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Preface

What can we say about the statistical crisis in science that has not already been said?
Eminent scientists like Paul Meehl, Jakob Cohen and John Ioannidis have already done
a great job pinpointing the problems with P-values, null hypothesis significance testing,
nonreplicable research, sloppy statistics and fishing expeditions. At the other end of the
spectrum journalists at The Atlantic, The New Yorker, FiveThirtyEight and The New York
Times have done a surprisingly good job of translating these issues to a lay audience. What
is left?
What is left is the space in between: for many working scientists the arguments in the
statistical literature are too abstract and I have a sneaking suspicion that nobody has ever
bothered to double-check the somewhat convoluted calculations in John Ioannidis’ otherwise
wonderful Why Most Published Research Findings Are False. On the other hand lay accounts
do not treat the problem with enough fidelity to satisfy those who might not be statistical
experts as such but do regularly have to interpret t-tests and regression analyses. Yet
ultimately it is these students and doctors and working scientists who are the key audience
for publications about the statistical crisis in science, because they decide what tomorrow’s
statistical practices will look like.
I have used this dissertation as an exercise in statistical writing for such an audience of
not-quite-experts, not-quite-laymen. To the dissertation committee reading this dissertation
I therefore ask that you please do not get frustrated when it takes five paragraphs to explain
what power or sensitivity or positive predictive value means. Instead I hope you appreciate
the e�ort that went into finding ways to explain these concepts without dumbing them
down, which to me was one of the core challenges in writing this work; perhaps readers can
find inspiration for their own teaching among the explanations, anecdotes and analogies
interspersed throughout this work.
The dissertation is split into two equal parts. The first part is a mostly theoretical look at
the shortcomings of P-values and null hypothesis significance testing. The second part is
a broader overview of how bad statistics and questionable research practices have led to a
crisis of unreplicable research. These two parts are fully independent of each other and can
be read in either order. Occasionally the material overlaps, but repetition has been kept to a
minimum.
You will read in this work a lot of statements along the line that some or many or a lot of

scientists do something or other. I appreciate quantification as much as any statistician so I
did feel queasy when writing these kinds of vague statements. At the same time, I don’t feel
that when talking about statistical practices across a wide range of scientific disciplines, it
necessarily makes sense to specify, say, that 12.8% of scientists confuse P-values for e�ect
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sizes and that 23.1% of scientists are not aware of how Type II error might a�ect their studies.
References are made to research that estimates the prevalence of various practices whenever
appropriate.
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P-values

When you hear the word statistics, are you reminded of bar charts and medians and standard
deviations? I imagine most people are, but that’s actually not the kind of statistics college
students have such a hard time with and not the kind of statistics that scientists obsess
about.
Statistics finds its roots in the collection of lots and lots of measurements, like the measure-
ments of human weight and height that led Adolphe Quetelet to the body mass index. But
your dataset of heights and weights might not look anything like my dataset and in our
separate analyses we might even be driven to opposite conclusions. So we need a means to
judge how much trust we can put in our findings and how likely it is that we will continue to
find a similar pattern when we collect more data. Statistics thus slowly revised its mission
from the measurement of people, nations and economies to the measurement of uncertainty
and confidence.
Many years after he had figured out the physical equations that govern ocean tides, Pierre-
Simon Laplace wondered whether the moon might a�ect the atmosphere the same way it
a�ects the oceans. To find out, in 1827 Laplace cross-referenced atmospheric pressure readings
recorded at the Paris Observatory with the moon’s orbit and found that the moon’s phases
did appear to have a modest e�ect on barometric readings. But how convincing was this
finding? As a way to double-check his findings, Laplace calculated the probability of seeing
data such as the records he had at his disposal or hypothetical records that would seem
to show an even greater lunar influence presuming that the moon in fact had no influence
on atmospheric pressure at all. The answer, it turned out, was that two times out of three
random fluctuations in atmospheric pressure would be enough to produce an illusory e�ect
like the one Laplace had found, and the theory of atmospheric tides was abandoned (Stigler
2016, ch. 3).
Throughout the 18th and 19th century enterprising scientists would make calculations such as
these, but they become ubiquitous only after Ronald Fisher’s Statistical Methods for Research
Workers shows researchers how to calculate them for di�erent kinds of experiments and gives
the P-value a solid theoretical underpinning, using the eponymous Fisher information to
determine the standard error of any maximum likelihood estimate.
Fast forward almost two hundred years from Laplace’s calculations, and across scientific
disciplines, the strength of statistical conclusions is communicated exclusively using P-values,
which answer the question “What if it were due to chance?” It’s a useful question to ask,
because patterns found in datasets often appear much more convincing than they really are,
especially with few observations, noisy measurements or when there’s a lot of diversity among
individuals, and we must be careful not to read too much into what might turn out to be
spurious correlations and imaginary causes and e�ects. A scientific theory is accepted only if
the empirical observations in its support would be too unusual or surprising to chalk up to
coincidence or happenstance. Only then do we consider a scientific finding to be statistically
significant.
The P-value hides its imperfections well, but despite its great appeal and its almost universal
use in modern science, the P-value and the hypothesis testing routines that go with it are
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not as harmless as they seem. The P-value is used to make ine�ective drugs look like wonder
treatments, to lend credence to fringe science like extrasensory perception and to confirm
every researcher’s pet theory. Hypothesis testing is supposed to give us confidence that our
scientific findings will stand the test of time, but when scientists repeat their colleagues’
experiments more often than not they find that whatever phenomenon was supposed to be
there has vanished.
How can such a harmless idea have such a devastating impact on science? Why do scientists
and scientific journals display an almost cult-like adherence to hypothesis testing when
its flaws have been known for almost half a century and when even Ronald Fisher, the
original promoter of P-values and null hypothesis testing, chastised his fellow statisticians for
bastardizing his ideas? Who is to blame: the P-value or the way we use, abuse, interpret and
misinterpret it?

P-values only protect against random error

Among the many definitions of a P-value that you might hear from researchers is this one: a
p-value is the probability that I’m wrong. This definition confuses likelihood with probability,
mistakes corroboration for verification and ignores non-stochastic forms of uncertainty. We
will talk about each of these misconceptions in turn, but for now let us concentrate on the
di�erence between stochastic and empirical uncertainty.
Stochastic uncertainty is the uncertainty introduced by variable phenomena. If you flip a coin
and it ends up tails five times in a row, that’s suspicious but not quite suspicious enough to
say with any confidence that the coin is biased. P-values give us something to hold onto when
dealing with randomness, but it is silent about all other forms of variation and uncertainty:

• Will the finding generalize to other populations? A di�erent way of teaching might
work for fourth graders, but will it work for third graders?

• Did we identify cause and e�ect? Countries where olive oil is a staple have fewer
cardiovascular problems, but is it really about the oil?

• Does the statistical analysis fit the research question? Is our model appropriate to the
data at hand? If we study the wrong outcome variable, any conclusion we make is void
(Rotello, Heit, and Dubé 2014). If our model is defective, then any P-value conditional
on that model is meaningless.

• Was our sample representative? An internet poll on a left-leaning news website will not
be representative of what all voters think.

• Did any mistakes slip in during data collection?
• Were statistical calculations performed without error? It’s easy to get the degrees of

freedom wrong or to make a mistake when importing data.
• Did we measure what we thought we did? Is measuring IQ really the same thing as

measuring intelligence?

Statistics is not altogether helpless in answering these questions. Regression can get rid of
many confounding factors, and randomized experiments avoid them altogether. Mediation
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analysis can determine whether A causes B by means of our proposed mechanism or some
other way. But most of the factors that determine whether a research finding can be trusted
is outside of the statistician’s control.
It is the job of the peer reviewer to check whether the research makes sense, regardless of
P-values. Reviewers do the best they can, but sometimes things do fall through the cracks,
from faulty calculations (Bakker and Wicherts 2011) to using the wrong statistical test (Scales
et al. 2005) to not accounting for important confounders.
For example, dozens of studies have been published in prestigious journals claiming that
moderate alcohol consumption promotes heart health, especially red wine. But in reviewing
the literature, Kaye Fillmore and her colleagues found very few studies that properly took
into account that among those who abstain from alcohol is a large group of former alcoholics
and patients on medication, leading to unfair comparisons (Fillmore et al. 2007).
Because the P-value is the central piece of evidence in scientific publications, researchers can
be led to believe that P-value calculations inoculate them against all sorts of methodological
issues that in fact it is powerless against. As Judea Pearl once pointed out, “The opacity of
probability theory avoids argument, the clarity of causal statements invites it” (Pearl 2003,
288) and unfortunately much of statistics diverts attention from measurements, methods
and causal connections that ultimately decide whether the statistics we calculate make sense.
Andrew Gelman and Erik Loken have called this “laundering uncertainty” (A Gelman and
Loken 2014): making the uncertain look much more certain than it really is through statistical
wizardry.
The false sense of security that P-values provide can thereby lead to moral licensing – the idea
that a good deed entitles you to a bad one – where the researchers assume that good statistics
will compensate bad experimental setups and far-fetched interpretations. As statistics gets
smarter, does science become dumber?

P-values are only as good as the hypotheses that prompt

them

Predictions solve an important problem for scientific reasoning: any fool can come up with a
theory that fits the facts. There’s an infinite amount of theories that can explain the same
set of facts, and an infinite amount of ad-hoc adjustments you can make to that theory
whenever new data comes in that doesn’t support it – we’ve all seen pundits on television
who magically appear to be able to explain everything and even when they make the wrong
predictions, they’ll explain that too. Making a good guess beforehand is much harder than
explaining something afterwards, so this is what we require to put trust in scientific findings.
Sometimes predictions link up quite naturally with the underlying theory, but more often a
scientific theory requires a whole host of auxiliary assumptions to be turned into a testable
hypothesis.
Let’s say we wish to study the e�ect of solving Sudoku puzzles on intelligence. Administering
repeated IQ tests would be very cumbersome, so instead we might use working memory as

4



a proxy variable, as working memory is known to correlate with intelligence. To measure
working memory, we will ask people to remember a series of random numbers, and see whether
a Sudoku-solving group can remember more of them than the non-Sudoku solving group.
Because we can’t track people until they die, we will let the experiment run for a couple of
weeks, and then assume that any e�ect we find will persist or even grow larger over time, as
long as the subject sticks to it.
If we’ve found a statistically significant di�erence in the average working memory capacity
between the two groups, we will conclude our discussion section by saying that Sudoku seems
to be a great way to keep your brain young. But every step of the way we had to make
assumptions and simplifications, and the result is that the P-value supports the theory that
prompted it only in a very roundabout way, as one small part of a long chain of probabilities.
An alarming trend in the social and behavioral sciences is that increasingly the bulk of
scientific argument is shifted towards the discussion section. After a perfunctory statistical
analysis which shows a relationship between A and B that is not likely to be due to chance,
the discussion section is used to wax philosophical about exactly what is going on and what
implications it has for other research and society. In an insiduous bait and switch, strong
evidence of a correlation between A and B is co-opted to make whatever claims we wish,
often only after seeing the data, as long as they vaguely align with that correlation.
A P-value is only as good as the translation between research hypothesis and statistical
hypothesis.

P-values confound sample size and e�ect size

The p-value exists to distinguish between happenstance and those events that did not arise
due to chance.
What factors allow us to make this distinction?

• Big e�ects are less likely to be the result of natural variation and random fluctuations.
The introduction of vaccines for measles, polio and smallpox reduced infections from as
high as 1 in 100 to near zero in western countries; no statistical confirmation is needed
beyond the intraocular trauma test: the result hits you right between the eyes (Panhuis
et al. 2013 as visualized in DeBold and Friedman (2015) for the United States).

• Low variation under the alternative hypothesis. It is not hard to prove that parachutes
have a statistically significant e�ect on the mortality rates of people jumping out of
airplanes: rarely does anyone survive a jump without a parachute (Smith and Pell
2003).

• Reliable measurement. It can be hard to detect supernovae thousands of light years
away, and just as hard to learn anything about diets that work when they rely on
unreliable self-reported food questionnaires. But just two precise observations of a solar
eclipse were su�cient to convince physicists of general relativity.

• A lot of data. It is possible to glean information from even the weakest signals. For
example, it is possible to statistically recover passwords and other secret messages from
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a su�ciently long recording of keystrokes, because the minute di�erences between how
fast the user hits subsequent keys and minute di�erences in the sound between keys
depend on where on the keyboard these keys are located and which fingers we use to
hit them.

