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Abstract

Due to recent improvements in satellite technology and increasing number of global histori-
cal records of environmental and climatic variables, research in climatology has become more
valuable and crucially important. Furthermore, the huge amount of data provides new ways to
start unravelling underlying processes, which drive long-term changes in climate extremes or
allow researchers in trying to understand the impact of latter changes on terrestrial ecosystems.
However, as the amount of available data in climate science, or more specific climate change
attribution research, is increasing exponentially, the need for better/complex data-driven mod-
els is crucial in order to allow new opportunities for research and industry, as well as gathering
novel insights.
As part of the SAT-EX project, under supervision of the KERMIT research group, this the-
sis is a continuation on comprehensive research by Decubber S., Papagiannopoulou C., et al.
[6] [23]. We will mainly focus on climate change attribution research, where the influence
of various climatological extremes such as temperature and precipitation on vegetation will be
studied. Moreover, we will extend current state of the art research by using more complex
machine learning models such as deep neural networks, within a non-linear Granger causality
framework [23], in order to exploit and analyse various G-causal relationships between clima-
tological variables and vegetation. Furthermore, in this thesis the modeling of climate data will
be improved by exploiting neighbouring information, together with an improved global scale
learning approach. For the latter, deep learning techniques can be ideally used as an alterna-
tive to less flexible statistical models. In order to deal with the black box problem, that comes
with various deep learning models, a compromising statistical-deep learning approach will be
considered, by using deep learning techniques within a non-linear Granger causality framework.

Keywords: climate science, climate change attribution, forecasting, (non-linear) Granger causal-
ity test, statistical learning, deep learning, convolutional neural networks, recurrent neural net-
works, long short-term memory networks
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Introduction

Due to recent improvements in satellite technology and increasing number of global histori-
cal records of environmental and climatic variables, research in climatology has become more
valuable and crucially important. As of today, the huge amount of climatological data provides
new ways to start unravelling underlying processes which drive long-term changes in climate
extremes or allow researchers in trying to understand the impact of latter changes on terrestrial
ecosystems. In contrast to understanding various climatic relationships, climatic data also al-
lows for benchmarking in order to evaluate the skills of various climatic models.

In this brief introduction we will guide the reader through fundamental aspects in climate sci-
ences and give an overview on the general structure of this thesis. We start with a formal
definition of climate change research, by looking at two different subdomains which will be
explained in the following section. We then continue this chapter by looking at climate change
modeling techniques, whereafter we end this introduction with a brief summary and overview
of this thesis.

1.1 Climate change research

Generally speaking, we can divide climate change research in the following topics:

• Climate change forecasting

• Climate change attribution
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We will not put a lot of focus on the discussion of these two domains, but want to emphasize
the main difference between the two and focus mostly on climate change attribution, the central
focus in this research.

1.1.1 Forecasting

In the domain of climate change forecasting, one will typically study forecasting methods where
we are interested in predicting some future state of the climatic system. However, important to
mention is the distinction between weather and climate. When it comes to weather progression,
we are intuitively familiar with the daily changes in temperature, rain which comes and goes,
or some severe storm that is predicted to hit in one of the upcoming days. Characteristic time
scale for changes in weather generally depend on latitude, e.g. in the tropics, the weather tends
to be much steadier, with sunny periods and steady trade winds punctuated by a short daily
downpour. At the other hand, the concept of climate is also familiar, as we typically recall that
warm summer some years ago or that snowy winter. Hence, the reader should already notice
the subtle difference between climate and weather: climate is the statistics of weather averaged
over a large-scale time period that contains many weather events.

1.1.2 Attribution

Changes in climatic means are either due to a small change acting over the entire averaging
period or by the unusual occurence of extreme events within the particular averaging period.
Since climate refers to the statistics of the atmosphere, which interacts strongly with the surface
through interchange of heat, momentum and water, the climatic state of the atmosphere there-
fore depends strongly on the state of the surface. The latter can be characterized by its tempera-
ture, reflectivity, surface moisture etc. Due to this interaction, surface conditions will generally
change, causing atmospheric statistics to change in response and the other way around. Hence,
in climate change attribution, researchers are more interested in identifying and quantifying
cause-effect relationships between atmospheric statistics (e.g. precipation or temperature) and
other climate variables (e.g. surface characteristics such as vegetation), rather than predicting
long-term future states. In this thesis we will model climate-vegetation dynamics in order to
analyse cause-effect relationships between climatic features and vegetation, which corresponds
to climate change attribution.

1.2 Climate change modeling

As we’ve already discussed two different research topics in climate sciences, one also needs
appropriate tools in order to allow forecasting or identifying and quantifying cause-effect rela-
tionships within climatic systems. Moreover, in the context of this research (i.e. climate change
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attribution), different modeling techniques are available which will be discussed in the subse-
quent sections. After modeling climate-vegetation dynamics, one would then need appropriate
statistical inference techniques in order to identify and reason about cause-effect relationships
(see Section 1.2.3). We start by giving the reader a brief overview of two general modeling
approaches [9].

1.2.1 Mechanistic models

Although many approaches currently exist, one of the most standard approaches currently used
are based on simulation studies with mechanistic climate models. These models represent hy-
pothesized relationships between various variables, where the relationship is specified by means
of biological processes, typically formalized through differential equations. The parameters all
have physical meanings and can be measured independently of the dataset. They are designed
to reflect our hypothesized understanding of physical reality.

1.2.2 Data-driven models

In contrast to the latter concept-based models, data-driven models assume no underlying physi-
cal representation of reality. Here we will model the relationships by learning flexible functions
of some set of input data. Hence, these (statistical) models are directly used, without any prior
knowledge, on a given set of data.
As already stated in the beginning of this chapter, recent improvements in satellite technol-
ogy as well as in-situ technology, caused a tremendous increase in global observations on finer
spatio-temporal resolutions. One can see that the resulting amount of big data can be ideally
used by data-driven models, in order to answer questions in climate change attribution research.
the only question remaining is whether data-driven models can handle the complex nature of
the latter data, and whether more complex deep learning models can be used as an alternative
to less complex statistical models. As for now, we emphasize the choice for data-driven models
in this thesis.

1.2.3 Causal inference

Within climate change attribution, after modeling some climatic dynamics, one needs to make
conclusions on whether cause-effect relationships exist or not. Hence, we need a more formal
definition of cause-effect relationships and their characterstics. Cause and effect (also referred
to as causation or causality) is an abstraction that indicates how the world progresses, how one
process (or cause) is connected to another process or state (or effect). As an example, in this
thesis we will focus on how changes in climatic processes (e.g. temperature, precipation) cause
an effect on another process (e.g. vegetation). Causality is a term that is widely used in many
domains, such as science, metaphysics, management, humanities, theology, etc. Debating about
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Figure 1.1: Making the erroneous statement that carrying a lighter (L) causes cancer (C), is obscured by
observing the true cause smoking (S). We observe that carrying a lighter is only associated
(green dashed line) with developing cancer.

causality would require another few chapters, if not books, hence we will only focus on causal
inference that is widely used in many scientific domains. Before going into different causal
inference techniques, we first need to emphasize a crucial difference between two concepts that
are commonly used, namely causation and association.

1.2.3.1 Causation versus association

The reader should be familiar with the fact that association does not imply causation. For
instance, a researcher found a significant relationship between carying a lighter and developing
lung cancer during the middle age. That is, the likelihood of developing lung cancer signifi-
cantly increased when carrying a lighter, in contrast to people who did not carry a lighter (on
daily basis). The researcher could argue that carrying a lighter causes an effect, in terms of de-
veloping lung cancer or that a causal relationship exists between the two. Putting it simply, this
is exactly what we mean with “association does not imply causation”: the researcher may ob-
serve a statistically significant association (green dashed line in Figure 1.1) between carrying a
lighter (L) and developing cancer (C), but needs to be aware of the fact this does not imply cau-
sation. Indeed, after observing a new variable/state smoking (S), we may intuitively conclude
that the latter relationship is due to a common state (S). Formally speaking, the observation
of an effect/change in state (i.e. developing lung cancer) due to carrying a lighter is obscured
by a common cause (i.e. smoking). When it comes to inference, one also needs to distinguish
between causal inference and inference of association. The former analyses the response of the
effect variable when the cause is changed.
Hence, causal inference is very complex and needs appropriate mathematical formalization in
combination with important assumptions, in order to use in a statistical modeling framework.
With the latter assumptions we may refer to model-related assumptions (e.g. assumptions in
normal error linear regression models) and the even more important assumptions that come
with causality:
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• Identify and include all possible common causes (e.g. Figure 1.1).

• Identify and include all possible confounders.

Important to mention is that the inclusion of common causes or confounders could obscur or
change direct observed causal relations.
Hence, we want to empasize that causal inference and corresponding assumptions, in climate
change attribution research, are mostly not fulfilled due to the complex nature of the data. Tak-
ing in account all possible common causes or confounders is a tremendously difficult task, for
which additional domain expertise is necessary. When the latter expertise is not available, one
can always assume the causal relationship as a hypothesis that can be further investigated, while
realising that the relationship is potential and relative to the amount of information that is avail-
able in the data [7].

1.2.3.2 Granger causality

As already mentioned, causal inference needs appropriate mathematical formalization for which
various techniques exist. Probabilistic graphical models (PGMs), where one is interested in dis-
covering direct probabilistic edges between variables in some graph, are widely used models
where causal inference can be drawn and visualized in a graphical way. Although these models
are very popular and allow for graphical representations and reasoning about a given dataset,
they become very complex when dealing with high resolution spatio-temporal datasets (e.g.
climate change attribution data). As of today, the latter issues have already been addressed by
using extended formulations of PGMs [20][21].

As an alternative to PGMs, we will focus on causal discovery by using the concept of Granger

causality. This technique has risen from the field of econometrics and was invented by No-
bel Prize winner Clive Granger [12]. Due to its computational simplicity, it remains a popular
method for causal inference in temporal data. Intuitively we can say that a variable X (which
evolves over time) Granger-causes another evolving variable Y if predictions of Y , with the in-
clusion of its own past values and on the past values ofX , are better than predictions of Y based
only on its own past values. We have to emphasize the fact that Granger causality (also referred
to G-causality), may not be mistaken with the “true causality” concept, as we’ve already seen.
Hence, G-causality does not always imply true causality and is based on two principles:

• The cause happens prior to its effect.

