas, industry and cities, arable land, where the main agricultural

activities consists of growing crops, pasture for grazing cattle, forested areas, water-rich areas,

like fens, marches and rivers, and the undefined class which contains miscellaneous areas, like

sea areas, where rabbits do not live. This last class is not considered for further analysis. The

histogram of the land cover for Belgium is given in Figure 4.9. It is clear that arable land has the

Figure 4.8: The CORINE map with the 6 land cover classes.

largest surface area, and water the lowest. The other three classes do not differ much in surface

area. The relative land cover ot the towns where myxomatosis was reported among wild rabbits,

and the infection hulls are presented in Figure 4.10.

For the infected towns, the relative surface areas does not change by much over time after about

50 weeks, which is caused by the reduced number of new cases and newly infected towns (See

section 4.1.2). It can be observed that the relative area occupied by forest in the infected towns
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Figure 4.9: Histogram of the land cover of Belgium according to the CORINE-map.
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Figure 4.10: Relative surface areas for the infected towns and the infection hulls.

is very high at the epidemic onset and steadily decreases afterwards, while the opposite is true

for the arable land. The relative areas of other land cover types do not change much over time.

Interestingly, a different pattern can be discerned for the infected hulls. Here, the relative area

of the arable land is very important at the beginning and decreases steadily afterwards in favour

of forest and urban area. This means that nidi were reported first in towns with relatively large
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forest and urban areas, while the disease probably remained unnoticed or were not reported in the

towns with more arable areas.

4.2.2 Investigating the link between land cover and myxomatosis spread

Since the model from Section 5.1 can incorporate spatial information, it is interesting to compare

the differences in relative land cover across the infected areas and Belgium as a whole, as well as

their evolution over time. An important aspect of the infection hulls is that they are composed of

different outbreaks. In this section we will analyse those hulls as a whole and for different outbreaks

separately. Figure 4.11 shows the differences in land cover between Belgium, the infected towns,

and the infection hulls as a whole respectively, for the first four seasons of the epidemic.
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Figure 4.11: Evolution of the relative land cover areas of the infected towns and

the infection hulls for the first four seasons

For what concerns the infected towns, it is clear that the relative areas differs slightly from those

found for Belgium as a whole. In autumn, it seems that the infected towns are relatively rich in

forests, while relatively poor in agricultural areas. The opposite can be observed during the winter.

In the subsequent seasons, the relative land cover aligns with the relative land cover of Belgium,

which is to be expected as increasingly more towns get infected. For what concerns the infection

hulls, the trends are less pronounced. Pasture, forest and urban area are relatively unimportant in
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comparison to arable land at the beginning. The importance of urban area and pasture increases

a bit afterwards in comparison to the arable land, which becomes slightly less important. Forest

area keeps decreasing slightly in importance, but stabilizes afterwards. In the summer, it seems

that the urban area and arable land are the two most important land covers. Regardless of these

trends it should be noted that the differences in relative land cover areas compared to those for

Belgium as a whole remain quite small.

The relative land cover of the separate hulls is given in Figure 4.12, where outbreak 2, 3 and 4

were grouped together since their corresponding epidemic waves fused relatively quickly.
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Figure 4.12: Relative land cover area in the outbreaks and Belgium

It is clear that the relative land cover area differs between the outbreaks. The majority of the

land in outbreak 1 is arable land with almost no forests and few urban areas. Outbreaks 2,3 and

4 have a lot of forested areas in comparison to the other outbreaks, while outbreak 5 occurs in a

region that is a lot more urbanised, with fewer arable land and also relatively water-rich.

4.2.3 Hypothesis tests

Since there are visible changes and shifts in land cover as discussed in Section 4.2.2, it could be

interesting to test whether there is a significant difference in the relative land cover areas of the

infected regions in comparison to those of Belgium. The relative land cover areas of Belgium are

computed on the basis of the relative land cover areas of all Belgian towns. The histograms of the

different relative land covers of all the Belgian towns are given in Figure 4.13.

As concluded on the basis of a Cramér-Von Mises test for normality [29, 30] (see Table 4.1), that

the histograms in Figure 4.13 are not normally distributed,

Table 4.1: Results from the Cramér-Von Mises test for normality.

Land use urban area arable land pasture forest water

test statistic

& p-value
3.289 0. 0.331 0. 0.734 0. 7.819 0. 23.736 0.
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Figure 4.13: Marginal histograms of the different relative land covers.
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we compared the medians of the land cover distributions of the infected towns and Belgium using

the non-parametric Mann-Whitney-Wilcoxon test [75]. Since the relative land cover distribution

for the infected towns changes through time, this test was performed separately for every two

weeks (see Figure 4.14).
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Figure 4.14: p-values resulting from the Mann-Whitney-Wilcoxon test for the

different relative land covers and their evolution over time.

It is clear that only for a few time points for the urban areas and the water-rich areas, the null

hypothesis can be rejected at a significance level of 0.05. So, this is not enough proof that there is

a significant effect of the land cover on the spread of myxomatosis. However, since those p-values

still are quite low, it seems that further research may be useful. Moreover, we know from literature

(see Section 2.2.2) that rabbits cohabit and behave differently under different land cover types,
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which influences the disease dynamics of myxomatosis [69, 70]. In addition to that, the land cover

map is not from the same time period as the introduction of the disease, which could have had

some influence on the results.



CHAPTER 5
A Spatially Explicit Model for the

1953-1954 Outbreak of Myxomatosis in
Belgium

5.1 The spatially explicit myxomatosis model

In Chapter 4, the first outbreak of myxomatosis in Belgium was discussed and analysed. The goal

of this master thesis is to reconstruct the progression of this outbreak with an epidemic model, to

understand the importance of different factors for the epidemic process and their variation in a

temporal as well as a spatial way. This can also help us to analyse and possibly assist in forecasting

the progression of new epidemics. In the subsequent sections, the used spatio-temporal epidemic

model will be discussed.

5.1.1 The non-spatial model

The spatially explicit model of myxomatosis is based on the non-spatial model for contagious

disease transmission of Anderson and May (see System (3.4)) [78], introduced in Section 3.2.1.

This system of differential equations assumes that myxomatosis is transmitted by contact, since

the infection only depends on contact between susceptibles and individuals, which means that

no vector population is considered. Yet, as discussed in Section 2.4, the disease can also be

transmitted by vectors. In Europe, its most important vector is the rabbit flea (Spilopsyllus

cuniculi) (see Section 2.5). Since rabbit flies are transmitted by contact between rabbits and are

closely tied to rabbit populations, we may assume that myxomatosis spreads via contact for the

sake of simplicity.
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System (5.1) extends System (3.1)), taking the reproductive and natural death rate of rabbits into

account: 

dS

dt
= r (S + I +R)− β SI −mS,

dI

dt
= β SI − (α+m+ ν) I,

dR

dt
= ν I −mR,

dD

dt
= α I +m (S + I +R),

(5.1)

with S, I, R and D the number of susceptible, infected, recovered and deceased individuals,

respectively, r [T−1] the natural per capita birthrate, m [T−1] the natural per capita death rate,

α [T−1] the additional per capita death rate of infected individuals caused by the disease, β [T−1]

the disease transmission rate and ν [T−1] the per capita recovery rate [4, 8, 32, 78]. Comparing

Systems (3.1) and (5.1), it follows that γ = ν+α, since γ [T−1] in System (3.1) denotes the removal

rate of infected individuals from the population either through death (α), or becoming resistant

(ν). It is assumed that all newly born individuals are susceptible to myxomatosis, which is indeed

the case in reality (see Section 2.4). Based on a study by Dwyer et al. [32], some parameters of

System (5.1) were modified for the sake of comprehension:

ν = (1− CM )ε, (5.2)

α = CM ε, (5.3)

with ε [T−1] the reciprocal of the mean disease duration and CM [−] the case mortality, which

denotes the proportion of individuals that die due to the disease. It follows from Equations (5.2)

and (5.3) that ν + α = ε, so ε = γ. Using Equations (5.2) and (5.3) in System (5.1) gives

dS

dt
= r (S + I +R)− β SI −mS,

dI

dt
= β SI − (εCM +m+ ε (1− CM )) I,

dR

dt
= ε (1− CM ) I −mR,

dD

dt
= εCMI +m (S + I +R).

(5.4)

5.1.2 A spatially explicit model for myxomatosis

There are different spatially explicit modelling paradigms, like individual-based modelling, cellular

automata and partial differential equations (see Section 3.3). Here, we chose the coupled-map

lattice (CML) which are also referred to as continuous cellular automata [53]. They feature

continuous variables, which are modelled on a discrete, tessellated space, at discrete time steps.