A low P-value can mean the e�ect is big, the phenomenon is not very variable, the sample size
is big or the measurements were precise. A significant e�ect with p = .01 can be tiny but still
readily distinguishable from chance due to highly accurate measurement apparatus. But that
same p = .01 e�ect could be an earth-shattering new finding that even noisy measurement
cannot hide.
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It is very rare to see research where the only thing we care about is whether or not something
exists, regardless of e�ect size. Imagine if Isaac Newton had concluded the Philosophiae
Naturalis Principia Mathematica by writing that force and mass have a statistically significant
e�ect on acceleration, and then retired from physics.
Point estimates, confidence intervals, predicted probabilities, common language e�ect sizes –
statistics has many good indicators of e�ect size at its disposal. Still researchers are tempted
to treat the P-value as an indication of e�ect size, which it was never meant to be. Even
when studies mention e�ect sizes and confidence intervals, they don’t always use them to
judge the importance of a finding. Summarizing her review of statistical practices in medical
journals that do in fact require e�ect size estimates, Fiona Fidler writes that “compliance
was superficial” [Fidler2004, p. 119]: authors made the necessary calculations but did not use
them to quantify their conclusions, instead falling back on P-values.
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Some scientists have grown so frustrated with this lack of attention paid to e�ect sizes that
they have even published guides such as Computing contrasts, e�ect sizes, and counternulls
on other people’s published data, How to calculate e�ect sizes from published research and the
254-page book Statistics with Confidence: Confidence Intervals and Statistical Guidelines.
Statistical tools have been built specifically for statistical analysis using confidence intervals.
Much of this can be explained by the simple fact that in most disciplines and most scientific
journals, interpretation of e�ect size is considered to be optional, whereas P-values are not.
Some researchers may consider statistics nothing but a bunch of opaque calculations of
dubious value, so they simply calculate and summarize the experiment in whatever way they
think will get them published. Finally, neither SAS nor R provides confidence intervals for
built-in analyses unless explicitly asked for.
Yet sometimes lack of e�ect sizes is an indication of malice or at the very least wishful
thinking: researchers will sometimes be aware of the small e�ect size, but try to jazz up their
findings by just talking of significant or very significant e�ects, de-emphasizing the actual
quantitative results.
For example, smaller class sizes might contribute significantly to student test scores, but to
evaluate the importance of this finding a researcher must

• put a number on how much test scores have increased,
• compare the increase to alternative interventions,
• calculate the cost of the teachers needed to teach these smaller classes.

Without this context, “class size significantly a�ects test scores” is a meaningless statement,
communicating only that the e�ect of smaller class sizes on test scores is not exactly zero
point zero.
Every scientist would like to say that they’ve found something big, something real, something
significant and so researchers can get a little carried away when describing the results of their
statistical tests.
Others realize that sample size factors into it, and will argue that the statistically significant
P-value they found in their small experiment is extra special: if you see a light through thick
fog, it’s probably a pretty powerful beam. But P-values can behave quite erratically at low
sample sizes. A single observation can cause a large drop or spike in P-value. This is most
evident in discrete distributions like the binomial. Assuming a fair coin flip, throwing 8 out
of 10 heads results in p = 0.11 but throwing 9 out of 10 heads results in p = 0.02. Throw
another die which lands on tails and the P-value bumps back up to p = 0.07. But continuous
distributions have problems of their own: P-values that rely on the normal distribution (Wald
tests) or even the t-distribution only approximate the true null distribution at low sample
sizes.
Because P-values are influenced by so many di�erent factors, attempting to attach any
interpretation to them beyond a simple chance alone can explain what we found quickly turns
into a guessing game.
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P-values are not posterior probabilities

Unfortunately, there exists no straightforward way to calculate the probability that a scientific
theory is correct using only data. But we can get close with some help from Bayes’ theorem,
which tells us that the posterior probability that a hypothesis based on a theory is true can
be updated according to:

P (H|D) = P (D|H)P (H)
P (D)

The denominator P (D) can be ignored because regardless what your hypothesis might be, it
stays the same. We can also get rid of P (H) because it asks us to rate the hypothesis as
intrinsically more or less probable, before having seen any of the data. . . but we’ve gone to
great lengths to collect all this data precisely because we wish to know whether our theory is
or isn’t probable!
What remains of the original equation is P (HA|D) Ã P (D|HA) = 1 ≠ P (D|H0), and the
right hand side of this equation is our good friend, the P-value.
To make sure we don’t confuse the probability of the data with the probability of the
hypothesis, statisticians prefer to call P (D|H) the likelihood of the hypothesis, whereas
P (H|D) is the probability of the hypothesis.
Mixing up likelihoods and probabilities is known as confusion of the inverse, and it’s a serious
logical error.
Imagine winning the lottery. The probability of winning solely due to the luck of the draw is
astronomically small. If, however, you had somehow found a way to cheat, your probability
of winning would actually be quite high. With these likelihoods in mind, we can conclude
that most lottery winners are cheats. After all, P (winning|chance) < P (winning|cheating).
Clearly, reasoning from likelihoods isn’t always so wonderful and we were a bit overeager in
throwing out P (H) from our equation: ignoring the prior probability of a hypothesis can
mislead.
Despite the fact that statistics professors around the world warn students of confusion of the
inverse, it turns out to be a very hard di�erence to grasp, and even those statistics professors
themselves sometimes mistake the P-value for a posterior probability (Castro Sotos et al.
2007).
According to Bayes theorem, the posterior probability of a hypothesis is determined not just
by the scientific evidence provided by an experiment or by observational data, but also by all
other subject-matter considerations that may make a result more or less probable.
Occasionally we do have a good sense of whether a hypothesis is likely to pan out. For
example, when Psychological Science published research showing evidence of extrasensory
perception in 2011, they should have probably taken into account that there’s no way to
account for ESP unless everything we know about human biology and the physical universe
is wrong (Schimmack 2012). We cannot even begin to imagine the physical means by which
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thoughts would float through the air and the biological means through which our brains
would send and read these signals, so this kind of fringe science is best ignored.
Other fields of research are still so new that we don’t know if there are likely to be many e�ects
to be found, or none at all, as in epigenetics which studies whether stresses and experiences
of a parent can carry through in the genes of children (Heijmans and Mill 2012). Because the
validity of the field of research is still in doubt – the field as a whole, not individual studies –
P-values can be optimistic and should be adjusted upwards.
Finally, keep in mind that when we write P (D|H) what we actually mean is P (D|H, M): a
P-value can only be calculated conditional on a model, and when that model is inappropriate,
so are the P-values. In rare cases, faulty models can even lead to very small P-values and
unrealistically narrow confidence intervals, in particular when there is only a very narrow
range of parameter values that are even the least bit plausible.
But mostly the problem is simply one of interpretation: a P-value of 0.03 is not a 3%
probability that your theory is wrong and evidence in favor of the investigator’s alternative
hypothesis might still be quite weak, depending on the ratio P (HA)/P (H0).
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Because a P-value is determined by both sample size and e�ect size, research on small samples
often won’t find any relationships or di�erences, even if they are really there.
The simplest way to show this is to calculate the confidence interval around a point estimate.
Let’s say a di�erence between groups has a 95% confidence interval from a 0% increase all
the way up to a 100% increase. Then we must admit that it’s possible that the intervention
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makes no di�erence at all. . . but it’s equally possible that it leads to a 100% increase.
Because of this, we say that a high p-value is consistent with no e�ect, not that there actually
is no e�ect.
This is a particularly salient point considering that studies often don’t have the sample size
they really should have. But even large studies can have low power, because the e�ect that
the researcher wishes to detect is small.
The chart below shows that when power is low, not attaining statistical significance makes
practically no di�erence to our prior belief in P (H0).
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One reason statisticians often prefer likelihoods over posterior probabilities – even though
it’s posterior probabilities that ultimately align best with our research questions – is because
likelihoods are much easier to calculate and only since the 90s have computers become
su�ciently fast and cheap to make Bayesian analyses anything but a royal pain in the neck.
Another reason statisticians prefer likelihoods is because they are considered to be objective.
P-values and frequentist analyses in general don’t generally talk about prior probabilities,
but you can think of them as having a non-informative prior. It depends on the analysis, but
often the non-informative prior is a simple uniform distribution: every parameter value is
equally likely.
Treating every possible outcome as equally probable sounds fair and balanced and, well,
scientific, but strictly speaking P-values and non-informative priors are not objective, they’re
neutral: they do not give an advantage to any outcome. A neutral prior can be terribly
opinionated: you’d have to be insane to think that an unproven cancer drug is equally likely
to cure 100% of patients than it is to cure 10% of them, and given everything we know about
the universe extrasensory perception is not just as likely to exist as not, yet this is how
non-informative priors work.
It is also sometimes thought that frequentist estimates provide a conservative lower bound
on e�ect estimates and that opinionated priors (also known as subjective priors) would just
make us more optimistic about new treatments, but there is no such relationship between
using or not using priors and the conservatism or liberalism of a statistical conclusion. In
fact, a common use of priors is in shrinkage estimators, which, as the name suggests, shrink
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parameter estimates towards zero or no e�ect.
Non-informative priors don’t always make sense on purely technical grounds as well: if
◊ œ [0, 1] then it’s perfectly plausible to assume theta is distributed according to U(0, 1), but
this would not be a sensible prior distribution for ◊2, as, barring any additional information,
the probability density of ◊2 will be higher near 0 than near 1.
Neutral priors are not always a bad idea: they work well when you have little prior evidence in
favor or against a hypothesis, when the sample size or power of the study is high (a reasonable
prior will be swamped by the evidence in the data anyway) or when used to produce a rough
approximation of the true posterior probability. But it remains an approximation and often
not a very good one. P-values are likelihoods, not posterior probabilities.

P-values can confirm hypotheses but not help find them

The ideal of science is the brilliant scientist who comes up with a revolutionary new theory.
The revolutionary new theory is used to come up with bold predictions, and when those
hypothesized outcomes are confirmed, so is the theory.
Real science doesn’t quite work that way.
Instead, a researcher will continuously go back and forth between theory and fact: you read
some interesting research by colleagues, you craft your own hypothesis, you run an experiment
or collect observational data, evaluate the results and consider whether these results make
sense given your hypothesis, you tweak the theory a little to account for any discrepancies,
and this process of learning and testing goes on ad infinitum.
In this process, researchers have a lot of leeway in how they interpret and analyze the data.
For example, let’s imagine a study that purports to show that women wear more red when
ovulating. If true would establish an interesting parallel between human behavior and the
sexual swellings noticable in female baboons and chimpanzees, a valuable scientific finding.
(The example is loosely inspired on a controversial study from 2013, which we won’t name.)
Here’s how our hypothetical researchers proceeded:

• The researchers formulate a hypothesis which states that women will wear more red
during ovulation. A questionnaire is designed, responses are collected and the data
is analysed. However, the e�ect of ovulation on clothing choices looks to be small or
non-existent.

• The researchers wonder if they might have been too strict when coding the data. They
revise the definition of red clothing to also include pink. After all, pink is a shade of red.
They also wonder whether the 12th through 17th days of the menstrual cycle is the
right way to identify women “at high risk of conception”. A couple of hours browsing
around on Google Scholar shows that the medical literature sometimes mentions the 6th
through 14th days instead. They try both. The e�ect still has a rather large P-value,
but it looks more promising.
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• The researchers get together for another brainstorm and consider that it’s really only
normal that menopausal women, pregnant women and women on birth control do not
experience the same hormonal triggers that other women would. They exclude these
groups and the P-value drops a little more.

• The researchers worry that their sample size might be to small to find much of anything,
so they run a second questionnaire. They’re getting quite anxious by this time, so
they rerun their analyses multiple times as more responses come in. After a while the
p-value drops below 0.05. p < .05 is is acceptable to most scientific journals, so the
researchers decide to save time and money and they cancel the afternoon session.

• Looking at the e�ect size, it appears women wear only marginally more red during
ovulation than at other points during the menstrual cycle, but because the data is
so noisy it seems safer to just report that significantly more red is worn during peak
fertility without putting a number on it, and this is the result they publish.