• The cause has unique information about the future values of its effect.

In multivariate analysis (or more specific in multivariate economic time series), Granger causal-
ity is usually performed by fitting a vector autoregressive model (VAR) to some multivariate
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time series. For instance, let X(t) ∈ Rd×1, for t = 1, ..., T , be a d-dimensional multivariate
time series. That is, X(t) represents d different variables evaluated in time. Granger causality
is then performed by fitting a VAR model with L time lags as follows

X(t) =
L∑
τ=1

AτX(t− τ) + ε(t), (1.1)

where we assume multivariate normal errors ε(t), and for each τ we have

Aτ =


β11,τ . . . β1d,τ

... . . . ...
βd1,τ . . . βdd,τ

 . (1.2)

The Granger causality test is then applied by looking if at least one of the coefficients Aτ (j, i),
for τ = 1, ..., L, is statistically significant larger than zero (in absolute value) [15]. In terms of
predictive modeling, one could also test a G-causal relation between some feature of interest
X(t) and a response variable Y (t), by means of comparing the predictive performance of two
nested models

Ŷb(t) = fb(yt−1, ..., yt−L),

Ŷe(t) = fe(yt−1, ..., yt−L, xt−1, ..., xt−L), (1.3)

where we denote the baseline model by fb and fe by extended model respectively. Using the
defined models, the null hypothesis of Granger non-causality would be formulated as the null
hypothesis that fb and fe would yield the same prediction error, whereas the alternative is one-
sided, such that if fe predicts significantly better than fb.
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1.3 Summary and goals

As part of the SAT-EX project1, under supervision of the KERMIT research group, this thesis
is a continuation of comprehensive research by Decubber S., Papagiannopoulou C., et al. [6]
[23]. We will mainly focus on climate change attribution research, where the influence of vari-
ous climatological extremes such as temperature and precipitation on vegetation will be studied.
Moreover, we will extend current state of the art research by using more complex machine learn-
ing models such as deep neural networks, within a non-linear Granger causality framework [23],
in order to exploit and analyse various G-causal relationships between climatological variables
and vegetation. Furthermore, the modeling of climate data can be improved by exploiting neigh-
bouring information, hence one might consider multitask learning approaches that learn from
multiple locations simultaneously [6][23]. However, due to the high dimensional (p >> n)
nature of climate data, the complexity of the latter models increases exponentially. In order to
solve the latter problem, we will propose and study various deep neural networks within the
non-linear Granger causality framework. Nowadays, neural networks have already been proven
to be succesful in many pattern recognition domains such as speech recognition, image recogni-
tion etc. Although deep neural networks are highly complex and powerful models, they come at
the expense of being blackbox in nature. In this thesis, we will try to combine the powerful but
blackbox nature of neural networks, together with the non-linear Granger causality framework,
in order to discover various patterns in climatic datasets. However, we want to emphasize that
no focus will be put on drawing conclusions on causal relationships between different climate
variables.

The following chapters are summarized as follows:

• Chapter 2 (data and methods): we will briefly discuss the datasets that we have been
using throughout this work, providing the reader with some exploratory analysis results.
Finally, the general methodology will be discussed.

• Chapter 3 (results): this chapter will further focus on the applied techniques and obtained
results, by using the methodology, as discussed in Chapter 2.

• Chapter 4 (conclusions): in this chapter, we conclude with a general summary and con-
clusion.

1SAT-EX Project homepage: http://www.sat-ex.ugent.be/

http://www.sat-ex.ugent.be/


8



2
Data and methods

Now that the reader is familiar with the basic concepts in climate change research, or moreover
climate change attribution, together with modeling and causal inference techniques, we will
now continue with the discussion of the data that was available for this thesis together with the
discussion of the used methods. As already stated in the previous chapter, drawing conclusions
on causal relationships between different climate variables will not be handled in this thesis.
However, in the context of this thesis we will study a potential candidate framework in which
we move towards a more deep learning data-driven modeling approach (see Section 1.2.2),
together with a non-linear Granger causality framework for detecting potential causal relations.
Again we want to emphasize that Granger causality does not imply true causality.
Although different approaches currently exist, our general framework can be visually illustrated
as seen in Figure 2.1. Climate data will be used as input for data-driven models (i.e. deep
learning models in this thesis), whereafter various outputs from these models (e.g. predicted

Figure 2.1: General workflow in data-driven climate change attribution. Climate data is used as input
for various data-driven models. Climate data is then used, together with various outcomes
from the modeling step, in a statistical inference framework in order to obtain insights.
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variables, predictions errors, etc.) will be used, together with the raw climate input data, in a last
statistical inference step (e.g. non-linear Granger causal inference). One could argue that data-
driven modeling can be categorised under statistical inference (i.e. leaving the above workflow
with only one processing step), but in the context of this thesis we want to distinguish between
the deep learning modeling approach and the statistical inference step. By using powerful deep
learning models, combined with statistical inference techniques, we would like to gain more
and better insights into climate dynamics. The central question, whether deep learning models
can be used as data-driven models in this framework, will be discussed in this thesis.
We start with a summary of the available data, together with some brief exploratory analysis (see
Section 2.1). Finally, we discuss the general methods and techniques, that have been applied
within the context of this thesis (see Section 2.2 and 2.3).

2.1 Data description and exploration

As already stated in the introductory chapter (Section 1.3), this thesis is a continuation of previ-
ous research, in which the used datasets were composed and provided by C. Papagiannopoulou,
S. Decubber, et al. (KERMIT, department of Mathematical Modelling, Statistics and Bioinfor-
matics, Faculty of Bioscience Engineering) [6][23]. By using several publicly available satellite
datasets, covering different spatial areas, different temporal intervals and various resolutions,
multiple datasets were assembled. Although different datasets were obtained for various fea-
tures such as temperature, precipitation, soil moisture, snow depth, radiation, vegetation etc.,
we will only provide the reader with a general overview of the data that was eventually used in
this thesis.

Variable (unit) Source (code) Spatial res. Temporal res. Coverage

Temperature (K) ERA 0.25◦ daily 1979-2013

Precipitation (mm) MSWEP 0.25◦ daily 1982-2012

Radiation short (W/m2) ERA 0.25◦ daily 1979-2013

Greenness index (NDVI) GIMMS 0.25◦ monthly 1982-2012
Leaf area index (LAI) GLASS 0.25◦ 9 days 1982-2012

Table 2.1: Overview of the used datasets in this thesis. Note that we will mainly focus on the LAI dataset
(i.e. a measurement of vegetation), as outcome variable of interest, due to the finer temporal
resolution compared to other data products related to vegetation such as NDVI. The source
code refers to the source for each dataset.



11

2.1.1 Raw data

The complete dataset can be seen as a collection of different dataframes on different features
(e.g. temperature, precipitation, etc.), for which most dataframes (see Table 2.1) contain data
on 180×360 pixels. The latter dataframes are originally stored in HDF5-format1 files, allowing
for efficient and fast I/O processing. Depending on the feature, each dataframe further contains
temporal information on daily, monthly, etc. basis. Hence, each dataframe can be seen as a
collection of 180 × 360 time series, or more formal as a multivariate time series. Since we are
interested in studying the influence of various features on vegetation (see Section 1.3), by using
the (non-linear) G-causal inference idea as described in (1.3), we hence need an appropriate
vegetation measurement that can be used as outcome variable of interest. In Table 2.1, we’ve
listed two possible dataframes, which both represent data on vegetation.

2.1.1.1 Normalized Difference Vegetation Index (NDVI)

The first dataframe contains Normalized Difference Vegetation Index (NDVI) data, which can
be used as a proxy for the amount of vegetation. The latter represents a graphical indicator that
uses the spectral reflectance measurements in the visible (VIS) and near-infrared (NIR) regions.
Without going to deep into technical details, the rationale behind NDVI is based on the fact that
vegetation absorbs visible light and at the same time reflects light in the near-infrared region, in
order to protect itself against overheating. Hence, the domain of NDVI is restricted to [−1, 1]
and higher values of NDVI indicate a higher density of (green) vegetation. For instance, when
it comes to tropical rain forests, maximal NDVI values are expected.

2.1.1.2 Leaf Area Index (LAI)

In contrast to NDVI, one could also use Leaf Area Index (LAI) data as a proxy for vegetation,
which is highly correlated with NDVI. This dimensionless quantity characterizes plant canopies
(i.e. aboveground portion of a plant community or crop) and is defined as the one-sided green
leaf area per unit ground surface area (leaf area (m2)/ground area (m2)) in broadleaf canopies
[26]. We will not further discuss the interpretation and rationale behind this metric, but however
do note that the range for LAI is restricted to [0, < 20]. Again, higher values indicate dense
and green vegetation. In order to keep the temporal resolution for each feature as small as
possible, we’ve chosen not to work with NDVI, as the latter was only available on a monthly
temporal resolution. The remaining features, in Table 2.1, will not be further discussed as the
meaning/interpretation is straightforward.

1HDF5 homepage: https://www.hdfgroup.org/

https://www.hdfgroup.org/
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2.1.1.3 Cyclic and seasonal behaviour

In Figure 2.2, three features (i.e. vegetation, precipitation and temperature) are visualised in
the corresponding spatial and temporal domain. It is clear that high vegetation values are less
spread out (e.g. significant high vegetation is observed in the southern hemisphere), in contrast
to temperature. Hence, it seems that higher values for vegetation, as well as for precipitation,
are more densely clustered, whereas temperature values are more spread out across the spatial
dimensions.