We preferred not to use an individual-based model, since the number of rabbits is large, which

would imply substantial computing time. We also did not use a partial differential equations

since those assume that diseased animals move from areas with higher concentrations of diseased

animals, to areas with a lower concentration [31]. Since infected rabbits tend to become highly

immobile [25], we cannot assume they behave that way.
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The first step in transforming System (5.4) into a CML proceeds by discretizing it into a system

of discrete difference equations. In the same way System (3.1) can be transformed into System

(3.14), System (5.4) can be transformed into

S(t+ 1) = S(t) + r∆t (S(t) +R(t))− β∆t S(t) I(t)−m∆t S(t),

I(t+ 1) = I(t) + β∆t S(t) I(t)− (εCM +m+ ε (1− CM ))∆t I(t),

R(t+ 1) = R(t) + ε (1− CM ) ∆ t I(t)−m∆tR(t),

D(t+ 1) = D(t) +m∆t (S(t) + I(t) +R(t)) + εCM ∆t I(t).

(5.5)

The meaning of the parameters is the same as in System (5.4), and ∆t [−] is the length of one time

step. This system, however, still does not have a spatial component. Therefore, the study area was

discretized, by subdividing it in 250 000 irregular Voronoi polygons ci, i = 1, ..., 250000 [7]. So,

we have one system, like System (5.5) for every polygon, which ar mutually coupled. Therefore,

the parameter β is split in an internal component β, which governs the disease transmission

in a polygon, representing disease spread at short ranges and the external component β, which

governs the disease transmission between the susceptible population in a polygon and the infected

populations in the polygons of its neighbourhood, representing the disease spread at longer ranges.

Essentially, we get

S(ci, t+ 1) = S(ci, t) + r∆t (S(ci, t) +R(ci, t))− β∆t S(ci, t) I(ci, t)−

∆t S(ci, t)
∑

cj∈Ni

β Oij I(cj , t)−m∆t S(ci, t)

I(ci, t+ 1) = I(ci, t) + β∆t S(ci, t) I(ci, t) + ∆t S(ci, t)
∑

cj∈Ni

β Oij I(cj , t)

−(εCM +m+ ε (1− CM ))∆tI(ci, t)

R(ci, t+ 1) = R(ci, t) + ε (1− CM ) ∆t I(ci, t)−m∆tR(ci, t)

D(ci, t+ 1) = D(ci, t) +m∆t (S(ci, t) + I(ci, t) +R(ci, t)) + εCM ∆t I(ci, t),

(5.6)

where cj are the polygons in cis neighbourhood. The most notable change from System (5.5),

however, is the addition of the term ∑
cj∈Ni

β Oij I(cj , t). (5.7)

To explain what this term does, a polygon c0 and its neighbourhood N0 containing cells c0, c1, ...c5

is given in Figure 5.1. For this polygon, the aformentioned term becomes:

5∑
j=1

β O0j I(cj , t). (5.8)

The factor O0j [−] is the length of the edge connecting c0 and cj divided by the circumference of

c0. This means that neighbouring polygons sharing relatively long sides contribute more to the

disease dynamics of ci. Due to a CML being an assembly of individual systems, instead of keeping

the parameters the same for each polygon, we can change the parameter values for each polygon

separately.
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Figure 5.1: A cell of the grid and its five neighbouring cells.

This enables us to incorporate spatial information in this model structure, in this case the land

cover classes of the CORINE map. In this thesis we will do this for the transmission rates and as

such the system incorporated with the land cover information is

S(ci, t+ 1) = S(ci, t) + r∆t (S(ci, t) +R(ci, t))− βi ∆t S(ci, t) I(ci, t)−

∆t S(ci, t)
∑

cj∈Ni

βiOij I(cj , t)−m∆t S(ci, t)

I(ci, t+ 1) = I(ci, t) + βi∆t S(ci, t) I(ci, t) + ∆t S(ci, t)
∑

cj∈Ni

βiOij I(cj , t)−

(εCM +m+ ε (1− CM ))∆tI(ci, t)

R(ci, t+ 1) = R(ci, t) + ε (1− CM ) ∆t I(ci, t)−m∆tR(ci, t)

D(ci, t+ 1) = D(ci, t) +m∆t (S(ci, t) + I(ci, t) +R(ci, t)) + εCM ∆t I(ci, t).

(5.9)

We will use the five land cover classes of the CORINE as discussed in Section 4.2.1, which results

in five possible βis and βis for this system.

5.2 Preliminary sensitivity analysis

In this section we will investigate the overall role of the parameters in System (5.6). For this

purpose, we will visually compare the difference between three simulations; the first being a

benchmark simulation with parameter values derived from literature (see Chapter 2 and Table

5.1), the second with one of the parameters lowered and the third with the same parameter raised

relatively to the benchmark. We presume that the βs are spatially homogeneous for the sake

of simplicity. All simulations were run in Mathematica (version 10.0.0, Wolfram Research Inc.,

Champaign, United States) using the high-performance infrastructure of Ghent University for

7560 time steps, corresponding to 378 days as ∆t =0.05 d. The initial population of rabbits was

assumed to be the same for all cells with a density of five rabbits per hectare [8, 71].
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We assumed that, at the start of the simulation, the cells bordering the French province of French

Flanders are infected with myxomatosis, since the disease entered Belgium at that location [8, 80].

Table 5.1: Benchmark parameter values

parameter value

β 0.01

β 0.01

CM 0.9

ε 1/12

r 1/(1.5×365)

m 1/(1.5× 365)

For the sake of comprehensiveness, the output variables are aggregated in space, by focusing on

the sum of all susceptible, diseased, resistant and dead rabbits in Belgium over time. Figure 5.2

shows the simulated rabbits susceptible to, infected with, resistant to, dead regardless of, and dead

due to myxomatosis. These numbers appear to reach an equilibrium after about 150 days. It is

clear that the numbers of susceptible rabbits declines rapidly, giving rise to large numbers of dead

individuals, of which the largest fraction is caused by the disease. The number of infected rabbits

never reach that magnitude, but still peak during the decline of the susceptibles. The number of

resistant rabbits remain relatively low. Given the hight mortality rates and low survival times,

this result is reasonable. Furthermore, Figure 5.3 shows that the model is capable of generating
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Figure 5.2: Simulated number of susceptible, infected, resistant, and dead rabbits

with parameter values from Table 5.1.

an epidemic wavefront, which is an important feature in spatial epidemic models (see Section 3).

5.2.1 Disease mortality

The disease mortality (CM ) is the proportion of individuals that do not survive infection. Its

effect on the simulated dynamics is shown in Figure 5.4. The largest effect of lowering CM (Figure

5.4(b)) is the appearance of high numbers of resistant individuals. Furthermore, the number of

casualties from the disease is significantly lowered in comparison to the total number of deaths.
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Figure 5.3: Simulation of the infected individuals on t = 56 d.

The number of susceptible rabbits in the long term is also a bit higher in comparison to the

benchmark. Raising CM gives the opposite effect. Changing this parameter appears to have no

effect on the number of infected individuals.

5.2.2 Disease duration

The parameter ε is the reciprocal of the amount of time an individual is infected before either

dying or becoming resistant. Therefore, raising ε equals a shorter disease duration. The effects of

these changes on the model output are shown in Figure 5.5. The main effect of changing ε appears

to be an increase of infected population if the parameter is lower than in the benchmark, whereas

the reverse happens if ε rises.

5.2.3 Reproductive rate

The reproductive rate r is the reciprocal of the amount of time it takes to add an extra individual

to the population. If this takes longer, the parameter is lowered. The effects of these changes are

shown in Figure 5.6 and appear to be quite limited. In Figure 5.6(a), the higher reproductive rate

results in higher numbers of casualties in the long term. Also, the number of susceptibles raises

slightly at the end of the simulation. Lowering the reproductive rate (Figure 5.6(b)) results in no

clear visible changes.
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(a) CM = 0.5
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(b) CM = 0.99

Figure 5.4: Effect of changing CM on the numbers of susceptible, infected,

resistant, and dead rabbits.

5.2.4 Natural mortality

The natural mortality m is the reciprocal of the natural life span of an individual without con-

tracting the disease. If this parameter raises, the individuals have shorter life spans on average.

The effects of changing it are shown in Figure 5.7.

The effects of m are quite small. The clearest effect is that raising m lowers the fraction of dead

individuals caused by the infection and vice versa.

5.2.5 Short range transmission rate

The parameter βi is the rate at which susceptible individuals in ci become infected by the infected

population of ci. The effects of changing this parameter are shown in Figure 5.8.

