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Abstract

Climatic conditions are known to be key drivers of ecosystem dynamics, which are sensitive to
temperature, availability of water and the solar irradiance. In the other direction, vegetation has
a known influence on climate systems on a global scale. Through evapotranspiration of water
and exchange of carbon dioxide with the atmosphere, vegetation is a major player in the global
water and carbon cycles. Furthermore, the amount of reflective vegetation governs the net solar
radiation reaching the earth surface and vegetation affects wind speed and direction. In light of
this complex interplay between climate and vegetation, investigating the sensitivity of vegeta-
tion to changes in climatic conditions is crucial to improve our understanding of global climate
change.

The field of climate science is one of the most data-rich research areas. Earth observation satel-
lite data provide a wealth of information about the dynamics of our planet in recent decades.
Composite global records of important environmental and climatic variables now span up to 35
years, enabling the study of climate-vegetation interactions over multi-decadal scales. These
records have the form of multivariate time series with different spatial and temporal resolutions.
Despite this abundance of data, advances in the field by making use of data-driven models
have been limited. One interesting application is so-called causal discovery, in which statistical
methods are used to highlight interesting relations and interactions between climate variables.
Recently, machine learning approaches based on graphical models have been proposed to tackle
these kind of problems. Granger causality is another approach to perform causal discovery.
Granger causality originated in the field of econometrics and essentially requires a statistical
comparison of different predictive models.

This thesis contributes to the development of a Granger causality framework for performing
causal discovery in a climatic dataset using predictive data-driven models. The dataset consists
of global vegetation records quantified by the Normalized Difference Vegetation Index (NDVI),
together with multiple records of temperature, precipitation, radiation, soil moisture and snow.
The time series span 30 years in total with a monthly temporal resolution. The spatial resolution
is 1 by 1 degree, meaning that data is available for over 13000 land pixels.



Different machine learning models were explored to address the regression problem of predict-
ing vegetation anomalies with past vegetation and climate variables as predictors. Next, the idea
of multitask learning was used to make better predictions. A major generalization improvement
on out-of-sample data was achieved by exploiting training data from related pixels. Further-
more, the quality of high-level engineered features was explored, demonstrating the potential
of automatic feature extraction methods on high-resolution data. Finally, some challenges with
regards to statistical inference were discussed. In particular, the need for a model-free test
to compare forecasts was highlighted. Although imperfect, an outline to tackle the statistical
problem based on resampling methods was proposed.



1
Introduction

Climate models predict an aggravation of droughts, extreme precipitation events

and heatwaves as we progress into the future. Recent advances in satellite Earth

observation - with the development of consistent global historical records of cru-

cial environmental and climatic variables - provide new means to start unravelling

the processes driving long-term changes in climate extremes, and understanding

the impact of these changes on terrestrial ecosystems.1

The research for this thesis was carried out as a part of the SAT-EX project, under supervision
of the KERMIT research group. The project fits in the context of climate change research with a
particular focus on extreme events such as droughts and heat waves or extreme precipitation and
on their impact on vegetation. The main objectives are to understand how these extreme events
have changed in frequency and intensity over time, to provide insight in vegetation distribution
and dynamics and to understand and reduce mechanistic model uncertainty in predicting these
extremes. As one of five research groups in the project, KERMIT aims at using data-driven
models in experiments towards the goals of the project.

Research questions in climate change research are mostly related to either climate projection

or to climate change attribution. Climate projection or forecasting aims at predicting the future
state of the climatic system, typically over the next decades. The goal of climatic attribution on
the other hand is to identify and quantify cause-effect relationships between climate variables

1Quoted from the SAT-EX website.
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and natural or anthropogenic factors. A well-studied example, both for projection and attribu-
tion, is the effect of human greenhouse gas emissions on global temperature.

The standard approach in the field of climate science is based on simulation studies with mech-
anistic climate models, which have been developed, expanded and extensively studied over
the last decades. These models are based on conceptual representations of the global water,
atmospheric and biological systems, mathematically formalized through complex differential
equations.

Data-driven models, in contrast to mechanistic models, assume no underlying physical repre-
sentation of reality but directly model the phenomenon of interest by learning a more or less
flexible function of some set of input data. Climate science is one of the most data-rich research
domains. With global observations on ever finer spatial and temporal resolutions from both
satellites and in-situ measurements, the amount of (publicly available) climatic data sets has
vastly grown over the last decades. It goes without any doubt that there is a big potential for
making progress in climate science with data-driven statistical models. Despite this potential,
the advances made within the field using statistical analysis and data mining have been limited
compared to other fields such as genomics or business intelligence, partly because of the very
complex nature of our planet’s global climate system [16].

1.1 Causal discovery in data-driven models

The goal of statistical causal discovery is to understand the world around us by using obser-
vational data to identify cause-effect relations between variables. It has only recently been
applied in the field of climate science. Although most people have an intuitive understanding
of causality, it is a complex concept that needs mathematical formalization together with some
important assumptions before it can be applied in a statistical modeling framework. Apart from
model-related assumptions (the model structure should model the underlying relations between
the data well), the most important assumption to be made is that of causal sufficiency. Causal
sufficiency means that there are no confounding variables or hidden common causes that are
not included in the data. If any two variables X and Y have a common cause Z, then Z must be
included in the study [10]. This also implies that any direct causal relation that is discovered
is relative to the variables that are included, and any relation can either turn into an indirect
relation or disappear when a new variable or a common cause is taken into consideration. Two
simple examples shown in Figure 1.1 illustrate this:

• Cloud coverage is a statistical cause of both rain and decreasing UV radiation, but there
is no causal relation between rain and the amount of UV. A statistical model that does not
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include cloud coverage as a variable will falsely detect a relation between rain and the
amount of UV.

• A model aimed at causal inference will identify cloud coverage as a potential cause of
flooding, when rain is not included in the system. When rain is introduced as an additional
variable, cloud coverage no longer causes flooding directly, but rather indirectly by being
a cause of rain, itself causing flooding.

(a) (b)

Figure 1.1: (a): causal relations disappear when a hidden common cause is introduced in the study. (b):
a direct causal relation becomes indirect when an additional variable is included. Examples
adopted from [10].

The assumption of causal sufficiency is almost never fulfilled in climate studies, mostly be-
cause there is no data available on every hidden common cause, or there may be confounding
variables that we are not aware of because of the complexity of the system. Therefore, it is
important to realize that any uncovered causal relations are potential relations relative to the set
of information that is available in the data. In addition, knowledge from domain experts can
and should be used to evaluate the causal relations that are detected: if there is a well-known
physical mechanism that explains a relation, it can be confirmed. In the other case, the causal
relation should be seen as a hypothesis that can be interesting for further investigation [10].

I will highlight two approaches that have emerged as mathematical formalizations to test for
causal relations: causal discovery in graphical models and the concept of Granger causality
from econometrics.

1.1.1 Probabilistic graphical models

In probabilistic graphical models (PGMs), every node in a graph represents a variable and re-
lations between variables are shown as edges between the nodes. Every edge is supplemented
with a specific probability, so that the causal relations are not exact (a cause may or may not,
but doesn’t have to, cause its effect). The aim of causal discovery here is to identify direct
probabilistic edges between variables, which can then be attributed with a causal interpretation.
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The underlying principle of graphical causal discovery algorithms is that, because of the as-
sumption of causal sufficiency, no absolute causal relations can be proved. A causal relation
detected by the algorithm might disappear when additional variables are included. It is pos-
sible, however, to disprove apparent causal relations between variables that are correlated, by
testing for conditional independences. In a system with three variables X , Y and Z, an al-
gorithm can eliminate the edge between X and Z even if they are correlated when the con-
ditional distribution of X given Y and Z is no different from the distribution of X given Z:
P (X|Y, Z) = P (X|Y ). Using the idea of conditional independence, potential causal relations
can be identified by starting from a fully connected graph and eliminating as many edges as
possible [10]. This approach has been adopted recently in climate science by identifying con-
nections between nodes in so-called climate networks, a graphical structure defined on a global
grid [11].

Most climate data comes in the form of spatiotemporal data, typically as daily or monthly
records over an extended period of time for several locations on earth. Probabilistic graphical
models can be applied to temporal data by explicitly defining additional nodes for the history
of every variable (lagged variables) together with some temporal constraints so that the edge
directions follow the direction of time. As such, a system with N variables measured over S
time slices can be converted to a graph structure with N ×S nodes, allowing to test causal rela-
tions over time. However, given the often high temporal resolution of the data, the complexity
of these models quickly increases and they can become computationally infeasible to track [10].

One specific approach called grouped graphical modeling has recently been put forward to
address temporal causal modeling in the context of climate science [29, 31, 30]. These methods
are not graphical models, but use notations adopted from graphical modeling to conceptualize
causal relations between time series, by depicting every variable in the system as a node and
drawing directed edges between variables. Testing for causal relations is done through feature
selection. More specifically, methods that perform grouped feature selection are used. This
incorporates the idea that, for a time series variable Xt (t = 0, 1, ..., T ) not just one specific
lagged variable Xt−k but rather the relevant past of Xt for every lag up to lag k is informative
for predicting another variable Yt. Thus, the feature selection takes into account the group
structure present in the variables naturally imposed by the time series they belong to and lagged
time series are selected by the model as a whole instead of individual lagged variables [29]. The
authors propose the group lasso and group boosting as algorithms to apply in their framework.
The group lasso performs grouped feature selection by penalizing intra-group and inter-group
variable inclusion separately:

β̂group(λ) = arg min
β

(||Y −Xβ||2 + λ
J∑
j=1

||βGj
||2), (1.1)
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where the penalty is imposed on the amplitude (the l2 norm) of groups of coefficients. In an-
other study, the same authors propose a group elastic net model for spatiotemporal modeling.
This model incorporates both a penalty enforcing sparsity on the group level as well as a spatial
penalty enforcing spatial smoothness and regulation, i.e., large model coefficients correspond-
ing with variables that are further away in a spatial sense are penalized [31].

A second formalization of causal discovery for temporal data is the concept of Granger causal-
ity, which was proposed in the field of econometrics by Nobel-prize winner Clive Granger [19].

1.1.2 Granger causality

Granger causality is an operational definition of causality. It lends itself for the questions that
are asked in climate research and much climate attribution studies have been carried out making
use of the Granger causality framework [31, 27, 3]. It is a notion of causality that is based on
prediction, and is defined under the following general assumptions [20]:

• A cause precedes its effect. As such, the past and the present may cause the future, but
not the other way around.

• No information in the system under study is redundant. In other words, there is no deter-
ministic relation between variables.