While analysing the features in the temporal domain, the reader should already notice the non-
stationary behaviour for vegetation and temperature. More formally, let {Xt} be a stochastic
process with FX(xt1+τ , . . . , xtk+τ ), the cumulative distribution function of {Xt}, evaluated at
time points t1, . . . , tk + τ . It can be shown that {Xt} is said to be strictly stationary if

FX(xt1+τ , . . . , xtk+τ ) = FX(xt1 , . . . , xtk), ∀k, τ, t1, . . . , tk. (2.1)

Moreover, as τ does not affect FX(.), we can say that FX does not depend on time. For in-
stance, in Spain, we expect high temperatures during the summer and the opposite during the
winter, which can be seen in Figure 2.2b. Besides the cyclic pattern, we would also observe an
additional increasing trend in a larger time domain, which can be explained by the influence of
climate change and global warming. As we are interested in a framework, allowing for infer-

(a) Feature maps evaluated at a fixed time point.

(b) Feature values at fixed location (i.e. Spain;
39.41,-4.77), in function of time.

Figure 2.2: Visualisation of feature maps, evaluated at some arbitrary point in time, and fixed feature
map locations evolving over time. The datasets were normalised to [0, 1] range.
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ence and analysing the influence of different features on vegetation, one needs to be aware of
the latter non-stationary processes with cyclical components, underlying the different features
that we have discussed. In the particular context of (non-linear) G-causal inference, by means
of prediction models as defined in (1.3), one may already expect that a simple (e.g. linear re-
gression) baseline model would already easily capture the underlying cyclic trend in vegetation,
resulting in accurate predictions. Besides that, recalling the Granger causality assumptions, we
know that stationarity is an assumption which needs to be fulfilled. We might argue that im-
portant information, which resides as noise in the cyclic trended signals, would be difficult to
capture. At the other hand, by increasing the complexity of the latter models, capturing the
latter informative “noise” could be feasible.
As for now, the reader should understand the behaviour and underlying nature of the various
features, as well as the issue that we have discussed, concerning the non-stationary property.
Nevertheless, we will come back at this issue in the following sections.

2.1.2 Residual data

As we recall the previous section, a lot of features (e.g. temperature, vegetation) seem to follow
a seasonal cycle with an additional underlying trend. As this property is intuitively explained
by the underlying nature and climate dynamics, it might be useful to analyse whether additional
information can be obtained, next to the cyclic and trend components of the multivariate time
series. Moreover, in earlier research by Decubber S., Papagiannopoulou C., et al. [6] [23], raw
time series were decomposed in terms of anomalies, using an additive linear approach. Each
time series XT (t), is de-trended over an entire study period by modeling the trend X̃T (t), using
a linear model, with time t as predictor variable. Formally, this can be described as

X̃T (t) = α0 + α1t. (2.2)

The de-trended time series are then obtained by subtracting the trend (2.2) from the original time
series XT (t). Next, the seasonal cycle X̃C(t) is estimated by computing the monthly averages
over the entire study period, whereafter the de-trended time series XT (t) − X̃T (t) are finally
subtracted with the seasonal cycle component X̃C(t), yielding the final anomalies

R(t) = XT (t)− X̃T (t)− X̃C(t). (2.3)

This technique is illustrated in Figure 2.3 and 2.4.
As trends and cycles are removed, it is not difficult to see that a baseline model, as in (1.3),
would yield lower prediction performances. As a matter of fact, we might expect that more
information would be necessary, next to past states of residual vegetation, in order to predict
future states of vegetation. For instance, analysing the (cor)relation between NDVI residuals
and temperature residuals (for the antecedent month), is depicted in Figure 2.5. Looking at
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regio Spain, during the summer, we observe a significant negative correlation with temperature
residuals from the antecedent month. This is not surprising, as a particular warm spring in
Spain will most likely negatively influence the outcome of vegetation state, during the summer.
Nevertheless, beside the observed significant correlations, we also observe that the relationship
between temperature and vegetation generally depends on the season (i.e. temporal), as well as
on location (i.e. spatial). Consequently, it seems that residuals contain valuable information,
which can be exploited. Moreover, one might expect that the extended model (i.e. temperature
included), would outperform the baseline model, as additional valuable information is contained
within the temperature residuals. Finally, in terms of G-causal inference, as described in (1.3),
we can argue on whether raw data or residual data is more appropriate to use. It is clear that
a relatively simple baseline model would already yield high predictive performance on the raw
vegetation data and hence, one should question whether comparing the corresponding baseline
model with a more complex extended model would yield statistically relevant improvements.
Besides that, it is not unlikely that to some extent, each model would only discover and learn
the underlying trend and cycles, which is of course unwanted in the context of climate change
attribution research. At the other hand, valuable information might be lost, while obtaining the
residual data, and thus we may prefer to work on all the information that is available, together
with more complex models. In this thesis, we will focus on the use of deep learning models
(which can be used on spatial global scale) and raw data only, as opposed to previous research
[6] [23]. By controlling on overfitting, we will analyse whether these complex models are able
to learn the cycles and trends, underyling the data, together with the more important residual
information, which silently resides within the raw data. As for now, we only want to emphasize
the difference between raw and residual data, together with their corresponding consequences
on climate change attribution research.



15

Figure 2.3: Visual representation of temperature time series decomposition. The blue line corresponds
to the de-trended temperature time series (XT (t)− X̃T (t)), the green dashed line indicates
the seasonal cycle component X̃C(t) and the red bars illustrate the final obtained residuals
R(t). Image obtained by Decubber S.
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Figure 2.4: Processed temperature maps, corresponding to four different steps in the temperature time
series decomposition, evaluated for an arbitrary chosen timepoint t. In the upper left cor-
ner the trend estimate X̃T (t) is illustrated together with the de-trended temperature map
(XT (t) − X̃T (t)), as illustrated in the upper right corner. From left to right, the bottom
maps correspond to the seasonal cycle component X̃C(t) and residuals R(t), respectively.
Image obtained by Decubber S.
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Figure 2.5: Correlation between NDVI (vegetation) and temperature residuals from the antecedent
month, evaluated for Europe and each month. Positive correlation (denoted as red), ob-
served in the upper three images, indicates that high temperature during the winter, result in
more vegetation for January, February and March. Moreover, the opposite seems to be true,
during summer. Image by obtained Decubber S.
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2.2 Machine learning techniques

In this section, we are going to provide the reader with some important machine learning con-
cepts and techniques, that have been used in this thesis. Machine learning emerged as a subfield
of computer science [3], from the study of pattern recognition and artificial intelligence. In
finding an accurate description of machine learning, we refer to Arthur Samuel (1959): ”Field

of study that gives computers the ability to learn without being explicitly programmed” [24].
Machine learning deals with the study and creation of algorithms, that learn from and make pre-
dictions on data. It enables to make data-driven predictions or decisions expressed as outputs,
based on example inputs, without needing strictly static program instructions. To some extent,
machine learning models allow researchers, data scientists and engineers to reason about deci-
sions, and allow them to gain “hidden insights” through learning from relationships and trends
within (big) data [18][25]. Machine learning and statistics are closely related fields, in the sense
that some statisticians have adopted methods from machine learning and vice versa, leading to
a combined field that they call statistical learning [17].

2.2.1 (Un)supervised learning

Machine learning techniques can be generally divided in the following classes: supervised
learning, unsupervised learning, reinforcement learning and other hybrid approaches. As op-
posed to supervised, unsupervised learning is used when data is provided without targets (i.e.
response variable). In this case, we can infer a function to describe hidden structure from the
provided data. As a consequence of the “unlabeled” data, there is no error or reward that can be
calculated. Some examples of unsupervised learning tasks are clustering (k-means clustering,
mixture models, hierarchical clustering, etc.) and dimensionality reduction (PCA, FA, etc.).
Supervised and unsupervised techniques are often combined. For instance, if every observation
xi ∈ Rp is defined in a high-dimensional feature space (p >> n), one may use unsupervised
learning techniques, such as PCA, in order to project the data to a low-dimensional feature
space, while retaining the most important information. Hence, these techniques can be ide-
ally used prior to unsupervised learning, in order to eliminate the “curse of dimensionality” in
machine learning [11]. Finally, supervised learning techniques can be further divided in classifi-
cation or regression tasks, depending on whether the response variable is discrete or continuous.
Other techniques, such as reinforcement learning, will not be further discussed.

2.2.2 Bias-variance tradeoff

When working with prediction models, one needs to be aware of the bias-variance tradeoff. For
instance, if we want to predict a target variable Yi, given input xi, we may assume a (normal
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error) linear relationship, given as

Yi = f(xi) + εi, (2.4)

εi ∼ N (0, σ2),

with εi the irreducible error term between the model and the ground truth.
We want to find a function f̂(.) that approximates the true relation f(.), for instance by using the
unbiased ordinary least squares solution, which minimizes the residual sum of squares (SSE)
(yi − f̂(xi))2. However, due to the irreducible error term εi, we will not expect to find a perfect
approximation. Moreover, it turns out that expected error evaluates as

E[(Yi − f̂(Xi))
2] = Bias[f̂(Xi)]

2 + Var[f̂(Xi)] + σ2, (2.5)

where

Bias[f̂(Xi)] = E[f̂(Xi)]− f(Xi), (2.6)

and

Var[f̂(x)] = E[(f̂(Xi)− E[f̂(Xi)])
2]. (2.7)

All the three terms in (2.5) are strictly positive, such that σ2 forms a lower bound on the ex-
pected error on unseen samples. More informally, by minimizing our cost function, we will
automatically minimize two sources of error which prevents our supervised learning algorithm
from generalizing on new unseen data. A high bias can cause an algorithm to miss the relevant
relations between predictors/features and response/target (underfitting), whereas the variance
error results from sensitivity to small fluctuations in a given dataset (i.e. training set). We say
that a high variance will cause overfitting, as it learns the random noise rather than the rela-
tionship between features and target. To illustrate the effect of overfitting and underfitting, in
function of some arbitrary chosen model which can be changed in terms of complexity (e.g.
regularisation, number of included features etc.), we refer the reader to Figure 2.6. Increasing
the complexity of the model will result in a higher variance error and hence overfitting, which
can be seen as an increase in validation prediction error (i.e. on new unseen data) and decrease
in training prediction error (i.e. on training data), whereas the opposite leads to underfitting,
due to a too restrictive model.
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Figure 2.6: Overfitting and underfitting in machine learning models. Complex models will tend to mem-
orize the data, without learning effectively. The latter can be seen by a decreasing training
error and increasing validation error.