Raising this parameter (Figure 5.8(b)) causes all the output variables to change faster. Since

this parameter seems important, maps of the epidemic wave at t = 56 d are shown in Figure

5.9 for the infected rabbits. Raising βi (Figure 5.9(b))makes the epidemic wave propagate faster

and increases its width. The opposite is true if the parameter is lowered (Figure 5.8(a), 5.9(a)).
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(a) ε = 1/24
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(b) ε = 1/6

Figure 5.5: Effect of changing ε on the numbers of susceptible, infected, resistant,

and dead rabbits.

This means that raising or lowering the parameter speeds up or slows down the epidemic process,

respectively.

5.2.6 Long range transmission rate

The parameter βi is the rate at which susceptible individuals in a polygon ci become infected by

the infected populations of the polygons cj in its neighbourhood. The effects of changing it are

shown in Figure 5.10.

The effects of this parameter are similar to the ones of βi (see Section 5.2.5). However, by

comparing Figures 5.8(a) and 5.10(a), and 5.8(b) and 5.10(b), it seems that changing βi has a

bigger impact than changing βi. The same conclusion can be drawn by comparing Figures 5.9

and 5.11.

It follows that it would be interesting to be able to compare the effect and importance of the

different parameters of System 5.6 in a more quantitative manner. For this purpose, it is necessary

to perform a sensitivity analysis, which we will get to in Chapter 6.
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(a) r = 1/(0.75×365)
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(b) r = 1/(3×365)

Figure 5.6: Effect of changing r on the numbers of susceptible, infected, resistant,

and dead rabbits.
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(a) m = 1/(0.75×365)

0 50 100 150 200 250 300 350
0

5.0× 106

1.0× 107

1.5× 107

2.0× 107

2.5× 107

3.0× 107

time (days)

nu
m
be
r
of
ra
bb
its

Susceptible

Infected

Resistant

Dead

Dead from disease

(b) m = 1/(3×365)

Figure 5.7: Effect of changing mon the numbers of susceptible, infected, resistant,

and dead rabbits.
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(a) β = 0.0025
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(b) β = 0.05

Figure 5.8: Effect of changing βon the numbers of susceptible, infected, resistant,

and dead rabbits.
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(a) β = 0.0025

(b) β = 0.05

Figure 5.9: The effect of changing β on the number of infected rabbits at t = 56 d.
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(b) β = 0.05

Figure 5.10: Effect of changing β on the numbers of susceptible, infected, resistant,

and dead rabbits.
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(a) β = 0.0025

(b) β = 0.05

Figure 5.11: Effect of changing β The number of infected individuals at t = 56 d.



CHAPTER 6
Sensitivity Analysis of the Spatially

Explicit Myxomatosis Model

A step often overlooked in spatio-temporal modelling, but crucial to the modelling process is a

sensitivity analysis [8]. This is the study of how uncertainty in the output of a model can be

appointed to different sources of uncertainty in the model input/parameters [93, 94]. Sensitivity

analyses are important as they allow researchers to identify critical regions in the input/parameter

space, establish priorities for research, simplify the model structure and defend against falsifications

of the analysis [93]. In this chapter we will discuss the most important methods for sensitivity

analysis, and we will subsequently perform a global sensitivity analysis of the myxomatosis model

presented in Section 5.1.

6.1 Local sensitivity analysis

The best known and easiest method to perform sensitivity analyses is the local sensitivity analy-

sis, also referred to as the one-at-a-time (OAT) approach. This involves quantifying the effect of

perturbing one model input/parameter at a time, while keeping the others constant. This essen-

tially involves the calculation of a partial derivative from the model output with respect to the

input/parameter concerned. If we have a model F with input/parameter p its absolute sensitivity

with respect to that to that input/parameter can be written as:

∂F

∂p
≈ F − F̃

∆p
, (6.1)

with F the simulated model output and F̃ the simulated model output with a input/parameter

perturbed by a factor δ, such that ∆p = δp. If we want to compare the sensitivity across different

model inputs/parameters, it is better to calculate the relative sensitivity:

p
∂F

∂p
≈ pF − F̃

∆p
. (6.2)

This derivative-based approach has been applied to System (5.6)[8]. It has the advantage that it is

very easy to perform for most models and has very low computational demands [65, 113]. However,

it is not informative if the model inputs/parameters are uncertain, since the perturbation needs



58 6.2 GLOBAL SENSITIVITY ANALYSIS

to happen in a small range around a nominal value, or if the system is of unknown linearity [93].

Since our model parameters are uncertain, we will not use this approach.

6.2 Global sensitivity analysis

The second, more recent approach to model sensitivity is the global one. In contrary to a local

sensitivity analysis all the parameters are varied the same time over a large feasible range, resulting

in broader understanding of model sensitivity [50, 113]. There are many approaches and aims for

this type of analysis [50, 93]. In the context of this thesis, a small selection will be discussed.

6.2.1 Morris screening

When the number of inputs/parameters is too large to apply variance-based methods, the elemen-

tary effect (EE) method developed by Morris [81] can be a used to screen which inputs/parameters

are the most important [93]. This technique is relatively simple and shares some similarities with

the OAT method (Section 6.1) in that it also uses local variations around a fixed point in the

input/parameter space. The difference lies in the fact that it uses multiple of those perturbations

over a larger range and averages them, to remove the dependence on a single point [93].

Consider a model with k independent parameters Xi ∈ X, i = (1, ..., k), which vary in the k-

dimensional unit cube across p fixed levels, which means that the parameter space is discretized

into a p-level grid Ω. The elementary effect of the ith parameter is

EEi =
[Y (X1, ..., Xi + ∆, ..., Xk)− Y (X1, ..., Xi, ..., Xk)]

∆
, (6.3)

with ∆ a value in {1/(p−1), ..., 1−1/(p−1)}, X is chosen such that each point X +ei∆, with ei

a zero vector with its ith component equal to one, is still in Ω for every i. By randomly sampling

different X from Ω, the distribution of elementary effects associated with the ith parameter, Fi

is obtained, with EEi ∼ Fi [50, 81, 93]. To illustrate this more clearly, the arrows in Figure 6.1

depict the eight EEs for the situation with k = 2, p = 4 and ∆ = 2/3.

The two sensitivity measures, µ and σ, proposed by Morris [81] are the estimates of the mean and

standard deviation of the distribution Fi. The mean µ is a measure for the overall influence of the

factor on the output. The standard deviation σ yields an estimate of the ensemble of the factor’s

effect, be it nonlinear, or interaction effects with other parameters [93]. The measure µ is quite

sensitive to type II errors (failing to find an influential factor) if the distribution Fi contains both

negative and positive numbers. For that reason, it has been proposed that the mean µ should be

replaced by the mean of the distribution of the absolute values of the EEs [19]. For more details

about Morris screening, we refer the reader to [50] and [93].

This technique is the most suitable for a sensitivity analysis of models with many parameter and

long execution times, since the number of evaluations is limited. We will not use this technique

since the ones in Section 6.2.2 provide a more detailed criterion for sensitivity [93, 113].

6.2.2 The Sobol’ method

A more recently developed method for sensitivity analysis is the approach of Sobol’ [99, 100]. Here,

instead of studying the effect of changing one input/parameter at a time, multiple the input/pa-



CHAPTER 6 SENSITIVITY ANALYSIS OF THE SPATIALLY EXPLICIT MYXOMATOSIS MODEL 59

Figure 6.1: Illustration of the Morris method [93].

rameters are varied simultaneously. In essence, methods based on Sobol’s theorem generate several

different model outputs from randomly sampled input/parameter combinations and analyse the

generated variance [93]. Such methods are capable of estimating the influence of individual and

groups of inputs/parameters on a non-linear model [93, 99, 113]. Given a model

Y = f(X1, X2, ..., Xk), (6.4)

describing the relationship between k inputs/parameters X = (X1, X2, ..., Xk) and the output

variables Y , Sobol’ showed that f can be decomposed for each output variable Y ∈ Y into a finite

sum of terms with increasing dimensionality, known as a high-dimensional model representation

(HDMR) [93, 99]:

f(X) = f0 +

k∑
i=1

fi(Xi) +

k∑
j>i

fij(Xi, Xj) + · · ·+ f1,2,...,k(X1, X2, . . . , Xk), (6.5)

with f0 the zeroth-order component function, which is the mean response, fi(Xi) the first-

order component function, which denotes the independent contribution to f(X) by the input/-

parameter Xi alone. Then, fij(Xi, Xj), the second-order component function gives the corre-

lated contribution of the pair Xi, Xj to the model f(X), and so on, until the the last term

f1,2,...,k(X1, X2, . . . , Xk), which denotes any residual contribution to f(X) by all inputs/parame-

ters together [64].