This sort of hunt for e�ects with small P-values is often disparaged. Statisticians will talk of
fishing expeditions, hypothesizing after the results are known (HARKing), data dredging and
so on, and students are warned to never, ever succumb to it.
Fishing expeditions are problematic because of regression to the mean: any significant result
we see is the result of a mix of intrinsic factors together with random variation around those
factors. The largest apparent e�ects are produced when random error is high, and it is
precisely these apparent e�ects that we’ve been fishing for. Anyone else trying to find the
same e�ect would be out of luck, as this random component is much more likely to hover
around zero next time you take measurements.
Researchers have a lot of ways in which they can tailor an analysis (John, Loewenstein,
and Prelec 2012; Andrew Gelman and Loken 2013): tweak the expected outcome, try out
di�erent statistical methods including inherently biased methods such as stepwise regression
(Whittingham et al. 2006), determine outliers by looking only at how they a�ect the outcome.
Even something seemingly harmless like log-transforming a variable that does not look linear
makes P-values uninterpretable and the coe�cient of determination R2 of regression analyses
overly optimistic. (See Bakker, Dijk, and Wicherts 2012 a number of simulations.)
Such data-dependent decisions result in very weird null distributions. The interpretation of a
P-value becomes something along the lines of “the result we would find given that no e�ect
exists, when we discard data that seems faulty but only if this improves the P-value, and
where we pick the most vivid outcome from a bunch of related ones, and where we then pick
the statistical method that seems most ‘appropriate’ which we also decide based on seeing
the data.” There’s very little a scientist can still infer from such a P-value.
But are any of the individual decisions made by the researchers from our hypothetical example
really so bad? Is it unreasonable to worry about whether miscategorized data might obscure
an e�ect that is truly there? Is it unreasonable to broaden the outcome from red clothing to
reddish clothing? Is it unreasonable to exclude women that, in hindsight, they should not
have invited to participate in the first place?
To some extent, yes, such an expedition is unreasonable, because if the decisions were all
so obvious, then the researchers could have detailed them in a protocol before collecting
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any data, and any claim that these choices were made on purely scientific grounds is a
form of self-delusion. The fact that P-values break down in the face of dubious practices by
researchers can hardly be seen as a slight against the P-value; no measure of evidence can
protect against questionable research practices.
On the other hand it would be absurd to expect that the only way in which we can ever learn
anything from data is by making a bold hypothesis and then if the hypothesis is not clearly
and unambiguously supported by the data, to discard the whole enterprise. Exploratory
research is a very important part of science.
Is the problem here one that is intrinsic to P-values, or are they simply being used in
exploratory research when it should be clear that they can only be used in confirmatory
research? A little of both. Researchers do need a guide to help them explore data and point
out how poignant an e�ect is when it’s not immediately graphically visible. This is not in fact
impossible. Two very di�erent approaches available to researchers right now are hierarchical
analyses for which analyses are run for all possible subgroups, but estimates are regularized
to the overall mean to get rid of the optimism. For larger datasets, holdout samples, and for
slightly smaller datasets, cross-validation, are an excellent way to mess around with data and
explore it in depth while maintaining the capacity to run inference afterwards and subject
your guesses to a more rigorous test.
P-values are becoming less and less relevant in world full of data-driven analysis, multiple
testing and creative research designs. It is up to statisticians to figure out safer ways to do
this kind of exploratory research.

Null hypothesis significance testing

The P-value is a measure of surprise. If you play a couple of sets of tennis with a friend, then
even if you’re equally matched it’s not so surprising that every once in a while you or your
friend will win all six games in a set. After all, being equally matched doesn’t mean your
games will neatly alternate between one win for you, one win for your friend, one win for
you, and so on. But if you and your friend are truly equally matched, it would be unusual
and surprising for your friend to win all games in ten consecutive matches.
Up until now we have talked about P-values as a continuous measure of how surprising
a statistic would be if we knew for certain that nothing special was going on. But it can
sometimes be useful to make hard decisions: if there’s a 5% chance that it’s going to rain
today, you won’t bring a jacket to work; if there’s a 90% probability that your car will break
down in the next month, you will bring it in for maintenance. Instead of su�ering through
ambiguity and uncertainty on an ongoing basis, we prefer turning maybe into yes or no.
To return to our tennis match, exactly how many games must your friend win, how wide
apart must your scores be before you conclude that your friend is the better player? The
p-value is a measure but to use it, we must also have a criterion, a guide for how to interpret
it. To do that, we ask the question: well, let’s assume me and my friend were truly equally
matched, how rare would it be to see my friend take all these wins? If you’d see such an
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extreme discrepancy at most one time out of twenty, it might be time to admit that your
friend outskills you. If on the other hand a series of unchallenged wins is not unusual even
for players of equal skill, you should perhaps give yourself the benefit of the doubt.
This kind of reasoning is known as null hypothesis significance testing. The null hypothesis is
the idea that you and your friend are equally matched. The alternative hypothesis is that
he’s the better player. The significance test is the calculation you perform to figure out how
unusual those game scores would be if the null hypothesis is in fact true – the P-value –
and the decision you make to either categorize the outcome as significant or not. The more
unusual and thus the lower the probability of seeing those scores if you’re equally matched,
the harder it becomes for you to hold on to the idea that you’re matched in skill, and once
that probability sinks below 5%, the customary significance level, it’s time to face facts and
admit you’re not as good a player as he is.
We’ve already seen how P-values can be misleading because they give us the probability of
the data (or data that is more extreme) on the assumption that the null hypothesis is in fact
true, whereas what we’re interested in knowing is the probability of one hypothesis or the
other being true. The probability of the data given a hypothesis might sound like the same
thing as the probability of a hypothesis given the data, but it isn’t!
But let’s put the issues with P-values aside for a moment and focus not on the measure but
on the criterion, the way in which we decide that a result is surprising enough that we can’t
chalk it up to chance.
The underlying idea of null hypothesis significance testing is that we don’t want to jump to
conclusions. On TV or in newspapers we sometimes see mentions of worrying trends and
alarming connections, but if you actually do the math it turns out that it could just as easily
be explained by natural fluctuations. In 2015 my alma mater saw a 14% increase in people
starting a civil engineering undergraduate degree. Does this mean that STEM is on the rise,
or will registrations be back to the usual levels the upcoming academic year? It’s hard to tell.
Scientists are wary of such premature conclusions.
But even though null hypothesis significance testing (NHST) sounds perfectly reasonable, it
really is not.
First o�, NHST is not reasonable because most of the time science doesn’t require scientists
to make a decision after every experiment and determine right now whether something works
or whether it doesn’t. Instead, science works by shifting the weight of the evidence in favor
or against certain ideas over the course of many experiments and data analyses.
Secondly, NHST encourages us to categorize hypotheses as either true or unproven, but this
dichotomy is really not very useful. Let’s say a study finds that blueberries are good for your
health, does that mean they add years to your life expectancy, or just days? If scientists
have invented a better battery, are you still interested if that new technology would make
your laptop run for half a minute longer or if it reduces manufacturing costs by just 17 cents?
You’d probably be a bit underwhelmed, but as far as null hypothesis significance testing is
concerned, these are significant e�ects.
Also, scientists tend to equate unproven with false, but not finding any evidence in favor of a
hypothesis is not enough to say with any great confidence that it’s false, and confusing the
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two can sometimes lead us to prematurely give up on promising research avenues.
Thirdly, the null hypothesis is usually that the e�ect of an intervention on an outcome is
exactly zero, or that an intervention and a control have exactly equal odds of resulting in a
particular outcome. This is not a useful distinction in social science, where almost everything
has an e�ect on everything else, albeit usually an e�ect that is too tiny too matter. Statistical
significance does not imply practical significance.
We will now discuss these problems in more detail.

Significance testing forces decisions where none are

needed

Few scientists put much stock in a single study. Instead, science works by shifting the weight
of the evidence in favor or against certain ideas over time and getting a better idea of the
magnitude of an e�ect and how it interacts with other phenomena.
Null hypothesis significance testing runs counter to both the ideals and the practice of science
as a constantly shifting body of knowledge. Instead of growing knowledge over time, it
imposes on science a decision-making context: the idea that after every individual scientific
study, we must gather around and decide on the spot whether we have found something of
interest or have not.
If we take the clinical trial as the archetype of scientific research, then a decision framework is
natural: at some point we must decide whether or not we will approve an experimental drug
and recommend its use. Any delay in this decision could cause people to receive suboptimal
care or die, and pharmaceutical companies and universities design studies in precisely such a
way as to enable a fair decision at the end of the ride, which gives pharmaceutical companies
at least a little bit of predictability in the otherwise very risky business of pharmacological
research and development.
But research in psychology, economics, geography and physics is usually not quite so pressing,
and there is no immediate reason
It also leads researchers to desperately try to get a finding into the “significant” category, either
through questionable research practices (John, Loewenstein, and Prelec 2012) or through
verbal gymnastics: a tendency toward statistical significance, on the verge of significance,
narrowly evaded statistical significance and so on. (These gems and many more can be found
in a list that epidemiologist Matthew Hankins put together in 2013, cataloguing all the
flowery language scientists use to talk about e�ects that are tantalizingly close to significance
but did not reach the 0.05 significance treshold (Hankins 2013).)
It is impossible for an e�ect to be anything other than significant or not significant, so talking
of an e�ect flirting with conventional levels of significance shows a poor understanding of how
null hypothesis significance testing actually works. At the same time, though, it is possible to
have a little or a lot of evidence in favor of a hypothesis, as well as every degree of empirical
support in between. It isn’t unreasonable for researchers to ask us not to reject an idea out
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of hand and to consider the possibility that an e�ect might really exist even if the evidence is
weak. Scientific standards should not force researchers to dichotomize the evidence.
Furthermore, while null hypothesis significance testing doesn’t require any particular signifi-
cance level, in practice it is almost impossible to deviate from – = 0.05, which means that
we require preliminary and exploratory research to adhere to the same standards as a phase
III clinical trial on which lives depend.
During World War II, Robin Plackett and Peter Burman tried to develop better proximity
fuses for anti-aircraft shells. The accepted wisdom at the time was to only ever change one
thing at a time, but Plackett and Burman did the exact opposite: they designed experiments
in which it is impossible to isolate the e�ect of every individual factor, but because you can
test so many factors at a time, you can quickly narrow down your search to a number of
likely candidates, which you can then follow up with a more rigorous experiment. These
kinds of fractional factorial experiments, as they are known, trade precision for speed and are
now commonly used in industrial settings. (Box, Hunter, and Hunter 2005, 281)
Conversely, CERN scientists realize that the discovery of the Higgs boson would have an
outsized impact on physics and that the enormous amount of data they have at their disposal
makes false discoveries likely, so they’ve decided to put the significance level not at the 5e ≠ 2
social scientists are used to, but rather 3e ≠ 7, a di�erence of five orders of magnitude.
In those rare cases when a decision framework does make sense, it should at least be possible
to set a standard of evidence appropriate to the problem, something that is now the exception
rather than the rule.