One can always find a good compromise between bias and variance, by means of various reg-
ularisation techniques. For instance, when it comes to artificial neural networks, different reg-
ularisation techniques currently exist, such as real-time data augmentation, dropout, L1 and/or
L2-norm loss contraints, etc.

2.2.3 Artificial neural networks

Now that we have briefly discussed important machine learning concepts, we will move on to
the even more important part on (convolutional) neural networks. Recalling the introductory
chapter (see Section 1.3), we will focus on deep learning data-driven models, or more particu-
lar, deep artifical neural networks. Inspired by biological neural networks (i.e. central nervous
systems of animals), artificial neural networks form a family of models, used in machine learn-
ing and cognitive science. Similar to other machine learning models, neural networks have been
used to solve a wide variety of tasks, like computer vision and speech recognition, that are hard
to solve using ordinary rule-based programming.

2.2.3.1 Feedforward neural networks

As seen in central nervous systems, neural networks mainly consist of interconnected neurons
whose activations define recognizable linear pathways. Using axon terminals, connected via
synapses to dendrites on other neurons, signal or message passing can occur between different
neurons. As the sum of the input signals in some neuron exceeds a certain threshold, the neuron
transmits an electrical signal along the axon. Similar to biological neural networks, feedforward
neural networks are also presented as fully connected (neural) layers, each consisting of an
arbitrary number of artificial neurons. With fully connected we mean that every neuron is
connected to every neuron in the next layer. For instance, let us define a neural network with
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an input layer of D inputs, followed by one layer, consisting of M neurons and an output layer
of K outputs. We denote the input variables as x1, . . . , xD. To give the reader a more general
idea of the input, we could see the input variables as all pixel values of some global temperature
map x = {x1, . . . , xD}. We start with M linear combinations of the input variables in the form

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 , (2.8)

j = 1, . . . ,M.

With the superscript (1) we denote that the corresponding parameters are in the first layer of the
network. In practice, one talks about weights for w(1)

ji , and biases for w(1)
j0 . The resulting linear

combinations aj are often referred to as activations.
The latter activations are then transformed by using a differentiable, nonlinear activation func-

tion h(.) to give zj = h(aj). In literature, zj is also called hidden unit (i.e. the output of a
neuron). The hidden unit values are then passed to the subsequent layer where we iteratively
calculate

ak =
M∑
i=1

w
(2)
ki zj + w

(2)
k0 , (2.9)

k = 1, . . . , K,

with K the total number of outputs. As for now, we have calculated the transformation for
the second layer of the feedforward neural network. Finally, the output unit activations are
transformed using a chosen activation function to give a set of network outputs yk. The cor-
responding network diagram can be seen in Figure 2.7. When the architecture of an arbitrary
neural network is defined, we then train the corresponding model by “feeding” inputs to the
network, whereafter weights and biases are updated by means of an optimization algorithm
such as stochastic gradient descent. The gradient is obtained by applying the backpropagation
algorithm [19].

2.2.3.2 Convolutional neural networks

Inspired by the biological visual cortex, as seen in many organisms including humans, convolu-
tional neural networks (or ConvNets, CNNs) are feature extraction models which are capable of
visual pattern recognition, in data such as video or imagery [5]. Considering the visual cortex,
being the most powerful visual processing system in existence, it seems reasonable to emu-
late its behaviour. CNNs try to achieve this behaviour by using different building blocks in a
hierarchical layer structure, consisting of convolutional layers and pooling layers. In a convo-
lutional layer, two-dimensional filters (or kernels) are convolved in a discrete way, across the
width and height of a given input. For complex-valued functions f and g, defined on Z, the
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one-dimensional discrete convolution of f and g is defined as

(f ∗ g)[n] =
∞∑

u=−∞

f [u]g[n− u]. (2.10)

For f, g defined on Z2, we find

(f ∗ g)[m,n] =
∞∑

u=−∞

∞∑
v=−∞

f [u, v]g[m− u, n− v]. (2.11)

Assume that we have an input x with size H × W × C, where H,W are height, width and
C denotes the number of channels (e.g. c1 might be considered as the R channel of an RGB
image). A filter, in a 2D convolutional layer, for feature map k and channel c, is determined by
wkc and bkc. Note that every filter that is convolved across the input results in a feature map. A
convolutional layer can include several feature maps (i.e. a filter bank) and hence the number of
filters are hyperparameters of a CNN. The obtained filter bank, for the above-mentioned input,
is then given as

z(k)[x, y] = h

(
C∑
c=1

H∑
x′=1

W∑
y′=1

w(kc)[x′, y′]x[x− x′, y − y′, c] + b(kc)

)
, (2.12)

with h(.) a chosen activation function. The obtained equation (2.12) can also be extended for
3D convolutional layers (e.g. when spatio-temporal data is used as input). After calculating the
activations z(k), we can then use this as new input for the next convolutional layer. The new
input would then yield size H ×W ×K, with K channels.

Figure 2.7: Diagram for a two-layer feedforward neural network. The input, hidden and output variables
are represented by nodes, while the weight parameters are shown as links between the nodes.
Bias parameters are denoted by links coming from black nodes [4].
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(a) Full connectivity (b) Local connectivity

Figure 2.8: Difference between local connectivity in CNNs and full connectivity in ANNs.

In general, convolutional layers result in less parameters, in contrast to fully connected dense
layers (recall Section 2.2.3.1). The local connectivity property in CNNs (which is similar to
receptive fields within the visual cortex) are depicted in Figure 2.8b, while Figure 2.8a shows
the fully connectivity in dense layers. The two hidden units in Figure 2.8b can be seen as
two partial results of one filter (with some parameters) that is convoled across the input. For
instance, when filters of size 10 × 10 for an input of 100 × 100 are used, one would need 100
parameters in contrast to 10000 parameters for a fully connected dense layer. Therefore, CNNs
are ideally used for spatial/spatio-temporal data, where the number of inputs can be significant
large, and where spatial structure is present in the data, which can be exploited.

2.2.3.3 Data-driven modeling with CNNs

As the reader recalls the introductory chapter, where we discussed the problems with pixel-wise
models and the need for exploiting neighbouring information, CNNs might hence be potential
candidates. Indeed, using convolutional layers, spatio-temporal features can be extracted in
order to predict vegetation. A second rationale is given by the reduced complexity in convolu-
tional layers, which then allow for global scale learning (i.e. global feature maps can be used
as inputs). In terms of the extended models, we can also reserve different channels for different
feature maps, on which a different and sufficient number of filters can be convoled, which then
allows for deep feature extraction. After learning spatio-temporal deep features, fully dense
layers could be used in order to predict some future state of vegetation. Note that, due to the
spatio-temporal nature of our dataset, one would need 3D convolutional neural networks or
complex recurrent neural networks (e.g. long short-term memory or LSTMs) in the end layers,
which then allows to capture temporal information.
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2.3 Non-linear Granger causality framework

Recalling Figure 2.1, we have now discussed the two first modules of the general framework for
climate change attribution research. Climate data is split into different feature maps defined over
time, on which a baseline model and different extended models can be trained and validated.
In Chapter 3, we will further discuss the general implementations, strategies and corresponding
results in detail. We end this chapter by discussing the last module, which will collect output
from the data-driven modeling step, together with the raw/residual climate data, and on which
various statistical inference techniques will be applied. We have already briefly discussed the
general approach for causal inference, based on the (predictive modeling) Granger causality
test. That is, comparing the predictive performance of a baseline model fb (i.e. a model with
lagged values of vegetation on future state vegetation) and various extended models fe1 , . . . , fek ,
which are nested models with different features included. The null hypothesis of the Granger
non-causality was then formulated as the null hypothesis that baseline fb and all extended mod-
els fe1 , . . . , fek would yield the same prediction error, whereas the alternative would be that
each extended model predicts significantly better than baseline. The original formulation of
the Granger causality test is only defined for linear models, hence making it not applicable for
highly non-linear models such as CNNs. In this thesis, we’ve decided to work with an adapted
non-linear Granger causality approach which is highly related to the linear approach [23]. That
is, baseline and extended models can be replaced by non-linear models and predictions are
then analogously compared. Moreover, in order to make statistical relevant conclusions on the
obtained predictions, a (nonparametric) Mann-Whitney U test is used in combination with boot-
strapping.

Formally, assume that we have trained two CNNs, which correspond to the baseline model
fb and some extended model fe respectively. The extended model includes one feature of in-
terest, next to vegetation. Assume that both models were seperately trained on the same data,
with the same network parameters/configuration (e.g. number of layers, filters, hidden units,
activation functions etc.), but however with different number of channels. That is, the baseline
model would only use one channel in its input layer, whereas the extended model would use
two: one for vegetation and the other for the feature of interest. Hence, we assume that both
models are comparable. After training, we then separately test both models on a well-defined
(test) set. We emphasize that the latter set should be non-overlapping with the training set. This
could be obtained by dividing the available time frame in two separated chunks, with an addi-
tional gap window (i.e. time frame which is unused) introduced, in order to make both sets as
different as possible. The obtained predictions on the test set are denoted by f̂b(t) for the base-
line model and f̂e(t) for extended model respectively, where t denotes the timestamp of some
arbitrary prediction. The reader should already notice that each prediction represents some fu-
ture vegetation state. Further assuming that we’ve corresponding vegetation targets Yv(t) ∈ Rn
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available, where n denotes the number of pixels of the vegetation map, we can hence calculate
the squared prediction errors as

Ỹb(t) =
(
Yv(t)− f̂b(t)

)2
, (2.13)

Ỹe(t) =
(
Yv(t)− f̂e(t)

)2
.