Sobol showed that if each term in this expansion has a zero mean, the variance of an output

variable can be decomposed into

V (Y ) =

∫
f(X)2dX − f0 =

k∑
i=1

Vi +

k∑
i=1

k∑
j>i

Vij + · · ·+ V1,2,...,k, (6.6)
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with

Vi1,i2,...,is =

∫
f2i1,i2,...,isdXi1

dXi2
, . . . , dXis

, (6.7)

for a given set of indices i1, . . . , is. The Sobol’ sensitivity indices that we want to calculate are

the ratios of the partial variances in Equation (6.6) versus the total variance [93, 99, 113]. So, if

we divide Equation (6.6) by V (Y ) we arrive at these indices [93]:

k∑
i=1

Si +

k∑
i=1

k∑
j>i

Sij + · · ·+ S1,2,...,k,= 1. (6.8)

From these indices, only two are calculated on a regular basis [93, 113]: the first order sensi-

tivity indices, Si, and the total order sensitivity indices, STi. The former show the main effect

contribution of each input/parameter to the variance of the output, and are given by:

Si =
V [fi(Xi)]

V (Y )
=
V [E(Y |Xi)]

V (Y )
. (6.9)

It is easy to see that Equation (6.9) contains the first terms of Equation (6.8). The other terms

in Equation (6.8) are the higher-order Sobol’ indices that show how much of the variance can be

attributed to interaction effects between inputs/parameters. The number of those higher order

terms increases exponentially with increasing numbers of inputs and parameters, and as such

require many calculations for more complex models [93]. The total-order Sobol’ indices provide a

way to estimate the total contribution to the output variation by a given input/parameter, taking

first and higher order effects into account. For instance, given a model with three parameters

(k = 3), the total effect of X1 is the sum of all the terms in Equation (6.8) for this parameter:

ST1 = S1 + S12 + S13 + S123. (6.10)

It seems that all the higher-order terms of Equation (6.8) still need to be calculated. There is,

however, a way around. The first order Sobol’ index from Equation (6.9) follows from decomposing

the variance V (Y ) in its main effect in regard to that input/parameter, which is the Sobol’ index

and the residual. We can also do this for all but one input/parameter, i.e. X∼i:

V (Y ) = V [E(Y |X∼i)] + E[V (Y |X∼i)]. (6.11)

The difference V (Y ) − V [E(Y |X∼i)] = E[V (Y |X∼i)] is the remaining variance of Y that would

be left on average, if we would determine the true values of X∼i. Dividing Equation (6.11) by

V (Y ) gives the total Sobol’ index for a given input/parameter:

STi
=
E[V (Y |X∼i)]

V (Y )
= 1− V [E(Y |X∼i)]

V (Y )
. (6.12)

The first and total order indices have the property that Si ≤ STi
≤ 1. Moreover, if Si = STi

= 0

it may be concluded that f(X) does not depend on Xi, while Si = STi
= 1 indicates that f(X)

solely depends on Xi.

This method for global sensitivity has several advantages in comparison to other alternatives in

that it is independent from the model structure, captures effects of individual inputs/parameters as

well as their interaction effects, and is able to rank the importance of different inputs/parameters

with respect to their share in the output variance. Yet, it is computationally expensive [113].
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Given a model with k parameters and N samples from each parameter, at least N(k + 1) model

runs are necessary to calculate partial variances for individual parameters [93]. N needs to be

larger if there are more inputs/parameters due to the exponentially growing size of the parameter

space from which there needs to be sampled, also known as the curse of dimensionality [54]. When

sensitivities are very low, there can also arise some computational difficulties [101].

6.2.3 Calculating Sobol’ indices in practice

For the sake of explaining the procedure we will represent the myxomatosis models from Section 5.1

as

Y = f(X), (6.13)

with y ∈ Y a model output and k parameters such that (x1, x2, . . . , xi, . . . , xk) = X. The first

thing to decide is the number of model runs (N) for the analysis. The computational strategy to

arrive at Sobol’ indices is based on Monte Carlo simulations in that many model evaluations are

necessary to give reliable estimates, especially for nonlinear models [65]. Then, we generated a

matrix of 2N rows and k columns, representing N quasirandom samples from the k parameters

which were then split into two matrices A and B, with N rows and k columns. After that, for

each parameter xi ∈X, a matrix Di was defined by all columns of A except the ith column, which

was taken from B, and a matrix Ci formed by all columns of B except the ith column, which was

taken from A. This resulted in 2k+ 2 matrices, two for each parameter, and the A and B matrix

(Figure 6.2).

Figure 6.2: Generating one pair of C and D parameter matrices from A and B [65].

To obtain the estimates of the first and total order Sobol’ indices for a given parameter, three

output vectors are needed of length N :

yA = f(A), yCi = f(Ci), yDi = f(Di). (6.14)
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Using those three output vectors, the first order Sobol’ index can be estimated as

Si =

1

N

N∑
j=1

y
(j)
A y

(j)
Ci
−

(
1

N

N∑
j=1

y
(j)
A

)2

1

N

N∑
j=1

(y
(j)
A )2 −

(
1

N

N∑
j=1

y
(j)
A

)2 , (6.15)

with j = 1, . . . , N . The total order Sobol’ index is estimated by

STi = 1−

1

N

N∑
j=1

y
(j)
A y

(j)
Di
−

(
1

N

N∑
j=1

y
(j)
A

)2

1

N

N∑
j=1

(y
(j)
A )2 −

(
1

N

N∑
j=1

y
(j)
A

)2 . (6.16)

The matrices Ci and Di are different for each parameter concerned and are generated for each

parameter/input separately, such that the total number of model evaluations needed for calculating

the first and total order Sobol’ indices for k model parameters is N(2k + 1), which explains the

computational demand of this method [65]. For Equations (6.15) and (6.16) the output vectors

need to consist of scalars [65, 93], which is often not the cases. Sometimes, the model output is

a time series, which implies that the sensitivity indices need to be calculated at each time step

separately, or by aggregating the output in a statistic. If the output of the model is spatial, like

in our myxomatosis model (see Section 5.1), then there are two options to calculate the Sobol’

indices. The first is to aggregate the spatial variables into an aggregated statistic, like the area

of a surface or its circumference, and continue with those statistics, or the Sobol’ indices can be

calculated for each grid cell separately [65]. The last approach results in a map of sensitivity.

6.3 Global sensitivity analysis of the myxomatosis model

In this section we will put the method of Sobol’ into practice according to [65]. First the selected

output will be outlined, after which the results for the spatially explicit myxomatosis model from

Chapter 5 will be discussed.

6.3.1 Selecting the model output

The first step in a global sensitivity analysis always involves determining the model output for

which we want to calculate sensitivity indices. For System (5.6) the generated outputs are maps

composed of cells with numbers of susceptible, infected, resistant and deceased rabbits, that vary

through time. As explained in Section 6.2.3, we need to have a scalar value to calculate the Sobol’

indices, which means that we need to aggregate our output by considering:

1. total number of susceptible rabbits;

2. total number of infected rabbits;

3. total number of rabbits killed by the disease.

4. total area of the cells with at least one infected rabbit present;
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5. total area of the cells with at least one rabbit that died from the disease;

6. total area of the cells with at least 10 percent of the population infected;

7. total area of the cells with at least 30 percent of the population infected;

8. area of the convex hull around the cells with at least one infected rabbit;

9. area of the convex hull around the cells with at least 10 percent of the population infected;

The convex hull is the smallest convex set that contains S if and only if for any pair of points

p, q ∈ S the line segment pq is completely contained in S (Figure 6.3) [85].

Figure 6.3: Convex hull around three polygons.

6.3.2 Input selection and sampling procedure

The next step in the sensitivity analysis considers the selection of inputs/parameters. In case of

System (5.6) we want to know the sensitivity with respect to six parameters (CM , ε, r, m, β, β).

We chose to keep the initial rabbit densities, and the location of the initial infected cells fixed.

Subsequently, it is necessary to define intervals for parameters from which to sample. For β and β,

we took the values from [32]. Since [32] involved a non-spatial myxomatosis model, it is not clear

whether these values will be the same for the spatially explicit model. For the other parameters,

we found substantial information on myxomatosis and rabbit population dynamics (see Chapter

2). Feasible and realistic parameter ranges were defined using this information (Table 6.1). The

ranges of the case mortality CM and the reciprocal of the survival time ε were largely based on

the studies of Anderson [4] and Dwyer [32]. For the mortality rate m, we constructed an interval

enclosing the reciprocal of the mean survival time of adult rabbits as reported by [71], and for the

reproductive rate r we calculated the ranges with values found in literature with

r =
females

rabbits per warren
× nests per year

female
× young rabbits

nest
× adults

young rabbits
, (6.17)

by inserting the highest and lowest values of those proportions found in [71].