Significance testing is an empirical steamroller

An analgesic might reduce the intensity of a headache a little or a lot or not at all, and what
we would like to know is how many points the average patients drops on a pain intensity scale.
Radioactivity is toxic, and we would like to know how many sievert of radiation has what
kind of harmful e�ects (changes in the odds of contacting various ailments, days or years
subtracted from one’s life expectancy). “Analgesic good, radioactivity bad” is the kind of
statement we’d expect from a caveman but it is unfortunately surprisingly close to scientists’
tendency to categorize interventions into real and bogus e�ects.
It is for example common in sensory science, the science of how consumers perceive food
and drink, to use significance testing to judge whether consumers can perceive changes
in ingredients and production method. The statistical workhorse of sensory science is the
triangle test, in which tasters are presented with three food samples, two identical ones and
one that’s di�erent, and they’re asked to identify the odd one out. The hypothesis test asks:
can people identify the odd one out more often than would be expected due to chance, that is,
more than 1 out of 3? It sounds sensible, but the statistical hypothesis is actually very far
from the questions that have economic relevance to the food industry: how many people will
notice the di�erence and of those, how many people will and won’t like the change and how
many won’t care? The old statistical adage applies: ask the wrong questions, get the wrong
answers.
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We are now so familiar with terms like “false positive” and “Type II error” that it doesn’t
even occur to us that these are loaded terms: most e�ects are not true or false, they are
small or large or tiny or anything in between, and consequently the real issue is not with
false positives but with exaggerated positives. Andrew Gelman refers to these as Type M
error: errors of magnitude (Andrew Gelman and Carlin 2014).
The null hypothesis cannot be rejected is a sentence that most scientists know by heart. It is
what you write when an e�ect is not statistically significant and the reason we are so fond
of this odd little declaration is because there is almost no other correct way to describe an
e�ect with a p-value that’s higher than the desired significance level –.
We would rather not talk of an insignificant e�ect, because that carries the connotation of
unimportant and meaningless. We can’t say that the e�ect does not exist, because our study
might have missed it due to a low sample size. We never accept the null hypothesis for that
same reason. The epistemology of the statistician: never say never.
Nevertheless, by anointing some results but not others with the label of statistical significance,
we turn a continuous measurement of evidence into a dichotomous judgment: either we have
all the evidence we need, or we have no admissible evidence at all.
This bifurcation of scientific findings sometimes leads to strange decisions. Given two
hypothetical strategies to reduce global warming, one that promises a 1-3% reduction (95%
confidence interval) will merit publication in a leading scientific publication, whereas another
other strategy that could lead to a 0-14% reduction will have quite a bit of trouble getting
past peer review. Given a choice between a guaranteed five dollars or a 50/50 chance to win
100 dollars, the statistician would prefer the lottery (with an expected outcome of 50 dollars)
but the significista will take the five.
No serious statistician would ever tell you that a correlation with a P-value above the magical
.05 treshold is wrong or does not exist. No textbook will teach you that a significant finding
is always of practical importance. A keen observer might even point out that when one level
of a factor is significantly di�erent from zero but another level isn’t, the di�erence between
these levels might not itself be significant (Andrew Gelman and Stern 2006).
But what statisticians say and what they teach ultimately doesn’t much matter because
every working scientist can see all around them that significant findings are treated very
di�erently from findings that are not. In 2015, Blakeley McShane and David Gall put this
to the test and sent a questionnaire to researchers who had recently published in the New
England Journal of Medicine. One of the scenarios describes a random selection, random
assignment study of two drugs and in this study 52% of subjects who got the first drug
recovered while only 44% of those who got the second drug did, albeit with the di�erence
between these treatments indistinguishable from chance (p = .175). Asked which treatment
they would recommend, all else being equal, more than 1 in 5 respondents said that they
could not recommend one or the other because both treatments were equal; they did not
seem to grasp that regardless of whether a di�erence in the e�cacy of two treatments is
statistically significant, absent any further information the maximum likelihood estimates are
equal to the sample means and thus the first treatment is still a better bet. Remarkably this
was no di�erent for participants who received a slightly di�erent scenario with a p-value of

18



p = .075, which is still not significant but does shift the evidence quite a bit in favor of the
first treatment.
These results are unfortunate, but not entirely unsurprising considering the growing literature
that’s out there about misinterpretations of p-values. But Blakeley McShane and David
Gall found something much more worrying. They presented a very similar scenario to the
last one: the hypothetical outcomes of two randomly assigned last-ditch cancer treatments.
The group receiving the first treatment survived for another 8.2 months on average whereas
those receiving the second treatment survived for only 7.5 months on average, p = .27. The
question they then asked was whether, “speaking only of the subjects who took part in this
particular study”, those who received the first treatment lived on average longer than those
who received the second treatment, whether there was no di�erence or whether we can’t
determine if there is. Fewer than 1 in 5 researchers responded that of the subjects in this
study, those in the first group lived longer on average. Let this sink in for just a moment:
thinking in terms of P-values has apparently become such an ingrained habit that doctors
and medical scientists can no longer see the di�erence between the numbers 7.5 and 8.2.
Do the exercise yourself: go through a random sample of scientific papers and see how often
the abstract mentions significant results and how often the abstract mentions an actual e�ect
size.
Perhaps in spirit null hypothesis significance testing was only ever meant to filter out particu-
larly noisy evidence, as was Fisher’s habit, but today it has become an empirical steamroller
that pancakes quantitative, continuous e�ect sizes down to a single bit of information (it
works or we don’t know if it works), puts studies with large margins of error in the same
pile as studies with small or non-existent e�ects and sweeps aside posterior distribution,
likelihood function, maximum likelihood and anything else that could quantify the weight of
the evidence.

Significance is guaranteed and the null hypothesis is

never true

Scientific theories are intricate contraptions that they cannot themselves be tested, but we
get around this inconvenient fact by testing their consequences instead.
The theory of general relativity predicts that light will bend around stars and other heavy
objects. Albert Einstein calculated that under general relativity we’d expect light to bend
around the sun by precisely 1.75 seconds of declination whereas Newtonian physics would
expect a bend of only 0.87 seconds. During a 1919 solar eclipse, coordinated observations in
Brazil and on the island São Tomé and Principe validated Einstein’s theories and proved
Newton wrong.
To get an idea of just how impressive and just how precise Einstein’s prediction was: a second
of declination is the angle corresponding to 1,296,000th of a circle.
Because of physicists’ brilliance at setting up or figuring out situations in which outside
influences are minimized and because their theories take the form of mathematical equations
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which allow for precise quantative predictions, physicists are usually warranted in equating a
high probability of seeing an outcome given a hypothesis with a high probability that the
hypothesis is true given the data. That is, in physics we can substitute P (D|H) for P (H|D)
without having to worry so much about confusion of the inverse. No other hypothesis could
account for what was observed so we have almost no choice but to accept that Einstein’s
mechanics are superior to Newton’s.
Robert Merton’s theories about deviant behavior long enjoyed the same stature in criminology
that Einstein’s theories do in physics. Merton’s basic insight was that a person will show
deviant behavior when they have no clear and legitimate path towards a culturally highly
valued goal. A burglar wants money and nice things just like anybody else in a capitalist
economy. A student might cheat on a test if school is important to them or if they want to
please their parents, whereas a student who really didn’t care about school would simply not
study for the test and accept whatever grade they received.
But while formulating hypotheses and predictions to test a theory works great in the
natural sciences, its extension to sociology, economics, geography, medicine and a host of
other scientific disciplines by means of null hypothesis significance testing is not without its
problems (Meehl 1978).

1. Lack of exactitude: the human psyche and the social world are incredibly messy,
everything can a�ect everything else, and as a result even the best social science is
limited to “if you do x, then people might feel a little bit more y” without the ability
to put bounds on how small or how large the e�ect could be.

2. Lack of universality: usually caveats arise. To give a bit of a facetious example, if your
theory is that people will get angry if you punch them, that will probably be true most
of the time, but a playful jab from a friend might have the opposite e�ect, in a sense
“disproving” your theory. If more and more of these exceptions accumulate over time
we might reject the theory, but we won’t throw away a promising theory just because
in one particular scenario it doesn’t pan out.

3. Lack of interdependence: in physics, tweaking one particular equation might allow you
to explain unusual experimental data that no other theory can account for, but almost
all straightforward adjustments would then be in direct opposition to everything else
we know about how nature works. Even in medicine, where we have a vast amount
of anatomical and biochemical insight into the human body, we can often formulate
hypotheses that have no bearing at all on this base of knowledge. Because our freedom
to formulate hypothesis is much higher, there’s also a much higher chance that we’ll be
wrong.

In the natural and the social sciences alike, it it often impossible to make a precise quantitative
prediction. The best we can do is predict that A will have an e�ect on B of any magnitude. As
predictions become less and less specific, they also provide a diminishing amount of evidence
for the theory that prompted the prediction, and null hypothesis significance testing is at the
very extreme of this spectrum.
One can even argue that in many disciplines, Type I error, the risk of finding illusory e�ects,
simply does not exist.
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In social science, uncountable factors influence someone’s behavior. The fact that I’ve just
had a cup of tea instead of a cup of co�ee might conceivably albeit only in some minute
way a�ect how I write this paragraph. A largely ine�ective drug might once in a blue moon
interact with the patient’s state, environment and genetics in just the right way to kill the
bacteria or get the immune system moving again. Everything, ultimately, a�ects everything
else. (Keep in mind that when we reject the null hypothesis, we reject that the e�ect is
exactly zero or that the odds are exactly one, so even the tiniest of e�ects count.) Geneticist
David Lykken christened the phenomenon “the ambient noise level of correlations”. (Lykken
1968, 154 via Meehl (1990))
The absence of Type I error leads to a methodological paradox that was first described by
Paul Meehl in 1967. Meehl’s paradox (Meehl 1967) states that as a discipline’s research
gains in precision, with the invention of better methods of measurement or through increased
sample sizes, the value of a significant finding and the degree to which it acts as evidence
for a theory dwindles in proportion. Increased precision in measurement with no increased
precision in the statistical hypothesis will lead to 100% of e�ects being classified as statistically
significant, and if e�ects are uniformly distributed in fl œ [≠1, 1] then 50% of true (but mostly
unimportant) e�ects will be in the direction that was predicted by the investigator.
In physics, advances in scientific instruments make it ever harder for physicists to prove a
hypothesis, because it’s easier to spot when their predictions don’t exactly match up with
the recorded measurements. But when their predictions do align with the hypothesis, the
corroboration is much stronger than it would have been if less sophisticated and less precise
lab equipment had been used. In the biomedical and social sciences, in stark contrast, better
methods paradoxically weaken the evidence.

Significance cripples self-correction

The P-value is first and foremost a measurement of noise. A high p-value means that there’s
so much noise that any pattern that pops up is the statistical equivalent of an image of Jesus
on a piece of toast – not quite the miracle you were hoping for.
To stick to the noise metaphor for a moment, what can you infer when you’re tuned to a
particular frequency and you’re not picking up a channel? Well, you might be getting all of
that noise because your antenna isn’t strong enough to pick up the signal. It’s definitely out
there, but you will need a better radio. (Bigger sample, better measurements.) But noise can
also mean that there is simply nothing there, no channel to tune into.
It should not come as a surprise that journal editors are wary of publishing scientific research
without any statistically significant e�ects. While it’s possible that the researchers found the
absence of an e�ect, which would be useful information in line with that famous Thomas
Edison quote that “I haven’t failed. I’ve just found 10,000 ways that won’t work”, there
is also the possibility that the quality of the research is subpar: nonsignificant results, as
Fisher suggested, should be ignored. This ambiguity in how to deal with results that don’t
reach significance, together with the fact that not finding anything – Edison notwithstanding
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– makes for a boring read, explains how publication bias can take hold: significant results are
published, everything else is not.
The result is a multiple testing fiasco on a discipline-wide scale: if many di�erent teams
investigate the same phenomenon and these teams have no way and no incentive to broadly
communicate failings, then every new publication is another potential source of error: if the
nominal Type I error of a finding is 5%, then for n studies that becomes 1 ≠ 0.95n.
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Given that the even studies that have been decidedly refuted continue to be cited and relied on
(Lenfant 2003) the e�ects of publication bias on the trustworthiness of science are devastating.
Traditionally, meta-analysis was hailed as the solution to unreliable and underpowered
research: just take a weighted average of the e�ect sizes reported by many di�erent studies,
and the forest plot or the weighted average will give you an idea of the state of the evidence.
Unfortunately, publication bias corrupts even meta-analysis (Kicinski 2013): if only significant
results are published, then any average of these results will be biased upwards too. Ingenious
attempts have been made at trying to estimate and correct for bias in meta-analyses (e.g.
Simonsohn, Nelson, and Simmons 2014, Assen, Aert, and Wicherts (2014)), but it is doubtful
that the phenomenon can be corrected mathematically (Andrew Gelman and O’Rourke 2013).
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Conclusion

It pays to recall how Ronald Fisher, the statistician who popularized the P-value, suggested
we use them:

• We ignore evidence because it is of insu�cient quality to say anything conclusive. (It
has a high P-value.) This is not the same as saying that there’s no e�ect, and it doesn’t
imply that it can’t be fruitful to try again with a bigger sample or a better means of
measurement.

• We accept evidence when it is of a high enough standard to be admissible (it has a
low P-value), but without thereby making any judgment as to its ultimate relevance or
importance. We accept evidence when it’s worth looking at.

Fisher wanted to make sure we didn’t read signal into noise.
Even for this purpose the P-value is ill-suited – the standard error indicates precision, the
confidence interval or credible interval indicates the range of plausible parameter values, the
point estimate indicates what is most likely – but what is most striking is how the P-value
has become in fact the way that we end up confusing signal and noise.
In statistical analyses by Daniel Bernoulli, Pierre-Simon Laplace and Ronald Fisher, the
P-value always functions as a sanity check, never as the crux of the argument. Today, it is
considered to be the core piece of scientific evidence in favor of a theory.
But to fill this role, we have to interpret the P-value in a more than dubious fashion, and we
have to accept a number of assumptions that might look harmless yet are everything but.