Taking in account the obtained squared prediction errors, we could now easily calculate and
compare the mean squared prediction errors for both models. However, as we are interested
in statistical relevant conclusions, a well-defined hypothesis test would be more appropriate.
Hence, a hypothesis test could be conducted by testing the null hypothesis that an arbitrary
chosen prediction error for the baseline model will most likely be smaller or equal, compared
to a prediction error of the extended model. The nonparametric Mann-Whitney U test could
be ideally used, as it doesn’t make any assumption about the underlying distribution of the
two different prediction errors [22]. However, taking in account one of the assumptions of
the latter test, samples from both groups need to be independent. As samples (i.e. squared
prediction errors) from one group (e.g. baseline model) are time dependent, it follows that the
independence assumption would not be fulfilled, hence using the Mann-Whitney U test would
not be appropriate [10]. However, the latter violation of independence could be (partially)
reduced by using bootstrapping techniques, in combination with the Mann-Whitney U test.
That is, by obtaining an arbitrary amount of bootstrap samples for each group, both bootstrap
distributions can be used as an approximation of the true distribution of squared prediction
errors. Finally, the Mann-Whitney U test is used in order to test the null hypothesis that the
central location of the squared prediction errors (i.e. bootstrap distribution) for the baseline
model is smaller, compared to the extended model. When the included feature of the extended
model G-causes vegetation, we would hence expect that the null hypothesis would be rejected
in favour of the alternative. For more details on implementations and strategies, concerning the
non-linear Granger causality framework, we refer the reader to Chapter 3.
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3
Results

In this chapter we move on to a more concise discussion of data preprocessing, model building
and corresponding results, obtained throughout this thesis. In Chapter 2, we have introduced
the reader to the available datasets and general methodology, corresponding to our proposed
framework for data-driven climate change attribution. Prior to discussing the used models and
architectures (see Section 3.2), we first start with data preprocessing (see Section 3.1). Finally,
we provide the reader with the obtained results and corresponding discussions (see Section 3.3).
For a final and brief summary on conclusion and future work, we refer the reader to Chapter 4.

3.1 Data preprocessing

Recalling Section 2.1, we will use the Leaf Area Index dataset (GLASS) for the outcome of
interest (i.e. vegetation), together with the temperature (ERA) and precipitation (MSWEP)
datasets, representing the features/predictors. In contrast to the Granger causality test, typi-
cally applied on individual time series, we will work with global input and output maps (i.e.
images). Due to the difference in temporal coverage, as well as temporal resolution (see Table
2.1), between each dataset, we choose to work with a coverage starting from 1982 and ending
at 2008, at a temporal resolution of nine days. As the reader already noticed, due to the choice
of nine days temporal resolution, limited information would be used from the temperature and
precipitation dataset. Hence, rather than extracting raw data at each 9th timestamp, samples
in-between two consecutive 9th timestamps will be interpolated by means of calculating the
average across the eight samples in each interval, resulting in a sequence of feature maps Xn
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with corresponding target (LAI) maps Yn. Continuously, each sequence of feature maps Xn,
as well as target (LAI) maps Yn, are scaled as

Xs
n =

Xn −X−n
X+
n −X−n

,

Ys
n =

Yn −Y−n
Y+
n −Y−n

, (3.1)

resulting in a [0, 1] scale, where the superscripts + and − denote the maximum and minimum
over the (global) sequences, respectively. From now on, we will ignore the subscript n and
superscript s. Instead, we will use subscripts t, p, to denote the particular feature map sequence
(i.e. temperature, and precipitation) of interest. Other feature maps might be considered, but
in this thesis, we will focus on temperature and precipitation. Moreover, since we have silently
ignored the residual datasets (see previous chapter, Section 2.1.2), we will use the superscript
R to denote residual feature/target map sequences. In order to deal with missing values/pixels
(e.g. for LAI or precipitation), which denote “empty” locations such as sea or lake locations,
we will replace corresponding N/A values with -1.
Finally, we move on to a final data preprocessing step, taking in account and allowing for future
model building and selection. Informally, we will partition the feature and target map sequence
data in a training and test set. However, due to the sequential nature of our dataset, techniques
such as K-fold cross-validation, are less/not applicable to our training set, due to the correlation
between train and test folds. Hence, we will look at a more sequential approach for obtaining
reliable out-of-sample performance measurements, while controlling on generalisation, overfit-
ting and underfitting.
The proposed training and validation approach is illustrated in Figure 3.1. Each (time) sequence
of datapoints (i.e. the initial training set) is similarly split in a training and validation set, where
a sufficiently large gap window is introduced, in order to avoid correlation between training and
validation samples. For both the training and the validation set, we then extract samples Si as

Si :=

(
Y(i : i+ T ),Xt,p(i : i+ T ),Y(i+ T + L)

)
, ∀i ∈ {0 . . . }, (3.2)

where T denotes the time window length and L the lag, respectively. Note that the above for-
mulation corresponds to the Granger causality test, as defined in (1.3). Indeed, we are interested
in predicting some future state of vegetation Y(i + T + L), by using lagged values for vege-
tation Y(i : i + T ), as well as lagged values for temperature and precipitation Xt,p(i : i + T ).
Furthermore, in traditional Granger causality analysis, a one-step-ahead forecast is considered,
which corresponds to the case where L = 1. Take in mind that here we denote the lag L as a
time window, defined between past states and future state, in order to avoid strong similarity
between the two states (e.g. recall the non-stationary and cyclic behaviour of the raw data, as
discussed in Section 2.1). Moreover, here we use the term time window T , to denote the number
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Figure 3.1: General approach for the extraction of training and validation samples, where the time axis
represents a subset of the feature/target map sequence. Note that the other subset, which
denotes the final test set, is not shown here.

of past states. In general, we will train some arbitrary chosen model on the training samples
and validate by using the validation samples. After training and validation, we then use the
test set, in order to obtain final out-of-sample prediction errors. The extraction of samples from
the test set is analogously explained as for the training and validation set, and again, a suffi-
ciently large gap window is used between the validation and the final test set. Note that there
exist other approaches to evaluate the out-of-sample accuracy of forecasting models, however,
the conservative methodology outlined above was chosen because it rules out over-optimistic
model performance due to correlation between training and test data. In conclusion, we refer
the reader to Table 3.1, for an overview of the sizes corresponding to the training, validation,
test and gap set. The latter sets will be used for the subsequent model building and selection.
Note that the total number of samples (n = 1218) is relatively small, due to the temporal res-
olution of nine days. Besides that, due to the high complexity, which comes with the machine
learning models of interest, as well as limited computational resources, we are forced to use a
limited training set.

Dataset Coverage Coverage (year) Samples (n)
Training 40% 1982-1992 487
Validation 25% 1994-2000 304
Test 25% 2002-2008 307
Gap 10% - 120
Total - 1982-2008 1218

Table 3.1: General overview of the sizes for each type of set, used for model building and selection.
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Figure 3.2: Example of a simple convolutional network, consisting of an input layer with size (3×H×W )
and two convolutional-pooling layers. The input is obtained, as defined in (3.2).

3.2 Model building

After obtaining the preprocessed data, we are now ready to build different model architectures,
which can be used for model training, validation and testing. The models will be trained on
the data as seen in Table 3.1. Although different architectures were studied in this thesis, in
conclusion we will focus on one particular model (i.e. temporal convolutional networks, Section
3.2.3), together with the corresponding model evaluations (see Section 3.3). The rationale for
using this model is explained by relative low runtime and memory complexity. Nevertheless,
we will briefly discuss more complex architectures, which can be used in high performance
computing (HPC) settings. Note that from now on, we will omit the prefix word “neural” in
“neural networks”, as each discussed model is in fact a special neural network model. Finally,
we refer the reader to Appendix A, for more information on the used software and hardware
specifications.

3.2.1 Convolutional/locally recurrent networks

Recalling Section 2.2.3.2, the reader was introduced to convolutional neural networks (CNNs),
together with the rationale for using the latter models as potential data-driven models in our
proposed framework (see Figure 2.1). Indeed, convolutional layers can be used to exploit
neighbouring information, by means of learning spatial features, as well as for global scale
learning, due to its reduced complexity, in contrast to fully dense layers in feedforward neural
networks. In Figure 3.2, a simple convolutional network is illustrated. Here, the input is given
as a 3-channel image or sample, where the channels correspond to a vegetation, precipitation
and temperature feature map Y(t),Xp,t(t), evaluated at some arbitrary timestamp t. Each chan-
nel/map has a size H ×W , with H and W as height and width, respectively. The latter input
is fed to a convolutional layer, consisting of six different filters with size Hc1 ×Wc1. The fil-
ters are then convolved with the input, resulting in six different output maps. Then, the latter
output maps are fed to a (second) pooling layer (e.g. max pooling, min pooling etc.), where
each map is reduced with factor two in both dimensions. The previous steps are then similarly
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Figure 3.3: Example of a convolutional recurrent network, with input and output defined in (3.2). Note
that the network is unfolded in time, which allows for training by means of the backpropaga-
tion through time algorithm [27]. However, as T increases, training becomes computation-
ally intensive.

repeated for the consecutive two layers, where the final convolutional layer now consists of nine
different filters, with size Hc2 ×Wc2. In practice, convolutional networks can consist of many
subsequent convolutional-pooling layers, in order to obtain (deep) spatial features at the end
layer. The latter features are then used as input to a second network (e.g. fully dense, recurrent,
etc.), for further processing. Moreover, in the context of this thesis, we can use convolutional
layers within a recurrent neural network (i.e. convolutional recurrent networks), allowing for
spatio-temporal learning, as illustrated in Figure 3.3. Informally, this model is sequentially
trained (and validated) by using samples Si, as defined in (3.2), where the relationship between
input Y(i : i+ T ),Xt,p(i : i+ T ) and output Y(i+ T + L) is learned. More formally, outputs
ht are defined as

ht = σ(fi(xt) + fh(ht−1)), (3.3)

with σ(.) denoting an activation function of interest, fi(xt) the output of the convolutional neu-
ral network for input xt and fh(ht−1) the new hidden state or output of the convolutional neural
network, calculated for the previous hidden state ht−1. The model is unfolded in time, which
then allows for training, by means of the backpropagation through time (BPTT) algorithm [27].
For increasing T , the latter algorithm becomes memory intensive, although computational ef-
ficient methods currently exist [14]. However, taking in account the temporal coverage for the
dataset, we can use a smaller time window T . Note that each CNN block, in Figure 3.3, repre-
sents a convolutional network (i.e. as seen in Figure 3.2), extended with a fully dense network.
This network is fed with the spatial (deep) features, obtained by the convolutional network, in
order to reconstruct the target vegetation map. Due to the fully connectivity in the latter net-
work, we will only use one dense layer with 180×360(= 64800) hidden units, representing the
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Figure 3.4: Example of a convolutional LSTM network, with input and output defined in (3.2). The
LSTM block represents the recurrent part of the network, which is analogously structured as
in Figure 3.3. Note that in this case, CNN blocks are replaced by LSTM blocks.

target vegetation map pixels. Hence, the fully dense network represents the output layer of the
convolutional neural network. In general, this layer is also called the bottleneck layer, as the to-
tal amount of network (hyper)parameters is dominated by the number of parameters (=64800)
in this layer. Finally, we can also use locally connected layers in the convolutional network,
where the parameter sharing is eliminated and hence resulting in distinct filters for each input
location. Hence, we can argue that locally connected layers are more able to retain and capture
local properties within the feature maps, in contrast to convolutional layers. However, this will
come at the expense of increasing number of parameters, and hence, memory complexity. Al-
ternatively, we can also increase the number of filters in each convolutional layer, in order to
approximately emulate the behaviour of locally connected layers.