• Causal relations do not change in direction throughout time.

In essence, the concept of Granger causality is not tied to one particular probabilistic model [14].
However, in its original specification, Granger causality formalizes causality for two stationary
time-series Xt and Yt, with the index t denoting the time-index (t = 1, 2, ...). Let IXY be the
information set consisting of lagged values of both Xt and Yt up to lags lx and ly, i.e., IXY
consists of the vectors [Xt−lx , Xt−lx+1, ..., Xt−1] and [Yt−ly , Yt−ly+1, ..., Yt−1]. Likewise, IY is
the information set consisting of just the lagged values of Yt. Then, time series Xt is said
to Granger-cause (or G-cause) time series Yt with respect to the information set IXY if the
following inequality holds:

f(Yt|IXY ) 6= f(Yt|IY ) ∀t = 1, 2, ... (1.2)

That is, the conditional distribution of Yt given information from the past of both Yt and Xt is
different from the conditional distribution of Yt given only its own past. In other words, the
past of Xt contains additional information on top of the past of Yt to model the present and
future of Yt [22]. This definition in terms of conditional distributions is referred to as strong

Granger causality, whereas in most practical applications Granger causality in the mean would
be a more correct term (see below) [14].
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It should be emphasized that Granger causality is defined only with respect to the information
set I comprising all time series considered as variables in a particular study. Granger coined the
term prima facie (“at first sight”) cause to express the fact that Granger causal relations with
respect to a certain data set I are only potential causal relations in a more comprehensive set
I+, which might contain confounding variables not present in I [19]. In other words, Granger
causality basically is a measure of association between variables and expresses causality by
incorporating temporal structure in its definition. In no case does a Granger causal relation
between variables imply a true physical causal relation. Furthermore, if important relevant
variables are not included in the analysis, Granger causality may very well detect spurious cor-
relations and may be useless for causal inference. This has been the main point of criticism on
Granger causality, but this of course also applies on causality in probabilistic graphical models
or in any other type of model [14, 27, 10].

In concrete applications, a G-causal relation from a variable x to an outcome y can be tested
for by comparing the predictive performance of two nested models: a baseline autoregres-
sive model predicting y at time t as yt = f1(yt−1, ..., yt−p), and an extended model yt =

f2(yt−1, ..., yt−p, xt−1, ..., xt−q). Generally, the null hypothesis of Granger non-causality is for-
mulated as the null hypothesis that f1 and f2 have equal prediction error (in econometrics:
forecasting accuracy). Typically the alternative is one-sided, such that if f2 predicts yt signif-
icantly better than f1, H0 is rejected. In economic time series literature it has been common
practice to test for Granger causality using linear least-squares models, typically vector autore-
gressive (VAR) models in the multivariate setting [3]. Consider for example a set of three time
series (variables) (Xt, Yt, Zt). A VAR model expresses each time series as a linear combination
of the past values of every variable in the system, up to lag l:Xt

Yt

Zt

 =

β01β02

β03

 +
k∑
l=1

β11,l β12,l β13,l

β21,l β22,l β23,l

β31,l β32,l β33,l


Xt−l

Yt−l

Zt−l

 +

ε1ε2
ε3

 (1.3)

The model parameters β can be estimated through least-square error minimization. Hence, with
these models the above definition is usually restricted to modelling the mean of the conditional
distributions of interest [22]. Statistical testing for G-causal relations between variables then
proceeds by testing the null-hypothesis of Granger non-causality, for instance for the causal
relation Xt → Yt:

H0 : Xt does not G-cause Yt with respect to the system (Xt, Yt, Zt),

In early applications, this null hypothesis is sometimes formulated in terms of the corresponding
model parameters and tested for using standard F-tests [22, 15]:

H0 : β12,l = 0 for all l = 1, ..., k.
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1.2 Outline and goals of the thesis

In this thesis, I focus on the problem of climatic attribution in statistical models, using a dataset
that was provided by my colleague Christina Papagiannopoulou from KERMIT. The data has
the form of multivariate time series data for every location on earth, on a discrete pixel grid.
Because of the strong seasonal pattern in vegetation, it is very easy to predict raw vegetation
time series. Therefore, in line with the work of my colleague and with the goals of the SAT-EX
project, the anomalies (also called residuals) of the vegetation records will be the main variable
of interest [36].

The concept of Granger causality is interesting to discover potentially interesting relations be-
tween variables. However, the traditional approach is limited to linear regression. The com-
plex nature and the size of many climate data sets make that other models might be needed to
achieve good predictions. Recent results with the SAT-EX data also point in this direction [36].
Therefore, the focus of this thesis is on the application of machine learning models to predict
anomalies in vegetation time series in the framework of Granger causality. This extension of
Granger causality beyond linear regression poses some challenges with regard to statistical test-
ing of the null hypothesis of non-causality. These are also addressed. The thesis does not aim at
drawing specific conclusions about causal relations between different climate variables. Rather,
it should be seen as a contribution to the development of a general framework that can be used
to discover interesting patterns in climatic data sets.

The outline of the thesis is as follows:

• First, a description of the climatic dataset and the methods that were used in this thesis is
given in Chapter 2.

• Chapter 3 is concerned with an exploratory analysis of the data, with a specific focus on
autocorrelation in the vegetation data and correlations between climate and vegetation.
Principle component analysis is used to explore the high-dimensional feature space of the
data.

• In Chapter 4, different models are explored to predict vegetation anomalies, with the aim
of performing Granger-causal inference in mind. First, every pixel is treated as a sepa-
rate problem and the performance of both linear and non-linear autoregressive models is
evaluated. In a second part, a more complicated model is proposed to exploit similari-
ties between different pixels, using the idea of multitask learning. Finally, the potential
of expanding the variable space with spatial information and with high-level engineered
features is explored.

• In Chapter 5, statistical inference in the Granger causality framework is addressed, using
the results from Chapter 4. Different approaches to tackle the problem are discussed.



2
Data and methods

2.1 Description of the data

The dataset used in this thesis was composed by and provided by courtesy of Christina Papa-
giannopoulou (KERMIT, department of Mathematical Modelling, Statistics and Bioinformatics,
Faculty of Bioscience Engineering). It was assembled using several publicly-available satellite
datasets covering different spatial areas and spanning different time intervals, with various res-
olutions. An overview of the data sources that were used is given in Appendix A1. Although
the native resolution of some dataset is finer, all products have the same temporal resolution and
length in the final dataset.

What follows is a description of the full available dataset. For this thesis, only part of the data
was used to generate most results. Which part will be specified wherever necessary in the results
section.

2.1.1 Raw data

The complete dataset consists of separate dataframes for 1x1◦-sized pixels (roughly correspond-
ing to squares with side 100 km, depending on the location), for each of 13,097 pixels covering
all the land surface on earth, stored as HDF5-format files. Each dataframe contains monthly ob-
servations on 21 climatic time series, together with additional engineered features. Twenty-one
of those time series will serve as predictor variables: temperature (7 time series), precipitation
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(8), soil moisture (3), snow (1) and radiation (2). In addition, one time series for vegetation is
available, in which the Normalized Difference Vegetation Index (NDVI) is used as a proxy for
the amount of vegetation. It is a graphical indicator that uses the spectral reflectance measure-
ments in the visible (VIS) and near-infrared (NIR) regions. The rationale behind the NDVI is
that live vegetation absorbs visible light, but reflects light in the near-infrared region to avoid
overheating of its tissues. As such, the NDVI takes on values between -1 and +1. The higher
the NDVI, the more green vegetation is present, with NDVI values near 1 corresponding to the
tropical rain forests.1

2.1.2 High-level features

Apart from the raw time series, each data frame also contains high-level features that were
manually constructed using domain knowledge. A first set of features are the different signal
components from the raw time series: seasonal cycles, trends and residuals. A second set of
features are manually constructed high-level features extracted from separate time series with a
daily resolution.

Raw signal components

The raw time series were decomposed into anomalies using an additive linear approach. First,
each time series yTt was de-trended over the entire study period by modeling the trend yTt with
a linear model with the timestamp t as a predictor variable:

yTt = α0 + α1 × t (2.1)

The de-trended time series were then obtained by subtracting the trend yTt from the original time
series. Consequently, the seasonal cycle ySt was estimated by computing the monthly averages
over the entire study period, and subtracted form the de-trended time series to obtain the final
anomalies. The residuals, trend and seasonal component of every time series are available in
every dataframe.

High-level features

High-level features were constructed from the raw time series that were originally available with
a daily resolution. The idea behind these high-level features is that they appropriately reflect
the climate dynamics and the sensitivities of vegetation. For instance, vegetation in a certain
area could be responsive to the number of consecutive number of days without precipitation
in the past month rather than to the actual amount of precipitation. These so-called indices
include extreme values such as minimum or maximum temperatures, the number of times a

1For more information about the NDVI, see https://en.wikipedia.org/wiki/Normalized_
Difference_Vegetation_Index

https://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index
https://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index
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certain threshold of precipitation was reached, etc. Furthermore, cumulative indices such as the
total amount of precipitation over the last three months are included. Appendix A2 gives a full
overview of the indices that were calculated. The result is about 200 additional unique variables
in every dataframe on top of the raw signal components mentioned above.

2.1.3 Encoding the past: lagged variables

To enable modelling in the Granger causality framework, all the models used in this thesis are
autoregressive regression models, aiming at predicting NDVI anomalies. In general, they take
the following form:

yt = f(yt−1, yt−2, ..., ytk , x1,t, ..., x1,t−p, x2,t, ..., x2,t−q, ...) (2.2)

Where yt is the NDVI anomaly at timestamp t and x1, x2, ... are climate variables. In order
to include the history of the variables as regressors, the past of every variable is included in
the data in the form of lagged variables, up to a total lag of 12 months for variables related
to precipitation and temperature, and 6 months for variables related to radiation. The history
of every variable is encoded in each dataframe, including the high-level features, such that the
dimensionality of each dataframe strongly increases, with up to 6000 variables in some pixels.

In summary, the final dataset covers the entire globe with 1x1◦-sized pixels. It spans the period
1981-2010 with a monthly resolution, providing 360 observations on 21 climatic time series
and on one vegetation time series per pixel. In addition, raw signal components and additional
high-level features expressing cumulatives and extremes are included. The history of every
variable is explicitly included as lagged variables, up to a total lag of 12 months. An overview
of the data is given in Figure 2.1.

