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STORY OF MY RESEARCH 

 
In my third year of my Bachelor of Science in Geology, I chose to do my Bachelor Project at Flanders 

Hydraulics Research. I was curious about how things went outside of the university. It was a good experience, 

and a year later, when my mentor said that I could do my Master’s dissertation here if I wanted as well, I 

accepted. A subject was found: the application of Particle Tracking Velocimetry to visualize bottom transport 

in a laboratory flume. The subject has nothing to do with my Bachelor Project (Acoustic Doppler Current 

Profiler to measure concentration of suspended sediment), but the methodology is similar. The research 

involves an existing technique and combining the available equipment and software to answer the following 

questions: What can we measure? What can be improved? What can we use for future research? 

 

In this research, we started with individual components: two cameras with lenses, a current flume, a way 

of mounting the cameras, software to record and software to process images, instruments to provide 

comparable data. Through the research, I learned to work with people who could help me with one or two 

individual parts of the process each, but I had to combine all of these elements into one project. The research 

was a cycle of choosing settings, carrying out experiments, processing videos based on what I learned from 

one person, discussing the results with a second person, changing the setup with the help of a third person 

and repeat. Through trial and error, it becomes clear what is possible to measure and what not, what can or 

should be changed and what not, and even which research questions can be answered within the scope of 

my work and which ones cannot. My final result is the sediment transport visualized in the lowest 10 cm of 

the water column at one specific water velocity by one camera in specific settings. If my progress had been 

going faster, I might have been able to collect data at different water flow rates or with the second camera or 

vary the settings. If it had been going slower, I might have not been able to collect or process even these 

images. It was an informative experience having an own scientific project, starting from an initial situation 

and expectations up to the final results and what is left for the next researcher. 
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1. INTRODUCTION 

 
Of all sediment transport mechanisms, sediment transport in water is the most important (Nichols 2009).  

Traditionally, it has been divided in two categories: suspended transport and bedload transport (Figure 1). 

Their definitions can vary, as illustrated by Bagnold (1956) and Einstein (1950). Bagnold (1956) defines the 

bedload transport as that in which the particles have successive contacts with the bed by the effect of gravity, 

while the suspended-load transport is defined as that in which the excess weight of the particles is supported 

by upward impulses from turbulence in the flow. Bedload is transported by rolling, sliding and jumping (also 

known as saltation). Einstein (1950) defines the bedload transport as the transport of sediment particles 

within a thin layer (thickness: 2 particle diameters) just above the bed by sliding, rolling and sometimes by 

making jumps with a longitudinal distance of a few particle diameters. This view does not include saltating 

particles, whose jump lengths are considerably larger than a few grain sizes. What these definitions have in 

common is that bedload transport takes place in a region near the bottom of the water column and near the 

top of the sediment bed. Particles in bedload transport move at a speed that is less than the velocity of the 

transporting current (Gomez 1991), whereas the velocity in longitudinal direction of particles in suspension 

is almost equal to the fluid velocity.  

 
Figure 1: Particle movement in a flow. Reproduced from Nichols (2009). 
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There are many devices to collect sediment from bottom transport directly. But bedload samplers have 

certain disadvantages (Nevelsteen & Van Hoestenberghe 2009; Yager et al. 2015; Ryan & Porth 1999; 

Rachlewicz et al. 2017). Indirect methods to determine sediment transport do exist, but before using them in 

the field, laboratory tests and calibration are required (Nevelsteen & Van Hoestenberghe 2009; Yager et al. 

2015; Beylich & Laute 2014). One of these methods is the Acoustic Doppler Current Profiler Bottom-Track 

(ADCP-BT). Experiments with acoustic instruments will be carried out at Flanders Hydraulics Research. A 

current flume that was already built was modified to fit the research terms. The most important modifications 

include a pit sampler at the end of the sediment bed to collect all sediment transported by bedload transport, 

an acrylic glass window and a dry cell, where a camera can be placed to monitor the sediment transport, and 

mounting structures above the flume, to which ADCP’s, a camera and other instruments can be attached. 

The results obtained by the acoustic instruments should then be compared with data from other devices and 

methods to be verified. We are searching for a method that can visualise bottom transport and can measure 

the velocity of the sand that is being transported. A good candidate for this is the use of cameras and the use 

of Particle Tracking Velocimetry (PTV) to process the images, in the hopes of obtaining a good image of the 

particle movement and the particle velocities of sand-sized particles near the bottom.  

 

This study will investigate if, using the equipment and software currently available, a methodology can be 

found to record camera images, process these to particle velocities and sediment transport and visualize it. 

If this has been obtained, we will try to measure particle velocities and transport rates under conditions where 

this is possible. If good data has been acquired, it will be compared to ADCP and bottom-track 

measurements. 



 

8 
 

2. LITERATURE REVIEW AND PRIOR RESEARCH 
 

2.1 Direct methods to measure bedload transport 
There is a large diversity of methods and devices to measure bottom or bedload transport directly. Reasons 

for the poor comparability and representativeness of bedload research include difficulties regarding 

measurement techniques, limited budget, available material, experience of the users with specific methods 

or availability of operators (Rachlewicz et al. 2017). Bedload samplers are instruments that capture and 

collect bedload sediment. Examples include the Helley-Smith bedload sampler and the Bedload Transport 

Meter Arnhem (BTMA). These devices are placed in the flow, near the bottom. Their presence may affect 

local patterns of the flow and transport (Ryan & Porth 1999). Construction (type of material in particular) can 

result in significant variability in the amount of captured sediment (Rachlewicz et al. 2017). Issues have been 

reported related to the limited duration of bedload sampling, size of samplers, and disturbances on the bed 

produced by the same samplers (Mao et al. 2016). Descriptions of two bedload samplers (the Helley-Smith 

sampler and the Bedload Transport Meter Arnhem) are given by van Rijn (1993). The Helley-Smith bedload 

sampler consists of a nozzle, sample bag and frame (Figure 2). The Helley-Smith is one of the most widely-

used instruments to measure bottom transport, and it has been calibrated extensively (based on about 10 000 

samples). The lower and upper threshold of the grain size of the captured sediment depend on the mesh 

size of the basket and the opening of the sampler mouth respectively. 

 

Figure 2: Sketch of the Helley-Smith bedload sampler, including sample bag (captures sediment), frame (holds bag) and 
nozzle (opening through which bedload enters). Reproduced from van Rijn (1993) 

The Bedload Transport Meter Arnhem (BTMA) collects sediment particles in a basket type sampler. This 

basket is pressed on the channel bed when the frame has been lowered on the sediment bed by means of 

a spring (Figure 3). This results in a pressure reduction behind the instrument, which causes water and 

bedload to enter the sampler mouth at the same velocity as that of the local flow, under the condition that the 

sediment content already in the basket is not too high. The lower and upper threshold of the grain size of the 
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captured sediment again depend on the mesh size of the basket and the opening of the sampler mouth 

respectively.  

 
Figure 3: Sketch of the BTMA. 1) wire mesh basket (capture sediment) 2) sampler mouth (bedload enters) 3) tail 4) 
frame 5) leaf spring 6) stabilizer. Reproduced from van Rijn (1993) 

Ryan & Porth (1999) showed that three comparable bedload samplers (out of which two Helley-Smith 

samplers) can produce significantly different results. Flow remains the most important element predicting the 

weight of the sediment samples taken, but the type of sampler cannot be ignored. Bedload data from 

samplers needs to be calibrated therefore. Rachlewicz et al. (2017) also compared three bedload samplers 

(including one Halley-Smith), and concluded that placement of samplers on the river bottom changes the 

dynamics and character of the movement of bedload particles locally. The construction of the sampler, its 

way of placing and stabilization, the operator all have a significant influence on discrepancies in estimating 

the amount of transported bedload.  

 

2.2 Indirect methods to measure bedload transport 
Indirect methods to determine sediment bottom transport include geophones, hydrophones, vibrational 

sensors, pipe-microphone acoustic systems, acoustic sensors fixed beneath a steel plate and impact sensors 

fixed to steel plates (Beylich & Laute 2014). These methods are less invasive than trapping or collecting 

sediment or adding tracers, they minimize local and temporal changes to the flow field, and they could provide 

continuous records in space and time. Laboratory experiments in a controlled environment are important for 

a better understanding of the factors that can influence the calibration of these devices (Beylich & Laute 

2014). Experiments such as these are needed because of the following reasons (Yager et al. 2015):  
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1) field measurements may include too many spatially and temporally variable parameters that could 

influence bedload transport, on the other hand flume experiments allow for the isolation of the effects 

of individual parameters;   

2) bedload transport in the field is notoriously difficult to quantify and has large uncertainties, as 

discussed earlier;   

3) changes in bed surfaces (e.g. grain size distribution, elevation, bed roughness) during flow events 

can also be difficult or impossible to measure; 

4) grain scale mechanics of sediment motion and transport are much easier to quantify in controlled 

laboratory conditions rather than in the field. 

 

In Flanders, sediment transport measurements in waterways only really started in 2000 (Nevelsteen & Van 

Hoestenberghe 2009). Since then, the Flemish Environment Agency has been able to measure suspended 

sediment transport precisely and continuously using optical turbidity sensors and analysis of water samples 

in the upper catchment areas of the Scheldt and Demer rivers, where suspended transport is dominant. 

However, in waterways in regions of Flanders that are dominated by sandy soils, bedload transport is a much 

more important part of the total sediment transport. To find a method to measure bedload transport 

continuously in time and space, Nevelsteen & Van Hoestenberghe (2009) reviewed a list of potential bedload 

measurement devices and techniques: 

1) Optical instruments: these include turbidity sensors, ASM = Argus surface meter (by Argus 

environmental instruments) and LISST Streamside (Sequoia). The downside for these instruments 

is that they take point measurements instead of measuring a large part of the water column. They 

are more fitted to measure suspended sediment transport than bedload transport. 

2) Sampling: sampling can be difficult, even dangerous, is intrusive and discontinuous, and sampling 

efficiency decreases as the samplers are filled. Nevelsteen & Van Hoestenberghe (2009) reviewed 

the pit sampler, the Helley-Smith and the BTMA. 

3) Image capture and processing: recording underwater videos requires a lot of material to be brought 

into the field, and the processing itself is labour-intensive. There is potential to use cameras in the 

laboratory experiments however.  

4) Bedload formulae: Transport rates can be calculated from hydraulic parameters, but these formulae 

need verification.  

5) Tracers: tracers can be added to the flow to visualize transport, but this is not fit for continuous 

measurements, only as a first indication of transport rates.  

6) Acoustic instruments: devices such as the AZTM = akoestische zandtransport meter (acoustic sand 

transport meter, by Delft Hydraulics) suffer from the same flaws as optical instruments, but ADCP 

devices can measure nearly all of the water column and the river bottom (if they have a bottom-track 

function) and do this continuously. 
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Out of these options, it was concluded to further investigate the ADCP-BT capabilities to measure bedload 

transport. More specifically, the Workhorse 1200 kHz and the Streampro 2000 kHz by Teledyne RD 

Instruments were chosen because of their sufficiently small cell size, inclusion of bottom tracking and their 

working ranges of water depth and flow velocity. For more information on ADCP-BT, we refer to the RDI 

Instruction Manual and the thesis by Joachim Beckers (Beckers  2017). In short, an Acoustic Current Doppler 

Profiler (ADCP) emits beams of sound pulses that are reflected by scatterers such as suspended sediment 

particles and the river bottom. When these objects move away or towards the transducer, the frequency of 

the incoming soundwave changes: this phenomenon is called the Doppler effect, and the increase or 

decrease in frequency is called the Doppler shift. An ADCP reads the echo wave that was reflected on 

suspended particles and calculates their velocity relative to the instrument. Hence the ADCP can measure 

the suspended sediment transport. To measure bedload transport, the ADCP must have a bottom-track 

feature. Bottom tracking requires long acoustic pulses, for the beam to completely illuminate the bottom at 

one time, as shown in Figure 4. The downside of long transmit pulses is that a considerable part of the echo 

can come not only from the bottom, but also from the sediment in the water column just above the bed. In 

conditions of high sediment concentrations near the bottom, this could cause an underestimation of the water 

depth and bias the bottom-track velocity towards the water velocity: this is called the water bias. What is 

being measured by the bottom-track is therefore not always clear and this demands further laboratory 

research before using BT-ADCP in the field. 