3.2.2 Convolutional LSTM networks

When temporal dependencies (e.g. between vegetation and/or features) exist over a large time
domain, standard recurrent neural networks (e.g. convolutional recurrent networks) would fail,
due to restrictive memory. This issue was adressed by Hochreiter & Schmidhuber (1997), who
also proposed (at the time of writing) Long Short Term Memory (LSTM) networks, capable of
learning long-term dependencies [16]. Over the past decade, this type of network has proven to
work tremendously well on a large variety of problems, such as speech recognition, language
modeling, image captioning, etc. Informally, the latter models are able to memorise informa-
tion, during long periods of time. The architecture for a convolutional LSTM network is shown
in Figure 3.4. Note that the LSTM block can be illustrated as seen in Figure 3.3, where CNN
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Figure 3.5: Example of a temporal convolutional network. Note the difference between the previous con-
volutional networks, e.g. as illustrated in Figure 3.2. In this case, the (convolution/pooling)
filters are defined in three dimensions, as opposed to the two-dimensional filters in the previ-
ous networks.

blocks are replaced with LSTM blocks. Furthermore, each LSTM block is defined as

it = σi(xtWxi + ht−1Whi + wci ◦ ct−1 + bi),

ft = σf (xtWxf + ht−1Whf + wcf ◦ ct−1 + bf ),

ct = ft ◦ ct−1 + it ◦ σc(xtWxc + ht−1Whc + bc),

ot = σo(xtWxo + ht−1Who + wco ◦ ct + bo),

ht = ot ◦ σh(ct), (3.4)

with ◦ the Hadamard product, it, ft, ct, ot and ht, the input gate, forget gate, cell state and hidden
state, respectively [13]. Note that all the weights Wx,Wh in an LSTM block are used to direct
the operation of the gates. That is, the latter weights occur between the values that feed into the
block (i.e. the input vector xt, and the previous hidden state ht−1) and each of the gates. Hence,
the LSTM block learns to decide how to control its memory, as a function of the latter values.
Again, LSTM blocks are trained by means of the BPTT algorithm.

3.2.3 Temporal convolutional networks

Finally, we propose our last model, which differs from the aforementioned models within the
context of temporal learning. Moreover, for the previous models, a recurrent part was intro-
duced, next to the convolutional part. Both parts were connected, hence allowing for spatio-
temporal learning. Although the convolutional LSTM network could be ideally used for cap-
turing long-term dependencies, we emphasize that the latter recurrent networks come with high
computational complexity. Besides that, taking in account the temporal coverage of nine days,
as well as the limited size of our dataset (see Table 3.1), the latter models would result in low
generalisation performance. Indeed, complex models with many (hyper)parameters, will tend
to overfit on a limited dataset, whereas a limited number of available training examples would
restrict models from learning effectively (i.e. underfitting). Consequently, in our last model,
we will eliminate the recurrent part and instead extend the convolutional network, allowing for
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spatio-temporal learning. The proposed architecture, corresponding to this model, is illustrated
in Figure 3.5. Each input has size C × T × H ×W , with C the number of channels or input
features (vegetation incl.), T the time window size and H,W the height and width for each
input feature and vegetation map, respectively. The number of cuboids for the input, convolu-
tional and pooling layers, corresponds to the size of the time window. Hence, for this particular
architecture, the time window is reduced from size T (= 6) to size one, by means of three
consecutive convolutional-pooling operations. In contrast to the aforementioned convolutional
network (see Figure 3.2), convolution and pooling filters are now defined in three dimensions,
where the first dimension corresponds to the depth over the time domain, and the last two to the
spatial domain, respectively. By increasing the hyperparameters N1, N2 and N3, for the three
convolutional layers, more distinct filters are learned and convolved with the corresponding in-
puts. Finally, the output of the third pooling layer is flattened and fed to a fully dense network
part, consisting of one (output) layer with H × W hidden units. Moreover, the final output
layer corresponds to the predicted future state of vegetation Y(i+ T + L), given the i-th input
Y(i : i+ T ),Xp,t(i : i+ T ).

3.3 Model selection and discussion

Up to now, we have proposed different data-driven models, for the prediction of future states
of vegetation Y(i + T + L), given T past states of vegetation Y(i : i + T ) and features
Xp,t(i : i + T ). In this section, we discuss the training, validation and test results, together
with more in-depth model evaluations. Moreover, as already discussed in Section 3.2.3, we will
restrict to the discussion of temporal convolutional networks only.

3.3.1 Architecture and (hyper)parameters

The proposed architecture for the temporal convolutional network, obtained after extensive
model training and tuning, is shown in Table 3.2. Recall the general discussion, for this ar-
chitecture, in Section 3.2.3. Again, the rationale for using one fully dense layer (i.e. output
layer) after the convolutional network part, is easily explained by looking at the corresponding
number of parameters for this dense layer. Indeed, each of the 64800 hidden units in the dense
layer (nr. 9), are connected to each output (unit) of the reshape layer (nr. 8), and hence result-
ing in more than 99 × 106 parameters. This particular architecture has an input, consisting of
C = 3 feature maps (e.g. vegetation, precipitation and temperature). Although, within the con-
text of the non-linear Granger causality framework (see Section 2.3), the number of channels
will differ, depending on the type of architecture (e.g. baseline or extended). Nevertheless, the
architectures for baseline and extended models will only differ in the first layer by means of
the number of channels C. Hence, taking in account the temporal coverage of nine days, we
choose to work with a fixed time window of six timesteps, which corresponds to approximately
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two months. Analogously, the lag window is fixed at three timesteps (L = 3) or approximately
one month, for each model. In summary, the remaining (hyper)parameters for each model, are
listed below:

• Regularization (output layer): L2

– Penalty parameter (λ): 1e− 5

• Optimization: Nesterov momentum

– Learning rate : 0.1

– Momentum: 0.9

• Cost function: Adapted mean squared error loss function

• Batch size: 16

• Training epochs: 50

• Time window (T): 6

• Lag window (L): 3

Finally, recalling the data preprocessing (see Section 3.1), vegetation and feature maps are
dominated by “empty” locations, such as sea pixels. Logically, when it comes to predicting
vegetation, the latter pixels can be ideally omitted during the calculation of the MSE for each
prediction and corresponding target, by means of the adapted MSE loss function. By doing so,
the calculated loss only corresponds to pixels of interest. Furthermore, we can argue that the
latter technique allows for faster convergence and effective learning.

Filter Output
Nr. Layer #Filters/hid. units shape Stride Nonlinearity Weight shape #Params

(D,H,W) (D,H,W) init. (C,T,H,W)

1 Input - - - - - (3, 6, 180, 360) 0
2 Conv3D 8 (3, 6, 6) (1, 3, 3) Rectify Glorot unif. (8, 4, 59, 119) 2600
3 MaxPool3D - (1, 2, 2) - - - (8, 4, 29, 59) 0
4 Conv3D 16 (3, 5, 5) (1, 1, 1) Rectify Glorot unif. (16, 2, 25, 55) 9616
5 MaxPool3D - (1, 2, 2) - - - (16, 2, 12, 27) 0
6 Conv3D 32 (2, 4, 4) (1, 3, 3) Rectify Glorot unif. (32, 1, 9, 24) 16416
7 MaxPool3D - (1, 2, 2) - - - (32, 1, 4, 12) 0
8 Reshape - - - - - (1536) 0
9 Dense 64800 - - Tanh Glorot unif. (64800) 99597600
10 Reshape - - - - - (180, 360) 0

Total:
99626232

Table 3.2: A comprehensive tabulation of the proposed temporal convolutional network. For the corre-
sponding visual representation, we refer to Figure 3.5. Note the significant bottleneck layer
(nr. 9), representing 99% of the total parameters. The filter and output shapes are explained
in Section 3.2.3.
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3.3.2 Evaluation

We can now evaluate the temporal convolutional network, with corresponding architecture and
(hyper)parameters (see Section 3.3.1), by means of training, validation and testing on the pre-
processed datasets (see Section 3.1). Within the context of the non-linear Granger causality
framework (see Section 2.3), we will first discuss the obtained training, validation and test re-
sults, for different baseline and extended models. To some extent, this allows us to reason about
the different models, in terms of G-causal relationships. Additionally, more in-depth evalua-
tions will be considered, in terms of the obtained MSE measurements for each model, as well
as statistical inference by means of the MWU test in combination with bootstrapping techniques
(BMWU), as seen in Section 2.3. Again, we want to emphasize that no focus will be put on
drawing conclusions on causal relationships between different climate variables.