2.2 Methods

2.2.1 Data preprocessing

Before analysis, the data was preprocessed in the following way:

1. Instances where the NDVI value is missing are removed. In most pixels, just a few entries
have to be removed.

2. Timestamp, latitude and longitude are removed from the feature matrix.

3. Features with a high percentage of missing data (> 30%) are removed.

4. Remaining missing values in the features are imputed with the mean of the respective
column.
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Dataframe for one pixel: 360 rows x 5950 columns

Additional features

World map ≈ 13 000 land pixels 

Time Lat Lon Temp Tempt−1 ... Feat Featt−1 ... NDVIresid NDVIresid−1 ...
07/1981 -0.5 13.5 21.8 ... ... 5 ... ... 0.8545 ... ...
08/1981 -0.5 13.5 22.6 21.8 ... 8 5 ... 0.8418 0.8545 ...
09/1982 -0.5 13.5 18.5 22.6 ... 12 8 ... 0.7348 0.8418 ...

... -0.5 13.5 ... 18.5 ... ... 12 ... ... 0.7348 ...

... -0.5 13.5 ... ... ... ... ... ... ... ... ...

... -0.5 13.5 ... ... ... ... ... ... ... ... ...

... -0.5 13.5 ... ... ... ... ... ... ... ... ...
12/2010 -0.5 13.5 5.5 ... ... 18 ... ... 0.1164 ... ...

t

Signal components Outcome

Figure 2.1: Overview of the data. Data is available for roughly 13000 land pixels. The dataframe for
every pixel consists of monthly observations on signal components from 20 raw climatic
time series, together with additional features related to extremes and cumulatives. The past
of both signal components and additional features is encoded as lagged variables, up to a
maximum lag of 12 months for temperature and precipitation and 6 months for radiation.

2.2.2 Models

Mostly off-the-shelf predictive models were used: linear regression, ridge regression, the lasso
and random forest regression. For a detailed description of these models please refer to Fried-
man et al., 2001 [17]. All these models are implemented and ready to use in the Scikit-learn
library for Python.

One model type used in this thesis is not readily available and was implemented manually:
an extreme learning machine or ELM. An ELM is a non-linear regression method that has as
main advantage over other methods a very fast training speed, so that it is useful for larger
datasets. An ELM is a single-layer feedforward neural network, where the weights connecting
the input layer and the hidden layer are randomly initialized and never updated and the outputs
of the hidden layer are used to predict the output layer, obtained as least-squares solutions
to a linear system.2 The fact that the weights from the output layer can be obtained through

2Another way to think of an ELM is as principle component regression with random, non-linear components.
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linear least-squares makes the ELM a fast method. The resulting model is non-linear because
the weighted sums of inputs are passed through a non-linear activation function (hyperbolic
tangent) to produce the output of the hidden layer. This is schematically shown in Figure 2.2.

Figure 2.2: Schematic representation of an extreme learning machine. The features are fed to the input
layer. Random combinations of the input are fed to the hidden layer, which are passed
through a non-linear activation function. Regularized regression is performed on the outputs
of the hidden layer to predict the output layer.

In this thesis an extended ELM was used which imposes an l2-type penalty on the weights of
the output layer in order to improve generalization. The ELM was first proposed in 2006 [24]
and the extension with ridge regression used in this thesis has been described by Li et al. (2013)
[28]. Extreme learning machines have extensively been used for time series prediction and have
the advantage of being several orders of magnitude faster to train on large datasets compared to
other non-linear models such as random forests or gaussian processes [33].

2.2.3 Model evaluation

A common practice in statistical learning is to assess the out-of-sample performance of a model
by k-fold cross-validation [21]. Because of the autocorrelation between consecutive observa-
tions in time series, regular k-fold cross-validation might not be valid since the validation and
training samples are no longer independent. Modified versions of cross-validation for time
series exist and mainly consist of leaving out part of the data so that the minimum distance
h between observations in the training and the validation part is so that they are independent
again. Another approach is to train the model on an early part of the time series, leave out part
of the data, and test it on the most recent part, so that the test data is both out-of-sample and
out-of-time [2].
In this thesis, both random 5-fold cross-validation and proper out-of-sample and out-of-time
validation were used to assess the model performance on unseen data. Therefore, the data was



13

split in a training part and a test part. The training part consisted of the first 24 years of obser-
vations. The 25th year was left out of consideration, and the final 5 years formed the test part.
Every model was first evaluated by performing 5-fold cross-validation on the training set. Fi-
nally, the models were fitted on the complete training set and their generalization performance
was evaluated on the test set. Hyperparameters were first tuned on the training set whenever
applicable.

As performance metrics, the mean absolute error (MAE) was used together with the coefficient
of determination R2 defined as follows:

R2(y, ŷ) = 1− MSE

MStot
= 1−

∑N
i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2

(2.3)

A model that always predicts the mean of y, unconditional of the features, will produce anR2 of
0. Because the models are evaluated out-of-sample, either by cross-validation or on an indepen-
dent test set, the predictions can be arbitrarily worse than the mean. In those cases, a negative
R2 is possible. In order to give a flavor of what different R2 values mean, two predictions for a
series of NDVI anomalies are shown in Figure 2.3. The prediction in the top plot corresponds
to an R2 of 0.159. The sign of the anomalies is predicted correctly most of the time, but the
magnitude is mostly way off. The bottom plot shows predictions with an R2 of 0.704. Visually,
these predictions seem to be quite accurate.

Finally, the training, validation and test data sets were rescaled to zero mean and unit variance
before each analysis, using only training data statistics to do so.

2.2.4 Software

Analyses were performed in R version 3.2.5 (2016-04-14) [38] and in Python version 2.7.12 -
Anaconda distribution. Extensive use was made of Scikit-learn, a software machine learning
library for Python [37]. The computational resources (STEVIN Supercomputer Infrastructure)
and services used in this thesis were provided by the Flemish Supercomputer Center (VSC),
Ghent University.
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Figure 2.3: Predicting NDVI anomalies. (a): with an R2 of 0.159. (b): with an R2 of 0.704.
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Exploratory analysis

This chapter provides an exploratory analysis of the raw climate time series and the extracted
features that will serve as predictors to model vegetation in the next chapter. Because the NDVI
anomalies will be targeted for prediction in the next chapter, not the raw NDVI time series but
their anomalies were studied. Along with that, autocorrelations within the vegetation time se-
ries and correlations between vegetation and climate variables were studied as well.

For this chapter, some figures with a diverging color coding were constructed, which cannot be
converted to grayscale. For practical reasons, these figures are provided in the Appendices at
the end of this thesis. Note that in the pdf version of this document, switching back and forth
between the figures and the text is possible by clicking on the figure numbers in the text and on
the section numbers in the figure captions.

3.1 Correlation between records from different satellites

The data set consists of multiple time series for every land pixel on earth, some of which con-
tain measurements on the same variable. For instance, five of the seven time series related to
temperature are observations of the near-surface air temperature. Intuitively, one could expect
these time series to show a large degree of collinearity. Figure 1 visualizes the Pearson correla-
tion matrix between the temperature-related time series for a randomly selected pixel from the
dataset (latitude -24.5, longitude 22.5, located in the south of Africa). GISS and MLOST contain
de-trended temperature anomalies, i.e., what remains from the raw signal after subtracting the
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seasonal cycle and the trend. The rest contain direct measurements of surface temperature.

In general, the different temperature measurements for this pixel are very highly correlated,
with ISCCP being the only product that is slightly less correlated to the other products. As
GISS and MLOST contain temperature anomalies, they are not correlated to the other vari-
ables, yet strongly correlate with each other (r = 0.94).

The correlation coefficients were also calculated between the pairs of temperature time series
CRU/ERA, LST/CRU and UDEL/ERA for all pixels globally. The left hand side of Figure 2
shows the correlations between the raw time series, while the right hand side shows the corre-
lation between the residuals.

The correlation maps for all other pairs of raw temperature time series (not shown) are very
similar to those shown in the left part of Figure 2. Hence, all raw temperature time series are
highly correlated in most parts of the world, except for the tropical regions. The reason for this
is that the temperature in these regions is very constant throughout the year. Temperature time
series in more temperate climates are highly correlated because of the presence of the same
strong seasonal cycle in all measurements. In the tropics, there is much less seasonal variability
in the temperature, meaning that this strong correlated component is not present. When the sea-
sonal component is left out of the temperature signal (Figure 2, right), the correlation between
the temperature time series goes down, to the extent that some series of temperature residuals
are no longer positively correlated. This indicates that different temperature time series contain
different information even though they are all measurements of the same physical phenomenon.
It is possible that the quality of the different measurements differs per region and that the most
accurate temperature product is not the same for all locations on earth.

Figure 3 shows a similar story for the correlations between the raw time series related to precip-
itation (for the same selected pixel as before). Because no snowfall occurred in this pixel, snow
was excluded from this analysis. As is the case for temperature, some precipitation time series
are strongly correlated, while others are only weakly or even not correlated at all.

Even though, both for temperature and precipitation, multiple time series contain measurements
on the same physical phenomena, the correlation between them is not always high and some
measurements of the same variable even show no correlation at all. For temperature, this is be-
cause satellites do not measure temperature directly, but rather measure irradiance in different
parts of the wavelength spectrum, commonly with different measurement equipment (sensors)
for every satellite [35]. These measurements are converted to temperature by research groups,
with the final result depending on the details of the methods used. In addition, surface tem-
perature measurements are dependent on inhomogeneities in the surface and are accurate only
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under cloud-free conditions. Similar factors are in play for precipitation. Finally, some prod-
ucts are not based on satellite measurements but were composed from gauging station network
measurements. These point measurements are interpolated over a larger geographical area and
typically also show differences with satellite-based observations [25]. Although a full techni-
cal discussion on measurement techniques and differences between satellite-based and ground-
based observations is beyond the scope of this thesis, it is clear that temperature or precipitation
records coming from different satellites do not necessarily contain duplicate information.

3.2 Autocorrelation within vegetation time series residuals

Because the past residuals of NDVI will serve as predictors in the Granger causality framework,
it is interesting to check to what extent there is autocorrelation within the NDVI time series.
Figure 4 shows the autocorrelation value of the NDVI residuals for every pixel, for temporal
lags 1, 2, 3 and 4 months. For a temporal lag of 1 timestep, the NDVI residuals are positively
correlated in most regions of the world, with the highest autocorrelation in Australia, the south
of Latin America, central North America, Central Asia, the south of Africa and the Sahel region.
For a temporal lag of two, the autocorrelation drops, with autocorrelations remaining positive
mainly in Australia. The autocorrelation between NDVI residuals separated by three and four
time steps is very close to zero in most pixels.