 

 

Figure 4: The necessity of a long transmitter pulse in bottom tracking. A) Pulse too short B) Pulse long enough to 
completely illuminate the bottom at one time. Reproduced from the Teledyne RDI Instruction Manual. 
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2.3 Particle Tracking Velocimetry 
Particle Tracking Velocimetry (PTV) and Particle Image Velocimetry (PIV) are two image analysis methods 

commonly used in fluid dynamics research (Smith & Friedrichs 2015). Both techniques are based on the 

principle of capturing video images of a specially illuminated particle seeded fluid flow, to then extract 

quantitative information about the flow field from that video record (Nokes 2009a). PIV involves correlating 

the movement of particle groups (Smith & Friedrichs 2015). The technique relies on the cross-correlation of 

the intensity fields in two consecutive frames. Fluid velocities are obtained from matches based on peaks in 

the cross-correlation field. For this cross-correlation to be meaningful and PIV to work efficiently, particle 

density needs to be sufficiently high (Nokes 2009a). PTV is based on tracking individual particles from frame 

to frame. This method produces particle-centred velocity estimates, which can be interpolated to a regular 

grid if necessary. PTV works better in sparsely seeded flows, but in general particle density is less of an issue 

with PTV than PIV (Nokes 2009a). O’Brien & McKenna Neuman (2016) reviewed PIV, PTV and Laser 

Doppler Anemometry (LDA) as techniques for the measurement of saltation of sand, including a short 

historical overview of the use of PTV. LDA can obtain particle population statistics, but this method does not 

track particles individually and photo sensors can be overloaded at the sand bed. PIV can track individual 

sand particles, but according to O’Brien & McKenna Neuman (2016) this technique can only measure an 

insignificant fraction of the saltation trajectory of particles and does not perform reliably when there is a high 

density of sand particles of various size. PTV is widely regarded as the most desirable method for obtaining 

information about saltation dynamics as this technology can track a particle’s displacement and velocity 

throughout a portion of its trajectory, in rare instances from ejection through to impact (O’Brien & McKenna 

Neuman 2016). Like LDA and PIV technologies, however, existing PTV systems generally perform poorly in 

flows with a high density of particles. PTV experiments started using cine film photography and relied on 

manual particle identification and tracking only, which is subjective and labour intensive (unfit for large 

datasets). Over the last decade, scientific-grade, digital cameras have replaced film in the application of PTV. 

Particles can now be identified and assigned spatial coordinates using computer programs. The most recent 

innovations are that cameras delivering both high resolution and a high frame rate have gotten cheaper and 

more accessible, and the ongoing development of software that can detect both the sand particles and their 

trajectories (O’Brien & McKenna Neuman 2016). 

 

Particle Tracking Velocimetry (PTV) involves the matching of particles between subsequent video frames. 

When the time between frames is known (most often by having a fixed framerate) and the distance travelled 

between frames is measured, the individual particle velocities can be calculated. In order to do this 

successfully, the particles first need to be recognised in the frames correctly. To make this process easier or 

even possible, PTV is most often used on low concentrations of relatively large particles (Smith & Friedrichs 

(2015) use diameter > 30 µm, so this includes coarse silt, sand and gravel, not fine silt and clay) that 

differentiate strongly from the image background. Preferably the particles are bright objects in a dark 
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background, clearly separated from each other and easy to follow even with the naked eye between frames. 

Some potential limitations for video analysis of bedload transport include the following (Yager et al. 2015):  

1) very high transport rates often cannot be measured because of problems when trying to identify 

individual particles;  

2) top-down view videos might only capture sediment transport immediately at the sediment bed 

surface; and   

3) sideview videos might only capture limited spatial variation in bedload transport.  

 

Based on the described advantages of PTV (good for sand-size particles, saltation-type motion, can track 

individual particles, innovations in camera and software) and to study its potential limitations, PTV analysis 

was chosen to try to visualize bottom transport and hopefully compare data with ADCP measurements.  
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3. MATERIAL AND METHODS 

 

3.1 The current flume 
The experiments are performed in a current flume at Flanders Hydraulics Research. The installation 

consists of an elevated water basin, fed by a larger underground basin by two large pumps, two valves, a 

control room, the flume itself, a dry compartment where a camera can be placed behind a transparent 

window, a filter (150 µm mesh size) and a tilting sluice gate, after which the water flows back to the 

underground basin. Figure 5 shows the most important parts of the flume. Two pumps replenish a basin that 

is elevated compared to the flume, so water can flow gravitationally through two pipes into the flume. Two 

valves are installed on these pipes, to control the flow rate. Each pipe has a maximum flow rate of 200 litres 

per second. The valves can be operated manually or from a computer in the control room. A computer 

program, after loading a calibration file, controls and displays the current flow rate for each valve and allows 

the user to set the desired flow rate. Most experiments were performed at a flow rate of 200 l/s: this flow rate 

is high enough to initiate a continuous bottom transport regime. Higher flow rates bring more material in 

motion, increasing the amount of particles and their velocity, which makes it more difficult to track them. The 

particles themselves are not regular quartz sand grains: prior research concluded that it was too difficult to 

get quartz sand into motion in the current flume. A replacement was chosen with a lower density, but with a 

coarse to medium sand-like grain size distribution (Wentworth scale). The density of quartz is 2650 kg/m³. 

The sand-like substitute was manufactured from old sewing buttons (most likely plastic, it can even be an old 

type of plastic such as Bakelite). The density of this material is 1220 kg/m³ and the grain size distribution is 

given in Figure 6. The grain size distribution was determined with a Malvern Mastersizer 2000 (Figure 6). Full 

results can be found in the Appendix (A.4). This material is lighter and can be transported more easily through 

the current flume, which makes it ideal for the first test with PTV. The particles are sometimes coloured (red 

or black mostly), but most of the material isn’t: the pale particles can be seen clearly, even under water with 

appropriate lighting. Lighting is provided by two options: a light screen opposite of the transparent window of 

the dry cell and a lamp above the water, shining down (Lupolux Dayled 1000 90 Watt). The ‘sand’ forms a 

bed in the narrow part of the flume. At the end of the sand bed, there is a pit sampler with a load cell that 

should trap the bedload material. The amount and weight of material captured in the pit sampler could then 

be used to estimate the amount of bedload transport over a longer time span. Behind the pit sampler, the 

flume broadens again and a large sieve filters all the water before it flows to the underground basin again. A 

sluice gate can be tilted up and down to empty or fill the flume with water. Most of the time, the tilting gate is 

placed up, but not higher than the top of the filter. However, if the water rises above the sluice gate level but 

is still below the top of the filter, the water level can still rise. The filter does not stretch to the top of the flume, 

so the water level (even at maximum flow rate) is limited to up to ~10 cm above the filter. 
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Figure 5:Current flume. A: tilting sluice gate. B: filter. C: laptop (upper left corner), camera and lens in dry cell (bottom), 
lamp and light screen (right side). D: dry cell (bottom left corner), lamp, aquarium, camera and lens above the water 
(centre). E: view of the flume from the control room. Length of the narrow part of the flume: 23,7 m. 1): outer wall of the 
current flume. 2): dry cell window. 3) & 4): inner wall or the flume. 5): end of the narrow part of the flume. 6): scale. Water 

flow direction from right to left 

 
Figure 6: Grain size distribution of the sand substitute, measured by a Malvern Mastersizer 2000. 

 

3.2 Camera equipment 
To capture images during experiments in the current flume, two cameras will be used: one will be positioned 

in a dry compartment behind a transparent window next to the flow, positioned to record the bottom and the 

region just above the bed, where the majority of sand transport (bedload transport) takes place (Figure 10). 

A second camera provides an image from above the water surface, looking down to the bottom (Figure 11). 

These cameras and their software are products of IDS Imaging Development Systems GmbH. A manual was 

provided with the software. Both cameras are UI – 308xCP – C models (see Figure 7 and Appendix A.3 for 

more details). The software packages used to operate the cameras and to record are IDS Camera Manager 
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and uEye Cockpit, also by IDS Imaging Development Systems GmbH. Everything in this work that relates to 

IDS Camera Manager and uEye Cockpit comes from personal experience and the IDS uEye Camera Manual, 

version 4.82. Before positioning and using the cameras in the current flume, sufficient time was spent getting 

familiar with how to operate them, in preparation to find the optimal recording setup. Most preparation time 

was spent with the lens and camera for the side-looking view, because the other camera got humid and had 

to be dried for a week. The first tests after drying showed no indications of damage or failing to respond to 

software commands.  

 

Figure 7: UI – 308xCP – C camera. Top left: front view, where the lens is attached. Top right: rear view, with a Micro USB 
3.0 port. Bottom left: schematic frontal view. Bottom right: schematic top view. Dimensions in mm. Reproduced from the 
camera specifications by IDS Imaging Development Systems GmbH. 

The cameras are connected to a laptop through a USB 3.0 cable. A green light on the camera indicates 

when a good connection has been established. In IDS Camera Manager, a list of all cameras connected is 

shown, and whether they are free and available. The right camera is then opened in uEye Cockpit in expert 

mode: videos can only be recorded in expert mode. A pop-up window allows for the selection of the initial 

parameters: optimized for optimal colour imaging, monochrome imaging, live video imaging, loading a custom 

profile of parameters, or default parameters (no profile). This choice is not very important, the parameters 

can easily be changed and will be changed depending on the circumstances. uEye Cockpit displays the 

image that the camera is capturing in real-time. Various toolbars allow for the user to change a multitude of 

camera parameters. However, these do not include the iris aperture and the working distance of the lens.  

 

The lens for the camera placed above the flume, is a FL-BC7528-9M lens made by Ricoh Company Ltd. 

(see Figure 8 and Appendix A.1). It allows for manual adjustment of the focus distance and the iris diaphragm 
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aperture. The advantage is that the focus can be adjusted so that the bottom is captured as sharply as 

possible, and the amount of incoming light can be altered with the diaphragm. The disadvantage is that for 

every new water depth and distance to the bottom, new adjustments are obligatory. The original setup was 

a closed transparent polycarbonate container surrounding the camera and lens, with its lower surface just 

below the water surface (to avoid reflections of a rough water surface). This closed container protects the 

camera from the water, but also prevents the described manual adjustments to the lens when the camera 

was mounted and water was flowing in the current flume. An effort was made to try to get the focus and iris 

aperture in the optimal setting before mounting. Later a larger glass ‘aquarium’ replaced the container: open 

at the top so that the lens can be manually adjusted while the camera is mounted and the flume is filled with 

water (Figure 11).  The other lens (for the camera sideways) is a 100-BTC-005 lens by Opto GmbH (see 

Figure 9 and Appendix A.2). It is bitelecentric: this means that the size of the image of an object does not 

depend on the distance between the object and the lens, and the distance between the lens and the camera 

sensor. This has important advantages: particles moving away or towards the camera remain the same size 

on the image, which should help with their identification and to match them correctly. The image is not 

distorted, corrections are not necessary. Different particles of the same size moving at different distances 

near the working distance are displayed with the same image size, reducing the window of possible particle 

sizes in the process of particle identification. The focus and diaphragm aperture of this lens are fixed: no 

manual adjustments are needed or allowed. Working distance and depth of focus are fixed: 416 mm and 254 

mm respectively, independent of the medium (air or water) or the presence of a window. Pixel size is also 

fixed and independent of the medium: 15 mm/pixel or 0.066.. mm/pixel. For the other lens and camera, this 

has to be measured every time when the settings are changed.  