1. We had to translate our theory into a hypothesis, and once we’ve calculated our p-value
we have to translate back from statistical evidence for the hypothesis to scientific
evidence for the theory. They’re not the same thing.

2. Because human behavior and complex physical and biological systems alike are inherently
unpredictable, we had to give ourselves the leeway to predict not a precise outcome but
rather any e�ect at all, which is terribly vague and often not useful.

3. We avoided specifying when one theory or hypothesis is more or less probable, preferring
instead to say any outcome is equally likely. What if we do have some pre-existing
knowledge that makes some states of the world more likely than others?

These issues have led to serious misunderstandings of what P-values really are, but they also
make P-values intrinsically less useful than they appear to be. The P-value is only useful
insofar as it can approximate the questions that scientists are really interested in. But the
idea that a P-value is good enough and that, if only we interpret it correctly, it works as
intended, increasingly looks like wishful thinking:

• A p-value gives us P (D|H0) but we really, really want to know about P (H0|D) and
1 ≠ P (HA|D) so we just pretend that it is.
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• P-values and confidence intervals tell us something about the evidence given a certain
statistical model, given an uninformative prior and given that only stochastic but not
empirical uncertainty is a factor, but we really really just want to know the chances of
being wrong or right, so we assume that a P-value provides this seal of approval when
it doesn’t.

• A significant result is (incomplete) evidence for an e�ect di�erent from zero, but we
really truly want to know whether the e�ect is of practical significance and don’t want to
make the potentially subjective e�ort to ascertain what the lower boundary of practical
significance would be, and neither do we want to submit ourselves to stricter standards
of significance when attaining statistical significance can already be a challenge, so we
just pretend statistical significance is practical significance.

• Scientific theories are too broad and have too many implications to test straight-up,
so instead we must limit ourselves to one of those consequences and convert it into a
statistical hypothesis; because translating statistical hypotheses back to the original
research hypothesis can be challenging, we assume significant results are intrinsically
su�cient to support the theory.

• Confirmatory research works by putting bold, falsifiable hypotheses to the test, but in
the social sciences quantitative precision is unattainable so we must satisfy ourselves with
weaker hypotheses that some phenomenon or other will occur more or less frequently
given a particular intervention, and when this hypothesis pans out we celebrate that
our bold conjecture pans out when in fact it had a 50/50 chance of being corroborated.

• We want to talk about causes but must deal with correlations and associations – even
clinical trials are observational studies waiting to happen – so we make a half-hearted
attempt to warn readers about the di�erence between correlation and causation and
then proceed to speak entirely and unabashedly in causal terms.

• No evidence doesn’t mean evidence of nothing. . . but we really don’t want to spend
any more time on research that won’t pan out, so we drop the investigation no matter
how low the power of the study might have been.

As the psychologist Jacob Cohen said about null hypothesis significance testing: “it does not
tell us what we want to know, and we so much want to know what we want to know that,
out of desperation, we nevertheless believe that it does!” (Cohen 1994, 997)
But perhaps this is an overly critical assessment of what is ultimately just a particular
kind of calculation, and insofar as this calculation was properly done, a P-value cannot
strictly speaking be wrong. Only poor craftsmen blame their tools. It’s not p-values that are
problematic but their misinterpretation and abuse. The collection of essays What If There
Were No Significance Tests? (Harlow, Mulaik, and Steiger 1997) is a good example of this
kind of thinking.
Let us compare the P-value to two di�erent technologies that are considered to be dangerous
and with which society has dealt in a radically opposed fashion: asbestos and electricity.
When safely tucked away inside a wall, asbestos is a wonderful insulator and poses no health
risk. The problem is not asbestos, the problem is how it’s used: contractors working on
renovations don’t always realize it’s there and don’t take the necessary precautions, engineers
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use it in car brakes from where it easily finds its way into the air we breathe, mining
operations ignore regulations that ensure safe handling. Whether you consider asbestos to
be an intrinsically unpleasant building material or one that is misunderstood and misused
devolves into a semantic discussion with little value.
The high voltage alternating current that provides our homes with electricity is terribly
dangerous and unlike asbestos it cannot be tucked away because it is not useful unless you
can access it to plug in appliances. However, with the aid of earth grounding, circuit breakers,
ground fault interrupters and strictly regulated plug and socket designs, mains electricity is
now fairly idiot proof. This is a good thing, because unlike asbestos for which many superior
alternatives are available, the next best thing to our AC grid are pneumatic tools powered by
air compressors such as those used by the Amish.
Is null hypothesis significance testing dangerous but manageable if we just try a little harder,
like electricity, or is it an unmanageable toxic mess like asbestos?
The problem is that p-values are begging to be misunderstood. It is impossible to use a
p-value to make a decision without stretching the interpretation of that p-value and confusing
the inverse. Students’ misinterpretations of P-values are actually the correct interpretation
of the P-value as it is used. Correctly describing a P-value forces the author into a kind of
double talk where you write one thing but hope readers will read it as a posterior probability
anyway.
Perhaps the most tragic aspect of having the P-value as the quintessential example of
statistical inference is that come to treat them as a ritual, a hurdle to cross rather than as a
genuine help in scientific enquiry.
What now?
Very little, actually. Some statisticians have proposed switching to Bayes’ factors and credible
intervals, others have noted that preregistration can avoid problems with hypothesizing after
the results are known, yet others want to see more funding for replications.
All of these are interesting ideas, but to some degree orthogonal to the current discussion.
The most important change is to start talking about e�ect sizes again.
Use confidence intervals to indicate uncertainty, the margin of error to quantify the precision of
measurements and power analysis to avoid unacceptably high amounts of Type II error. None
of these techniques are perfect – confidence intervals do not account for prior information,
the margin of error needs to be compared to the level of precision that is practically relevant,
power analysis is susceptible to Meehl’s paradox – but their flaws are minor compared to the
use of the P-value as a one-number summary of statistical evidence.
In particular, confidence intervals are strictly superior to P-values because they do not
confound sample size and e�ect size.
This isn’t always easy, as the appropriate e�ect size measures are di�erent for di�erent
kinds of research (Fidler et al. 2004, Ellis (2010)) and while most scientists know of power
analysis they might be uncomfortable actually performing it. Moreover, less attention going
to P-values doesn’t automatically imply that researchers will pay more attention to causality,
confounding, selection bias, experimental design, validity and the challenges of analyzing
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messy real-life data. But it also does not require sweeping changes to scientific publishing or
statistical education.
It seems that often the main reason to keep using P-values is familiarity and a wish not
to rock the boat too much. For example, the Task Force on Statistical Inference of the
American Psychological Association published an excellent guide in 1999 titled Statistical
Methods in Psychology Journals: Guidelines and Explanations that covers study design,
randomization and causality, psychometrics, sample size, reporting assumptions, what good
tables and graphics look like. . . as well as the encouragement to report confidence intervals
and to interpret e�ect sizes in addition to p-values (Wilkinson and American Psychological
Association Task Force on Statistical Inference 1999). But why report P-values at all?
And why should interpreting e�ect sizes be encouraged instead of establishing it as a strict
requirement?
Statisticians are unfortunately complicit in this status quo. As George Cobb points out in
The Introductory Statistics Course: A Ptolemaic Curriculum? (Cobb 2007), statisticians
have a tendency to just teach whatever academia and industry seems to demand, and this
includes a heavy dose of null hypothesis significance testing as well as questionable techniques
such as stepwise regression. It is easy to end up in a circular logic where we end up teaching
outdated techniques because that is what we believe students will use. But why do scientists
use the t-test instead of calculating confidence intervals using Monte Carlo simulations or
the bootstrap? Because the t-test is what they were taught in school. And so nothing ever
changes.
What to think of the journal Basic and Applied Social Psychology, which banned statistical
inference altogether (Trafimow and Marks 2015), with the exception of certain Bayesian
methods?
To me, it makes sense from a statistical point of view, as it moves us away from having to
declare an e�ect as either significant or not significant, rather than looking at the preponder-
ance of the evidence and building knowledge over multiple experiments. There is no reason at
all to force scientists to come to a hard and final conclusion at the end of every investigation.
P-values have also led to an exclusive focus on stochastic uncertainty at the expense of all
of the other kinds of uncertainty researchers are faced with: do I have the theory to back
this up, am I actually measuring what I am trying to measure, is this coherent with other
findings in the field? I do think the editors of Basic and Applied Social Psychology might be
right when they say banning P-values will make the quality of the research go up, not down.
But banning null hypothesis significance testing might also be the only honest choice we can
make.
As it stands, scientists informally apply Bayes’ theorem every time they read a scientific
study. Few scientists trust the results of a single study, and when especially bold claims are
being made, they trust them even less, regardless of whether the P-value is one in two or
one in a million. Statistics, after all, can only control for stochastic uncertainty, it does not
correct for empirical uncertainty – uncertainty about whether we’ve got the right model but
also uncertainty about whether those performing the scientific study did sloppy work, or even
just a general uncertainty about what we might be missing.
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If nobody trusts a single study anyway, we might wonder what the big problem is: as poor
studies, such as those with low power or high researcher degrees of freedom, become more
common, scientists will adjust the importance they attach to each individual study downwards
and an equilibrium is maintained. But of course, if we take this line of reasoning to its logical
conclusion, there is no need for any inferential statistics at all: just calculate the group means,
compare them, and by taking a look at the sample size and thinking a bit about how variable
and how large the e�ect is that you’d expect, and an experienced scientist will be able to
distinguish di�erences that are real from those that are flukes fairly consistently. So the
most advanced statistics anyone really needs is the sample mean and the sample standard
deviation and perhaps enough fluency with computers to draw scatterplots. No?
Statistics as a discipline exists because at a certain point scientists realized that it makes
sense to put the same rigor and diligence in the way they analyze data that they put in
their experiments and theories. But if rigor is what we want, then a P-value that says that
given chance there’s only a 2% probability of seeing a particular outcome or one that’s more
extreme better correspond to precisely that 2% probability if the outcome were due to chance.
If we report a 95% confidence interval, then 95 out of a 100 of these kinds of confidence
intervals had better contain the population parameter. The fact that we must and in fact do
mentally adjust all of these estimates downwards and adjust P-values upwards suggests that
they do not achieve their nominal level of confidence. If P-values and confidence intervals
don’t do what’s on the tin, we might wonder what the point even is of reporting a confidence
interval with bounds with two decimal places when we are then going to transmogrify it into
a more plausible ballpark estimate and thereby show ourselves indi�erent to the accuracy.
The economist Paul Romer, talking about the role of mathematical models in economics,
writes about “the new equilibrium: empirical work is science; theory is entertainment.
Presenting a model is like doing a card trick. Everybody knows that there will be some
sleight of hand. There is no intent to deceive because no one takes it seriously.” (Romer
2015, 93) The use of inferential statistics in science – from psychology to geology – has not
devolved to the point where it can be called a card trick; but every day it becomes harder
and harder to argue that it is more than a harmless ritual: before we get down to the real
and actual science, we bring an o�ering of inferential statistics to the pantheon of Fisher,
Nyman and Pearson, peace be upon them.
In 1974, Richard Feynman expressed his worry about scientists who followed all the forms
of science, but not its spirit, and compared this kind of science to a cult (Feynman 1974).
What he describes is painfully close to the ritualized statistics of null hypothesis significance
testing.
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Most Published Research Findings are False