3.3 Correlation between NDVI residuals and climate

In order to motivate the size of the temporal window for the climate variables in the models
in the next section, a plot of the correlation between climate variables and NDVI residuals was
made, for increasing time lags between the contemporaneous observation of the NDVI residuals
and the past observation of the climate variables (Figure 5). The plot shows the correlations for
every pixel for one product of each the four major climate variable groups: temperature, precip-
itation, soil moisture and radiation. In general, the climate variables are most correlated with
the NDVI residual when they are measured in the same month. Correlations between current
vegetation and past climate tend to go down as we go further back in the past.

Correlations between temperature and NDVI residuals are larger than 0.2 in absolute value for
only a few pixels on earth. Furthermore, almost all temperature correlations are smaller than
0.1 in absolute value from lag 3 onwards. The same is true for radiation. The correlations with
the precipitation and soil moisture time series on the other hand are much stronger, with cor-
relation coefficients larger than 0.2 between NDVI residuals and precipitation from 12 months
ago in some pixels in Australia. This is in line with geoscientific literature, where it is well
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documented that vegetation systems have a longer memory for water than for temperature [23].

Remarkably, precipitation and soil moisture are consistently negatively correlated with vege-
tation residuals from the same month in pixels at higher latitudes (for instance in Europe and
Russia). At the same time, vegetation in these pixels is positively correlated with temperature
and most of them also with radiation. A possible explanation for this could be the relation
between precipitation and temperature: in a month with a large amount of precipitation, the
amount of radiation reaching the vegetation and the temperature will tend to be lower because
of the increased cloud coverage. As a result, the vegetation is confronted with lower temperature
or less radiation, which appears to be associated with lower NDVI residuals.

3.4 Variability in the feature space: PCA

Principal component analysis (PCA) was used as a dimension reduction technique to explore the
full available feature space of each pixel’s dataframe. These dataframes consist of monthly ob-
servations on lagged signal components and additional features (see Figure 2.1). PCA projects
high-dimensional observations onto a lower dimensional subspace while maximally conserving
variability between observations. As such, in this context each month represents one high-
dimensional observation and the principal components spanning the lower-dimensional sub-
space are linear combinations of the variables that make up the feature space. The weight of
each feature is commonly referred to as the loading for a particular component. The coordi-
nates of the data points on each of the principal components are referred to as the scores. The
principal components are ordered by the amount of variance that they explain in the original
feature space. Figure 6 shows the projection of the observations of sixteen randomly sampled
pixels on the first two principal components. The percentage displayed on top of each subplot
is the amount of variance that is explained by these two principal components.

In order to highlight interesting contrasts in some pixels, the observations in Figure 6 are color
coded according to their timestamp, ranging from blue for the first observations to red for the
most recent observations. Interestingly, some very different patterns appear to emerge: in some
pixels, early and recent observations seem to be scattered randomly (e.g., second plot from the
left on the second row). In others, there is a clear contrast in the data along one of both compo-
nents and early and recent observations seem to form two separate clusters. A third pattern is a
circular pattern in some pixels, for instance, in the pixels on the third row. Two of the plots (in
dashed boxes) are further highlighted in Figure 7. The data points are now visualized by their
relative timestamp. The same color coding as in Figure 6 applies.

The left plot in Figure 7 is an example of a pixel where the data shows a main contrast along
time. Two well separated clusters are formed by roughly the first 200 and the last 150 obser-
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vations. In the plot on the right, the observations corresponding to the first 12 timestamps are
highlighted in a larger font for the purposes of illustration. As becomes clear, the observa-
tions are located sequentially next to each other in the circular pattern, and the circle is actually
formed by 12 clusters of observations coming from each month of the year: observations from
January form the first cluster, from February the second etc.

In order to distinguish between pixels with a contrast in PCA scores between early and recent
observations and pixels that show either a circular or a more random pattern, a logistic regres-
sion classifier was used. The observations were labeled according to their timestamp: 0 for the
first 200 observations, 1 for the last 153. The scores on the first two PCA coordinates were
used as predictors and the classification accuracy was evaluated on a 20% held-out test set. As
a rigid classifier with a linear decision boundary, logistic regression achieves a high accuracy
when the early-recent pattern is clear, but is expected to perform poorly when the observations
form more than two separate clusters or are scattered in a more random fashion.

The highest classification accuracy is achieved in the tropical regions. This indicates that the
pixels with a strong contrast between early and recent observations are located in these regions.
The explanation for this is straightforward: the climate in the tropics does not show a seasonal
cycle that is as pronounced as in other regions further away from the equator. As there are a
lot of features containing a seasonal component, such as the extreme indices obtained from raw
data, this seasonal variability naturally emerges in the PCA plots whenever it is present. In
addition, the classification performance went up gradually as more principal components were
added as predictors. Hence, in pixels with a strong seasonal cycle, it seems that the contrast
between observations throughout time is masked, whereas this is not the case in the tropics.

Figure 3.1: Proportion of test data correctly classified as early (first 200) or recent (last 153 months) by
logistic regression, using the scores of the observations on the first two PCA dimensions as
predictors.

This was verified by removing all variables with a seasonal component from the dataset and
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rerunning the principle component analysis. As expected, the logistic regression classifier now
achieves a higher accuracy in most cells (not shown), suggesting that the contrast along the first
two principal components between early and recent observations is much more pronounced
when the seasonal variability is taken out of consideration. This is caused by the presence of a
trend in most time series, reflected in the climatic indices calculated on the deseasonalized data.

3.5 Summary

The analysis of the correlation between raw time series revealed that there is a strong degree of
similarity between different temperature records and between different precipitation records in
the dataset, in most regions in the world. However, this is mostly because of the strong seasonal
component that is present in most of the raw signals. In regions without seasonal cycle such
as the tropics, different measurement records of the same variable are much less correlated.
The same is true for temperature and precipitation residuals, not only in the tropics but in most
places on earth.

The NDVI residuals show fairly large autocorrelation at a temporal lag of 1 month. The autocor-
relation drops down in most pixels for larger temporal lags, although some pixels in Australia
still show an autocorrelation larger than 0.2 at a temporal lag of 4 months.

There are varying degrees of correlations between the climate variables and the NDVI residu-
als (Figure 5). In general, the highest correlations occur between NDVI residuals and climate
observations from the same month or one month earlier. In addition, the vegetation appears to
have a longer ’memory’ for water-related variables such as soil moisture and precipitation than
for temperature and radiation. In most pixels, the correlation between climate variables and
NDVI residuals fades to zero for temporal lags larger than 6 months.

Finally, the first two principle components from the PCA reflected the largest source of vari-
ability in different pixels. In regions with a pronounced seasonal cycle, the seasonal pattern
is responsible for the largest part of the variation. In the tropics, the largest variation between
different observations occurs over time, indicating the presence of a trend in at least part of the
features. This contrast became apparent in most other pixels as well, after any variable with a
seasonal component was removed from the dataset.
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Predicting NDVI anomalies

In light of the Granger causality framework, we are interested in the additional predictive per-
formance for NDVI residuals of an extended model, which includes both climate variables and
past NDVI residuals, on top of a purely autoregressive baseline model, which only uses past
NDVI residuals as predictors. The goal of this chapter is to explore which regression models
are best suited for the problem of predicting NDVI residuals with the extended model. The
comparison with the corresponding baseline model and the applicability of both for a Granger
causality analysis is discussed in the next chapter.

In order to reduce the complexity of the problem at hand, a reduced dataset was used for a first
series of experiments. For every pixel on earth, the NDVI residuals were targeted for prediction
with the following predictors:

1. Past NDVI residuals within a temporal window of 6 months.

2. One temperature (CRU) and one radiation (ERA) time series within a temporal window
of 3 months.

3. One precipitation (MSWEP), one soil moisture time series (GLEAM) and one time series
for snow (GLOBSNOW) within a temporal window of 6 months.

The choice of the different temporal windows is motivated by the correlation analysis from the
previous section. In addition to the past climate, also the present observations of the climate
variables were used as predictors (lag 0). As such, the data matrix in every pixel is of size
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360× 35: 360 monthly observations on 5 climatic time series and vegetation, with their history
encoded as lagged variables for different temporal windows.

4.1 Modelling individual pixels

To begin with, every pixel was treated as individual problem, without considering spatial re-
lations between pixels. I will also refer to this setting as the single-task learning setting, in
contrast with the multitask setting in which models are trained on multiple pixels simultane-
ously. The multitask setting is discussed in the second part of this chapter.

4.1.1 Linear models

Linear regression, ridge regression and lasso regression were considered as linear models for
predicting the NDVI residuals. Ridge regression and the lasso penalize large model coefficients
and are known to generalize better to unseen data than linear regression in case of correlated
predictors. In addition, the lasso brings about sparseness through feature selection by enforcing
some model coefficients to become zero.

The performance of the linear models on the test set is summarized in Table 4.1, aggregated
over all pixels globally. In some pixels the models have no predictive power at all. In these
pixels the R2 can get arbitrarily low, and the MAE arbitrarily high when testing the models on
out-of-sample data. Because of some extreme outlying results in these pixels, the distributions
of the global per pixel mean R2 and per pixel MAE are heavily skewed and are not comparable
by their means. The global median R2 and MAE are reported instead in Table 4.1.

5 fold random CV Test set
MAE R2 MAE R2

Linear regression 0.689 0.068 0.796 0.075
Ridge regression 0.652 0.130 0.775 0.090
Lasso 0.647 0.137 0.764 0.102

Table 4.1: Global median performance metrics for linear models.

Linear regression is outperformed by ridge regression and the lasso, the latter of which performs
slightly better than the former both in terms of MAE and R2. The accuracy of all three models
is slightly worse on the test set (consisting of the last 5 years of the time series) than the cross-
validated accuracy estimate within the training set. This indicates that, because of the temporal
structure of the data, random 5-fold cross-validation underestimates the out-of-sample error be-
cause training and validation samples are not completely independent. This phenomenon is
known as ‘data leakage’ [26]. This is in line with what can be expected for temporal data.



23

Therefore, assessing the test error on the out-of-sample and out-of-time test set is probably the
most conservative approach.

Figure 4.1 shows the test set R2 of the lasso model for every pixel. Pixels with a negative R2

(i.e., where the model has no predictive power at all) are all shown as white pixels.

Figure 4.1: Mean lasso R2 on the test set, per pixel. Negative R2 values were truncated at zero to make
the plot.

The model performs best in Australia, the south of Africa, the Sahel, parts of Europe, the
Mediterranean and central Asia, and parts of North and Latin America. These regions are
roughly the same regions where strong autocorrelation between the NDVI residuals was found
(Figure 4), which indicates that the autoregressive part of the model (using the past NDVI
residuals to predict the present) is important for achieving predictive power.