 

Figure 8: Ricoh FL-BC7528-9M lens. Dimensions are in mm. The first and third cylinder from the top can be rotated to 
adjust focus distance (from 0.25 m to infinity) and aperture ratio of the iris diaphragm (1:2.8 to 1:32). Reproduced from 
the product specifications by Ricoh Company Ltd. 
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Figure 9: Opto 100-BTC-005 lens. Dimensions are in mm. Reproduced from the product specifications by Opto.GmbH. 

 

Figure 10: Camera and lens in dry cell, behind the window. A: USB 3 cable to laptop. B: camera. C: camera mount. D: 
lens. Water flow indicated by blue arrow 
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Figure 11: Camera in aquarium above the flume. A: aquarium. B: USB 3 cable to laptop. C: camera. D: lens. Water flow 

direction indicated by blue arrow 

 

3.3 Camera software 
After the manual settings are applied and have been verified visually in uEye Cockpit, the software allows 

for more parameters to be altered. A shorter settings overview can be found in Table 1. Important submenus 

of the Camera Properties include Camera and Image, and to a lesser degree Format and Size. ‘Camera’ lets 

the user change three very important setting: pixel clock, framerate and exposure time. Pixel clock is a 

measure of how often the sensor is being read, and gives an upper limit of the framerate. There are only 3 

settings, and it should be chosen to allow the preferred framerate, without being unnecessarily high. The 

lowest setting allows for a framerate up to 22 frames per second or 22 Hertz. Framerate should be set on 

‘Hold’ at the preferred setting. Otherwise the framerate might vary during the recording. An unknown 

timespan between frames prevents calculation of particle velocities. Exposure time is important for 

illumination and particle capture: a long exposure time gives a bright image with particles as short tracks 

smeared out, a short exposure time gives a dark image with particles as dots. An exposure time of 2 to 5 

milliseconds results the display of particles as dots, longer than 10 ms leads to tracks (in general; it depends 

on the particle velocities themselves of course). If the exposure time is low and the image is too dark, the 

software provides some tools to brighten the frames. In ‘Image’, the master gain is a setting to get a 

sufficiently bright image manually or automatically. If this is still insufficient, a gain boost can be toggled on. 

Automatic gain can be useful if the lighting varies during capturing, but a stable light source is highly 
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recommended. When the lighting is constant, a fixed gain is better, to have the same average pixel intensity 

in all frames. The tab ‘Size’ lets the user choose the size of the image. Maximum size is 2456 x 2054 pixels, 

which has been used in all tests. Choosing an area of interest instead did not seem to be necessary yet. 

‘Format’ contains a list of all possible data formats: RAW, RGB 32 bit, Grey 8 bit etc. Especially the latter two 

are preferred: video capture is limited to only a few of these data types, and not all of them can then be 

processed in the PTV software. Grey 8 bit and RGB 32 bit are the best options for respectively monochrome 

and colour videos. 

 

Useful tools are the ‘Draw Measure’ tool, ‘Save Image’ and ‘Sharpness measure AOI’. ‘Draw measure’ 

allows the user to draw a line on the image, displaying it and showing how many pixels are in this line. It is a 

valuable tool to calculate the pixel size. ‘Save Image’ saves the current frame displayed as a PNG-image. 

Such a single image can be useful for example as a background image. ‘Sharpness measure AOI’ lets the 

user draw a square and gives the current and maximum sharpness of the image in return. It is very useful 

when focussing the lens or determining the working distance. The toolbars furthermore contain buttons to 

rescale the display and to capture single frames or display a continuous live video.  

 

uEye Cockpit can record videos in AVI format. There is no way to save frames individually automatically 

with this software. Before recording, the maximum file size can be set (in Megabytes or number of frames) 

when necessary. It is important to set the framerate of the video recording to the same and fixed amount as 

the framerate of the camera (which was set under Camera Properties). Otherwise the framerate would not 

remain constant or frames are not fully recorded. There is a slider for the frame compression, called JPEG 

quality. By default, this is 75 out of 100. A higher quality is often wanted for capturing small particles in large 

quantities. A lower quality however lowers the file size and lowers the risk of frame loss (see next paragraph). 

Then the recording can be started. 

 

Table 1: Settings overview 

Options Range settings Settings final recording 

Pixel Clock 3 settings Middle setting 

Framerate Depending on pixel clock 40 Hz 

Exposure time Depending on framerate 2 ms 

Format Plenty, but only Grey 8 bit and 

RGB 32 bit are relevant 

RGB 32 bit 

Size Plenty, but no need for smaller 

size 

2456 x 2054 pixels 

Master gain & gain boost 0 to 100 & on/off No information, depending on 

other settings and lighting 

JPEG quality 0 to 100 Not relevant: bitmaps instead 

of video recording 
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When recording, the number of frames received, saved and dropped are shown. Losing frames is bad: the 

framerate needs to be constant to calculate the timestep between frames and the velocities of particles during 

these timesteps. There is no way of knowing when this loss of frames occurred exactly from the video file 

after recording, so losing frames should be avoided completely. When it occurs, the recording must be 

stopped: as soon as the loss of frames has started, lost frames will start to pile up. Sometimes the first few 

frames of a recording are lost before stabilizing. Stopping and restarting the recording solves this problem. 

When the user has recorded enough frames but lost some at the end, the last frames can be ignored during 

frame extraction or when loading frames in the PTV software. When the recording had to be stopped 

prematurely, a new recording might be required. In the worst case, this has to be tried three or four times, or 

else the settings have to be lowered (framerate or JPEG quality mostly). 10 Hertz at 100% of the quality 

should not lose any frames during recording. 20 Hz or even 25 Hz at 100% quality has to be kept in check 

by the user: frames can be lost, most often at around 200 frames recorded. For higher framerates, the quality 

has to be lowered: 70% or 80% quality allows for the camera to record at 40 Hz. When enough frames are 

recorded, the recording can be stopped and saved.  

 

Most PTV software, including Streams, cannot work with video files. Instead they use image sequences 

consisting of the individual frames as PNG, BMP, JPG files or similar. For the purpose of extracting the 

frames from the AVI video file, three software packages were tried. VLC and ImageGrab are not suited to 

extract every single frame from a 10 Hz video file or higher. VirtualDub can do this and at a decent rate, so 

it is recommended. If needed, only a part of the video can be selected to export. Otherwise the whole video 

is exported to individual frames. The user can choose between different formats: PNG, BMP, JPG, TIFF etc. 

The PNG format was chosen: no compression and loss of information (compared to JPG) without being 

unnecessarily large (compared to BMP). The frames are then extracted and saved one by one.  

 

3.4 PTV analysis software 
For the actual PTV analysis of the images, Streams was used. Everything written in this work relating to 

Streams is based on personal experience and the three manuals: System Theory and Design (Nokes 2009a), 

User Guide: Core Objects (Nokes 2009b) and User Guide: Field Objects (Nokes 2009c). Streams can be 

downloaded freely from its website, but a registration code is required to launch the software for the first time. 

Permission to use the software and a registration key can be asked from dr. Roger Nokes. Streams is 

standalone software, an advantage it has over PTVlab for example. PTVlab is a MATLAB add-on that 

requires (besides a MATLAB licence itself) the Image Processing Toolbox. Still, an effort was made to use 

PTVlab to compare results with Streams. However, the extensive set of filters in Streams and the PTV 

analysis algorithms that could be combined in pipelines made it obvious that in order to obtain the best 

results, Streams was clearly a better candidate. Three extensive manuals for using Streams can be found 

on the same website as the download for the software itself. Streams works with objects such as image 
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sequences, particle records, velocity fields etc. For every type of object, a set of views are defined, as well 

as a set of processes that can work on them.  

 

Every PTV analysis starts with an image sequence that’s newly created or loaded in. When creating a new 

image sequence, the user has to define the timestep between frames (in seconds) and the scale or pixel size 

(in millimetres per pixel). These were already obtained from the framerate during recording and the measured 

pixel size before recording. Then the image type is set (RGB 32 bit, Grey 8 bit etc.) and image files are added 

to the image sequence. The two most important views of an image sequence are the process view and the 

image view. The process view is a list of all processes created by the user to operate on the image sequence. 

In the image view, the frames can be viewed, and filters and particle identifiers created in the process view 

can be turned on and off to view their effect.  

 

Before the actual PTV analysis, the frames need to be pre-processed. Streams has a few useful processes 

for this. First a form of background needs to be removed. This background can be a picture taken by the 

same camera as the image sequence. This should be taken at a moment when there is no sediment transport, 

so at low flow velocities. This leads to the problem then that it cannot be a picture taken at the moment of (or 

even right before or right after) the video recording. The resulting time difference can be enough for the 

bottom topography to alter, and the picture might be useless as a background proxy. A second option is to 

take an average of all captured frames, and use this as a background picture. This has produced better 

results near the bottom: the total timespan of one video recording is never more than 30 seconds. Within this 

period, the bottom topography does not change much. To get this average picture, Streams offers a process 

called ‘Average Images’. Executing this process creates a new image sequence object that consists of a 

single frame: the averaged image. The picture itself is saved automatically under a user defined name, the 

image sequence is not saved initially. The newly created background image can then be subtracted from 

every single frame as part of a filter pipeline. Within a filter pipeline, the user can select and create a number 

of filters to operate in sequence. The ‘Subtract image filter’ is what is needed to subtract one image from all 

images in the sequence (in our case: background image from the captured frames). Do not confuse this with 

the ‘Subtract Images’ process! This is used to subtract subsequent frames from each other. Trying this as a 

form of pre-processing did not produce beneficial results.  

 

When using RGB images instead of monochrome ones, it is possible to extract one of three colours: red, 

green or blue. Sometimes only using one or two of the colours results in a less noisy image (from particles 

that are out of focus mostly). To do this, use the Extract filter in the filter pipeline to remove two colours and 

retain one. Alternatively, the Remove filter removes one colour and retains the other two. An example is 

shown in Figure 12: most of the noise of particles out of focus is seen in the blue colour spectrum, and when 

the blue colour is removed, particles in focus can be seen and identified much more clearly. 
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A last filter that deserves to be mentioned is the Eliminate Objects filter. This filter was designed to remove 

large bright objects from the image that are not particles. In our case, a filter to eliminate particles that are 

out of focus would be a welcome addition to the filter pipeline. Unfortunately, the particles out of focus are 

less bright than the particles in focus, and more bright than the background. To remove them, a dual threshold 

of intensity or colour would be necessary, and the Eliminate objects filter is single threshold only. Choosing 

the right minimum and maximum pixel size of these particles in the filter removes them, but at the risk of also 

removing particles in focus. With the right colour(s) extracted, the particles out of focus are not as much of a 

disturbance as in full colour images or monochrome images, so the Eliminate objects filter is not necessary 

anymore. 
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Figure 12: Illustrating the effect of extracting or removing colours. First filter: subtract background, amplify all colours 3x. 
Second filter: same as filter 1 + extract Blue. Third filter: same as filter 1 + remove Blue. Dimensions in mm. 

 

After filtering, a new process can be created to identify particles (aptly named ‘Identify particles’ in the 

process view). This is a single process, not a pipeline of processes. There are four kinds of particle identifiers 

(PID’s), each with their own set of criteria and algorithms, but they can’t be combined in any way. These are 

the Single Threshold, Single Threshold (colour), Dual Threshold and Dual threshold Gaussian PID’s. All of 

them use an intensity threshold to distinguish bright particles from a dark background. To avoid particles that 

are too large or too small, the user can define an upper and lower limit to the particle diameter.  