Now we needed to assign a statistical distribution from which to sample our parameters [65].

We assumed that all parameters are uniformly distributed in their respective ranges since we
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Table 6.1: Sampled parameter ranges for System (5.6)

parameter range

β [0.00025,0.02]

β [0.00025,0.02]

CM [ 0.50, 0.99 ]

ε [1/50, 1/10]

m [1/(2.5×365),1/(0.8×365)]

r [(1/2×3×4×0.20)/365,(5/7×8×5×0.20)/365]

had no further information to underpin another choice. To arrive at the matrices A and B from

Section 6.2.3, we needed to sample combinations of parameter values from their respective marginal

distributions. Since our parameter space is relatively high-dimensional, we used latin hypercube

sampling (LHS) [93]. Often, multiple thousands of runs are needed for the calculation of Sobol’

indices, but this stratified sampling design allowed to sample the parameter space more uniformly

with fewer samples needed than using standard Monte-Carlo sampling [79], which was useful,

given the computational demand of System 5.6. Subsequently, for each parameter individually the

matrices C and D were assembled.

With N = 1000 and k = 6 this resulted in N(k + 1) = 13 000 model runs. With ∆t = 0.05 d and

7560 time steps, this corresponds to a time frame of 378 days or 54 weeks, which was the time frame

during which the myxomatosis epidemic developed in Belgium (see Section 4.1.3). Each simulation

took about 14 hours. All simulations were run in Mathematica (version 10.0.0, Wolfram Research

Inc., Champaign, United States) on the high-performance infrastructure of Ghent University.

6.3.3 Homogeneous land cover

The first GSA is performed under homogeneous land cover, so the transmission rates βi and βi

are equal for each polygon ci. For the most relevant aggregated statistic from Section 6.3.1 the

time series of the first and total order Sobol’ indices will be given, as well as the corresponding

variances. The convex hulls were calculated every 280 time steps, instead of every time step due

to high memory demands of their calculation.

Total of the susceptible rabbits

For the total number of susceptible rabbits (Figure 6.4), initially the most important parameter is

β, followed by r. The importance of the latter quickly declines in favour of β. Subsequently, the

first order indices (Figure 6.4(a)) of β and β steadily dwindle in favour of r, which becomes the

most important parameter after about 200 days. Before this shift, the total order indices (Figure

6.4(c)) of both β and β stay relatively high. This indicates that there are substantial interaction

effects. The other three parameters (Cm,m, ε) remain insignificant for this aggregated statistic.

Infected rabbits

For the total number of infected rabbits (Figure 6.5), the two transmission rates (β and β) start

off as the most prominent. However at about thirty days, the former is overtaken in favour of the

disease duration (ε) and the reproductive rate (r), and the latter shrinks again shortly thereafter.
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Figure 6.4: Variance and Sobol’ indices of the total number of susceptible rabbits.

The sensitivity with respect to the long-range transmission rate (β) has a small resurgence in its

first order sensitivity afterwards. After 150 days, the first order indices (Figure 6.5(a)) dwindle

for all parameters. By comparing them to the total order indices (Figure 6.5(c)), it is clear that

after that point in time the interaction effects become manifold and difficult to disentangle.

Rabbits that die due to the disease

For the total number of rabbits that die due to the disease (Figure 6.6), the long range transmission

rate β and the survival time ε are the two most important parameter at the onset, but are overtaken

at about 100 days by r. This seems contradictory, given that r governs the population increase.

Yet, as newly born rabbits are susceptible to the disease, an increase in r indirectly causes more

rabbits to die from myxomatosis.

Area with at least one infected rabbit

The first spatial statistic is total area of cells where at least one infected rabbit is present (Figure

6.7). The two disease transmission rates (β and β) explain almost all variance at the start of the

simulation. To elucidate this, we compare the first order (Figure 6.7(a)) and total order (Figure
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Figure 6.5: Variance and Sobol’ indices of the total number of infected rabbits.

6.7(c)) indices. It is clear that at the start, the first and total order indices are almost equal for

both β and β up to about 80 days. This means that this statistic solely depends on those two

parameters up to the point where CM , ε and r gain importance, with CM becoming the most

prominent.

For the area of the convex hull enclosing the cells with at least one diseased rabbit, the sensitivities

are similar to those of the the total area of those cells (Figure 6.7), except that it is unclear which

parameters become important after the decline of the sensitivity to the transmission rates (β and

β).

Area where at least one rabbit died due to the disease

For the total area of the cells that contain at least one rabbit that died to the disease, the

transmission rates β and β, again, contribute the most to the variance at the earlier time frame

of the simulations (Figure 6.8). After 100 days, the sensitivity with regard to β and β shifts first

to r, CM , ε and m. After about 200 days, the indices suddenly shoot upwards to theoretically

impossible values, and this for the first order (Figure 6.8(a)) and the total order indices as well

(Figure 6.8(c)). This is a prime example why it is good practice to always examine the variance

(Figure 6.8(b)) when performing a sensitivity analysis. Since the calculation of both Sobol’ indices
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Figure 6.6: Variance and Sobol’ indices of the total number of rabbits that died

from the disease.

requires the division by the total variance (Equations 6.9, 6.12), this means we get indeterminate

values for those indices if said variance reaches zero. The low variance can be explained as follows.

After about 200 days, for all the simulations, all the cells have been infected at least once, therefore,

the calculated area remains constant. Since myxomatosis took longer than the simulation time to

spread across Belgium (see Section 4.1.3), we may state that the combination of parameter values

that can lead to a relistic simulation result to mimic the myxomatosis epidemic is not contained

in the sampled parameter space.

Area with at least 10 percent infected

The trends for the sensitivity indices for the total area of cells, and the convex hull around those

cells, where at least 10 percent of the population is infected (Figure 6.9) are similar to those where

at least one infected rabbit is present (Figure 6.7). However, there are some key differences. The

sensitivities to the transmission rates (β and β) dwindle a bit earlier, and the two parameters

replacing those as the most important ones, are ε and r, instead of CM and r. This shift becomes

even more apparent for the sensitivities of the total area of the cells with at least 30 percent of the

population infected. Besides, the parameters ε and r also show strong interaction effects (Figure
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Figure 6.7: Variance and Sobol’ indices of the area of the polygons with at least

one diseased rabbit present

6.9(c)). The fact that ε gets increasingly important if the statistic is based on larger numbers of

infected rabbits is not unexpected, since a longer survival of infected individuals contributes to

larger populations of infected rabbits.
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Figure 6.8: Variance and Sobol’ indices of the total area where at least one rabbit

died to the disease.
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Figure 6.9: Variance and Sobol’ indices of the area where at least 10 percent of the

population is infected.
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6.3.4 Heterogeneous land cover

Since System 5.9 can incorporate land cover information, we decided to perform a global sensitivity

analysis on the transmission rates of different land cover classes, so we can identify which are the

most important. We only varied the transmission rates βi and βi in such a way that βi = βi for

each land cover class, resulting in five different transmission rates; one for each land cover class of

the CORINE map (Figure 4.8). The parameters were sampled in the same way as in Section 6.3.2,

with a LHS design for the five transmission rates. The same aggregated statistics were calculated

as in Section 6.3.1. The other parameters (CM , ε, r, m) were kept constant at the values from

Table 5.1, while the heterogeneous transmission rates were sampled from their distributions given

in Table 6.1. With N = 1000 and k = 5 this results in 11 000 simulations for this analysis. For the

sake of conciseness, we will restrict our discussion to a small selection of the aggregated statistics

of Section 6.3.3 since some were not informative or yielded very similar results.