Promising cancer treatments go nowhere. There’s as many opinions on minimum wage as
there are economists. Last year olive oil and blueberries were the key to longevity, now we’re
not so sure. Psychologists repeat famous experiments but end up with very di�erent results.
What, exactly, is going on?
Aside from conceptual criticism (“I don’t think this means what you think it means.”),
scientific research can be double-checked through verification, re-analysis, replication and
reproduction (adapted from Gómez, Juristo, and Vegas 2010), and published research findings
that are put to the test survive surprisingly few of any of these checks.
A verification investigates the same data using the same method. A succesful verification
shows that no fraud was committed and that no technical errors were made in how the
data was encoded and analyzed. In 1982 the Journal of Money, Credit and Banking started
routinely asking study authors to provide the original data and analyses alongside their
manuscripts; when a couple of years later they finally got around to repeating some of these
analyses, they found that many authors had made errors in their statistical calculations or
had transformed the original data without mentioning precisely how (Dewald, Thursby, and
Anderson 1986). In a working paper from 2015 for the Federal Reserve System, Andrew
Chang and Philip Li went through a similar exercise: 59 papers from 13 journals were
reviewed using author-provided data and code, and even with help from the original authors
the re-runs for just 29 papers of those papers produced the same numbers that were used in
the published article, which is barely half of them (Chang and Li 2015).
A re-analysis investigates the same data using a di�erent method. A successful re-analysis
shows that the results do not depend on an ideosyncratic way of looking at the data, but will
hold when modeled di�erently or when better methods are used to deal with outliers and
missing data. Much of the early imaging research in neuroscience and cognitive psychology
used makeshift methods that all but guaranteed statistical significance even when study
subjects responded the same to control and experimental conditions and few of those older
studies reach today’s publication standards (Vul et al. 2009).
A replication collects new data but sticks to the same methods of the original research. A
successful replication shows that an e�ect generalizes beyond the original setting – incredibly
useful because experiments must often resort to convenience samples. But many highly
touted psychological findings and even visual illusions that were thought to be universal
disappear when tested in non-western and non-industrialized cultures (Henrich, Heine, and
Norenzayan 2010), and when Brian Nosek and his 269 collaborators tried to replicate 100
high-profile psychological findings, more than half of the high-powered replications did not
reach statistical significance, and even when it did the estimated size of the e�ects was nearly
always lower than what the original study had found (Open Science Collaboration 2015).
A reproduction collects new data and also changes the analysis or the experimental setup.
A successful reproduction shows that di�erent kinds of investigations still lead to the same
conclusion, proving that the e�ect is not an artifact of a particular methodological quirk or
limited to a non-realistic setting. In 1988 Linda Mayes and her co-authors published a list
of 56 medical topics for which case-control studies had found conflicting evidence (Mayes,
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Horwitz, and Feinstein 1988) and in 2013 a controversial article, A Decade of Reversal,
analyzed a large amount of scientific studies published between 2001 and 2010 regarding
medical best practices and showed that, of 363 articles testing the standard of care, 146
recommended reverting back to earlier methods that, in hindsight, worked better than newer
practices that were originally hailed as great improvements to the standard of care (Prasad
et al. 2013).

same method di�erent method
same data verification re-analysis

di�erent data replication reproduction

In Why most published research findings are false, John Ioannidis lists the main culprits:
small studies, research into treatments and interventions with smaller expected e�ects, studies
that investigate many di�erent relationships at the same time, ambiguity or flexibility in the
analysis and interpretation of experiments, prejudice and conflicts of interest and too many
researchers investigating the same phenomena.
Ioannidis’ article is a tour de force and at this point just about every scientist has read or at
least heard of it. His work has also found its way into the mainstream press, with profiles in
The Atlantic and The New Yorker among other places (Freedman 2010, Lehrer (2010)).
Why most published research findings are false packs a lot of information into just over
five pages, including a somewhat convoluted series of calculations. The sheer density of
information is exhilarating but also makes for a daunting read, especially for scientists whose
statistics are a bit rusty and even more so for the interested layman who is wondering what
is really going on with this replication crisis their PhD friend keeps blabbing about.
What I intend to do here is to explain concepts like Type II error that Ioannidis glosses over,
provide annotated tables and graphs that explain how di�erent factors like a study’s sample
size a�ect whether it’s likely to be true and provide easier-to-grasp alternatives to formulas
such as c(R + – ≠ —R + u ≠ u– + u—R)/(R + 1) that are sprinkled throughout Ioannidis’
2005 paper.

Didn’t statistics fix this?

When we say there’s a crisis in science we don’t mean to imply that science used to be more
rigorous or that yesterday’s scientists were smarter than those of today. When in 1835 the
physician H.C. Lombard tabulated occupational hazard statistics, he only barely had the
common sense to exclude student from the list of most deadly occupations (students don’t
die young yet those who die young are likely to be students) (Wainer 1999); today social
scientists routinely adjust for confounding factors and reweight survey results to make them
more representative of the target population. Galileo Galilei’s famous experiments showing
that heavy things do not in fact drop faster than lighter ones were in fact thought experiments
which he couldn’t be bothered to verify empirically; today this would be considered fraud. In
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the early 20th century psychoanalysis thrived despite a total lack of scientific evidence in
favor of its approach; now it has become impossible to publish much of anything without a
statistical analysis to back it.
The deluge of unreplicable research constitutes a crisis because it has made us realize that
scientific findings are much less certain than they appear to be – a sudden realization that
has taken us by surprise. Why? Because statistics is supposed to allow us to draw strong
conclusions from highly variable data, through statistical tests and randomization and random
selection and regression analysis and all of those wonderful things. . . but it appears it doesn’t!
19th century scientists made a lot of stupid mistakes, but they did not casually claim to
be at least 95% confident in their results. 21st century scientists have not stopped making
mistakes, but with mathematical statistics to back us up, we do claim that objectively, it’d be
almost impossible for us to be wrong. Empirically, however, this confidence in the accuracy
of published scientific work is no longer tenable. That makes the replication crisis a statistical
crisis, too (Gelman and Loken 2014, from which this dissertation borrows its overarching title
as well as angle).
In our defense, statistical promises are never quite as bold as scientists may make them out
to be. Yes, for over a hundred years we have been able to routinely calculate the probability
of seeing a particular sample correlation between two variables that are assumed not to be
associated with each other, and if this probability is very low, then, why, this does lend
credence to the alternative explanation, namely that there exists an association after all. But
in drawing this conclusion, we forget that statistical tests protect only against uncertainty due
to random chance, also known as stochastic uncertainty, it does not protect against everything
else that might throw a scientist for a loop, like non-representative samples, miscalculations
or faulty assumptions.
Even if for the sake of argument we assume that the only mistake we can make is reading too
much into the random walks of variable phenomena, our hypothetical 21st century scientist
still confuses a 95% true positive rate, which is what statistics guarantees, with a 95% positive
predictive value, which it cannot guarantee: positive predictive value depends not on the
statistical test but also on the fertility of a particular field of study, the prevalence of true
associations among those we choose to investigate.
On the other hand, the statistical methods that are taught to graduate students are still
mostly predicated on an increasingly outdated view of what scientific experimentation actually
looks like. Let’s take a look at some of these newer but potentially troublesome methods and
the problems they pose for statistics.

The price of ingenuity

The cutting edge is often seen as the place where the very best research happens, but it’s
quite the opposite.
Conservative, accepted research practices provide strong guarantees against mistakes and bias:
we’ve had a lot of time to hone them in response to previous mistakes. Modern randomized
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controlled clinical trials, for example, have long used placebos to blind the control group to
their treatment arm. We now know that we must also blind the attending physician and
have learned the hard way that if we don’t, the physician will behave di�erently towards the
treatment group and introduce bias by channeling patients with more severe symptoms to
the experimental arm or through subtle changes in bedside manner and coding depending on
who they treat. Over time pitfalls such as these are discovered and dealt with.
Newer methods might allow us to see and measure things that before were outside of our
reach, but because we’re not yet familiar with the drawbacks of the method and because
we haven’t quite figured out when the newer method is better than the older methods, the
cutting edge of innovative research is also a scientific wild west.
Subgroup analyses. It wasn’t so long ago when randomized controlled trials would try out
new drugs exclusively on men (Murthy, Krumholz, and Gross 2004), to avoid whatever e�ect
an experimental drug might have on the female reproductive system among other concerns.
We now realize that men and women respond di�erently to drugs, as do patients of di�erent
age and race. It seems natural to categorize drugs into it works and it does not work, but
we now realize that it can pay to be a little more specific and look at the patient’s genetics
and this realization has led to the promising new field of personalized medicine. Herceptin is
one of the bigger early successes: in 3 out of 10 breast cancer patients the ERBB2 gene is
overexpressed, which means the gene creates an overabundance of growth factor receptors
that in turn encourage breast cancer cells to proliferate; Herceptin blocks these receptors and
works wonderfully in this subgroup of patients.
Unfortunately, our knowledge of the human genome is still patchy and generally the easiest
way to figure out whether a treatment might work better for one particular group is to run a
clinical trial with a broad range of participants and then look at which subgroups respond
best. The catch is that such analyses are susceptible to random flukes: group people by
particular combinations of age, gender, race, genetic and diagnostic markers and you end up
with hundreds of groups, and if it then turns out that the group of middle-aged blue-eyed
black females responds well to the treatment but most other groups do not, that’s usually
just a bizarre coincidence, not a promising new personalized treatment. It does not help
that pharmaceutical companies routinely run these kinds of analyses as a way to salvage
unpromising research, which is very easy to do: just pick the group of people who responded
best and figure out what, if anything, they have in common. (This is known as the Texas
sharpshooter strategy: fire a shot in a random direction, draw a target centered around where
it hit and congratulate yourself on the unsurpassed accuracy.)
Multiple testing. Functional MRI brain scans face a similar issue. fMRI scans allow us
to see which parts of the brain are most active at any given time, and by carefully honing
particular tasks or presenting study participants with certain stimuli, we can learn a lot
about human emotion, behavior, language and cognition. An old school experiment with a
treatment and a control group often needs just a single t-test to show whether the treatment
was e�ective, but a brain scan is a three-dimensional picture of blood flow in the brain
subdivided into thousands of little cubes known as voxels. Blood flow is a noisy measurement,
regions of the brain are not in exactly the same spot for every human being and some voxels
in a region can be highly active while others are not, and these scans require laborious
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preprocessing and thousands of statistical tests to make sense of. But if you run thousands
of tests and each has a tiny probability of returning the wrong result, those tiny probabilities
add up and any conclusion we make rests on quicksand.
Presumably exasperated by the outlandish claims of so many fMRI studies, psychologists
from the University of California at one point put a dead salmon through an fMRI scan
while showing the salmon “human individuals in social situations with a specified emotional
valence” and showed that even the tiny brain of a dead salmon can be used to produce highly
statistically significant results (Bennett et al. 2011). Neuroscientists have long been aware
of the problem and they have come up with di�erent methods to keep the false discovery
rate low, but these methods are not consistently or not correctly applied and the correlations
found in fMRI studies remain “puzzlingly high” (Vul et al. 2009).
Higher-order e�ects. When studying human health or social phenomena, often one factor
has a pretty straightforward e�ect on the other and so for example a sociological study
might conclude that for every additional year of study, you can expect to earn an additional
x euros or dollars. It is amazing how well linear relationships like the above manage to
approximate complex systems. . . but not always. A lot of things interact with a lot of other
things. Grapefruit doesn’t contain any cholesterol, but it deactivates the statin drugs many
people use to lower their cholesterol. According to the latest research salt does not actually
a�ect blood pressure, but it’s still not a good idea to eat a lot of it when you already have
high blood pressure. The e�ect of income on political identification is di�erent for those in
their thirties, fifties and the retired. These are examples of interactions, moderating e�ects,
varying e�ects and higher-order e�ects – really just di�erent names for the same thing. As
epidemiology and sociology, among other disciplines, have gotten more advanced, researchers
increasingly want to figure out what these varying e�ects are like, instead of pretending that
any outcome is a simple sum of factors.
Statistics can deal with varying e�ects quite easily, and all of the major statistical software
packages support higher-order regression models. But to tease apart these varying e�ects, we
need data for as many di�erent combinations of predictors as possible: we don’t just want
young and old study participants and participants who vote liberal or conservative, no, we
specifically need young conservatives, young liberals, middle-aged conservatives, middle-aged
liberals, old conservatives and old liberals. As the amount of potential combinations go
up, the amount of participants in each category goes down and some categories might have
no data at all. As a result, higher-order factors are much harder to find and scientists’
underestimate how many observations or study participants they need to have a reasonable
chance of finding an e�ect if it really exists.
Large-scale exploratory research. Epidemiologists have a wealth of long-term observa-
tional studies at their disposal with many, many variables they can study. Sometimes as a
scientist you start with a theory but sometimes you have no idea what you’re looking for, and
you just let the data guide you. These kinds of exploratory analyses can provide inspiration
for new drugs, e�ective social interventions or really just any scientific theory. It’s not hard:
just run a kitchen sink regression that includes every single variable you measured and let the
software figure out which variables are significant. But because exploratory research is, by its
very nature, guided by decisions that depend on the data, because the most vivid e�ects in
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the data are likely to be those that are overestimated (a phenomenon known as regression
to the mean), and because observational research can never rule out confounding variables,
whatever you find in an exploratory analysis can never be used to conclude with any degree
of certainty that x causes y and what the magnitude of that relationship might be.
A commonly held misconception among non-statisticians is that big data is reliable by nature
of the sheer amount of information that it works on, but in fact large sample sizes only reduce
random error and cannot magically correct for biases.
Nonlinear e�ects. The key insight of toxicology is that everything is a poison in large
enough doses, even water, and conversely most toxins have a treshold below which they are
harmless. As a result, you wouldn’t expect every additional milligram of TCDD (the poison
they used on former Ukrainian president Viktor Yushchenko) to increase the probability of
death by a flat percentage. Instead, the e�ect looks more like a hockey stick.
Similarly, economists often work with e�ects that peter out like price elasticities, e�ects that
have a sweet spot (not too high, not too low) and all other imaginable shapes of curves. It
is common in economics to use polynomial regression to account for these e�ects because
polynomials can approximate lines of any shape. Unfortunately, the resulting equations are
wonky and polynomial regression has the notorious habit of producing wildly di�erent fitted
curves for even small changes to the data, so it’s hard to trust these models.
Natural experiments. By randomly assigning subjects to the control and experimental
groups, we can ensure apples-to-apples comparisons between di�erent treatments without
having to worry so much about unmeasured confounders. Randomized experiments must
however trade external for internal validity: the apples-to-apples comparisons give us insight
into cause and e�ect, but they usually limit the intervention to a small group of study subjects
which might not be representative of the population at large. To get around this limitation,
epidemiologists and economists sometimes try to combine the best of observational and
experimental research by analyzing what are known as natural experiments. A very early
example is the 1960 analysis by Donald Thistlethwaite and Donald Campbell that compared
students who had received a certificate of merit with students who had only just missed the
mark and instead received a letter of commendation (Thistlethwaite and Campbell 1960).
The di�erences between these two groups are akin to those winning gold and those winning
silver: so small that we can just about consider students randomly assigned to the certificate
group or the commendation group and analyze the data as we would any other experiment. If
all goes well, a natural experiment is truly the best of both worlds: it avoids the confounding
of observational studies and the selection bias of experimental ones. But it can also be little
more than wishful thinking, of course these groups are the same!, of course this variable
mimics random assignment! and such wishful thinking leads researchers to much stronger
conclusions than are really warranted.
This ain’t your grandma’s science. We have all of these new research methods at our disposal,
a spectrum of personal preferences about how to design an observational or experimental
study and numerous statistical techniques to analyze the results. And that’s a good thing:
across all of science, technological and methodological innovations are making a lot of new
things possible. But statistics and methodology often has to play catch-up, and as a result
we’re continually flooded with unreliable scientific research.
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When 31 teams of researchers were asked to investigate whether soccer referees are more
likely to give red cards to dark skinned players, they got back 29 di�erent probabilities with
20 teams finding some degree of racism but the other 9 not finding statistical significance
(Silberzahn et al. 2014).
The poor quality of today’s science is not because researchers are too convervative, but
because they always try to stay on the cutting edge. As the statistician Andrew Gelman
quips: n is never large, because as soon as your sample size is large enough to comfortably
prove your point, there will always be that healthy temptation to go just that one step further
(Gelman and Hill 2006, 481). We do need scientists to be bold, but the unfortunate fact is
that, when it comes to science and statistics, being bold can get you in trouble.
Practices such as large-scale exploratory research and unvetted research methods result in
bias, and bias a�ects the positive predictive value of research, that is, it a�ects the probability
that the discoveries you read about in academic journals are actually true.
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Figure 1: Positive predictive value given medium power (0.5), di�erent levels of fertility (0.2,
0.35, 0.5) and di�erent levels of bias