 

Single threshold PID’s have only a lower limit: every pixel with a larger intensity is potentially part of a 

particle. When running this algorithm, the PID looks for pixels with an intensity value higher than the user 

defined threshold. When such a pixel is found, all surrounding pixels that also match this criterium are added 

to this particle. Then the size criterium is evaluated: when the particle size is larger or smaller than the user 

defined threshold, the particle is dismissed: the algorithm does not produce any particle containing any of 

these pixels in the end result. An aspect ratio can be set by the user as well. The aspect ratio of an ellipse is 

the ratio between the largest and smallest axis. The colour variant of Single threshold PID allows the user to 

set the intensity of the three colours (red, green and blue) independently. The user can even decide if the 

algorithm should allow particles that fulfil only one of three colour criteria or must fulfil all three.  

 

Dual threshold PID’s let the user choose a peak intensity threshold (from 0 to 255) and an edge threshold 

intensity (0 to 1). The algorithm searches for pixels with an intensity value higher than the peak intensity 

threshold. When a pixel is found, it searches in the immediate vicinity for the pixel with the highest intensity 

value. Starting from this pixel, the PID creates a particle containing all connected pixels with an intensity 

value between the highest intensity value found (upper limit) and the highest intensity value multiplied by the 
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edge threshold intensity (lower limit). Once again the user can define a minimum and maximum diameter 

and a maximum aspect ratio to retain or dismiss a particle.  

 

The Gaussian PID is unique in the way that it constructs elliptical particles around a maximum intensity in 

a region, based on the intensity thresholds. After using all PID’s, the Single threshold (colour) and Dual 

threshold algorithms seem to give the best and most similar results (example in Figure 16). There are a rare 

few particles that one PID misses and the other doesn’t, but there is no method to combine them. The user 

can decide to store info regarding the shape and size of particles. This is useful information for a few PTV 

analysis algorithms, so it is strongly advised to choose this option. The particles have a diameter between 

0.3 and 0.7 mm, which in theory should then be used for minimum and maximum diameter in the algorithm. 

In practice, it is confirmed that these are good values to use: a smaller lower limit will add too many particles 

to the record that are actually noise. A larger upper limit would result in particles too close to each other being 

counted as one particle. The intensity (a value from 0 to 255) can be set relatively low (as low as 20): when 

the background is subtracted, it should be completely black (intensity value of zero for all colours).  

 

The result of a PID is a particle record: a file that contains all frames with each of them the particles that 

were identified. PTV analysis of a particle record will be described later.  

 

3.5 Experiments 

 

Figure 13: Cycle of experimenting, evaluating results and changing setup and settings. 

Figure 13 shows how, systematically, different parts of the total process from recording images until 

visualizing sediment transport in function of depth were improved. The following list shows an overview of 

the series of tests that have been performed (a shorter, more schematic overview can be found in the 

Appendix A.5): 

Choose equipment, 
setup, settings

Do experiments, 
measurements

Obtain images and try 
to process them

Are the results 
satisfactory? Can we 
process the images?

How can we get better 
results?
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1) First tests with the bitelecentric lens, the camera and the uEye camera software. These tests were 

performed at a desk, with the camera and lens next to the laptop that was going to be used. These 

tests had the goal to familiarise the user with the different settings and their effect on the captured 

images. Settings that were investigated include the expert modus, pixel clock, the framerate, the 

exposure time, the image quality, size, format and gain. Expert modus is necessary to capture 

videos. The pixel rate determines the maximum framerate, and is best set as low as possible (lowest 

setting for 20 Hz framerate, medium setting for 40 Hz). The framerate and the image quality were 

considered to be limiting factors to not drop frames, as indicated by the software during recording. 

Format influences file size: a grey-scale image is smaller than a RGB image, and should therefore 

decrease the dropping chance. A short exposure time will freeze a frame better so that the particles 

are displayed more precisely, but it will also decrease the amount of light in the image. The Gain 

settings can help to illuminate the image when using the preferred short exposure times of ~2 ms. 

The working distance and pixel size were measured (later verified to be the same under water behind 

a window). The video file had to be converted to individual frames: 3 software packages were tested, 

out of which VirtualDub was considered to be the best (the only one to obtain all frames from a video 

file). 

2) The first test of the bitelecentric lens and camera mounted in the dry cell of the current flume. First 

the window alone, then the window and water: these elements did not seem to distort the image. The 

following settings were used in these first tests: Greyscale colour format (smaller image files), 20-25 

Hz framerate (a good balance of particle displacement distance and risk of frames being dropped), 

the use of a light screen (already in place), a water flow rate of 160 – 200 l/s (just enough to have 

sediment transport in the lowest part = 10 cm of the water column), exposure rate 1-2 ms (clear view 

of the particles). The first efforts were made to pre-process the images in Streams. Backgrounds 

from single images captured or average images were subtracted. Average images have the 

advantage that they are more representative for measurements that last a long time, especially at 

high water flow rates. The images captured for background specifically need to be taken when there 

is no flow: so before or after the measurement, when the water flow has been stopped. Efforts were 

made to further decrease the noise in the frames: the Eliminate objects filter was able to remove 

noise from particles out of focus, but at the cost of some particles in focus as well. Then the first 

particle records were obtained by experimenting with the different PID’s. First the simplest PID was 

used: single threshold, monochrome (we were working with greyscale images). This provided good 

results when using the estimated grainsize in conjunction: 0.3 to 0.7 mm. 

3) PTV analysis was practised, on particle records created by models in the Streams software. Then 

the particle records from image sequences captured were analysed (PTV analysis is discussed in a 

later chapter in more detail). The strategy of a first global optimization using matching-based costings 

such as Pseudo-correlation, followed by residual optimizations and clean-up with matching-based 

costings (Recent acceleration, Recent velocity, Time-averaged velocity, Magnitude velocity) was 
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developed. Forwards and backwards iterations resulted in better matches, which were then 

interpolated to create the first velocity fields.  

4) The camera for the top-down view with the adjustable lens was tested. First measurements at the 

desk included different lens settings to evaluate their influence and to practice focussing at the same 

distance as the bottom when mounted above the current flume. The old method of setup was to get 

the lens settings correctly, then lock the camera and lens up in a transparent polycarbonate container 

so that it is protected from the water. The bottom of the container is below the water surface: this is 

to avoid reflections and distortions by the moving water surface when the camera looks through the 

air and water to the sediment bed. A detrimental flaw was discovered: the focus is not only dependant 

on the distance to the bottom, but also on the relative amounts of air, water and the material of the 

container between the lens and the sediment bed. These mediums have different optical properties 

(e.g. the refractive index), so trying to get the settings optimised before mounting seemed too 

impractical and complicated. It is practically impossible to get the lens settings right before filling the 

current flume, and with the closed container the operator can’t adjust the lens anymore: this can only 

be done manually. To fix this issue, the container was replaced by a large aquarium made of glass, 

mounted between the camera lens and with an adjustable height. The aquarium is open at the top, 

but the walls are high enough so that there is no chance that water could reach the camera (in normal 

conditions, when there are no moving objects in the water, the water surface is smooth even at the 

highest water flow rates). The size and the open construction of the aquarium allow the operator to 

manipulate the lens from above while the current flume is active (water is flowing). The height of the 

camera and the aquarium can be changed, but this can be done more easily and safely when the 

current flume is empty. The water level rises slightly (in the order of 10 cm from 200 to 400 l/s flow 

rate) when increasing the flow rate, and it is best that the aquarium is only 1 to 5 cm deep in the 

water, to limit the force of the water flow pushing on this large surface.  

5) A series of test with ADCP instruments was carried out in the current flume by Joachim Beckers, at 

water flow rates increasing from 200 to 400 l/s step by step. During these experiments, videos were 

recorded by the camera mounted in the dry compartment. Settings: monochrome, 20 Hz framerate, 

2 ms exposure time. For every flow rate, three videos were recorded: a Lupolux Dayled 1000 90-

Watt lamp as a light source, the earlier mentioned light screen as a light source, and both. The light 

screen results in an image with dark particles against an illuminated background, for the lamp it’s the 

opposite, and when using both there are dark and light particles, where the relative amount varies in 

different parts of the image. Out of these 3 options, the lamp was concluded to be the best light 

source. In the images with the lamp as light source, there is less noise from particles out of focus 

(see Figure 5: the lamp only illuminates the part of the water column that is in focus, while the light 

screen illuminates the whole water column). The lamp is also more consistent in all directions and in 

time when it comes to brightness of the images, the light screen shows a noticeable variation in 

brightness across individual frames and across time. Combining both of them is needlessly 
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complicated: the part of the frame that is illuminated by the screen shows a white background with 

black particles, the part where the lamp is stronger displays white particles to a darker background. 

This makes pre-processing needlessly difficult. The reason for these recordings was to have a series 

of image sequences available for different flow rates. However, the recording settings have been 

improved after these experiments (see 6)): the framerate was increased (to have shorter 

displacements between frames), and the format was changed to RGB. The use of a lamp resulted 

in bright particles instead of black ones when using the screen, so it became interesting to retrieve 

the colour information of particles from frames and use it in the different processes and algorithms. 

The illuminated particles contain more useful information than dark ones in single colour images: 

red, green and blue, which can be extracted in Streams (see also Figure 12).  

6) A series of experiments with both cameras where the exposure time was varied. Long-exposure 

videos were recorded, with the exposure time increasing from 16 to 100 ms. The flow rate was set 

at 200 l/s, both formats were used (RGB + lamp and monochrome + screen) and the framerate varied 

between 10 and 40 Hz, limited by the exposure time. The long-exposure images provide a good 

visual representation of the paths of particles: they are smeared out as lines which represent the 

path that a particle took within the exposure time. These lines showed that the particles mostly follow 

near-horizontal linear paths, especially higher up in the water column. Closer to the bottom, particles 

start to take of or come down after what looks like long jumps at 45 degrees or lower. These jumps 

span horizontal distances much larger than the width of the frames. Much less often, you can see 

clusters of particles do much smaller, more vertical hops. And finally, immediately after a dune crest, 

particles will fall or make turbulent motions. These types of movement are shown in Figure 14. As 

mechanics, they are very interesting, but to the total sediment transport, they contribute only a very 

small part. They are much more limited in time (short jumps do not occur continuously), space (they 

only take place near dune crests) and distance (distance covered is only a few centimetres). This 

type of images is very useful to visualize particle movement for the naked eye, but they could not be 

processed by Streams (or any other software available at that moment) to obtain particle records, 

velocity fields, density fields and sediment transport values. There was no software available to draw 

and identify particle tracks based on these images. The human eye can relatively easily interpret the 

lines correctly, but for computer algorithms, including those of Streams, it is considerably more 

difficult. Streams can draw ellipsoid particles, so PID algorithms were used to try to identify the linear 

features as elongated particles, and use their long axis as a measure for particle displacement during 

exposure. The Streams PIDs all use intensity or colour as thresholds, and on pixel level, this varies 

substantially within the particle paths of long-exposure images. With the Dual threshold (Gaussian) 

PID, instead of one large elongated ellipse, multiple small and narrow ellipses were drawn inside the 

linear features, perpendicular on the particle path. When using the other PID’s, it is somewhat 

possible to draw elongated particles based on the linear features. Filtering will severely lower the 

depth of view: only the most intense lines (those that are most in focus) are retained (see Figure 15). 
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Despite removing a substantial number of particles, linear features that cross each other are still 

present in the filtered image. In this condition, the PID’s have trouble distinguishing these particles 

individually, and will instead draw a large particle that comprises of two or more particle paths. The 

start and end points of the linear features have a lower intensity, so these intensity-based algorithms 

will often draw particles that are shorter than the linear features. 