3.3.2.1 Training, validation and test results

In Table 3.3, the obtained training, validation and test errors are summarised for two different
baseline models (i.e. in terms of residual or raw vegetation target maps), three different extended
models with one feature and two different extended models with two features, respectively. For
each model, the included predictors (i.e. vegetation and/or features) are mentioned, by using
the notation as defined in Section 3.1. Further, note that the reader may assume target residual
vegetation, when residual vegetation is used as predictor, and the other way round. We ob-
serve that the validation and test errors for each model do not significantly differ. The overall
best performance is observed for the extended model with precipitation, hence indicating that
in terms of G-causality, precipitation might have more influence on vegetation, in contrast to
temperature. Also note a significant difference in test errors, between extended model with
predictors Y,Xp,X

R
t , and extended model with Y,Xp,Xt. Moreover, the inclusion of the

raw temperature feature Xt results in lower prediction performance, compared to the baseline
model. The latter issue might be explained after a close inspection of a corresponding feature
map, illustrated in Figure 2.2. Indeed, in contrast to precipitation, a more cyclic and similar
behaviour as vegetation is observed for the raw temperature data. Consequently, we may argue
that features, characterised by strong cyclic and similar behaviour to vegetation, are less infor-
mative for the prediction of future vegetation states. At the other hand, inclusion of the residual
temperature feature XR

t results in better predictions, compared to the baseline model. Never-
theless, when comparing the extended model with predictors Y,XR

t and extended model with
Y,Xp, we still observe that precipitation is more informative. Finally, we note that models with
residual vegetation data result in much lower R2 test performance, in contrast to models with
raw vegetation data. A possible explanation is given by the nature of the temporal convolutional
network architecture, where the extraction of useful spatial features depends on the presence of
visual structures/blobs. However, in the subsequent MSE and BMWU analysis, we will further
focus on the latter issue.
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Three test predictions for the baseline and extended model with predictors Y,Xp,X
R
t , are pre-

sented in Figure 3.6. Corresponding targets and timestamps are given as well. In general, it
seems that both models yield predictions which are visually similar to the corresponding tar-
gets. At first sight, we don’t observe a significant difference between the baseline and extended
model predictions. Hence, more in-depth analysis is required to compare the different models,
in terms of prediction performance. In the following sections we will further compare each
model, by means of further analysing MSE performance in the spatio-temporal domain and
global BMWU analysis for statistical inference.

Model (#feat.) Predictors MSE (train) MSE (validation) Train duration (s)

Baseline
Y 0.00216 0.00270 10250
YR 0.000821 0.000937 10000

Extended (1)
Y,Xp 0.00207 0.00249 12000
Y,XR

t 0.00207 0.00256 15250
YR,Xp 0.000812 0.000940 11750

Extended (2)
Y,Xp,X

R
t 0.00210 0.00251 17500

Y,Xp,Xt 0.00231 0.00286 17000

Model (#feat.) Predictors MSE (test) R2 (test)

Baseline
Y 0.00272 0.95143
YR 0.000546 -0.05930

Extended (1)
Y,Xp 0.00249 0.95551
Y,XR

t 0.00256 0.95442
YR,Xp 0.000543 -0.05382

Extended (2)
Y,Xp,X

R
t 0.00253 0.95485

Y,Xp,Xt 0.00287 0.94884

Table 3.3: Prediction errors, for different baseline and extended models. Note that for the second column,
we use the notation as defined in Section 3.1. When it comes to the raw and residual vegetation
models, we observe optimal performance (denoted with bold) for the extended model with
precipitation, on both the training, validation and test set. Furthermore, it seems that using
the residual vegetation data yields low R2 performances. Finally, the reader may assume
target residual vegetation, when residual vegetation is used as predictor.



38

Figure 3.6: Visualisation of different (test) predictions with corresponding targets, for baseline model
and extended model with precipitation and residual temperature. At first sight, the obtained
predictions are similar to their corresponding target.
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3.3.2.2 MSE analysis

The obtained test predictions, as well as corresponding MSE measurements for each model,
can be exploited in order to allow for additional analysis. Moreover, in this section we will
analyse the differences between MSE measurements for different models, on global and local
(i.e. Spain) scale, evaluated over the time domain of the test set. The latter allows us to reason
about baseline and extended models, in function of time, features and vegetation. For example,
we refer the reader to Figure 3.7. The upper three graphs represent the average MSE differences,
calculated between:

1. baseline and extended (Y,Xp)

2. extended (Y,Xp) and extended (Y,Xp,X
R
t )

3. baseline and extended (Y,Xp,X
R
t )

both for global and local scale (i.e. Spain) and evaluated over the time domain of the test set
(i.e. sequence of test samples). The remaining three graphs correspond to vegetation and fea-
tures. When evaluating on global scale, we observe that the extended models are continuously
better than baseline. However, when looking at the local evaluation plot (i.e. right plot, in Fig-
ure 3.7), we observe peak performances at each 50th timestep, together with alternate high-low
performances. Additionally, we also observe that peak performances are related with vegetation
peaks. The latter might be explained by the fact that features have more influence on vegetation,
during time periods when vegetation is high. In terms of prediction performance, it seems that
the “global scale learning” property of the temporal convolutional networks is illustrated by the
optimal global performance that is observed in the global evaluation plot. Indeed, when looking
at the obtained global predictions, for each model in Figure 3.8, we observe that predictions are
almost identical to the targets, in contrast to local predictions (i.e. right plot, in Figure 3.8).
Similar analysis is conducted for (residual vegetation) baseline (YR) and extended (YR,Xp)
models, shown in Figure 3.9, 3.10. In contrast to raw vegetation models, no optimal global per-
formance is observed. Moreover, prediction plots in Figure 3.10, indicate much lower prediction
performance for both baseline and extended model, on global and local scale. Not entirely sur-
prising, recalling the previous discussion of the training, validation and test performances for
the different (residual vegetation) baseline and extended models, in Table 3.3. Finally, similar
results for different local scales are provided in Appendix B.1.
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Figure 3.7: MSE model evaluation on global and local scale (i.e. Spain), evaluated over the time do-
main of the test set. The upper three graphs correspond to the comparison of MSE perfor-
mances between two different models. Positive values indicate better performance for the
first model, whereas the opposite holds for negative values . The last three graphs represent
the (global/local) averages for vegetation and features, evaluated over the time domain of
the test set.

Figure 3.8: Global and local (i.e. Spain) average predictions for three different models, with correspond-
ing targets, evaluated over the time domain of the test set.
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Figure 3.9: MSE model evaluation for (residual vegetation) models on global and local scale (i.e. Spain),
evaluated over the time domain of the test set. The first graph corresponds to the comparison
of MSE performances between baseline and extended model with precipitation. Positive
values indicate better performance for baseline, whereas the opposite holds for negative
values. The remaining graphs represent the (global/local) averages for residual vegetation
and precipitation, evaluated over the time domain of the test set.

Figure 3.10: Global and local (i.e. Spain) average predictions for three different (residual vegetation)
models, with corresponding targets, evaluated over the time domain of the test set.
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3.3.2.3 BMWU analysis

Until now, we analysed the different models by means of looking at the corresponding training,
validation and test errors, averaged across the spatial and temporal domain. Furthermore, we
introduced global and local model evaluation techniques, where MSE measurements and pre-
dictions are compared between different baseline and extended models, over the time domain
of the test set. As the latter allows us to study the behaviour of different models, in function of
time, vegetation and features, we still need a more statistical evaluation method. Hence, in this
final section we will evaluate our models by means of the Mann-Whitney U test, in combination
with bootstrapping techniques (BMWU), as discussed in Section 2.3. Again, for each pixel we
iteratively calculate 5000 bootstrap samples, where each sample has fixed size n. Moreover, for
each pixel and sample, we randomly choose (with replacement) n predictions from the test set.
Important to note is that the latter steps are simultaneously executed for each model of interest.
The sample size n depends on whether a general (n = 288) or monthly (n = 30) BWMU anal-
ysis is conducted. Continuously, for each bootstrap sample we calculate the MSE, whereafter
the obtained bootstrap distributions, for each model, are compared by means of the MWU test.
However, taking in account the multiple testing problem, we control on the local false discovery
rate (i.e. local fdr), resulting in adjusted p-values p̃ accordingly. The rationale for using the local
fdr is easily explained by the fact that this technique is similar to the false discovery rate (FDR)
procedure, providing less stringent control of Type I errors, compared to the familywise error
rate (FWER) controlling procedures (e.g. Bonferroni correction), and hence increasing power.
Moreover, the advantage of using the local fdr over the FDR procedure, is further given as more
flexible interpretation of individual cases [8]. Finally, we construct a BMWU significance map

P, where each pixel/adjusted p-value p̃y,x is binarized as

P[y, x] =

{
0 if p̃y,x > 0.05

1 if p̃y,x ≤ 0.05

with y, x the height and width index, respectively. In Figure 3.11, significance maps are shown
where extended (Y,Xp,Xt) and extended (Y,Xp,X

R
t ) models are compared with the base-

line (Y) model. Recalling Section 3.3.2.1, we similarly conclude that the inclusion of raw
temperature results in lower prediction performance, in contrast to the extended model with
residual temperature included. Significantly better predictions are obtained in regions with
low vegetation (e.g. Sahara desert/Africa), compared to baseline, whereas when looking at re-
gions characterised with more vegetation (e.g. Amazon rainforest), no signifcantly better pre-
dictions are observed for the extended model with raw temperature. When it comes to the ex-
tended (Y,Xp,X

R
t ) model, we observe significantly better predictions, compared to the base-

line model, in most regions. Furthermore, in Figure 3.12 we compare the extended model
with precipitation to the baseline model, for raw and residual vegetation data, respectively. In
contrast to the raw vegetation models, we observe that the extended (YR,Xp) model is only
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significantly better than baseline for regions characterised by low vegetation. Hence, again, the
issue with residual vegetation data, for the temporal convolutional network. Looking at Figure
3.13, illustrates that the extended (Y,XR

t ) model is in general not signicantly better compared
to the extended (Y,Xp) model. We refer the reader to Appendix B.2.1, for additional and sim-
ilar results. Finally, when looking at the monthly BMWU analysis results, in Section B.2.2,
we observe that prediction performances are seasonal dependent. Indeed, when comparing the
extended (Y,Xp) model with baseline, it seems that for South America, significantly better
prediction performances are observed for the extended model, from January until March (see
Figure B.12), whereas from April until June (see Figure B.13), the opposite seems to be true.