Total number of susceptible rabbits

For the total of the susceptible rabbit s(Figure 6.10), it is clear that the transmission rate of the

arable land class is the most important, with the other land cover classes trailing far behind. There

are, however, some interaction effects with the other transmission rates (Figure 6.10(c)).
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Figure 6.10: Variance, and Sobol’ indices of the total number of susceptible rabbits
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Total number of infected rabbits and the total area where at least one rabbit is
infected

For the total number of infected rabbits (Figure 6.11), the transmission rate of the arable land

also is the most important. By comparing Figures 6.11(a) and 6.11(c), it is clear that at about

75 days there are almost no linear effects, inflating the total order indices. At that same point in

time the variance plot (Figure 6.11(b)) shows a dip, after which the variance raises again. After

250 days the graphs of the sensitivity indices become difficult to interpret, because the variance

approaches zero from that point on (Figure 6.11(b)). The other statistics provided similar results,

so they are not included. The most striking features of the two aggregated statistics are their

variance graphs (Figures 6.10(b), 6.11(b). Except for the dent in the variance at about 75 days for

last two, they all approach zero after 250 days. The same thing happened with the variance of the

total area where at least one rabbit died due to the disease (Figure 6.8(b)). From this, we already

stated that the parameter space did not include the values for which the model can mimic the

myxomatosis epidemic. Here, only the transmission rates (βi and βi) were varied over different

land cover classes. This indicates that the ranges of those parameters were not wide enough.
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Figure 6.11: Variance and Sobol’ indices of the total number of infected rabbits.
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6.3.5 Conclusion

The main conclusions from these GSA’s are the following. In general, the two transmission rates

(β and β) are the most important parameters at the start of the simulation, with the long range

transmission rate (β) being more important than the short range transmission rate (β). By

examining the variances, we may conclude that the sampled parameter space does not include the

parameter values able to simulate the myxomatosis epidemic, since all simulations have already

spread across the study area, on a moment that the epidemic from the data did not. Moreover,

the GSA concerning the βis and βis under heterogeneous land cover also resulted in low variances

further in the simulations, from which we may conclude that the transmission rates were not

sampled in wide enough ranges.

6.4 Spatial sensitivity analysis

From the GSA concerning the heterogeneous transmission rates (Section 6.3.4) one might conclude

that, given the land cover distribution of Belgium (Figure 4.9), the transmission rates of the arable

land are relatively more important for the disease spread. It should be pointed out, that the land

cover distribution of Belgium does not contain the complete simulation area, as parts outside the

Belgian border are included to avoid influence of it on the simulations. Therefore it could be

interesting to further investigate the transmission rates under heterogeneous land cover.

6.4.1 Method and input selection

Here, we want to extend Sobol’s method to a spatial context, i.e., we want to calculate a map of

sensitivity indices. This also means that we will not calculate a time series of Sobol’ indices, but

we will select a point in time and assess the sensitivity at that time instance instead. This means

that we will calculate Equation (6.15) for each polygon for a given model output, in this case the

number of infected rabbits in that polygon. From Section 6.3 we learned that the two transmission

rates (β and β) are the two most influential parameters in general, and that under heterogeneous

land cover the transmission rates of the arable land cover class are the most important. It is still

not clear, however, if its transmission rates are the most important across Belgium, or if in certain

areas, the transmission rates of another land cover class may be more important. For this we chose

to compare the transmission rates of the arable land with the transmission rates of the forest area.

We chose this class’ transmission rates as a comparison, since the forest area is quite concentrated

in the southern part of Belgium, while the pasture area and the urban area are more spread evenly

across Belgium (see Figure 4.8). From Section 4.1.2 we also know that in the southern part of

Belgium, not many nidi of myxomatosis were reported, and although there is no statistical proof

of an effect of the forest area on the number of reported nidi in a town (see Section 4.2.3) it is still

a good reason investigate the effect of its transmission rates.

We did not assume that βi = βi, so we varied them separately for each land cover class. This

results in four different sampled transmission rates. Since we concluded that the sampled ranges

for the βs were too narrow we changed their sample ranges to [0.25e−4, 0.02]. The transmission

rates of the other land cover classes remained fixed at βi = βi = 0.005, while the other paramters

are given in Table 5.1. The parmeters were sampled using a LHS design, but there is a major
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difference in the number of used samples. This time, N = 500, because our parameter space is

not as high-dimensional as the GSAs of Section 6.3. We also only needed the A and C matrices

this time, since we will not be calculating total order Sobol’ indices. With k = 4, this results in

a total of N(k + 1) = 2500 simulations. We limited the simulations to 2000 time steps, which

is equivalent to 100 days, and at the end of the simulations, we calculated the sensitivity maps.

We also calculated sensitivity maps for t = 1000 which is equivalent to 50 days, to check if those

indices change over time.

6.4.2 Results and conclusions

The sensitivity maps at 50 days are given in Figure 6.12. It is clear that, for the largest part

of Belgium, the long range transmission rate of the arable land (Figure 6.12(b)) is the most

important parameter. However, in the south, the long range transmission rate of the forest area

is the most important (Figure 6.12(d)). The two short range transmission rates are minor in

comparison. From the variance map of this time instance (Figure 6.14(a)), we can see that at this

time instance, none of the simulations have reached the north-eastern part of Belgium, meaning

no sensitivity indices can be calculated.

(a) sensitivity with respect to β of the arable land (b) sensitivity with respect to β of the arable land

(c) sensitivity with respect to β of the forest area (d) sensitivity with respect to β of the forest area

Figure 6.12: Sensitivity maps for the infected rabbits t = 50 d.
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At t = 100 days, the sensitivity maps are more informative (Figure 6.13). Though, the same

conclusions can be drawn as from the maps at t = 50 d.(Figure 6.12). Now, the waves have reached

the north-eastern part of the country, where it seems that the first order sensitivity indices are

low, irrespective of the parameter. This probably means that there are some interaction effects

in between them, as the variance in those regions is high at that moment (Figure 6.14(b)). This

shows that a spatial parameter that explains only a minor part of the variance in a non-spatial

statistic, can still be the most important one in certain regions of the simulated space.

(a) sensitivity with respect to β of the arable land (b) sensitivity with respect to β of the arable land

(c) sensitivity with respect to β of the forest area (d) sensitivity with respect to β of the forest area

Figure 6.13: Sensitivity maps for the infected rabbits t = 100 d.
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(a) t = 50 d (b) t = 100 d

Figure 6.14: The variance maps



CHAPTER 7
Calibration of the Spatially Explicit

Myxomatosis Model

In this chapter we will discuss the theoretical principles of approximate Bayesian computation.

Subsequently, we will use this technique to infer parameters of the myxomatosis model (System

(5.6)) based on the observed disease spread (Section 4.2.3). Then, we will check if the calibrated

model is able to simulate the 1953-1954 myxomatosis epidemic. Subsequently, the model will be

used to simulate some different scenarios.

7.1 Model calibration

Many recent models in computational biology are able to describe nature to a high degree of

accuracy. They cannot be treated in an analytical way, but can be simulated on a computer,

replicating many complex phenomena [66]. While it is easy to generate data from those models

for different parameter values, the inverse problem, that is, identifying parameters that lead to

simulated data that are sufficiently similar to the observed data is very difficult to solve [66].

For more simple models, like systems of ordinary differential equations, a variety of different

methods and algorithms are available, such as maximum-likelihood estimation, genetic algorithms

and simulated annealing [105]. Applying these methods to complex models with long simulation

times, often stochastic, and very complex, or intractable likelihood surfaces can be challenging or

practically impossible [66].

7.1.1 From Bayesian inference to approximate Bayesian computation

Approximate Bayesian computation has its roots in Bayesian inference [66]. It is a statistical

method in which Bayes’ theorem is used to update the probability of a hypothesis as it is given

additional information [14]. Let y = (y1, . . . , yn) be a vector of observations whose probability

distribution P (y|X) depends on the values of k parameters X = (X1, . . . , Xk). Suppose that X

itself has a probability distribution P (X), then we can use Bayes’ theorem to arrive at [14]:

P (X|y) =
P (y|X)P (X)

P (y)
∝ P (y|X)P (X). (7.1)
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Here, P (X) tells us what is known of X without knowledge of the data and is called the prior

distribution. Correspondingly, P (X|y) tells us what we know about X given our observations

y, and is called the posterior distribution [14]. The posterior is the distribution of interest as it

shows what parameter values are likely to explain the data. To link it to the prior P (X), P (y|X)

needs to be calculated. This term can also be written in function of X as the likelihood function

of X given y, or L(X|y) [14], so Equation (7.1) becomes

P (X|y) ∝ L(X|y)P (X). (7.2)

In classical Bayesian inference, L(X|y) is needed to link the prior and posterior distributions. In

the case of more complex models, the calculation of this likelihood function can be very difficult or

completely impossible [66]. Approximate Bayesian computation (ABC) overcomes this problem

by replacing L(X|y) with a sampling procedure [24, 66]. Algorithms for ABC have the following

generic form:

1. sample a candidate parameter vector X∗ from some prior distribution P (X);

2. simulate a dataset y∗ using the model with a conditional probability distribution P (y|X∗));

3. compare the simulated dataset, y∗, with the experimental data, y0, using a distance function

d;

4. specify a tolerance level ε, which is the desirable level of agreement between y∗ and y0;

5. if d(y0,y
∗) ≤ ε accept y∗.