 

Figure 14: Close-up of frame 130 of the 49 ms exposure time image sequence. Top: suspended and long-range 
jumping particles. Right centre: shorter jump of cluster of particles. Bottom left: particles falling and moving 
turbulently after dune crest.  

 

 

Figure 15: Particle identification of the linear features of the 49 ms exposure time image sequence. Left: close-
up of frame 130 of the unfiltered image sequence. Centre: filtered image sequence. Right: Single threshold 
(colour) PID, ‘particles’ identified in red. 

By taking the coordinates of the start and end of the linear features in the image view of Streams and 

knowing the exposure time, it was possible to calculate a limited amount of particle velocities. This 

can only be done one point at any given time by the user, not automatically or for multiple paths at 

once. It was concluded that the long-exposure images were useful to get an early overview and 

visualization of the particle displacement, but to get hard data, short-exposure images will be used. 

The particle velocities based on the tracks seemed to be consistent through their trajectory and close 

to the estimated water flow velocity, but never higher. 
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With all this in mind, the penultimate tests were executed on March 11, 2017. A flow rate of 195-190 l/s 

was chosen, and video recordings were made with both cameras (from above and from the side), one at a 

time. The Lupolux 90 W lamp was used as light source. Water depth was measured to be 73 cm. The 

adjustable lens of the camera above the water was set to focus on the bottom. Settings for the camera in the 

dry cell, first recording: framerate 40 Hz, exposure time 2 ms, RGB format, JPEG quality 75%. Settings for 

the camera in the dry cell, second recording: framerate 30 Hz, exposure time 2 ms, RGB format, JPEG quality 

80%. In the first recording, a video file of 980 frames was recorded without dropping a single frame according 

to the software. In the second recording, 997 frames were recorded without any warning of dropped frames. 

Settings for the camera above the current flume, first recording: framerate 40 Hz, exposure time 2 ms, RGB 

format, JPEG quality 75%. 613 frames were recorded when the software warned that frames were being 

dropped: the last 40 frames of the video file cannot be used. Settings for the second recording: framerate 30 

Hz, exposure time 2 ms, RGB format, JPEG quality 75%. Once again the software warned about dropped 

frames during the recording: the last 40 frames were removed, resulting in 484 frames with a supposedly 

constant framerate. The frames were extracted by using VirtualDub. 
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Figure 16:Image sequence of the 40 Hz recording of the sideways camera, filter and PID applied. Top: Dual threshold 
PID. Bottom: Single threshold (colour). The green and yellow circles show regions representative of the difference in 
which particles the PID’s can find: 1 of the 5 particles in the green region of the single threshold is not found in the dual 
threshold. Out of the 11 particles in the yellow region, 3 are not identified by both algorithms. 
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The frames could then be loaded into Streams as image sequences. Filters and particle identifiers were 

created. The 40 Hz recording of the sideways camera was concluded to be the most promising. For pre-

processing, an average image was created and then subtracted from all frames in the image sequence. The 

red colour was evaluated to provide the best particle signal compared to green and blue, so the red colour 

was extracted from the RGB images. The two best PID’s were chosen and optimised for this recording 

specifically (see Figure 16). Both produced similar results, but in every frame there are particles that one PID 

detects and the other does not. However, this has barely no influence on the result after PTV analysis. Each 

PID produced a particle record: a sequence of frames that contains all particles per frame, with their shape 

and size information stored. In the particle record, PTV analysis pipelines were constructed, executed, 

evaluated and modified (more information on PTV analysis later). Search windows were set sufficiently large: 

the search window was shown to be one of the most determining factors in the spread of the calculated 

particle velocities (increasing the search window would increase the spread of calculated velocities 

significantly). The resulting particle paths could then be exported as Lagrangian paths or Eulerian fields (grids 

constructed by interpolation). The Lagrangian paths were overlaid on the original image sequence: this 

allowed the user to follow a particle visually along its proposed path, to then compare it with the path that can 

be followed with the naked eye. The most useful algorithms were deemed to be the Shape state-based 

algorithm, and for the matching-based ones the Time-averaged velocity, Recent velocity and Recent 

acceleration. The Eulerian field of one of these algorithms is shown in Figure 18.  

  

 
Figure 17: Particle record of the single threshold PID of the 40 Hz recording of the side-looking camera. A PTV analysis 
pipeline was executed. Left centre: particle view of the particle record showing the paths found by the PTV analysis. 
Upper right: PTV analysis pipeline. Lower right: optimization window of one of the algorithms in the PTV analysis pipeline, 

showing the maximum matching cost, search window and number of iterations. 
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Figure 18: Eulerian field of the single threshold PID of the 40 Hz recording of the camera sideways. It shows a grid of 
interpolated velocity vectors, averaged over the first 100 frames.  

 
Efforts were made to process the images of the top-down camera in Streams, but the images proved to be 

too complex. The background in these images is the sediment bed itself, so the whole frame consists of 

particles at all times, some moving, some resting. Subtracting an average image or subtracting subsequent 

frames from each other were used to only retain moving particles (see Figure 19). Other filter subprocesses 

that were tried are the Discrimination filters 1 and 2 (filters to distinguish particles from each other and from 

the background) and the colour Extract filter. Even when providing a (debateable) decent result, particle 

movement seemed too erratic and complex to match particles across frames correctly. The camera lens is 

focussed at the bottom, and this close to the sediment bed, particles seem to move by rolling or turbulently 

between the dunes, also perpendicular to the water flow. Particles will (partially) cover and (partially) expose 

other particles, so a substantial number of particles will appear, disappear, or change across subsequent 

frames without actually moving, so having these particles in the particle record causes a lot of errors. Rolling 

particles themselves change shape or intensity across frames, more so than jumping or suspended particles, 

so they are not easy to trach either. But mostly the amount of particles of a moving dune rolling across the 

frame makes it impossible to use PTV analysis. This study will focus on the images captured by the lateral 

bitelecentric camera: the chances of using PTV analysis on this part of the water column (0 to 10 cm above 

the sediment bed, instead of the sediment surface itself) are much better: lower sediment concentration and 

more predictable particle movement. Future research can revisit the top-down view of the sediment view: 

these first videos already indicate that a larger part of the sediment is moving by rolling and sliding than by 
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jumping or in suspension. But to quantify and visualise this, it is best to first to research the feasibility of PTV 

analysis on the lowest part of the water column. 

 

 

Figure 19: Images of the recordings by the top-down camera. Upper row, from left to right: unfiltered colour image, image 
after subtracting average image (background), image after subtracting previous frame (background). Lower row, from 
left to right: monochrome image, image after subtracting average image (background) and Discrimination filter 1, image 
after subtracting average image (background) and Discrimination filter 2 

 
Figure 18 shows that the particle velocity varies between 200 and 850 mm/s according to the PTV analysis 

on the captured frames. However, acoustic measurements with two ADCP’s, performed by Joachim Beckers, 

result in a water flow velocity between 228 and 268 mm/s. This also fits the theoretical value of 228 mm/s 

much better (calculated based on the water flow, water depth and width of the flume) and those of the long-

exposure images for the same water flow (~70 to 200 mm/s). Particle velocities that are larger than the water 

flow velocity are highly unlikely, a strong indication that something went wrong. More careful visual 

observation of the image sequences shows that the framerate of the video recording was not kept constant, 

despite the fact that the software did not report any dropped frames. The resulting video file is indeed of the 

user specified framerate, but the real timestep between the frames used does not correspond with the 

timestep that is associated with this framerate. At low framerates (15 to 25 Hz), sometimes subsequent 

frames are partially or completely identical. This can be seen when scrolling through the frames in Streams, 

or by using the Subtract Images process: subsequent frames are subtracted from each other, and when the 

frames are (partially) identical, the resulting image is (partially) black. When increasing the framerate (up to 

30 and 40 Hz), it becomes increasingly more common that the real timesteps between the frames used is 

larger than the timestep of the video framerate. It is clear that the laptop that has been used up to now is 
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unable to handle the incoming data sufficiently and/or that the currently used method (recording an AVI video 

file) is not suited for this research. Because of this, a new computer and a new method of capturing images 

were tested.  

 

Computer specifications: Windows 10 Pro N operating system, Intel® Xeon® CPU E3-1240 v3 @ 3.40 

GHz processor, 32 GB RAM, Intel® SSD hard drive.  

Image capturing tool: instead of uEye Cockpit, a software tool developed at Flanders Hydraulics Research 

was used, under the name ‘WL Cam Triggered’, supplied by Stefan Geerts. The operator only uses uEye 

Cockpit to create a parameter file. This file contains all camera settings: framerate, exposure time, format 

etc. The new camera tool reads this parameter file and sends it to the camera. The camera creates bitmaps 

with these settings that the software tool can save directly.  

 

 

3.6 Revised recording software and settings 
With the new computer and software tools, the new limits of this setup were tested again. The software tool 

captures images directly, instead of videos. These images are given a timestamp. Using this, the framerate 

can easily be checked for irregularities. At 40 Hz, frames will still be lost after some time. The images captured 

are bitmaps (.BMP files). Data transmission is dependent on the framerate and the image quality: multiplying 

the image size of one frame (in Mbytes/frame) and the framerate (in frames/second) results in the data 

transmission (Mbytes/second). At 20 Mbytes per frame, bitmaps are relatively large compared to video files 

and other image formats. A 20 Mbyte file every 0.025 seconds results in an 800 Mbytes/second data flow. 

This is a lot, even for a powerful computer such as described earlier. The uEye manual proposes a bandwidth 

of 400 Mbytes/s for USB3 connections. The computer performance was monitored during following tests: the 

CPU, the RAM memory usage and the hard drive. Tests were performed at 40, 20, 16 and 10 Hz framerate 

(which corresponds with 800, 400, 320 and 200 Mbytes/s respectively). The CPU was able to handle all of 

these data inflows, and there was plenty of RAM memory to be allocated, even at 40 Hz. The limiting factor 

is the writing and reading speed of the hard drive: at 40, 20 and 16 Hz, the maximum capabilities of the hard 

drive are reached constantly, and at some point, frames are dropped. Only at 10 Hz (or 200 Mbytes/s) is 

there no loss of frames and is the hard drive working below its maximum speed. 10 Hz is a low framerate to 

be used for particle tracking in our current setup, even at the lowest water flow rates (200 l/s). To get a data 

flow of 200 Mbytes/s together with a high framerate, the file size needs to be reduced. To do this, pixels can 

be binned: a row or column of pixels can be grouped together to form one pixel. This however reduces the 

amount of detail in a frame. The smallest amount of binning (and smallest loss of detail) while still having 

equidimensional pixels is a double horizontal and vertical binning: a square of 4 pixels (2 by 2) is reduced to 

1 pixel. This reduces the image file size by a factor of 4: 20 Mb bitmaps become 5 Mb bitmaps. To stay within 

the limit of 200 Mbytes/s, a framerate of 40 Hz was used for the final measurements. The loss of information 
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could lead to problems with identifying particles and matching algorithms, but no problems were encountered 

when processing the binned images.  

 

The settings for the final measurements are: flow rate 200 l/s (lowest flow rate to get consistent bottom 

transport, so small displacements of a low density of particles, which are easy to track and match); framerate 

40 Hz and 2x horizontal and vertical binning(to stay within the limit of 200 Mbytes/s data flow, with a minimal 

loss of information and a sufficiently small displacement of particles between frames); RGB images and the 

use of a lamp(so that specific colour information of particles can be used or filtered), direct capture of 

individual frames as images with timestamps with the software tool (to easily verify if the framerate remains 

constant). 1007 frames were captured. The total time between the first and last image is only 0.256 seconds 

or 1% longer than expected from a 40 Hz framerate. No skips in the framerate were found. A schematic 

workflow of the final recordings and PTV analysis can be found in the Appendix (A.6). 