4.1.2 Non-linear models

In order to evaluate whether the NDVI predictions can be improved by using non-linear models,
random forest and extreme learning machines were considered as more flexible model alterna-
tives.

For the random forests models, the number of trees was set at 100 after evaluating the out-
of-bag error. The number of variables to be considered at each split was set to p

3
, with p the

total number of predictors. This is the recommended default setting for regression with random
forests and changes to this parameter did not improve predictive performance. An ELM requires
two hyperparameters to be optimized: the number of nodes in the hidden layer and the amount
of regularization when regressing the outputs of the hidden layer to predict the output layer. The
optimization was done for a pixel selected from a region where the linear models performed well
(latitude 23.5, longitude -100.5, located in North America). The ELM was fitted on the training
part of the data (first 24 years) and the test error was estimated on the left-out test part. Train and
test MSE were determined for hidden layer sizes ranging from 10 to 5000 nodes. Each time,
the hyperparameter λ governing the amount of regularization was determined through efficient
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leave-one-out cross-validation on the training data. The train and test MSE and λ for different
hidden layer sizes are shown in Figure 4.2.
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Figure 4.2: ELM optimization. Top: train and test MSE for an increasing number of nodes in the hidden
layer. Bottom: cross-validated regularization parameter λ for increasing hidden layer size.

Initially, both train and test MSE quickly drop with an increasing number of hidden nodes.
From 500 hidden nodes on, the test MSE stabilizes and a further increase in hidden layer size
does no longer cause an improvement in model performance. At the same time, the optimal
amount of regularization tends to increase with the size of the hidden layer. Intuitively, this
indicates that the hidden layer should be large enough to yield enough interesting random com-
binations of the input features. At the same time, a larger number of nodes is dealt with by
stronger regularization in the output layer. Based on this analysis, an ELM with 1000 nodes in
the hidden layer was used and λ was optimized through cross-validation on the training part of
the data separately for every pixel on earth.

Table 4.2 shows the performance metrics for both non-linear methods for predicting NDVI
residuals.

5 fold random CV Test set
MAE R2 MAE R2

Random forests 0.653 0.129 0.784 0.074
ELM 0.722 0.005 0.956 -0.213

Table 4.2: Global median performance metrics for nonlinear models.
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On the training set, random forests perform just slightly worse than the regularized linear re-
gression models. However, the performance of random forests on the test set is much worse
and is comparable with that of linear regression. The ELM performs bad on the training set
and doesn’t seem to generalize at all to the test set. In other words, because both models are
much more flexible than the linear models, they tend to overfit on the training data given the
small number of observations that is available for every pixel separately. As a consequence,
they generalize poorly to unseen data.

In order to compare the different models from this first section and to give an idea of the spread
of R2 values over the different pixels worldwide, a kernel density estimation of the distribution
of the R2 values of the best linear model (lasso) and the random forests model on the test set is
shown in Figure 4.3. In the same fashion as for plotting the R2 on the map, negative R2 values
were truncated at zero, which explains the peak at zero for both curves. The distribution for
the lasso is shifted to the right and has a much lower peak around zero, indicating that the lasso
performs better than random forests in general.
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Figure 4.3: Kernel density estimations of the truncated R2 for random forest and the lasso.

4.1.3 High-level features

The complete dataset that is available contains high-level features that were extracted from some
climatic time series that are available with a daily resolution. These features represent cumu-
lative and extreme events, and are supposed to represent the physical sensitivities of vegetation
for climate events such as droughts and heat waves. In the same way as for the raw time series,
the history of these features was encoded as lagged variables, respecting the same temporal
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windows as before. There are a large number of these features, and including them strongly
increases the dimensionality of the data. As such, there are about 3000 features for every pixel
in this setting, depending on the amount of missing data.

Figure 4.4 shows the result for the lasso and random forests. Although the training set perfor-
mance of ridge regression was similar to the previous section, ridge regression did not generalize
at all to the test set in this high dimensional setting. While random forests do a better job on
the test set than before, the best model in this setting is again lasso regression. The R2 values
with only the raw time series as predictors are plotted as dotted lines for reference in Figure 4.4.
Although both models perform better with extended features than without, the sparse and most
rigid model again comes out as the best model.
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Figure 4.4: Improvement in R2 when using high-level features in single task learning. Negative R2

values were truncated at 0. For both the lasso and random forests, the dotted lines show the
corresponding performance without the extended features. In addition, the random forests
R2 obtained through cross-validation on the training set is shown, clearly inflated as the
effect of data leakage.

Surprisingly, the situation was the reverse for the R2 values obtained through 5-fold random
cross-validation: random forests outperformed both ridge regression and the lasso by a large
extent. The cross-validated performance of random forests on the training set is shown as an
additional line in Figure 4.4. It is remarkable that the two different evaluation schemes lead
to such different conclusions. When performing random cross-validation, the random forests
seems to benefit way more from data leakage than the lasso, resulting in a strong overestimation
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of its generalization performance.

To recap: when treating every pixel as a separate problem, more rigid models such as ridge
regression and the lasso are the best performing models. This is certainly true when the full
extended feature set is used: because of the small number of observations per pixel, more
flexible models are highly likely to overfit and their predictive performance breaks down on the
test set. In the next part, the similarities that exist between the different pixels will be exploited
by fitting models over multiple pixels simultaneously.

4.2 Multitask learning: modelling all pixels jointly

Multitask learning (MTL) is a modelling approach which seeks to improve generalization by
using information from training signals from different tasks. The main idea is that a multitask
learning model will perform better than single-task learning when the different tasks are related,
by using information from all tasks simultaneously [4].

The dataset used in this thesis lends itself for multitask learning. It is likely that the data from
neighboring pixels show similar patterns, because their climate and its relation with vegetation
is likely to be similar. In the light of multitask learning, predicting vegetation in a particular
pixel can be seen as one task. A multitask learning model should be able to benefit from the
similarities between related pixels, and make better predictions compared to a single-task learn-
ing approach where every pixel is treated as a separate problem.

So far, a separate model was used for every pixel to predict the NDVI anomalies and no infor-
mation was shared across pixels. A very simple multitask approach consists of concatenating
the data from multiple pixels into one large dataframe. This is possible because all pixels share
the same feature set. As such, the final dataframe has dimensions N × p, with N the number of
observations per pixel (360) times the number of pixels, and p the same number of features as
before (35). This dataframe was constructed using all pixels on earth, so that it contained over
4 million observations in total. In addition, latitude and longitude were added as predictors, to
allow models to differentiate predictions for different locations on earth.

The performance of the multitask models was evaluated in the same way as before: first through
5-fold cross-validation on the training set, after which the model was retrained on the complete
training set and tested on the test set. The cross-validation was done in such a way that observa-
tions for one particular timestamp were either all in the training folds or all in the test folds. For
example, the NDVI residual from July 1987 in the pixel covering Ghent should not be in the
validation fold if the July 1987 NDVI residual from the pixel covering Kortrijk is in the training
fold. The cross-validation procedure was adapted accordingly by grouping the observations per
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timestamp and forming random folds on the group level instead of on the observation level.
After training, predictions were made for all observations in the test set, which were grouped
by latitude-longitude afterwards to obtain predictions on the individual pixel level. The usual
performance criteria were calculated for every pixel separately.

Two MTL models were tested: MTL with ridge regression as a linear method and non-linear
MTL with an ELM. Despite the poor performance of the ELM in the single-task learning ap-
proach, it was used here because it is much faster to train on a dataframe of this size than
random forests. It was computationally not feasible to train a random forests model on the
global dataframe with the resources available for this thesis. The results for both models are
summarized in Table 4.3 and in Figure 4.5.

5 fold random CV Test set

MAE R2 MAE R2

Ridge MTL 0.592 0.163 0.717 0.146
ELM MTL 0.577 0.186 0.705 0.151

Table 4.3: Performance metrics for multitask learning methods

Globally, both MTL models perform better than any of the STL models from the previous sec-
tion on the training set as well as on the test set. Surprisingly, the ELM turns out to be the best
model so far, with a global medianR2 of 0.186. This is also visible in Figure 4.5 (the result from
single-task ridge regression from the previous section is shown as a dotted line as a reference).

Figure 4.6 illustrates the difference between single-task ridge regression and the multitask ELM
on the world map (the multitask ridge map was very similar to the multitask ELM map). Most
of the improvement is made in pixels where the STL models performed very poorly: on the
map, a lot of pixels that are white for the single-task model turn grey for the multitask learning
model, notably in northern Canada, Europe and across central Asia. In other words, improve-
ment by the MTL models is mainly made in predicting the hardest tasks. Pixels where the NDVI
residuals are hard to predict based on their own data but that are close to pixels where the model
works better, benefit most from the multitask approach.

Another observation that becomes clear from the world maps, is that the accuracy on the test
set of the multitask learning model is worse in regions where the single-task learning model
performed best. This is also visible in Figure 4.5: the distribution of the truncated R2 values of
the MTL models does not extend as far to the right as for single-task ridge regression. This is
well visible in Australia: with the multitask model, the predictive performance has mostly gone
down in this region. So, whereas pixels that were very hard in a single-task approach seem to
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benefit from a multitask model, the multitask models perform a bit worse in pixels that were
easy for the single-task models. It seems as if the performance is spread out over the pixels.

Figure 4.5: Kernel density estimate of the R2 on the test set for STL ridge and both MTL models.

(a) Test set R2 for single-task ridge regression.

(b) Test set R2 for the multitask ELM.

Figure 4.6: Comparison between single-task ridge regression and the multitask ELM on the test set.
Negative R2 values were set to zero for making the plots.
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4.2.1 Extension with features from neighbors

Up until now, the feature space corresponding to every NDVI anomaly contained only variables
from the native pixel where the anomaly was observed. In order to incorporate interactions
between pixels, the feature space can be extended with the features from neighbouring pixels.
This was done for a moving window of 9 pixels. For every observation, the features of the 8
closest neighbors were added as additional variables to the global dataframe, such that each
observation now becomes a point in a 315-dimensional space (9 times 35 predictors). This
dataframe was used to predict NDVI anomalies in the test set with the multitask ridge regression
model from before. There was no improvement or decline in predictive performance when
using the features from neighbouring pixels as additional features, compared to the multitask
ridge model from the previous section. The results are therefore not shown.