Newer fields like personalized medicine run a di�erent risk: we don’t know yet whether or
not there’s much to find. And you can spend days and days looking for the monster of Loch
Ness, but if it doesn’t exist you won’t find it. When a field of study has low fertility (which
we won’t know), research in that field will have low positive predictive value.
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Figure 2: Positive predictive value given low bias (0.25), medium power (0.5) and 1, 5 or 10
investigative teams per association
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Take a look at the roc function for the R programming language, found in the appendix. It
allows you to play around with various values for Type I error, Type II error, fertility, bias
and multiple testing (of which more later) and see the results on positive predictive value.
The overall model is as follows:

positive finding negative finding
real fert. ◊ true pos. rate + bias ◊ false neg. rate arid. ◊ false pos. rate + bias ◊ true neg. rate
not arid. ◊ true neg. rate fert. ◊ false neg. rate

It is simple but surprisingly e�ective at teasing out the implications of interactions between
prior probabilities, power, bias and multiple teams / multiple testing.

The low power lottery

Seen through a statistical lens, a scientific study is a trade-o� between the risk we want to
run to accept fiction for truth (Type I error, false positive rate in the model above), the risk
we want to run to accept truth for fiction (Type II error, false negative rate in the model
above), the cost of gathering more data and and whether we’re looking for something that is
easy or hard to find.
Would you like to run no risk at all of committing a Type I error? That’s easy enough: never
claim to have discovered anything. Of course your Type II error will now be astronomically
high, you will have many false negatives. Are you interested in investigating subtle, tiny
e�ects? Get the largest sample you can and then make it twice as large, or accept that you
either won’t find anything or will find a lot of things that later on will turn out to be spurious
correlations. Cheap, fast, good: pick two. Low Type I error, low Type II error, small samples
or small expected e�ects: pick three.
Given this inevitable trade-o�, which of these four factors do scientists tend to sacrifice?

• We have by consensus set the highest acceptable Type I error at 5% and that’s going
to stay where it is, so unless we personally want to adhere to an even stricter standard
this factor is outside of our control.

• As science advances there is less and less how-hanging fruit, so we can’t get around
studying smaller e�ects.

• It might seem natural to just conduct larger studies, but because the variation of a
sample mean around its true mean is inversely proportional to

Ô
n, we would need four

times as many observations to cut the margin of error of an estimate in half, so large
samples are not cost e�ective. In any event, most labs don’t have the money for larger
studies.

We sacrifice the only remaining factor, power.
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Power ensures that if something is to be found, we will actually find it. There are currently
perhaps 5,000 black rhinoceros left in Eastern and Southern Africa. That’s a landmass of
more than 10 million square kilometers, so you might have to walk around for a very long
time before you come across a rhino and even if you don’t find one, that doesn’t mean you
can conclude that all black rhinos are extinct. As the result of our unhappy trade-o�, this
undecidability is precisely the situation scientists now find themselves in.
The immediate result of underpowered studies is that in most scientific disciplines, you really
cannot trust results that are not statistically significant to imply that no e�ect exists, because
there’s a lot of research going around where the chances of finding anything at all were slight
to begin with. This is why scientists describe use the bizarre incantation the null hypothesis
could not be rejected when they weren’t able to find a relationship between two variables. A
scientist might secretly prefer to say that they’ve found evidence against the existence of
such a relationship, but that’d be like saying your car keys do not exist because you can’t
find them.
Underpowered studies also have a secondary e�ect, which is much more insiduous. Let’s call
it the low power lottery.
To obtain a statistically significant result with a small sample, the e�ect must be very large.
Or rather it must appear to be very large, because whenever we find a large e�ect in a sample
it can either indicate an average population e�ect truly of this size, or an e�ect that was
overestimated relative to the population. If we mostly study large e�ects, overestimation
doesn’t happen as often. But if we mostly study small or uncertain e�ects, exaggerated
becomes a bigger problem and there’s even a chance of finding a statistically significant e�ect
that’s in the wrong direction. Andrew Gelman calls these Type M and Type S error, errors
of magnitude and sign.
How big of a problem? Here’s an example of what happens when you try to detect a di�erence
between two groups of 0.1 standard deviation using 30 subjects in total.
The power of such a study is only 6%. To find a statistically significant result, it has to
exaggerate the true population e�ect by a factor of 3.7. There’s a 22% chance that any
statistically significant e�ect you find will be negative, the opposite direction from the true
e�ect.

n d ¥ r power minimal Type M Type S
10 0.1 0.05 0.05 7.29 0.34
20 0.1 0.05 0.06 4.70 0.27
30 0.1 0.05 0.06 3.74 0.22
10 0.3 0.15 0.07 2.43 0.12
20 0.3 0.15 0.10 1.57 0.05
30 0.3 0.15 0.12 1.25 0.02
10 0.5 0.24 0.11 1.46 0.04
20 0.5 0.24 0.19 0.94 0.01
30 0.5 0.24 0.26 0.75 0.00
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In and of itself, scientific research that has low power, small expected e�ects and small
sample sizes is not a cause for alarm. It is a waste of time and taxpayer’s money and it
reflects poorly on the primary investigator, but underpowered studies pose no threat to the
underlying statistics and how we interpret them: if 17 studies find no e�ect or a tiny one, but
a 18th fluke study gets (un)lucky and finds an oversized e�ect through an unrepresentative
sample in which the magnitude of the real e�ect is exaggerated, then few people would find
the evidence from this 18th study to be very convincing. Neither would a formal statistical
meta-analysis. The very essence of statistics is that sometimes, strange things do happen
for no reason. Large e�ect sizes are often adjusted downwards by follow-up research (J. P. a
Ioannidis 2008) and this is annoying but one could equally argue that these adjustments are
actually an example of the wonderful self-correcting nature of science: in the end, we get
where we need to be.
But what if those first 17 studies never make it to publication and the 18th study does – it
is after all the only study to report a significant e�ect? 100% of the available evidence will
then point to a very large imaginary e�ect.
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replication
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significant
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Figure 4: Nonsignificant results stay under the radar, significant ones are inflated and get
published.

The resulting bias is known as publication bias and also sometimes called the file drawer e�ect,
because researchers tend to ditch studies that did not result in statistically significant findings
in a proverbial file drawer. Type I error is then no longer equal to – but to 1 ≠ (1 ≠ alpha)n,
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not because of multiple testing within a single study but because of multiple teams all probing
the same correlations.

0.50

0.55

0.60

0.65

5 10 15 20
multiple teams

po
si

tiv
e 

pr
ed

ic
tiv

e 
va

lu
e

factor(bias)
0.2
0.35
0.5

Figure 5: Positive predictive value given medium power (0.5), di�erent levels of bias (0.2,
0.35, 0.5) and teams probing the same associations

The file drawer e�ect might sound bizarre and unrealistic: surely if di�erent labs study
the same thing, they’ll keep each other in the loop? But the scientific community is a big
place and the main fora for sharing scientific knowledge, academic journals and conferences,
are usually not interested in null findings. Scientists themselves usually are not, either:
experiments that don’t result in significant findings can be seen as failings, not something you
would widely share with colleagues at di�erent institutions. Furthermore, biased statistical
results usually are the result of a combination of publication bias, liberal statistical analyses,
post-hoc hypothesizing and so on all in a single package, so it does not literally require ten
or twenty studies to win the low power lottery, just a couple.
Publication bias can easily be visualized using a funnel plot. A funnel plot is a plot of di�erent
studies that share the same intervention and outcome, with the point estimate on the x-axis
and the sample size on the y-axis. Other funnel plots might put the 95% confidence interval
on the x-axis and 1 over the standard error on the x-axis, which amounts to the same thing.
If no bias were present, you should see a nicely symmetrical pyramid shape: estimates roughly
centered around the true e�ect size, but spread out more at lower sample sizes. Instead,
funnel plots of actual published research tend to be curiously lopsided, show a gap in the
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middle or too many extreme estimates, with few small studies reporting small e�ects.
One particularly vivid example is included in a meta-analysis from 2009 that reviewed
whether setting a minimum wage leads to fewer available jobs, which shows evidence of both
publication bias and ideological bias, where a positive e�ect of minimum wage on job creation
is less likely to be reported. (Doucouliagos and Stanley 2009)

Figure 6: Funnel graph of estimated minimum-wage e�ects, n=1424, showing publication
bias and ideological bias; excerpted from Doucouliagos and Stanley 2009