 

3.7 PTV analysis 
The images are loaded into Streams as an image sequence. An averaged image was taken to subtract the 

background. Then the three individual colours were evaluated (red, green and blue). The Blue-coloured 

image was considered to be too noisy, but the Green and Red images provided a clear distinction between 

particles in focus and the dark background. The blue colour gun was eliminated, red and green were retained 

together (see Figure 12: this is frame 50 of this image sequence). Regions to exclude from the particle 

identification algorithm were drawn: the sediment bed itself, including the ripples. When working with a small 

subset of frames (e.g. 100 frames or 2,5 seconds), the ripples could be considered stationary, but for the 

whole set of frames, it is important too enlarge the regions so that the dunes are covered in every frame. 

Regions can be set as ‘internal’ or ‘external’: to include the area of the frame within the boundaries drawn or 

exclude. In all processes however, the user is asked to add the regions that should be excluded from the 

process. In order to exclude the sediment bed and the dunes, internal regions should be drawn and added 

to the PID process. To reduce calculation time when optimizing algorithms, the first 101 frames were used 

instead of all 1007 frames.  

 

For particle identification, the Dual threshold PID was chosen. The Single threshold algorithms struggle 

more when particles are clustered. A Dual threshold PID can at least try to distinguish between two particles 

that touch each other, by having a lower limit in intensity based on the maximum intensity found. Single 

threshold PID’s don’t have such a lower boundary, and will always see two touching particles as one particle 

(that is then often considered to be too large, and ignored completely). The Dual threshold Gaussian 

algorithm is complex and creates elliptical particles. If we want to use shape-related information in our PTV 

analysis, the normal Dual threshold could provide more detailed information.  
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One of the most important steps in Particle Tracking Velocimetry (PTV) is matching particles to the same 

particles in previous or following frames correctly. The result of this are particle paths from one frame to the 

next frame. With this temporal and spatial information, particle velocities can be calculated. To create paths, 

Streams allows the user to construct a pipeline of processes. The pipeline process is called ‘PTV analysis 

pipeline’, and can be found in the list of processes of particle records. For every subprocess in the PTV 

analysis pipeline, three main components have to be defined: the analysis type, the costing and further 

optimisation.  

 

Every pipeline starts with a global optimisation type or local optimisation type of process. The first process 

will result in the initial matching of particles, from which the second process starts, which adds, removes, or 

creates different matches. The third process starts with the result of process 2 etc. A global optimisation 

results in particle matches for every frame pair where the total cost of these matches is minimal. Cost is a 

parameter defined differently for every costing, but the principle is the same: the best matches according to 

the costing algorithm have the lowest cost. For example, in the Intensity costing the lowest difference in 

intensity of two particles results in the lowest cost to match these particles. A local optimisation pairs particles 

p1 and p2 when the best match (= lowest cost) for p1 is p2 and vice versa. This does not take the total cost 

of a frame pair into account and generally results in less, but higher quality matches. After the first local or 

global optimisation, the result is often not yet good enough. For the next process, four types of analysis are 

available: another local or global optimisation, a residual optimisation, or a clean-up. A residual optimisation 

takes the unmatched particles and tries to match them, it does not change the existing paths. A clean-up 

evaluates all existing matches and removes the matches with costs that are too high. So no new matches 

are created, only existing ones that are retained.  

 

There are 17 different costings. 8 of them are state-based costings, 9 are matching-based. Before 

matching, the only characteristics known of particles are their x- and y-coordinates and intensity (and shape 

and/or colour, when specified during particle identification). State-based costings only use this information in 

their algorithms. The Adjacency, Centre of mass, Correlation and Pseudo-correlation costings are based on 

the grouping of particles, patterns in the particle’s locations and the cross correlation of intensities in user 

defined regions. All of them can be used to a certain extent, but they tend to make mistakes when particle 

densities are low (not enough particles present to correlate with or to determine centre of mass or adjacency). 

Such low particle densities can occur further from the bottom, in the upper part of the images. This type of 

error is shown in Figure 20. The left figure shows the correct path of the particles, the other state-based 

costings in the right figure match the lowermost particle with the uppermost particle in the next frame. This 

type of error tends to occur more when using Adjacency, (Pseudo)Correlation, Centre of Mass costings, and 

especially Correlation. The Distance costing uses a prediction of the distance travelled of a particle between 

frames. It is not very useful in our case: it already assumes a partially known particle velocity, and particle 

velocity can vary across the water column. What remains are the Shape, Intensity, and Colour costings. They 
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use properties of individual particles that can be obtained from our images. Colour can be considered a more 

sophisticated form of the Intensity costing, so when using colour images (in the final version, Red and Green 

were retained) there is no reason not to use Colour instead of Intensity. Shape gives similar results compared 

to Colour, so they can be used separately or combined (the software allows for one process to hold multiple 

costing algorithms. Even their relative contribution to the total cost can be defined). The number of matches, 

number of paths and average path length when using a state-based costing are grouped together in ‘Single 

state-based costing’ in Table 2. The statistics of Colour + Shape is shown separately. Note that this 

information does not represent the quality of the matches made by these pipelines in any way, it only 

quantifies how many particles are matched in how many paths and the average path length!   

 

 

Figure 20: Close-up of particle paths from state-based costings. Left figure shows particle paths (green) of two particles 
(red) based on the Colour and Shape costings. Right figure shows the same region and particles, paths are the result of 

Adjacency, (Pseudo)Correlation and Centre of Mass costings 

 

Matching-based costings use particle velocities and accelerations in their algorithms. This means that they 

can only work for particles that are already part of a path. Because of this limitation, the first process in any 

PTV analysis pipeline must use one or more state-based costings, to create the initial paths. Matching-based 

costings can then be used to refine these paths. Least-squares velocity, Local velocity, and Space-averaged 

velocity use the velocities of neighbouring particles to determine the best match for a central particle in their 

algorithms. These options are not useful for sediment particles: although all particles follow the current flow 

more or less, individual particle behaviour might vary enough to favour alternatives. Magnitude velocity, 

Recent velocity and Recent acceleration will match particle p1 in the frame f1 and p2 in the following frame 

f2 based on the velocity or acceleration of p1 from frame f0 to f1 and of p2 from f2 to f3. These are better 

options than those earlier described: visually, the acceleration and velocity of particles barely changes along 

their individual paths. However, there are even better candidates: Polynomial velocity and Time-averaged 

velocity costings. These algorithms take the into account the whole path of a single particle and its velocity 

along this path, not just the velocity in the previous or next frame pair. There is one costing left: Path length. 

This allows the user to remove short paths (path length is based on the number of frames that they span, not 

the physical distance that a particle travels). A good path should ideally span a lot of frames: a particle was 

identified and successfully tracked along many subsequent frames. Short paths are more likely to be wrong 

and the user might prefer to remove them.  

 

For every subprocess in a pipeline, further optimisation options include the Maximum Matching Cost 

(MMC), Number of iterations and Search window. The Maximum Matching Cost defines an upper limit to the 
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cost of potential matchings to take into consideration. All particle pairs with a cost higher than the Maximum 

Matching Cost will not be considered during a local optimisation, reducing the computing time and effort. In 

a clean-up, all pairs with a higher cost than the MMC are removed. For example, when using the Path length 

costing in a clean-up, all paths shorter than the inverse of the MMC are removed.  In general, increasing the 

MMC retains or creates more matches. Number of iterations will determine how often a single process goes 

through all frames. The standard setting is one iteration, from the first frame until the last one. Two iterations, 

the first going forward and then backwards, has proven to be beneficial. More iterations did not change the 

resulting matches. The search window defines an area of the frame in which the algorithm searches for 

potential matching candidates. This leads to a significant decrease in processing time, not having to take the 

whole frame into account. The search window is rectangular and is defined in relation to the particle for which 

a match is sought. The location and borders of this rectangle are determined by an estimate of the minimum 

and maximum distance travelled possible by any given particle. So, the search window in frame f2 for particle 

p1 in the previous frame f1 will be located against the water flow direction. With a water flow estimate of 230 

mm/s, a framerate of 40 Hz and the assumption that particles will never go faster than the water velocity, all 

potential candidates to match with p1 are found within 0 and 6 mm of p1, against the direction of the current. 

Assuming all particles are in motion when not resting at the bottom, a window of 0.5 mm to 6 mm has proven 

to be adequate. The upper and lower boundary of the searching window were then set at 6 mm above and 

below p1.  

 

After careful optimisation and trial-and-error, the following algorithm was constructed: 

1) Local optimisation, Colour and/or Shape, MMC = 2 

2) Clean-up, Polynomial velocity + Time-averaged velocity, MMC = 0.5 

3) Global optimisation, Polynomial velocity + Time-averaged velocity, MMC = 1 

4) Clean-up, Path length, MMC = 0.3 

5) Residual optimisation, Colour and/or Shape, MMC = 2 

6) Clean-up, Polynomial velocity + Time-averaged velocity, MMC = 0.5 

7) Global Optimisation, Polynomial velocity + Time-averaged velocity, MMC = 1 

8) Clean-up, Path length, MMC = 0.3 

The first process is to create an initial set of matches, using only state-based costings (first row in Table 

2). As described earlier, the Colour and Shape costings were preferred (second row in Table 2). Using either 

of them or both does not influence the final result by much however. The Maximum Matching Cost was set 

relatively high, to get a large number of paths, of which the quality could then be further improved. The first 

step is to remove outliers: matches within paths that are incorrect and are expressed as sudden changes 

within a larger path. Often, when a particle disappears in the next frame, another particle is chosen: the 

second-best option, yet still an incorrect match. This results in a sudden change of direction of the normal 

path, which can be detected by the Polynomial and Time-averaged velocity algorithms. Combining them 

(alternatively, Polynomial velocity + Recent velocity give a similar result), and with a low MMC of 0.5, wrong 
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matches are deleted effectively. The third subprocess is a global optimisation, going through all particles, 

with the Polynomial Velocity and Time-averaged costings. Particles that have been matched previously now 

have velocity information that can be used to create new and improved paths. A MMC of 1 is not too strict or 

too forgiving. A clean-up then removes all paths shorter than 4 frames: these paths are more likely to be 

incorrect. Additionally, these particles are then made available for residual optimisation. A residual 

optimisation based on Colour and/or Shape tries to create matches using only unmatched particles. This 

means that the matches that have been optimised by the velocity-based algorithms remain intact. A second 

clean-up and global optimisation with Polynomial and Time-averaged velocity costings are added to the 

pipeline: this method of repeating results in a large number of high-quality matches and long paths. See 

Table 2, last two rows: the increase in the number of matches and paths is apparent, but to verify if the 

correctness of paths has been improved, the user has to take a good look at individual paths. Figure 21 

shows how adding this second set of processes improves the matching quality. Comparing the result after 

step 4 of the pipeline and the result of the whole pipeline, it is clear that correct matches are retained (in the 

upper part of the images, all paths were retained, and these are all correct). Meanwhile, some incorrect paths, 

seen here mostly in the lower centre and right corner of the left figure, have been removed. More paths have 

been found close to the bottom (right corner of both figures). The final process is a second clean-up, removing 

all paths shorter than 4 frames. All global, local and residual optimisations have 2 iterations each, one forward 

and one backwards through all frames. 

 

Table 2: Improvements to the PTV analysis pipeline, and how this affect the number of matches, matched particles and 
path length. Total number of particles: 68530. Note that these numbers give no indication of matching quality. 