44

Figure 3.11: General BMWU significance maps, comparing extended (Y,Xp,Xt) and extended
(Y,Xp,X

R
t ) models with the baseline (Y) model. Red pixels indicate significantly bet-

ter MSE prediction performances for the extended models, whereas blue pixels indicate the
opposite.

Figure 3.12: General BMWU significance maps, comparing baseline (Y) and baseline (YR) models
with extended (Y,Xp) and extended (YR,Xp) models, respectively. Red pixels indicate
significantly better MSE prediction performances for the extended model, whereas blue
pixels indicate the opposite.

Figure 3.13: General BMWU significance maps, comparing baseline (Y) and extended (Y,Xp) models
with the extended (Y,XR

t ) model. Red pixels indicate significantly better MSE prediction
performances for the extended (Y,XR

t ) model, whereas blue pixels indicate the opposite.



4
Conclusion

In this thesis, the modeling of climate-vegetation dynamics, by means of machine learning
techniques, in a non-linear Granger causality framework was studied. As a continuation of
previous research by Decubber S., Papagiannopoulou C., et al. [6][23], we extended the non-
linear Granger causality framework, with deep learning data-driven models, in order to enhance
multitask learning, by means of exploiting information between neighbouring pixels, as well as
global scale learning.

In order to model climate-vegetation dynamics, while taking in account the temporal coverage
for the available data, a limited dataset was used, including precipitation (MSWEP), tempera-
ture (ERA) and vegetation (GLASS). Moreover, we used both raw and residual vegetation data,
as target variable of interest, together with two climatic features/predictors (i.e. precipitation
and temperature), and for which a Granger cause-effect relationship was assessed, between the
latter features and target vegetation. Due to the immense succes of neural networks in many
pattern recognition domains, we proposed different spatio-temporal neural networks, such as
locally/convolutional recurrent networks, convolutional LSTM networks and more importantly
temporal convolutional networks, for data-driven modeling. Moreover, in this thesis, we dis-
cussed the rationale for using the less complex non-recurrent temporal convolutional networks
(see Section 3.2.3). Furthermore, these networks were trained, by means of a conservative
sequential training-validation approach, while slightly diverging from a traditional Granger
causality analysis. That is, in contrast to the Granger causality test, typically applied on in-
dividual time series, we worked with global input and output maps (i.e. images). Each input
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sample was constructed by using past states of vegetation, as well as past states of different
feature maps, whereas each output represents a future state map of vegetation. The rationale
for the conservative training-validation approach was discussed, where we stated that standard
approaches, such as K-fold cross-validation, are not feasible as each complex model would
need to be retrained for each fold, as well as the fact that correlation would be present between
training and validation folds.

Finally, depending on the included features (i.e. precipitation or temperature) and used tar-
gets (i.e. raw or residual vegetation), different baseline and extended models were tested and
evaluated on a separate test set, by means of conducting out-of-sample MSE and bootstrapped
Mann-Whitney U analysis. Bootstrapping techniques were used, in order to obtain different test
sets, without the need for retraining each model. We then compared the MSE distributions of
different baseline and extended models, by means of the Mann-Whitney U test, while taking in
account the multiple testing problem, by controlling the local false discovery rate. Hence, the
latter techniques allowed us to conduct in-depth evaluations for different baseline and extended
models, within the spatio-temporal domain of the test set.

4.1 Summary

Optimal prediction performance was observed for the extended model with included precipita-
tion feature. Therefore, a significant Granger cause-effect between precipitation and vegetation
was concluded, in contrast with the raw temperature feature, characterised by strong cyclic and
similar behaviour to vegetation. Moreover, compared to the baseline model, we did not ob-
serve signficantly better performance for the extended model with raw temperature as predictor.
The opposite was observed when replacing raw temperature with residual temperature. Hence,
information within the temperature residuals are more informative for the prediction of veg-
etation. Additionally, when comparing the average predictions with the corresponding global
average, better performance was observed, in contrast to local average predictions. This was
not entirely suprising, recalling the global scale learning property of the latter networks. Boot-
strapped Mann-Whitney U analysis further indicated seasonal dependency in the prediction per-
formances, for each extended model, and hence indicating that the different features may have
seasonal-dependent influences on vegetation. Most importantly, it was shown that extended
and baseline models for target (and feature) residual vegetation, yielded low out-of-sample R2

performance, in contrast to models where raw vegetation was used. A possible explanation for
this issue was given by the fact that residual vegetation maps are characterised by absence of
visual structures/blobs. Moreover, as useful deep feature extraction, by means of consecutive
convolutional-pooling layers, heavily depends on the presence of visible structures, we argued
that these networks will most likely fail on residual vegetation data, and hence making sub-
sequent G-causal inference useless. At the other hand, we emphasized that the non-stationary
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behaviour, underlying the raw vegetation time series, can also obscur subsequent G-causal in-
ference for different models with raw vegetation. However, when more data and computational
resources are available, complex temporal/recurrent convolutional networks might be consid-
ered, in order to capture residual information, which resides within the raw vegetation data.

4.2 Future work

With the increasing amount of available data in climate science, or more specific climate change
attribution research, the need for better/complex data-driven models is essential, in order to al-
low new opportunities for research and industry, as well as gathering novel insights. Due to
its huge success, deep learning can be ideally used as an alternative to less flexible statistical
models. However, one needs to be aware of the corresponding black box nature, together with
limited statistically relevant inference. In this thesis, a compromising statistical-deep learn-
ing approach was proposed, by using deep learning techniques within a non-linear Granger
causality framework. Taking in account the results, obtained throughout this thesis, we finally
conclude with a brief summarization of perspectives, for further research:

• Use more samples, together with deep convolutional and recurrent layers (e.g. convolu-
tional LSTM networks), in order to enhance the modeling of residual information within
target and feature time series.

• When data is scarce, Bayesian neural networks might be preferred in order to avoid over-
fitting.

• Focus on alternative deep-statistical learning frameworks, by means of further research in
statistical evaluation methods or deep learning methods.

• Combine statistical learning and deep learning models, in order to allow and improve
relevant statistical inference.
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Appendices





A
Software and hardware specifications

When it comes to implementation, we used the following software:

• Python 2.7.11 (NumPy, SciPy etc.)

• Theano 0.9.0.dev-RELEASE

• Lasagne 0.2.dev1

Theano is a Python library and allows to define, optimize and evaluate mathematical expres-
sions, involving multi-dimensional arrays, efficiently. The latter is accomplished by using a
tight integration with NumPy, transparant use of a GPU, efficient symbolic differentiation, speed
and stability optimizations and dynamic C code generation [2].
For code optimization and reduced computational complexity, we use Lasagne. This is a
lightweight library to build and train various neural networks in Theano. Its main features
consist of supporting many optimization methods, freely definable cost functions (no need to
derive gradients due to Theano’s symbolic differentiation) and of course a transparent support
of CPUs and GPUs, due to Theano’s expression compiler [1]. Moreover, we use a floating-
point precision of 32 bits. Finally, we summarize the available hardware with corresponding
specifications:

• RAM: 8 GB 1600 MHz DDR3

• CPU: 2,9 GHz Intel Core i7
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B
Additional results

B.1 MSE analysis

Figure B.1: MSE model evaluation for different models on local (i.e. Africa/Nigeria) scale, characterised
by low vegetation. The left figure represents non-residual vegetation models, whereas the
right represents residual vegetation.



58

Figure B.2: Local (i.e. Africa/Nigeria) average predictions for different models, with corresponding
targets, evaluated over the time domain of the test set. The left figure represents non-residual
vegetation models, whereas the right represents residual vegetation.

Figure B.3: MSE model evaluation for different models on local (i.e. Africa/Congo) scale, characterised
by high vegetation. The left figure represents non-residual vegetation models, whereas the
right represents residual vegetation.
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Figure B.4: Local (i.e. Africa/Congo) average predictions for different models, with corresponding tar-
gets, evaluated over the time domain of the test set. The left figure represents non-residual
vegetation models, whereas the right represents residual vegetation.

Figure B.5: MSE model evaluation for different models on local (i.e. Australia/Canberra) scale, char-
acterised by high vegetation. The left figure represents non-residual vegetation models,
whereas the right represents residual vegetation.
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Figure B.6: Local (i.e. Australia/Canberra) average predictions for different models, with corresponding
targets, evaluated over the time domain of the test set. The left figure represents non-residual
vegetation models, whereas the right represents residual vegetation.

Figure B.7: MSE model evaluation for different models on local (i.e. Thailand) scale. The left figure
represents non-residual vegetation models, whereas the right represents residual vegetation.
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Figure B.8: Local (i.e. Thailand) average predictions for different models, with corresponding targets,
evaluated over the time domain of the test set. The left figure represents non-residual vege-
tation models, whereas the right represents residual vegetation.
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B.2 BMWU analysis

B.2.1 General

Figure B.9: General BMWU significance map, comparing the extended (Y,Xp,X
R
t ) with extended

(Y,Xp) model.

Figure B.10: General BMWU significance map, comparing the extended (Y,Xp,X
R
t ) with extended

(Y,XR
t ) model.

Figure B.11: General BMWU significance map, comparing the extended (Y,Xp,Xt) model with ex-
tended (Y,Xp) model.
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B.2.2 Monthly

Figure B.12: Monthly BMWU significance maps, where red pixels indicate significance for the first
model, obtained for January, February and March.

Figure B.13: Monthly BMWU significance maps, where red pixels indicate significance for the first
model, obtained for April, May and June.
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Figure B.14: Monthly BMWU significance maps, where red pixels indicate significance for the first
model, obtained for July, August and September.

Figure B.15: Monthly BMWU significance maps, where red pixels indicate significance for the first
model, obtained for October, November and December.
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