4.2.2 Multitask learning with high-level features

The use of high-level features from daily times series led to a better predictive performance for
some models, with the most sparse model (the lasso) achieving the best predictions. However,
because of the large dimensionality of these predictors and the large degree of correlation be-
tween them, there were not enough observations for ridge regression to learn adequate weights
and it broke down on the test set. By training models on many more observations, it is likely that
less rigid models than the lasso will do better in the multitask setting. Unfortunately, it was not
possible to run a multitask learning model for the whole world using the complete feature set
because of computational constraints. Therefore, the multitask ridge model (being the fastest of
the two MTL models) was trained on part of Middle and North America. Figure 4.7 (b) shows
the result on the test set. The panel on the left-hand side shows the test set performance of
single-task ridge regression with the extended features.

(a) Single-task learning (b) Multitask learning

Figure 4.7: Left: test set R2 of single task ridge regression in the extended feature space. Right: test set
R2 of multitask ridge regression, with the same features.

The difference is clear: where ridge regression couldn’t deal with the high dimensional n << p

setting in single-task learning, the multitask ridge model is able to learn a function that gener-
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alizes much better and seems to give better predictions than the multitask models that did not
have access to the extended climate features (Figure 4.6 (b)).

4.3 Summary of modelling results

Table 4.4 summarizes the model results from this chapter.

Single-task models
5 fold random CV Test set
MAE R2 MAE R2

Linear regression 0.689 0.068 0.796 0.075
Ridge regression 0.652 0.130 0.775 0.090
Lasso 0.647 0.137 0.764 0.102
Random Forests 0.653 0.129 0.784 0.074
ELM 0.722 0.005 0.956 -0.213

Multitask models
5 fold random CV Test set
MAE R2 MAE R2

Ridge MTL 0.592 0.163 0.717 0.146
ELM MTL 0.577 0.186 0.705 0.151

Single-task with extended features
5 fold random CV Test set
MAE R2 MAE R2

Lasso 0.569 0.176 0.733 0.133
Random Forests 0.554 0.204 0.750 0.114

Table 4.4: Global median performance metrics for different models used in this project. Bold font: best
performing model for the specific model setting and validation scheme. Bold and underlined:
best performing model overall on the test set.

Of all the single-task models, the lasso performed best, with ridge regression a close runner-up.
The limited amount of observations per pixel when performing single-task learning favors more
rigid models like ridge regression and the lasso in terms of generalization to unseen data. This
became clear by looking at the poor test set performance of the more flexible random forests
and the ELM.
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Using the idea of multitask learning to predict vegetation anomalies led to a global improve-
ment in predictive performance, mostly in pixels that were very hard to predict accurately with
a single-task approach. In contrast, the multitask learning test set performance seemed to suf-
fer a bit in the pixels where single-task models performed very good; the multitask learning
maps look much smoother and the results seem to be averaged out over the map. Neverthe-
less, because of the much larger amount of training observations that become available when
using multitask learning, more flexible models can be applied. The ELM came out as the best
performing model in this setting. The ELM is non-linear in the sense that it operates in a non-
linear randomized feature space, but it can be trained with the speed of a linear-model. As such,
it has a large advantage over random forests in term of training speed and memory consumption.

The addition of high-level features, extracted from daily-resolution time series and reflecting ex-
treme and cumulative climate events, led to better predictions in single-task models. However,
because of the high-dimensional setting (over 3000 features for 360 observations per pixel) and
the large degree of correlation between the different predictors, the lasso outperformed all other
methods on the validation set by enforcing sparsity in the model. This problem was solved in
the multitask setting. Multitask ridge with the extended climate features generalized much bet-
ter to the test set than single-task ridge and, at least on a part of the world, showed a promising
improvement over the other multitask methods that didn’t use these features.

Although both vegetation and climate variables show positive correlation with the same vari-
ables in pixels up to 10 spatial lag units away (not shown), extending the feature space with
climatic features from neighboring pixels did not lead to better predictions. In other words,
given the past vegetation and climate of a pixel, the past vegetation and climate of its neighbors
contain no extra information to forecast the present state of the vegetation.

Finally, it is important to note that all models performed worse on the out-of-sample and out-
of-time test set compared to their validation set performance estimated through random 5-fold
cross-validation on the training part of the data. This is an illustration of data leakage, and
occurs because observations in the training and validation folds are correlated when doing ran-
dom cross-validation on time series data. Although most conclusions from this chapter would
not fundamentally change when looking at the model performance on the independent test set
in stead of on the training set, the differences between both approaches still serve to show the
importance of doing proper model validation. Figure 4.8 illustrates this for the multitask ELM.
Estimating the model performance on unseen data through random cross-validation is much
more optimistic than estimating it on the independent test set.
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(a) Cross-validated training set R2 for the multitask ELM.

(b) Test set R2 for the multitask ELM.

Figure 4.8: Cross-validated training set performance (top) and test set performance (bottom) of the mul-
titask ELM, the best performing model in terms of global median R2 and MAE.
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Granger causal inference

So far, different learning models were explored to predict vegetation residuals using past climate
and vegetation variables. This chapter will explore how to use these models to address questions
related to causality in the framework of Granger causality. To recap, Granger causality from a
variable x to an outcome y can be tested for by comparing the predictive performance of two
nested models: a baseline autoregressive model predicting y at time t as yt = f1(yt−1, ..., yt−p),
and an extended model yt = f2(yt−1, ..., yt−p, xt−1, ..., xt−q). Generally, the null hypothesis of
Granger non-causality is formulated as the null hypothesis that f1 and f2 have equal prediction
error (in econometrics: forecasting accuracy). Typically the alternative is one-sided, such that
if f2 predicts yt significantly better than f1, H0 is rejected.

In some applications, inference is drawn in linear vector autoregressive models by testing for
significance of individual model parameters. Other studies have used likelihood-ratio tests (f1
and f2 are nested) [34]. However, in both cases the model is trained and evaluated on the
same data (in-sample). As pointed out by several authors, the performance of any Granger
causal model should be validated on out-of-sample data to avoid overfitting [3, 5] 1. The null
hypothesis of non-causality in the formulation stated above can be tested by comparing out-of-
sample prediction errors. Statistical tests to this end have been proposed and applied both in the
econometric literature and in Granger causality studies in the context of climate science. Tests
to compare out-of-sample MSE are available for models for which parameter estimation is

1In the paper by Attanasio et al., the authors mention avoiding the consequences of incorrectly establishing the
stochastic properties of the time series as another reason to perform out-of-sample testing.
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done through ordinary least squares or maximum likelihood estimation [3]. The asymptotic and
finite-sample properties of a battery of tests for comparing forecasting accuracies of different
models have been studied and more recently, further tests aiming specifically at nested models
have been proposed as well [5].

Unfortunately, all the tests mentioned above were designed to compare the out-of-sample pre-
diction errors of linear parametric models [32]. Although regularized linear models were mostly
the best performing models in the previous chapter, more flexible models such as random forests
were close competitors in some settings. Furthermore, it has been argued that relations in cli-
mate datasets tend to become more non-linear as the temporal resolution of the data becomes
finer [3]. Thus, in future experiments or with different data, other models than linear parametric
models could turn out to be better for predicting vegetation anomalies. It would be convenient
to have at our disposal a statistical test to assess the significance of any quantitative evidence
of climate Granger-causing vegetation anomalies that we can find. Ideally, the test would be
model-free so that any non-linear model f could be used.

One well-known model-free test to compare the accuracy of two forecasts is the Diebold-

Mariano test (DM-test) [7]. The DM-test compares the errors of two competing forecasts ŷ1t
and ŷ2t; t = 1, ..., T , where the forecast errors are defined as eit = ŷit − yt; i = 1, 2. The test
statistic is defined using a loss differential dt = g(e1t)− g(e2t), with g() typically the squared-
error loss: g(eit) = e2it. The two forecasts are equally accurate if dt has zero expectation for all
t:

H0 : E(dt) = 0 ∀t

The DM test statistic is of the form:

DM =
d̄√

2πf̂d(0)
T

(5.1)

Where d̄ is the sample mean of the loss differential and f̂d(0) is a consistent estimate of the spec-
tral density of the loss differential at frequency 0. Under H0, DM is asymptotically N(0, 1)

distributed. The main assumption for this to hold is that the loss differential is covariance sta-
tionary, or cov(d12t, d12(t−τ)) = γ(τ),∀t). The DM test is an asymptotic test of the hypothesis
that the mean of a series of loss differentials is zero, with the calculation of the standard error
accounting for the autocorrelation of subsequent loss differentials [7].

Although it looks like a promising test to apply as a Granger causality test, there is one big
caveat: the DM test does not hold for nested models, because under the null, the forecast errors
from two nested models are exactly the same and perfectly correlated, which means that both
the numerator and the denominator of the test asymptotically tend to zero [32]. However, it has
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been argued that the Diebold-Mariano test remains asymptotically valid even for nested models
when the size of the estimation sample remains finite as the size of the prediction sample grows,
under some regularity assumptions [18].

Although the DM-test was not designed for the purpose of comparing forecasts from nested
models, it is a model-free test that could be used to compare two forecasts originating from any
model, in contrast with other out-of-sample MSE tests that are specifically designed for linear
models. An alternative approach for comparing the predictive performance of different models
is to use resampling methods such as the bootstrap or schemes such as 5 × 2 cross-validation
[8]. Methods based on the bootstrap have been used before in Granger causality studies with
climate data [9, 3]. For this thesis, I will both illustrate the performance of the DM-test and
propose some ideas to use the bootstrap to come to inference about Granger causal relations in
the climate data set.

5.1 Quantitative evidence of Granger causality

For this chapter, a single-task ridge regression model was used to predict the NDVI residuals
from the test set, using two models: an autoregressive baseline model using the past 6 vegetation
anomalies as predictors, and an extended model which uses the history of one precipitation time
series (MSWEP) as additional predictors. Figure 5.1 shows the difference in R2 between the
extended model and the baseline model, wherever it is larger than zero. Pixels where the R2 of
the baseline model was negative are not considered. The performance of the extended model is
better in some large regions over the globe, notably Australia, Somalia and the south of Africa,
the east of Latin America and the western part of North America.

Figure 5.1: Quantitative evidence for Granger causality between the baseline and the extended model in
terms of difference in R2.

Wherever there is grey on the map, the extended model outperforms the baseline model. A
natural question that arises now is how significant the differences between the extended and the
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baseline model are and whether or not we should conclude Granger causality for every pixel
where the extended model performs better. This question is addressed next.