This procedure results in a sample of parameters from a distribution P (X|d(y0,y
∗) ≤ ε) [105]. If ε

is sufficiently small, P (X|d(y0,y
∗) ≤ ε) will be a good approximation of the posterior distribution

P (X|y0). The biggest advantage of ABC-methods is that they only require the calculation of a

distance function to be able to infer posterior distributions. The fact that this procedure results in

a distribution and not a point estimate can also be more informative in certain situations. Some

algorithms can also be easily parallelised [76]. The biggest disadvantage of ABC methods is that

they require many model evaluations to infer the posterior distributions, which gets increasingly

problematic if the number of parameters increase, or if the prior distribution differs much from

the posterior one [66].

7.1.2 Applying ABC to the myxomatosis model

The ABC-algorithm that will be used to infer parameter distributions is a variation on the ABC

rejection sampler [76, 89, 105]. Its pseudo code is given below.

This algorithm is one of the simplest ABC-algorithms, and is still quite inefficient [66]. It is,

however, very easy to parallelize the for-loop since all the simulations are independent. This is a

clear advantage in our case, due to the long computing times. Other, more sophisticated ABC-

algorithms, like sequential Monte Carlo-ABC and Markov Chain-ABC are more efficient at finding

good posteriors, but cannot be as easily parallelized [76].

There were, however, slight modifications to the model needed before proceeding. All presented

simulations have been performed assuming that the disease entered at the French border. As

discussed in Section 4.2.3, there were a few different entry points along the French border and
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Initialization:

Choose the prior distribution P (X)

Choose the number of samples N

Choose a fraction θ

for i ∈ [1, 2, . . . , N ] do
Generate X∗i from P (X)

Generate y∗i from the model F (X∗i )

end

Sort all samples (X∗i ,y
∗
i ) based on the distance of y∗i to the observations y0 in increasing

order.

Choose only the first θN samples to generate the posterior distribution of the parameters.

one in Antwerp, and these introductions happened at different times. Since System (5.6) can only

simulate disease transmission at relatively short ranges, the areas where the different outbreaks

started, were assumed to contain 10 % infected rabbits at their time of appearance in the dataset.

As summary statistic to compare our data and simulation results, we decided to compare the

surface areas of the observed epidemic wave fronts, at a given time with the area that has contained

at least 10 % infected rabbits up to that point. More precisely, both time series of areas can be seen

as vectors between which we can calculate the Euclidean distance, which is the distance measure

we used.

We restricted the parameter inference to the two transmission rates β and β under homogeneous

land cover since there is no sufficient proof for an effect of the land cover on the spread of myxo-

matosis (See Section 4.2.3). Also, the other parameters can easily be derived from literature (see

Section 6.3.2 and Table 7.1). In addition to that, the model is not sensitive to them when the

disease is still spreading (see Chapter 6), which means they are more difficult to infer [105]. We

assumed a stable population with equal reproduction and natural mortality rates. The parameter

values for the fixed parameters are given in Table 7.1. for the transmission rates, we chose the

Table 7.1: Parameter values for the calibration.

parameter value

CM 0.95

ε 1/12

m 1/(1.5×365)

r 1/(1.5×365)

same sampling distributions ([0.25e−4, 0.02]) as in Section 6.4 for both. We did not use a LHS

design this time, since it is not necessary for low-dimensional sampling procedures. We took N

= 1000 samples from those distributions and chose θ = 0.1. So, the posteriors were constructed

from the 100 samples that scored the best on the distance function.

7.1.3 Results of the ABC procedure

The histograms of the marginal posterior distributions for the two transmission rates are given in

Figure 7.1. Here, we see that the posterior of β (Figure 7.1(b) is much narrower than the posterior
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of β (7.1(a)) although they were sampled from the same range. This follows from the higher

sensitivity of the model output to the former (see Section 6.3.5), which makes this parameter

easier to infer [105]. However, it seems that for both transmission rates, the lower values have a

higher chance to be retained in the procedure. Since we are inferring two parameters, we also plot

their two-dimensional distribution to detect correlations (Figure 7.2).
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(b) β

Figure 7.1: Distribution of the values of the 100 retained samples. The range of the

plot is the sample range of the prior.

There seems to be some correlation between the two parameters, but the posterior still encompasses

a quite wide area for both parameters. Therefore, we repeated the ABC procedure with smaller

parameter ranges based on the posterior of Figure 7.2. More precisely, β was sampled from

[0.01× 10−4, 0.01], while β was sampled from [0.01× 10−4, 0.005]. Again, we chose N = 1000 and

θ = 0.1, which resulted in the histograms of the marginal posteriors depicted in Figure 7.3.

Again, lower values from the sample ranges have a higher chance at being retained in the procedure.

The contour plot of the two-dimensional posterior is given in Figure 7.4.

By examining said posterior and comparing it with the posterior in (Figure 7.2), it is clear that the

two parameters are negatively correlated. This is not unexpected, since those parameters govern

the same process, meaning a high value in one transmission rate may compensate a low value of

the other. The ABC procedure resulted in a two-dimensional posterior, so in the following section,

we will validate the model by examining the simulation for different values of the transmission

rates in the posterior.
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Figure 7.2: Contour plot of the 100 retained samples.
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Figure 7.3: Distribution of the values of the 100 retained samples for the second

procedure. The range of the plot is the sample range of the prior.

7.1.4 Model validation

From the posterior distribution of the transmission rates (β and β) we chose three parameter

combinations whose locations are given in Figure 7.4, and compared the simulated epidemic wave

obtained therewith, and the observed epidemic wave (Section 4.1.3). This was done by compar-

ing their maps for the first four seasons after the epidemic onset as well as their total infected

areas (Figure 7.5). It should be noted, however that the model could not be validated with an

independent dataset. The values of the three parameter combinations are given in Table 7.2.
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Figure 7.4: Contour plot of the 100 retained samples from the second procedure.

Table 7.2: The parameter values for the simulations.

parameter Simulation 1 Simulation 2 Simulation 3

β 0.0010 0.0025 0.0040

β 0.0024 0.0014 0.0006
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Figure 7.5: Comparison of the simulated infected areas versus the observed infected

area.

If we compare the simulated maps for the four seasons (Figure 7.7, 7.8, 7.9 and 7.10), it is clear

they are almost visually indistinguishable. Also, the dynamics of the susceptible and infected
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rabbits, and rabbits that died due to the disease are very similar among the three simulations

(Figure 7.6).
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Figure 7.6: Comparison of the disease dynamics between the three simulations of

Table 7.2

From this, we may conclude that β and β compsensate each other, resulting in many possible

parameters that yield similar results. There are several remarks to make, however. For the maps

of the autumn season of 1953 (Figure 7.7), smaller infected areas are simulated in comparison to

the data, contrary to the summer of 1954 (Figure 7.10), when the infected area is overestimated.

Figure 7.5 also shows how all three simulations underestimate the infected area at the beginning,

but overestimate it at the end. There are also some major differences in how the outbreak of

Antwerp fuses with the other outbreaks (Figure 7.8). In reality, the outbreak of Antwerp fused

with the other outbreaks in the winter, at a central location in Belgium (Figure 7.8(a)), while in

silico this happens around spring, more to the north-west. The location where the in silico fusion

happens, is not contained in the epidemic wave up till summer in the data (Figure 7.10(a)). It

also seems that the model overestimates the spread in the southern part in Belgium in spring and

summer (Figures 7.9 and 7.10).

7.1.5 Conclusions

Now, the crucial question is if this model is able to replicate the spread of the myxomatosis

epidemic in Belgium. To answer this, there are several things that should be considered. First,

the model is deterministic, while simulating a stochastic process (see Chapter 3). This means that

differences between the data and the model simulations are inevitable. Secondly, the data from

which we reconstructed the epidemic wave is old, which implies uncertainties. Also, according to

the Bulletin Sanitaire, there were several decrees issued with measures to contain the disease [80],

especially in the province of West-Flanders, where many nidi were found in domesticated rabbits

(see Section 4.1.2). It is possible that those measures impacted the disease spread in that region.

Thirdly, the model was calibrated assuming that there was no influence whatsoever of the land

cover on the population densities or disease dynamics. Still, the model is capable of simulating an

epidemic wave that resembles the data to a certain degree, which shows its potential at modelling

the spatial spread of epidemic diseases.
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(a) Data (b) Simulation 1

(c) Simulation 2 (d) Simulation 3

Figure 7.7: Observed and simulated epidemic wave in the autumn of 1953

7.2 Scenario analysis

Using the inferred parameters, we simulated some scenarios to examine if it can be useful for other

situations. It should be noted that these scenarios are hypothetical and only serve to illustrate

how the model can be improved, or used in alternative contexts.