Algorithm 

improvement 

Number of 

matches 

Unmatched 

particles 

Matched 

particles 

Total 

paths 

Average path 

length (frames) 

Single state-
based costing 

34290 - 
37602 

14790 - 17988 50542 - 
53740 

15179 - 
17145 

3 - 3,38 

Colour + Shape 36097 18018 50512 15127 3,39 

Matching-based 
clean-ups and 

optimisation 

26934 - 
60510 

4257 - 40369 28161 - 
64273 

1939 - 
4475 

12,69 - 14,89 

Polynomial + 
Time-averaged 

velocity, Path 
length clean-up 

44415 21206 47324 3621 13,27 

Two iterations 50749 13666 54864 4827 11,51 
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Figure 21: Effect of repeating processes within a pipeline. Left figure shows a Lagrangian path field overlay on frame 48 
of the image sequence. PTV analysis pipeline: steps 1 to 4. Right figure shows the same region, but the PTV analysis 

consisted of steps 1 to 8. 
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4. RESULTS 
 

4.1 Particle velocity 

 

 
Figure 22: Part of the image in which the particle velocity, particle density and transport are calculated. X- and Y-axis in 
mm. Top: image before filtering and particle identification. Bottom: image after filtering and particle identification. 
Particles identified in red, particle (clusters) unidentified in yellow-green.  
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Figure 23: Comparison of the paths of frames 44 (left) and 4 (right) of the image sequence. Green lines indicate particle 
paths from the current frame to the next and (if present) the frame after (path length = 3). Region corresponding with 
Figure 22 in purple. 

 

 
Figure 24: Eulerian velocity field, averaged in time. The right one has removed the first and last 10 frames of the 
record, as well as the left- and rightmost 6 mm of the frame. Region corresponding with Figure 22 in purple. 

Figure 23 shows two frames of the filtered image sequence, with a Lagrangian path field overlay. A 

Lagrangian path field holds all paths from a PTV analysis of a particle record. It can be used as an overlay 

on the original or filtered image sequence, so the user can follow particle across frames to see if their real 

paths are the same as the paths from the PTV analysis. The user can set the path length of the paths shown: 

a path length of 3 means that the paths between this frame and the 2 following frames (when available) are 

shown. The left frame (frame 44 of 101) is representative of most frames: particle paths are in general linear, 

mostly horizontal and to the left. In the initial frames (and to a lesser degree the last frames) of a path field, 

there are more incorrect paths. Frame 4 (right part of Figure 23) for example shows a lot of steeper paths 

than found commonly. Tracking the particles with the naked eye shows that many were matched incorrectly. 
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The particles in the first 10 frames do not have enough previous frames to create long paths and to use the 

particle properties in previous frames for the different steps in PTV analysis. This causes incorrect matches, 

especially near the left edge, where particles leave the frame. For these particles, there are no correct 

matches in previous frames (no frames yet) and no correct matches in following frames (particles have left 

the frame). These particles are only a very small part of the total particle record, so the error caused is not 

noticeable when using 101 frames, but leaving the first and final 10 frames out of the final calculations will 

remove this small error easily. This is shown in Figure 24: the figure on the left is a Eulerian velocity field of 

the time-averaged velocities of all 101 frames, the grid on the right did not take the first and last 10 frames 

into account. The difference is barely noticeable. A related phenomenon in the left grid is the low velocities 

at the left and right boundary of the screen. As explained earlier, for particles very close to the edge of the 

frame, their correct match might not be present in the previous or next frame, because they have not entered 

the frame yet or they have left it. This leads to incorrect matches with other particles that are very close near 

the frame boundary too, hence the low velocities. In the right figure, 6 mm (which equals 1 search window) 

is taken from the left and right edge of the grid. For the top of the frame, this adjustment is not required: the 

particle density is so low that incorrect matches are much less likely to occur. The lowermost 15 mm of the 

purple region of the grid, between the top of the ripples and the sediment bed, shows an increase in particle 

velocity. This will be discussed later.  

 

In order to evaluate the particle velocity in function of the depth, a Eulerian field was created. A Eulerian 

field interpolates the particle information (particle velocity, particle density, particle shape etc.) to a grid. A 

velocity field for example is a grid-based representation of the particle velocities. The standard (x, y) grid is 

51 by 41 grid points, 3.275 mm by 3.42 mm spacing, which works well for the particle velocity calculation in 

this case. For every frame of the particle record containing particle velocities, there is a velocity field frame. 

2 types of information can be extracted from a Eulerian field: vectors or scalars. Vectors include velocity 

vectors (with a u and v component, in the x and y directions respectively) and acceleration. Scalars include 

the velocity magnitude, kinetic energy and partial derivates of u and v. A complete list can be found in the 

calculator view of a velocity field. The software allows for the user to create custom calculators. These 

calculations can include u, v, mathematical operators (+, -, *, /, square root etc.) and averages (average over 

x, y, x and y, t or x, y and t). In our case, it is interesting to know how the particle velocity evolves in function 

of the depth. A standard calculator can be used that calculates the average particle velocities in the (x, y)-

grid. Then these values were averaged from the first to the last frame. A second, custom calculator was 

constructed to calculate the standard deviation of the individual horizontal velocity interpolations compared 

to the time-average horizontal velocity of each depth interval. Both calculations can be exported to a CSV-

file, that could then be loaded into Microsoft Excel. Here, the particle velocities averaged for each depth 

interval were calculated, which are shown in Figure 25.  
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Figure 25: Average particle velocity near the sediment bed. Error bars represent one standard deviation. 

 

 

4.2 Sediment transport 
Having calculated the particle velocities, it should be possible to make an estimation of the sediment 

transport rate if also the particle density through the water column is known. Streams allows to create a 

density field out of a particle record. The process creates a grid, counts all particles inside each cell and 

calculates the particle density for each cell and for each frame. It is not possible to create custom calculators 

for density fields. However it is possible to use the standard calculators to obtain values for the time-average 

density for depth intervals and the error/variation for each depth interval over the total timespan. For the 

average density, the same grid can be used as in the creation of the particle velocity field. The time-average 

can be calculated in Streams, and in Excel the average for each depth interval can be calculated (Figure 27). 

The standard calculator that approaches a standard deviation most closely is the intensity of the fluctuating 

density (named rho’rho’ in the calculator view). This is the difference between the density (rho) of a grid point 

for a frame and the time-averaged density of this grid point, squared. By creating grid elements that stretch 

horizontally across the whole frame (so the grid is composed of a single column of vertically stacked cells), 

and calculating the time-average of rho’rho’ across all frames in Streams, a variance is calculated. This can 

be exported as a CSV-file. In Excel, the square root is calculated, which equals the standard deviation of the 

density for this grid. Taking smaller grid elements will result in a much larger standard deviation, often larger 
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than the average density. At such a small scale, particle density can vary severely and rapidly: there are 

frames or parts of where there are almost no particles sometimes, followed by an influx of a large particle 

cluster. By taking the average of a depth interval, the variation is reduced to a more acceptable degree. 

Added to the standard deviation, a positive systematic error of +10% is added. After studying the frames and 

the particle identification results visually, it was concluded that there will always be particles that can’t be 

identified: in a few rare cases, single particles are too large, but more often it’s clusters of particles that are 

tough to interpret for the software. When 2 or more particles are too close to each other, the PID will consider 

this object to be too large to be a particle, and only identify one or none of the particles. Clustering seems to 

increase linearly with the particle density, so a relative error of +10% of the average density was concluded 

and added to the positive error.  

 

Figure 26: Close-ups of the particle identification applied to frame 11 of the filtered image sequence. These illustrate the 
positive error of the particle density. Top left: two particles are too close to each other and ae not identified by the PID. 
To the right, only one particle out of a cluster of four is identified. Top right: one abnormally large particle at the top and 
a pair of two large particles at the right are not identified by the algorithm.  Bottom left: a gust of sediment can make it 
impossible to identify individual particles, which makes it difficult to estimate the error at the lowest part of the frame (10 
– 15 mm).  
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Figure 27: Average particle density near the sediment bed. Error bars represent one standard deviation + 10% positive 
error. 

 Multiplying the average densities (in particles/mm²) for 101 frames for each depth interval with the average 

interpolated particle velocities described earlier (also for 101 frames and for the same depth intervals, in 

mm/s) results in an estimate for the particle transport rate (in part/mm/s). The average particle diameter was 

determined from the grain size distribution from the results of the Malvern Mastersizer: d50 = 501 µm. Using 

this value, the average volume of a particle is 0.066 mm³. Particle material density (not concentration, but 

the mass/volume ratio of a single particle) is also known: 1220 µg/mm³. Adding these to the calculation, the 

transport rate is known as the mass of particles within working distance per unit of depth per unit of time 

(µg/mm/s) (Figure 28). The error bars are the combined error of the particle velocity (standard deviation) and 

density (standard deviation, +10% positive error). Integration over the complete vertical leads to a transport 

rate in view of 56,2 mg/s (Table 4). 
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Figure 28: Sediment transport near the sediment bed. 

The top of the ripple seen in the image sequence moved about 6 mm across 1000 frames = 25 seconds. 

The calculated bedform velocity is then 0.24 mm/s. The maximum height of the ripple is 9 mm. In the 

foreground, two ripple crests are visible, with a distance of 13 cm between them. Using this information, 

assuming a triangular cross-section of the ripple and the width of the flume (120 cm), an approximation of 

the volume of the ripple of 702 cm³ can be calculated. The material density (1220 kg/m³) and the porosity in 

dry atmospheric conditions of the sediment (36%) are known. A rough estimate for the mass of the sediment 

in the ripple is 0.548 kg. Using the ripple displacement velocity and the ripple wavelength, a transport rate of 

1.01 g/s can be estimated (Table 3).  

 

Table 3: Sediment transport based on ripple displacement 

length 

ripple 

(m) 

height 

ripple 

(m) 

width 

flume 

(m) 

volume 

ripple 

(m³) 

material 

density 

(kg/m³) 

porosity 

(m³/m³) 

mass 

sediment in 

ripple (kg) 

velocity 

ripple 

(m/s) 

transport 

rate (kg/s) 

0,13 0,009 1,2 0,000702 1220 0,36 0,548 0,00024 0,00101 
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5. DISCUSSION 
 

Figure 25 shows the decrease of the particle velocity towards the bottom. At the top of the frames, furthest 

from the bottom, the average particle velocity of ~205 mm/s is close to the water velocity, which is 

approximately 230 mm/s theoretically. The deviation is also small, around 10 mm/s: all particles move at the 

same speed. This is to be expected: higher up in the water column, particles are being transported as 

suspended load, they move quasi-horizontal near the water flow velocity. The average particle velocity 

decreases linearly toward the bottom whereas the standard deviation increases. This increased standard 

deviation could be caused by an increase in particle behaviours (suspended, jumping, falling down) towards 

the bottom and/or an increase in the amount of incorrect matches towards the bottom (more unpredictable 

behaviour, larger particle density). The amount of each of these factors contributing to the total error is not 

evaluated yet. When approaching the bottom topography (top of the underwater ripples) and until the deepest 

point (valleys between ripples), the average particle velocity shows a slight increase (between 0 and ~15 mm 

in Figure 22 and Figure 25). This increase is unexpected; however it still falls within one standard deviation, 

which is at its largest here. Velocity calculations could be considered to be the least reliable in this part of the 

water column: examination of images of the top-down camera and long-exposure images have shown that 

there is a lot of irregular movement of particles here (see also Figure 14). This might lead to more incorrect 

matches, thus giving a false (too high) representation of the particle velocity here. 