5.2 The Diebold-Mariano test

The Diebold-Mariano test is available in the R-package forecast. The forecast errors of both
models were obtained for all pixels wherever the baseline model achieved a positive R2, and
the test was performed using the squared loss differential and against the one-sided alternative
which states that the extended model provides a better forecast than the baseline model. Figure
5.2 shows the result, with pixels producing a significant p-value colored in black. The DM test
was performed for 9699 pixels, 1955 of which produced a p-value lower than 0.05.

Figure 5.2: P-values obtained with the Diebold-Mariano test to test the null hypothesis of Granger non-
causality.

Obviously, there is a multiple-testing problem here. When repeating the same test this many
times, the probability of false discoveries is almost equal to 1. The most conservative way to
correct for multiple testing is by controlling the family-wise error rate (FWER) through the
Bonferroni correction. This can be corrected by adjusting the nominal α level at which each
individual test should be performed:

αbonferroni = 1− (1− FWER)
1
m , (5.2)

With FWER or the family-wise error rate set at 0.05 and m equal to the total number of pixels
that are tested.

After performing the Bonferroni correction, the null was rejected in only a few pixels. With m
as large as it is in this case, the Bonferroni correction is extremely conservative, and probably
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there are better solutions to solve the multiple-testing problem. Some perspectives for better
solutions are provided in the last chapter.

5.3 Resampling methods

In machine learning, it is common to compare the predictive performance of two different algo-
rithms on the same data by using 5× 2 cross-validation [8]. The idea is to obtain multiple esti-
mates of the performance difference of the two models by repeatedly training and testing them
on different parts of the data. Afterwards, a paired t-test or, more generally, a non-parametric
test such as the Wilcoxon signed rank test is used to test whether the difference in performance
of the two models is equal to zero or not [1].

There are two problems with this approach if we want to apply them in the setting of this thesis.
First of all, using random cross-validation to form train and test sets will introduce the same
problems with overfitting that were highlighted in the previous chapter: for each fold, the test
and training sets will be too correlated. Secondly, the models are retrained in every fold. This
is not feasible for more complex models that require a long training time.

Using the same idea of validating the models on an out-of-time test set as before, I will try
the following approach: first, both the baseline and the extended model are trained on the
training part of the data. Their predictive performance is then evaluated on the test set: not
once, but multiple times by creating multiple test set replicates using the bootstrap. In this way,
two empirical error distributions of the models on the test set can be constructed. Finally, a
statistical test such as the Wilcoxon signed rank test can be used to test whether the error of
both models on the test set is equal, or not. In this way, overfitting of the models is avoided
by only using data from the test set to bootstrap. Secondly, the models have to be trained only
once. Once they are trained, generating multiple predictions on the bootstrapped test sets can
be done in a fast way.

5.3.1 Bootstrapping time series

Computationally intensive methods such as the bootstrap can provide an alternative to tradi-
tional statistical inference. The basic idea behind these methods is to estimate the true distribu-
tion D that underlies a data sample Xn (x1, ..., xn) by an empirical distribution D̂, in order to
get more information about the variability of a certain quantity of interest which is a property
of D, θ(D), and is estimated as a function of the sample: θ̂ = θ̂(Xn).2 In practice, constructing
D̂ means creating multiple replicate data sets X∗

n by resampling from the original sample Xn,

2For example, θ could be the mean of a Gaussian distribution which can be estimated by taking the sample
average of a sample Xn.
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from which multiple replicate estimates θ̂∗ can be obtained. The (discrete) distribution of the θ̂∗

values can then be used to derive information about the variability of θ̂, to construct confidence
intervals or to perform hypothesis testing in which case θ̂ is a test statistic [6].

In the setting where the data sample Xn consists of independent and identically distributed
observations, a bootstrapped sample X∗

n is obtained by drawing n samples from Xn with re-
placement. However, this does not apply for time series data: the observations are correlated
through time and not independent. Simply drawing observations with replacement from time
series data would ignore the time dependence structure. An alternative sampling approach is by
assuming a data-generating model (for instance, an autoregressive process of order p). In this
approach, the model errors εi are resampled to produce bootstrap error terms, which are then
used to produce bootstrap observations [13]. Another approach that avoids the assumption of a
data-generating process is so-called block bootstrapping, in which blocks of data are resampled
instead of individual data points. The correct choice of the block length is important: too short
blocks will destroy the temporal structure of the data, blocks that are too long won’t allow for
bootstrap samples to be variable enough or for drawing a sufficient number of bootstrap sam-
ples at all. However, because of the typical seasonal cycle of most climate phenomena in large
parts of the world, a straightforward option for climate data is to use blocks with a length of one
year. As such, the temporal structure remains conserved: an observation from December will
always be followed by an observation from January. And with 29 complete years in the dataset,
there are 2929 possible samples when drawing with replacement (note that the ordering matters).

Figures 5.3 and 5.4 respectively show an original precipitation and temperature time series and
one block-bootstrapped replicate for a randomly selected pixel (latitude -31.5, longitude -71.5,
located in the Indian Ocean). The bootstrapped precipitation data look very different than the
original data, but both share the same characteristics: only positive values occur, and precipi-
tation peaks occur during the same seasons. The same is true for the bootstrapped temperature
time series: although it is different from the original data, it still looks like a plausible tem-
perature time series. When using bootstrapped time series, the implicit assumption is made
that every bootstrapped data sample is an equally likely realization of the underlying stochastic
process that generated the original sample.
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Figure 5.3: Original and bootstrapped precipitation data from a randomly selected pixel (-31.5,-78.5).
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Figure 5.4: Original and bootstrapped temperature data from a randomly selected pixel (-31.5,-78.5).

5.3.2 Variability of the squared loss differential with the bootstrap

Because of its simplicity, the squared loss differential dt from the Diebold-Mariano test is ap-
pealing as a test statistic. However, it was not intended for nested models in the first place, and
it is unlikely that the assumptions for using the test are fulfilled for every pixel. Perhaps the
bootstrap can provide an alternative: by bootstrapping multiple test sets, the performance of
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both models can be evaluated multiple times and we can get an idea about the distribution of dt.

In order to assess the required number of bootstrap replicates B to get an acceptable idea of the
distribution of dt, its empirical distribution was first constructed for two pixels: one in South
Africa where the extended model performed much better than the baseline in most pixels, and
one in eastern China where the extended model was only slightly better (see also Figure 5.1).
This was done for different values of B. The result is shown in Figure 5.5. The approach
was as follows: first, the baseline and extended model were fitted on the original training data
sets. Next, B block-bootstrapped replicates of the validation set were constructed and used to
evaluate the test error of both models, using blocks of 12 months. As such, B squared test dif-
ferentials d∗t were obtained, yielding an empirical distribution for dt. The dt that was observed
with the original test data set is shown as a dotted line. Note that a similar value for dt was
observed in both pixels. Where the result is not smooth at all for 100 bootstrapped replicates,
it looks acceptable for 1000 replicates and is quite smooth for 10000 replicates. Remarkably,
the distribution of the d∗t values resembles a Gaussian distribution in the case where the perfor-
mance difference between both models is small, but looks more like a chi-squared distribution
in the second pixel. A possible explanation for this is the following: when both models perform
equally well, the squared losses will mostly cancel out each other with some differences that are
symmetric around zero. Whenever the extended model outperforms the baseline model, how-
ever, the squared loss differential will be dominated by the squared error of the baseline model
and will behave more as shown in the right-hand side panels of Figure 5.5.

To obtain each of the bootstrapped d∗t values, the baseline and extended model were used to
make predictions on the same bootstrap replicate of the test set, so that the experiment can be
seen as a paired experiment. Recall that each d∗t is just the difference between the squared error
of the baseline and the extended model on particular bootstrapped test set replicate, e21 − e22.
Testing if the mean of these two error series are different from each other is equivalent to the
null hypothesis of the DM-test which tests if the mean of dt is zero. This could be done using a
paired t-test. However, because of the variable shape of the d∗t distribution for different pixels,
a non-parametric paired test such as the Wilcoxon signed rank might be more appropriate. This
tests allows to test the null hypothesis that the difference between two series of paired quantities
has a distribution symmetric about zero against the one-sided alternative that the distribution
of one series is shifted to the right of the other series. Because this test uses the ranks of
observations in a pooled sample to compare two distributions, it is insensitive to outliers and
it is free of distributional assumptions. If furthermore the assumption is made that the two
distributions have the same shape (the location-shift assumption, or F1(x) = F2(x − δ),∀x),
then the alternative hypothesis can be formulated in terms of the means of the distributions (e.g.,
µ1 ≥ µ2).
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(a) B = 100 (b) B = 100

(c) B = 1000 (d) B = 1000

(e) B = 10000 (f) B = 10000

Figure 5.5: Empirical distribution of the squared loss differential between the baseline and the extended
model, for two different pixels and for increasing bootstramp sample sizes B. Left: latitude
46.5, longitude 94.5 (western China). Right: latitude -24.5, longitude 17.5 (South Africa).
The dashed line shows the squared loss differential observed with the original data.

The Wilcoxon signed rank test was used to test the null hypothesis that the distributions of the
mean squared prediction errors of the baseline and the extended model are equal, against the
one-sided alternative that the baseline model is worse (errors shifted to the right), for all pixels
where the the extended performed better than the baseline and achieved a positive R2. This was
done by generating B = 1000 bootstrapped validation sets, each time storing the errors of both
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models 3. Figure 5.6 shows significance of pixels at the 95% level of significance, after applying
the Bonferroni correction. The R2 on the test set was larger for the extended model than for
the baseline model in all colored pixels, but a significant shift between the error distributions of
both models (in favor of the extended model) was only found for the black pixels. When this
map is compared with Figure 5.1, the pixels that produce significant results are indeed those
where the difference in R2 was largest in favor of the extended model. In those pixels, the null
hypothesis that the distributions of the model errors of both errors are the same, can be rejected
in favor of the alternative, which states that the distribution of the errors of the baseline model
is shifted towards higher values. However, these results need to be interpreted with care. By
using 1000 bootstrap samples, the power of the Wilcoxon test is large and it is able to pick
up even the smallest differences, perhaps even differences that are non-relevant towards the
research question of Granger causality. This might explain why the result is still significant in
so many pixels, even after applying the extremely conservative Bonferroni correction. On the
other hand, many pixels where the extended model performed better than the baseline in the
original experiment, for instance in the north of Canada, turn out to be non-significant.

Figure 5.6: Results from the Wilcoxon signed rank test. The extended model performed better than the
baseline in light-grey pixels, but a significant shift between the error distributions in favor of
the extended model was only detected in pixels with a dark color.