7.2.1 Revisiting the forest area

From the non-spatial sensitivity analysis of Section 6.3.4, it seemed like the transmission rate of

the arable land was globally the most influential. However, from the spatial sensitivity analysis

from Section 6.4, we learned that the transmission rate of the forest area was more important in

the southern part of Belgium. We also learned that the model overestimates the speed at which

the disease spreads in that part of Belgium in Section 7.1.4. For this scenario we will use the

values for the transmission rates of Simulation 3 (Table 7.2), except we divide both by 10 for the

polygons with forest land cover. The other parameters are those in Table 7.1. The maps of the

epidemic wave are shown in Figure 7.11.
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(a) Data (b) Simulation 1

(c) Simulation 2 (d) Simulation 3

Figure 7.8: Observed and simulated epidemic wave in the winter of 1954

In the autumn of 1953 (Figure 7.11(a)), the differences between this simulation and those of Figure

7.7 do not seem to differ much. However, comparing the maps of the other three seasons (7.8, 7.9

and 7.10 and 7.11(b), 7.11(c), 7.11(d) respectively) clearly shows that lower transmission rates in

the forested regions slows down the epidemic wave in general, especially in the south-eastern part

of Belgium. This also lowers the amount of infected rabbits and the casualties resulting from it

(Figure 7.12). Visually, the maps of the epidemic wave also look more similar to the data. This

points out that an additional ABC procedure, where the transmission rates in forest areas are

varied relative to the other land covers may yield more accurate simulation results.

7.2.2 Rabbit haemorrhagic disease

RHD is another highly contagious illness that ravaged rabbit populations in Belgium and the rest

of the world (Section 2.6). Therefore, it is interesting to adjust the parameters of Table 7.1 to

the disease dynamics of RHD and simulate its introduction. As discussed in Section 2.6, the main

difference between myxomatosis and RHD is that RHD-infected rabbits survive for much shorter

time periods, i.e., only about two to three days. So, we used the transmission rates of Simulation
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(a) Data (b) Simulation 1

(c) Simulation 2 (d) Simulation 3

Figure 7.9: Observed and simulated epidemic wave in the spring of 1954

3 and the the other parameters from Table 7.1, where we changed ε to 1/3 to reflect the shorter

survival time. The simulation results are shown in Figure 7.13.

If we compare those simulations with the corresponding ones of Scenario 3, the visual effect of

lowering ε seems to be limited to a much thinner epidemic wave. However, if we observe the disease

dynamics (Figure 7.12), we see that there are a lot less infected rabbits present at any given time,

yet they only result in slightly lower casualties than for the scenario with low transmission rates

in the forest.

7.2.3 Chytridiomycosis

In this thesis, the focus up to this point has been on the spread of an epidemic disease in a

terrestrial mammal, i.e. the European rabbit (Oryctolagus cuniculus). Now, it could be interesting

to simulate the spread of a new disease in an animal species that is still quite numerous, but is

bound to a specific environment. A disease that satisfies those requirements is chytridiomycosis,

a cutaneous disease in amphibians, caused by the chytrid fungus Batrachochytrium dendrobatidis,

which is an important reason of the decline in global amphibian diversity [36]. To examine whether

the model is able to simulate the introduction of this disease, we simulated an introduction of
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(a) Data (b) Simulation 1

(c) Simulation 2 (d) Simulation 3

Figure 7.10: Observed and simulated epidemic wave in the summer of 1954

chytridiomycosis in the vicinity of Ghent, Belgium. First, we constructed a map of the suitable

amphibian habitat by comparing the map of the water surfaces in Belgium with the map with

the Voronoi polygons, so if a polygon clips a water feature, it is marked as a suitable amphibian

habitat, and if it does not, it is marked as not suitable. We assumed that population densities

of cells marked as unsuitable were 1/50th of the population densities of suitable cells. For the

transmission rates, we took the values of Simulation 3 (Table 7.2) for the suitable polygons, while

we divided them by 100 for the unsuitable ones. The other parameters were those of Table 7.1,

except for ε. Since amphibians infected with the disease survive in between eight to thirty days,

we assumed ε = 1/18 [83]. It is also known from literature that the mortality rate (CM ) is about

0.95 [83]. The simulation results are shown in Figure 7.14.

It is clear that the model can simulate the spread of this disease in the sense that it evolves an

epidemic wavefront, but the wave seems to spread in a spatially homogeneous way for polygons

with strong spatial restrictions. The polygons we used were probably too large given the detail of

the water features, so a polygon has a high probability of containing a water feature, and hence

marking it entirely as suitable area. Indeed, half of the polygons as suitable. To examine this

scenario further, it would be necessary to generate a tessellation in a smaller resolution.
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(a) autumn (b) winter

(c) spring (d) summer

Figure 7.11: Simulation results for the scenario with a slower disease spread in

forest areas.
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Figure 7.12: Comparison of the disease dynamics between Simulation 3, the

scenario with low transmission rates for the forest area, and the scenario of RHD. of

Table 7.2
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(a) autumn (b) winter

(c) spring (d) summer

Figure 7.13: Simulation results for the case of an RHD infection.
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(a) autumn (b) winter

(c) spring (d) summer

Figure 7.14: Simulation of the epidemic wave for the chytridiomycosis scenario.





CHAPTER 8
Conclusion

There is one main question we addressed in this masters thesis. Is it possible to reconstruct the

spatial dynamics of the first myxomatosis epidemic in Belgium with a spatially explicit model?

To answer this question, several steps had to be taken.

In Chapter 2 we were derived multiple properties of the myxomatosis dynamics and the repro-

ductive behaviour of the European rabbit from literature. We also provided a thorough review of

their respective histories and their importance.

After that, in Chapter 3, we examined the theory behind epidemic modelling, starting from the

very basic systems of ordinary differential equations, up to highly complex individual-based models.

Supported by this literature review, we interpreted the disease data in Chapter 4. Although the

literature asserted that myxomatosis spreads differently under different land covers, the data did

not provide sufficient proof to support this claim. This was due to the low quality data, and the

fact that a land cover map from the time of introduction is unavailable. Still, we learned that the

disease did not enter Belgium gradually along the French border, but instead started from multiple

outbreaks. We were also able to reconstruct the progress of the epidemic wave and provided a

general idea of the time-frame during which it developed.

In Chapter 5, we showed that the model is able to simulate an epidemic wave, which is a prereq-

uisite for the reconstruction of the myxomatosis epidemic.

Thereafter, in Chapter 6, we performed a sensitivity analysis. We showed that variance-based

methods for global sensitivity analyses are able to produce very useful information. Not only

did we identify the parameters that are primarily responsible for changes the simulated epidemic

wave. We also learned that the parameter values able to reproduce the epidemic wave, were not

contained in the parameter space used for the analysis. Furthermore, we also showed that a spatial

sensitivity analysis can unveil information that is hidden in non-spatial sensitivity analyses.

In Chapter 7, building on the knowledge gathered in previous chapters. We calibrated the model

using approximate Bayesian computation, an inefficient but widely applicable method. Assisted

by the knowledge gathered during the sensitivity analyses, we were able to find parameter values

with which the model simulated the observed epidemic wave. We also showed that there is still

some room for improvement, but due to time constraints were not able to fine-tune the model

further.

With that in mind, we can state that we answered the main research question. However, the key

part to remember is the importance of a comprehensive sensitivity analysis. Without such an
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analysis, we probably could not have determined which parameters to calibrate, and which ones

to derive from literature. We also showed the potential of ABC at inferring parameters of complex

models, when supported by the knowledge gathered from a sensitivity analysis.

For further research, it could be interesting to expand this type of model to other animal diseases,

preferably with a more accurate dataset, to verify if the model performs better results if given

more information. We also only calibrated with regard to the speed at which the epidemic wave

spreads. This means we did not investigate if the simulated quantities of infected individuals are

realistic.

A property that was discussed in Chapter 3, but never investigated for this model is the basic

reproductive number, a property that shows whether an epidemic can develop in an entirely

susceptible population. The calculation of this property has been investigated in a non-spatial

context, but this was not done for this model. Investigating this property may yield further

information how an epidemic can develop in a spatial context.

The model structure also is reasonably simple, with few parameters for a spatially explicit model.

This means there is still room to include more complexity, like seasonal changes in the reproduction

rate for example. This simplicity may also make it suitable to be adapted to other fields.
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