 

To know the exact transport rate (in mg/m²/s), the depth of view of the camera needs to be known exactly: 

what is the minimum and maximum proximity of a particle to the lens to be identified? This depends on the 

camera lens, the particles, the lighting but ultimately to the particle identification algorithm: particles that are 

too close or too far away are not intense enough to be identified. To get an approximation for this is very 

difficult, but a good estimate should not be larger than 25 cm (depth of focus of the lens) and not smaller than 

1 cm. However, the evolution of the transport rate with proximity to the bottom is clear from the graph. In 

Figure 28, the transport rate is nearly constant first, then increases exponentially towards the bottom. Particle 

velocities (Figure 25) decline towards the bottom, but the particle density (Figure 27) increases much faster, 

which explains the overall increase of the transport rate. The transport rates closest to the bottom are even 

higher than the best fitted logarithmic curve. This could be caused by the increase in particle velocity 

discussed earlier. 

 

As mentioned earlier, acoustic measurements with ADCP instruments were performed in the current flume 

as well. For more details, see Joachim Beckers’ “Application of ADCP-BT to measure bed load transport” 

(Beckers 2017). From these measurements, water flow velocities, bed load velocities and bottom transport 

rates (Gb) were calculated for different flow rates (including 200 l/s, the flow rate used in the most camera 

experiments, including the last). The water flow velocity estimated by taking the water flow rate and the cross 

section of the current flume and the velocities calculated by the two ADCP instruments at 200 l/s correspond 
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very well. This is a good confirmation of the maximum water velocity that we used to define our search 

window in the PTV analysis. The bed load velocities measured by the two bottom-track instruments is 

significantly lower than all velocities from the PTV analysis: 34 mm/s and 45 mm/s at 200 l/s. We established 

a decrease in velocity towards the bottom earlier: from 205 to 120 mm/s. The top of the ripple seen in the 

image sequence moves at a velocity of about 0.24 mm/s. This was calculated based on only one ripple, but 

it is still two orders of magnitude lower than the bottom-track velocity. We could assume that the bedload 

velocity is the speed at which the top of the sediment bed itself moves, by rolling and sliding of particles over 

ripples and other bedforms. This process should be faster than the movement of the whole ripple. The 

decrease of velocities fits well within the decreasing trend from PTV analysis. At 200 l/s, the bottom-track 

might measure the velocity of sediment transport at the top of the sediment bed, a region that is just below 

what we were able to visualise with a camera (the lowermost part of the water column). So at first sight, there 

is no contradiction between the results of both methods, but there is a difference because they measure in 

different areas. The top-down camera seemed to visualise the transport at the top of the sediment bed better, 

but to process these images a lot of work still has to be done. Meanwhile the acoustic (and other) instruments 

struggle to get good data from the lowermost part of the water column, because the sediment bed acts as 

such a strong reflector that it disrupts the measurements just above it. This makes PTV and the sideways 

camera interesting to further visualise this region.  

 

The sediment transport rates measured by the load cell and by different ADCP models differ by 2 orders 

of magnitude (see Table 4). For the transport rate approximation by PTV analysis to match even the smallest 

transport rate from the weight cell or ADCP, the depth of view (the last unknown value) has to be extremely 

small: at 0.273 mm, it is smaller than the particle diameter. A good estimate based on camera use between 

25 and 1 cm doesn’t come close: 2 to 3 orders of magnitude difference with the weight cell transport rate and 

van Rijn, 4 to 5 orders compared to the other 3 ratios. An explanation for this can be the fact that, despite the 

fact that the bed load velocity is smaller than the particle velocities from PTV, the number of particles in the 

water column is much smaller than the amount of sediment that is transported by sliding and rolling as the 

top of the sediment bed. This is similar to the exponential increase in particle transport towards the bottom 

discussed earlier: particle velocity decreases linearly, but particle density increases exponentially. This 

phenomenon could be expected from the recordings from the top-down camera, showing the mass-

movement of sediment ripples. Again, the results of the PTV analysis and the ADCP are potentially not 

contradictory, but instead show that the difference of sediment transport rates between suspended particles 

in the large upper part of the water column, jumping particles in the smaller lower part of the water column 

and the top part of the sediment bed of rolling and sliding particles differs with several orders of magnitude. 

The dune displacement gives an estimate of 1,01 g/s sediment transport. This is much closer to the sediment 

transport measured by PTV. In fact, it falls within the interval of total transport based on an estimated depth 

of view of 25 cm and 1 cm (Table 4). Still, based on only one ripple and a simplified calculation of sediment 

transport by this ripple, it is not possible to draw any further conclusions. 
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Table 4: Sediment transported in focus of the camera and after PTV analysis, compared to different transport rates 
based on the pit sampler, the ADCP measurements at 200 l/s flow rate by Beckers (2017) and the ripple displacement. 
To equal these transport rates, the corresponding depth of view of the PTV analysis is given. Finally, two estimated 
transport rates are given, based on the sediment transport in focus and estimated depth of views. 

Transport 

in view 

(kg/s) 

Gb 

Pit sampler 

[kg/s] 

 

Gb 

ADCP Rennie 

[kg/s] 

Gb 

ADCP 

Einstein 

[kg/s] 

Gb 

ADCP  

van Rijn 

[kg/s] 

Gb 

van Rijn 

[kg/s] 

Gb  

ripple 

[kg/s] 

5,62E-05 0,247 38,9 25,9 19,6 0,331 1,01E-3 

Corresponding depth of view (m)  
 

2,73E-4 1,73E-06 2,60E-06 3,44E-06 2,03E-4 0,0667 

Total transport based on estimated depth of view 25 cm and 1 cm (kg/s) 

2,70E-4 6,74E-3 
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6. CONCLUSION 

 
We have tested the application of camera’s and Particle Tracking Velocimetry to visualize bottom transport 

in a current flume. We tested different setups, equipment and software that was available, configurations and 

settings; and improved them when necessary and possible. Main components are the current flume, two 

cameras (one side-looking with a bitelecentric lens, one top-down with a manually adjustable lens) and the 

Streams software. Data obtained can be divided roughly in long-exposure images and short-exposure 

images, or top-down view and lateral view. Full PTV analysis was applied to the final image sequence. 

Particle velocity and sediment transport data were compared to ADCP data from Beckers (2017).  

 

Long-exposure versus short exposure: long-exposure images provide a good visualisation of particle 

trajectories for the human eye. However, no software was found so far to extract particle velocity and 

sediment transport information from these images. Short-exposure images are more challenging for the 

human eye to track particles, but the Streams software can get valuable data from these frames and visualize 

the evolution of particle velocity, particle density and transport rates with depth. In an ideal world, having both 

types of images at the same time and at the same location would be extremely powerful when they can be 

compared (particle paths from Streams with long-exposure particle tracks), but this is not possible yet. 

 

Top-down versus side-looking: processing and analysing frames from the top-down camera has proven to 

be difficult so far. Instead of a background with particles moving in front, the user looks at an image completely 

filled with particles. However, with the new computer, a renewed effort is encouraged. The top-down camera 

looks at a different level of transport than the side-looking camera, one that might be more comparable with 

the bottom-track measurements (at least at 200 l/s water flow rate). The side-looking camera resulted in good 

data of the transition zone of suspended transport and bedload transport. Identifying and matching particles 

in suspension and in long-distance jumps went well, but the algorithms struggle with high particle densities 

and discontinuous short jumps and turbulently falling particles after dune crests. So far, camera usage and 

PTV analysis provided good results in a region that is hard to monitor for other instruments (e.g. water bias 

of ADCP-BT). But the results of this work only contain only PTV data for one water flow rate. How PTV 

analysis and the current setup and methods will hold up for larger flow rates (and higher particle velocities 

and densities) or different sediments (such as quartz sand, when it can be brought in motion) remains an 

important research question. This study provides a good basis for continuing the work in these directions.  

 

The final results show an exponential increase in sediment transport towards the bed, that is composed of 

sand-sized particles. This illustrates again the importance of a reliable, continuous method to measure bottom 

transport, especially in sandy conditions.  
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APPENDIX 

 

A.1 Product specifications of the lens of the top-down camera 

(https://industry.ricoh.com/en/fa_camera_lens/lens/9m/) 

 

 

https://industry.ricoh.com/en/fa_camera_lens/lens/9m/
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A.2 Product specifications of the lens of the side-looking camera 
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A.3 Camera product specifications (https://en.ids-

imaging.com/store/products/cameras/ui-3080cp-rev-2.html) 

 

https://en.ids-imaging.com/store/products/cameras/ui-3080cp-rev-2.html
https://en.ids-imaging.com/store/products/cameras/ui-3080cp-rev-2.html
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A.4 Grain size distribution of the sand-like substitute 
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A.5 Short overview of experiments 

 

 

First tests

• New: bitelecentric lens, camera, uEye Cockpit

• Goal: getting used to software & camera

Flume

• New: in current flume, Streams filters, PID's

• Goal: can we obtain particle records? Yes

PTV

• New: particle records, velocity fields

• Goal: can we obtain particle velocities? Yes

Top-down 
camera

• New: top-down camera, adjustable lens

• Goal: can we get results from the top-down camera? Not yet

ADCP

• New: ADCP, high flow rates, lamp

• Goal: to record during ADCP experiments

Exposure 
time

• New: long exposure time, high framerate, RGB format

• Goal: can we get results from long-exposure images? Not yet

Final 
recordings 

• New: computer, bitmaps, binning, PTV analysis

• Goal: to measure particle velocities and sediment transport 
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A.6 Workflow final measurements 

 

Prepare flume: sediment 
bed, pit sampler, sluice 

gate, control room

Prepare camera 
equipment: lamp, 
computer, cables

Set flow rate: activate 
pumps, set flow rate (at 
valves or from control 

room)

Open IDS camera 
manager, open camera 

with uEye Cockpit

Set camera settings: pixel 
clock, framerate, 

exposure time, colour 
format, binning 

Set camera settings: 
master gain, gain boost

Save parameter file Open WL Cam Triggered
Enable cameras, choose 
and apply test ID, then 

record

Stop recording Open Streams

Create new image 
sequence: choose name, 
timestep, scale and load 

images

Filter images: create 
average image and 

subtract, extract colours

Draw and save regions to 
exclude

Create or load and 
modify PID: name 

particle record, 
thresholds, regions

Evaluate PID in image 
view of image sequence

Execute filter and PID to 
obtain particle record

Create or load and 
modify PTV analysis 

pipeline: costings, MMC, 
search window

Create new 'Create 
Lagrangian path field' 
process: choose name 

field

Execute PTV analysis 
pipeline and 'Create 

Lagrangian path field' 
process

Evaluate PTV analysis 
pipeline by using 

Lagrangian path field as 
overlay in image view of 

image sequence
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Particle record

Create new 'create 
density field' process: 
choose name, frames, 

excluded regions

Change grid: number of x 
points = 2, grid spacing x 
spacing = 328 (twice the 

horizontal resolution)

Execute 'create density 
field' process 

Open calculator, choose 
rho (particle density) and 

rho'rho' (error)

Set t = Averaged from 0 
to end

Calculate both fields and 
save to CSV file

Particle record with PTV 
analysis pipeline

Create new 'create 
velocity field' process: 
choose name, frames, 

excluded regions

You can keep the default 
grid

Execute PTV analysis 
pipeline and 'create 

velocity field' process

Open calculator, choose 
u (horizontal velocity) 

and create custom 
calculator for error

Set t = Averaged from 0 
to end

Calculate both fields and 
save to CSV file

Open all CSV files in 
Microsoft Excel

Calculate particle 
transport based on 

horizontal velocity and 
particle density

Calculate sediment 
transport based on 
particle transport, 

material density and 
grain size

Calculate error based on 
both errors 

Estimate the depth of 
view

Visualize sediment 
transport in function of 
proximity to the bottom