3This took 65 minutes of parallel computing on 99 nodes of the Ugent tier-2 computing cluster Delcatty.
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Conclusion

The goal of this thesis was to explore the potential of a climatic dataset for statistical causal dis-
covery using Granger causality. The residuals of vegetation (NDVI) measurements acted as the
target variable of interest, with a whole set of climatic variables as potential causal candidates
for explaining changes in vegetation.

In a first set of experiments, predicting NDVI anomalies was treated as a separate problem for
every pixel. This was referred to as the single-task learning setting. Linear regression did not
perform well in this setting. In contrast, turning to regularized regression models such as ridge
regression or the lasso led to large improvements in predictive performance. Because recent
work has suggested the good performance of random forests on a similar but more extensive
dataset, more flexible non-linear models were also explored [36]. In particular, extreme learning
machines were used, because of their known performance in terms of training speed on large
datasets. However, in the single-task setting, both non-linear models performed worse on the
test set than the linear models. The ELM in particular did not perform at all, neither on the
training set nor on the test set.

When exploiting the similarities between all the pixels in a simple multitask model, the predic-
tive performance increased mostly in those pixels that were hard to predict in the single-task
setting. However, there seemed to be a smoothing effect of the overall performance, as the R2

went down in those pixels where the single-task models were very accurate. Probably, the large
number of observations that are available in a multitask setting (over 4 million observations for
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the whole globe), have some sort of regularizing effect and allow for much better generalization
to unseen data. In contrast with the single-task setting, the extreme learning machine turned
out to be the best model for multitask learning. Because of the large number of observations,
the ELM was able to benefit from the rich non-linear feature representation in its hidden layer,
without overfitting.

The use of high-level features, representing cumulatives and extremes, led to a strong improve-
ment of the predictive performance for single-task random forests and the lasso. Because of the
very high dimensional n << p setting, ridge regression broke down when evaluating it on the
test set. Because of computational constraints, a multitask model was trained on parts of the
American continent rather than on the whole world. The fast multitask ridge model performed
very well in this setting, both in comparison with the single-task ridge model with the extended
features and with the multitask models without the features. This illustrates the potential of
the extreme and cumulative indices to act as qualitative predictors for changes in the NDVI,
provided that enough observations are available to adequately train a model.

Unsurprisingly, all models performed better when evaluated by means of 5-fold random cross-
validation on the training set than by means of evaluation on the independent test set. This
suggests overfitting of the models in the former case, since training and validation samples are
too correlated. This illustrates the importance of validating model performance in an appropri-
ate way, depending on the goal of the experiment and keeping in mind the specific structure of
the data at hand to avoid data leakage.

Overall, the results from the modelling chapter suggest that there is a potential for statistical
learning models that go beyond simple linear regression to model climate-vegetation interac-
tions. However, some statistical challenges arise when framing this extension in the context of
Granger causality. These were explored in Chapter 5.

Most statistical tests that were developed in the econometric literature for comparing the out-
of-sample accuracy of two forecasts were either developed with assumptions on the model
structure, or were not designed to be used for nested models that are typically used in Granger
causality experiments. Besides those tests, some validation schemes frequently used to compare
machine learning models such as 5-by-2 cross-validation are available as well. However, these
schemes rely on random cross-validation to construct training and validation folds. Further-
more, they require the models to be re-trained for every fold, which is not feasible on a large
dataset like the one used in this thesis for more complex models.

One possible approach for comparing the performance of the baseline and the extended Granger
models was proposed in Chapter 5. While this approach is maybe not the most correct way of
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solving the problem, it deals with the issue of validating the models on out-of-sample data and
it requires the models to be trained only once. The bootstrap was used to generate multiple test
sets, in order to get an idea of the distribution of the errors of both models. These distributions
were then compared with a non-parametric Wilcoxon test. Although this allowed to exclude
large regions of pixels where the performance of both models differed only by a small margin,
the test can detect smaller and smaller difference by generating more bootstrap samples, to the
extent that it may produce significant results in pixels where the difference between both models
is of no practical importance. Furthermore, the obvious problem of multiple testing was simply
dealt with in the most conservative way by applying the Bonferroni correction.

Further research

The field of climate science is an extremely data-rich research domain, with a lot of progress to
be made using data mining, machine learning and statistical modelling. The results from this
thesis point to some interesting perspectives for future research with respect to the dataset that
was used.

Perspectives for modelling the climate data

• More advanced multitask learning models could strongly benefit from the similarities
between the climate in different pixels.

• The performance improvements achieved by using the high-level features representing
cumulatives and extremes illustrate the potential of using automatic feature extraction
methods, or even models that can learn high-level features on their own from raw daily
data.

• Learning from multiple tasks and learning high-level features could be combined in an
artificial neural network architecture with a convolutional layer and multiple hidden lay-
ers. When also taking the time component into account, even more advanced models with
multiple convolutions in both space and time could be used to model this data. Using this
approach, the data could be modelled as a video. Instead of red-green-blue channels in a
typical video, the different channels would be precipitation-temperature-radiation etc.

• In the dataset, there are multiple time series available for temperature and precipitation,
originating from multiple satellites or data sources. In image classification tasks, noise
is often added on purpose to input images by applying rotations or rescaling in order to
make the algorithms more robust. The same idea could be applied to an algorithm that
uses climate data to predict vegetation: by using the different data sources in a clever way,
perhaps the model could be made more robust against satellite measurement noise.
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Perspectives for Granger causality inference

• More work is required to establish a correct procedure for comparing the performance of
baseline and extended Granger models. Ideally, the test should allow to compare predic-
tions generated by any arbitrary model, even non-parametric models or highly complex
models such as neural networks. If resampling methods are used, the computational fea-
sibility of the test should be kept in mind.

• The multiple testing problem should be properly addressed. One option is to use the
concept of the local false discovery rate, which as been used in genetics [12]. The local
false discovery rate concept makes good use of the many tests that are performed, by
considering them as repeated experiments and coming to an individual threshold for every
test statistic. Typically, it allows to control the global false discovery rate at a desired
level, without being as conservative as the Bonferroni correction.
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Appendix A1: overview of data sources used to compose the dataset that was provided
for this thesis. Adopted from Christina Papagiannopoulou (KERMIT, 2016). The second
column provides a code referring to the source for each data product. The temperature
data sets are measurements of the near-surface air temperature. The last variable (NDVI)
is the outcome variable of interest in this thesis.

Variable (unit) Source CODE Spatial res. Temporal res. Coverage
Temperature (◦C) CRU-HR 0.5◦ monthly 1901-2013
Temperature (K) UDEL 0.5◦ monthly 1901-2010
Temperature (K) ISCCP 2.5◦ daily 1983-2009
Temperature (K) ERA 0.25◦ daily 1979-2013
Temperature (K) LST 0.5◦ daily 1981-2009
T anomalies (K) GISS 2◦ monthly 1980-2013
T anomalies (K) MLOST 5◦ monthly 1880-2013

Precipitation (mm) CRU-HR 0.5◦ monthly 1901-2013
Precipitation (mm) MSWEP 0.25◦ daily 1981-2011
Precipitation (mm) UDEL 0.5◦ monthly 1901-2010
Precipitation (mm) CMAP 2.5◦ monthly 1979-2013
Precipitation (mm) CPCU 0.25◦ daily 1979-2012
Precipitation (mm) GPCC 0.5◦ monthly 1901-2010
Precipitation (mm) GPCP 2.5◦ monthly 1979-2013
Precipitation (mm) ERA 2.5◦ daily 1979-2013
Soil moist. (m3/m3) GLEAM 0.25◦ daily 1980-2012
Soil moist. (m3/m3) ESACCI-P 0.25◦ daily 1978-2013
Soil moist. (m3/m3) ESACCI-C 0.25◦ daily 1978-2013
Snow depth (mm) GLOBSNOW 0.25◦ daily 1980-2011

Radiation long (W/m2) SRB 1◦ daily 1983-2007
Radiation short (W/m2) ERA 0.25◦ daily 1979-2013

Greenness (NDVI) GIMMS 0.25◦ monthly 1981-2011
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Appendix A2: Overview of the extreme indices that were applied to the raw time series
and the anomalies to obtain the data that was used in this thesis. Adopted from Christina
Papagiannopoulou (KERMIT, 2016).

Name Description
Spatial Heterogeneitya Difference between max and min values within 1 degree box

STD Standard deviation of daily values per month
DIR Difference between max and min daily value per month
Xx Max daily value per month
Xn Min daily value per month

Max5day Max over 5 consecutive days per month
Min5day Min over 5 consecutive days per month

X99p/X95p/X90p Number of days per month over 99th/95th/90th percentile
X1p/X5p/X10p Number of days per month under 1st/5th/10th percentile

T25Cb Number of days per month over 25◦C
T0Cb Number of days per month under 0◦C

R10mm/R20mm Number of days per month over 10mm/20mm
CHD Number of consecutive days per month over 90th percentile
CLD Number of consecutive days per month under 10th percentile
CDDc Number of consecutive days per month with precipitation < 1 mm
CWDc Number of consecutive days per month with precipitation ≥ 1 mm

(aOnly for dataset with native spatial resolution <1 ◦lat-lon)

(bOnly for temperature data sets)

(cOnly for precipitation data sets)
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Figure 1: Correlation matrix of the temperature variables from a randomly selected pixel (latitude -24.5,
longitude 22.5). All temperature products measure near-surface air temperature expressed in
Fahrenheit, except for TCRU which is expressed in ◦C and MLOST and GISS which express
temperature anomalies. Corresponding to section 3.1.
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Figure 2: Pearson correlations between three pairs of raw temperature time series (left) and between
their residuals (right). From top to bottom: CRU/ERA, LST/CRU and UDEL/ERA. Corre-
sponding to section 3.1.
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Figure 3: Correlation matrix of the precipitation-related time series from a randomly selected pixel (lat-
itude -24.5, longitude 22.5). All products measure precipitation in mm, except for GLEAM,
PASSIVE and COMBINED which measure soil moisture. GLOBSNOW, which measure thick-
ness of snow coverage, was excluded for this visualization. Corresponding to section 3.1.
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Figure 6: Scores of the observations on the first two PCA dimensions for sixteen randomly sampled
pixels. The observations are color coded from blue (early months) to red (most recent months).
The plots in the dashed boxes are highlighted in the next Figure. Corresponding to section 3.4.
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(b)

Figure 7: Two distinct PCA score patterns. Left: clear contrast between early and recent months. Right:
a 12-cluster circular pattern formed by the yearly observations of each month. The percentage
of total variance explained by the first two principal components is shown on top of each plot.
Corresponding to section 3.4.
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