Perverse incentives

Usually, when talking of conflicts of interest we think of pharmaceutical companies
sponsoring research or conducting it in house, or of think thanks masquerading opinions as
research, and these are indeed good examples of situations in which scientists are subtly or
not so subtly pushed towards the outcome that is to the financial or ideological advantage of
the sponsor.
Medical journals are increasingly endorsing the CONSORT standards which require publi-
cation of a protocol before conducting the study and transparency about who funded the
research and other potential conflicts of interest. One of the meta-analyses that motivated
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the CONSORT standards calculated that industry-sponsored research has four times the
odds of reaching the conclusion most favorable to the sponsoring party (Lexchin et al. 2003).
It’s an uphill battle and a particular problem for the trustworthiness of medical research, but
it’s also a fairly obvious problem so we won’t discuss it in detail.
The most common form of bias is much subtler and not due to an explicit agenda or conflict
of interest but due to perverse incentives and wishful thinking.
Every scientist hopes they will one day discover something hitherto unknown or construct
a theory that finally makes sense of unexplained observations, and while this desire is the
fuel that keeps them going, it also runs counter to the scientific imperative to be our own
devil’s advocate, to triple check our results and to not make any claims without strong
evidence. When an experiment returns a statistically significant result, it is tempting to shut
o� our brains for a minute and conclude well, the stats work out, this is a bona fide scientific
discovery even though in reality inferential statistics are closer to a sanity check and just
one small part of what makes a scientific finding credible. When an experiment does not
return a statistically significant result, it is tempting to go and hunt for small changes to
the analysis that might still vindicate your hypothesis – get rid of an outlier, dichotomize a
variable, change from a parametric to a nonparametric test.
Bias also manifests itself in the choice of what to study and how. Particularly in
psychology, journal editors put a premium on results that are counterintuitive or unexpected;
people (and scientists are people!) enjoy reading narratives that proclaim that everything you
thought you knew is wrong. One well-known example is a study by Daniel Oppenheimer and
colleagues that was published in 2010 with the particularly catchy title “Fortune favors the
bold (and the italicized)”. The study purported to show that text printed in small and grayed
out fonts is remembered more easily than the same material presented in more legible script,
presumably because readers have to put in that extra bit of e�ort to decipher everything and
the e�ect encourages their minds stay sharp. It’s a wonderfully counterintuitive finding. Two
years later Hannah Haysom at the University of Queensland tried to replicate the e�ect but
couldn’t, and more recent attempts haven’t been able to either (Meyer et al. 2015).
Overturning conventional wisdom is a noble undertaking, but counterintuitive hypotheses are
by definition less likely to be true. Given that many of these results come from underpowered
studies, it is not surprising that these “cute” research hypotheses rarely survive replication.
Scientists also have reasons to stick to small and underpowered research despite its
severe shortcomings. The old Upton Sinclair quip is very apropos here: “it is di�cult to get
a man to understand something, when his salary depends upon his not understanding it!”
Given a choice between directing the fixed budget of a research grant towards data collection
or towards salaries, scientists have a vested interest in choosing the latter. Papers in scientific
journals often conclude with the cliché that more research is needed, but it isn’t so hard
to argue that in fact less research is needed, as Trish Greenhalgh at the London School of
Medicine insists (Greenhalgh 2012). Rodger Kessler and Russell Glasgow even go so far as to
suggest a moratorium on randomized controlled trials in healthcare (not pharmacology) until
we have figured out how to establish a clear pathway from trial to practice and policy (Kessler
and Glasgow 2011), as so much medical research is lost in translation. But unavoidably fewer
studies means less work for scientists.
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The statistical analysis of experimental and observational data provides another locus for
bias.
In an ethnography of cognitive psychology labs, sociologist David Peterson describes how
teams of researchers over time start to rationalize questionable research practices and adopt
a bend-but-don’t-break philosophy: they would never fake data but might ignore sloppy data
coding, they would never just run a battery of alternative statistical procedures and pick
the most flattering but might massage the data under the well-meaning guise of cleaning it.
Peterson includes one particularly pithy quote from a researcher: “You want to know how it
works? We have a bunch of half-baked ideas. We run a bunch of experiments. Whatever
data we get, we pretend that’s what we were looking for.” (Peterson 2015, 6)
Even scrupulous scientists are inevitably drawn towards this moral gray zone: scientific
findings published in high-profile scientific journals are the primary form of scientific currency
and publications determine who gets tenure and grants. Conscientious scientists will on
average have fewer publications and thus are selected against and slowly driven out of
academia (Smaldino and Mcelreath 2016). Focusing on quantity over quality, on conducting
as many underpowered studies as you can in the shortest possible amount of time, “often
represents a more e�cient research strategy (in terms of finding p < .05)” (Bakker, Dijk, and
Wicherts 2012, 543).
The shift happens so gradually and come to seem so normal that few scientists are aware
that these practices jeopardize their work; they either don’t see the harm (John, Loewenstein,
and Prelec 2012) or are not aware that their actions bias the outcome (Gelman and Loken
2013). As a result, the desperate pleas see to increase the quality of research by the likes
of Douglas Altman and Tom Lang in medicine (Altman 1994, Lang (2004)), Paul Romer in
economics (Romer 2015), Tal Yarkoni in neuroscience (Yarkoni 2009), Marjan Bakker and
Jelle Wicherts in psychology (Bakker and Wicherts 2011) and their exhortations to please
consider larger samples, good experimental design, valid proxies, clean statistics. . . these
recommendations all fall on deaf ears because readers and listeners nod in agreement, remark
to themselves “yeah, some researchers really are clueless”, and it never occurs to anyone that
the criticism might apply to them personally.
If scientists don’t realize that criticism of questionable research practices applies to them, it
makes no sense to try and improve statistical education, as it will fall on deaf ears. Instead,
it seems wiser to fight against the perverse incentives that cause scientists to adopt these
questionable practices in the first place (Nosek, Spies, and Motyl 2012).

A perfect storm

Science is hard. Biologists estimate that over one in four cell lines used in drug research
are mislabeled or contaminated with other cells (Lorsch, Collins, and Lippincott-schwartz
2014). One in five published genomics papers that use Excel were recently found to su�er
from the software’s automatic conversion of gene indicators into dates, e.g. turning SEPT2
into the 2nd of September (Ziemann et al. 2016). The majority of published research papers
contain statistical errors (Strasak et al. 2007), often tiny ones like o�-by-one errors in a test’s
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degrees of freedom (Bakker and Wicherts 2011) but inappropriate models and tests are not
rare. Decades of evidence pointing to the beneficial e�ect of moderate alcohol consumption
on heart health was overturned in the 2000s because few of the original studies had properly
accounted for the fact that, as a category, non-drinkers include former alcoholics and those
who abstain for medical reasons, making drinkers look healthy in comparison (Fillmore et al.
2007).
Philosopher José Ortega y Gasset once wrote that “experimental science has progressed
thanks in great part to the work of men astoundingly mediocre, and even less than mediocre.
That is to say, modern science, the root and symbol of our actual civilization, finds a place for
the intellectually commonplace man and allows him to work therein with success.” (Ortega y
Gassett 1930, 110 as popularized by J. R. Cole and Cole (1972)).
Lousy research is refuted by other scientists, meta-analyses distill the truth from noisy studies,
replications determine whether earlier research generalizes beyond its original setting and
independent re-analysis provides for independent verification. Science can survive mistakes,
incompetence, bias and even fraud: it is self-correcting.
The most dangerous kinds of scientific practices, then, are those which corrode science’s
self-correcting mechanisms. This is what makes publication bias the ultimate threat to
scientific progress. Today’s scientific weather is a perfect storm of antiquated statistical
standards, an overabundance of promising but insu�ciently understood techniques and
methods, perverse incentives that lead to questionable research practices and investigations
into intrinsically unlikely hypotheses using underpowered studies, with publication bias as the
ultimate catalyst, the self-imposed veil that causes “null findings” to be swept under the rug.
Together, they create a corrosive mix that severely impairs science’s ability to self-correct.

Higher standards

The knee jerk reaction of those who first learn of the replication crisis is to demand more
stringent standards. If we require P-values to be at or below 5% to declare a statistically
significant finding, perhaps we should henceforth require at or below 1%? But as we saw
earlier when discussing the low power lottery, statistical standards are not really like bars to
jump over, they’re akin to communicating vessels that maintain equilibrium. Shrink Type
I error and a heap of Type II error will take its place. Demand higher sample sizes and
scientists will use it as an excuse to hunt for patterns that are harder to detect. Ask to see
power calculations before data is collected, and wishful thinking will lead the investigator to
plug in a high expected e�ect size which in turn keeps the minimum required sample size
small.
Given that studies in psychology, for example, even now rarely attain 50% power, more
stringent standards in that field without concomitant changes to research practices would
further increase Type M error.
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The replication police

Scientists like Seth Roberts contend that the core mission of science is to keep discovering
new things about human behavior and the natural world, not to be right all the time. False
discoveries will be filtered out eventually anyway. In fact, before his untimely death Roberts
was an advocate for large-scale citizen science and self-experimentation: the idea that we
can learn a lot from noisy, inexpertly measured and unblinded data collection such as people
experimenting at home with di�erent diets, exercise regimens and so on (Roberts 2004).
All the time spent on replication, according to this argument, is time not spent on real science,
not too di�erent from medieval scholars who would spend their entire lives ruminating on
the meaning of a particular paragraph of Galen of Pergamum’s writing.
John Ioannidis himself has warned scientists that it’s not easy to find a solution to the
replication crisis without collateral damage: we can throw away all research with even
minimal bias, but then we’d never learn anything (J. P. a. Ioannidis 2014).
New avenues for research have more than once started with small samples, quirky statistics
and dubious interpretations. Ronald Fisher, for example, makes a strong case that Gregor
Mendel’s experiments on inheritance in garden peas were fabricated (Fisher 1936), but it
nonetheless helped launch modern genetics.
One case worth thinking about is an experiment by chemist Georg Wittig from 1960 that did
not survive replication and was formally retracted by Wittig in 1964, only to be resurrected
in 2015 by another team led by Peter Chen who found out that Georg Wittig was right all
along (Künzi et al. 2016), leading the science blog Retraction Watch to ask “50 years later, is
it time to retract a retraction by a Nobel prize-winning author?” (Perkel 2015)
Georg Wittig’s original experiment described a novel method for cyclopropanation, which is
a chemical process that shapes hydrocarbons into ring forms by introducing an additional
carbon element and letting it steal two electrons from a triple bond or from two double bonds.
These ring molecules are used to create antibiotics as well as cyclopropane, which used to be
an important anesthetic and is where the process got its name. Making these ring molecules
is not an easy process, so the new method was an incredible advance for chemistry. Except
that when other chemists tried to replicate the experiment in 1964, they could not, leading
to Wittig’s retraction. But in 2015 the aforementioned team at ETH Zurich figured out what
the problem was: to work, the process needs a small amount of nickel as a catalyst. Labs
back then did not have the sophisticated machinery we do now to avoid contamination by
trace elements, so nickel contamination is probably what led to Wittig’s original discovery.
Strictly speaking Wittig’s retraction still stands: without nickel, the reaction does not work
as stated. But imagine a di�erent world, where the failed replication in 1964 had not been
interpreted as relegating Wittig’s technique to the graveyard of unproductive scientific ideas,
but instead as a prompt to try harder, and to try and explain why these two results disagreed.
In such a world we might not have had to wait until 2015 to rediscover what we already knew
in 1960.
This concern is echoed by a small but vocal clique of present-day scientists. As a biologist,
Mina Bissell worries that replications might lead us to prematurely give up on promising
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lines of research and that they exalt the null results of mediocre scientists at the expense
of top scientists who did manage to come up with important new findings (Bissell 2013).
Daniel Gilbert talks of a “replication police” in psychology and how they are “shameless little
bullies” (Gilbert 2014). They worry that replications can be underpowered, run by scientists
with a vindictive agenda and poorly executed.
The critique of Bissell and Gilbert can be interpreted as nothing more than a useful reminder
that replications need to ensure that they’ve taken every possible care to ensure that the
e�ect can be found if indeed it’s there.
But their critique contains a more harmful message as well, suggesting that only scientists who
have been able to find similar e�ects in the past should be allowed to conduct a replication,
and that failing to replicate previous studies just makes you a schmuck. In this form, the
critique is really not so very di�erent from demanding that the e�cacy of homeopathic
medicine only be verified or rejected by homeopaths. One scientist disparagingly calls this
the Harry Potter Theory of replication (Neuroskeptic 2014): running an experiment is like
casting a magic spell, wizards can do it but muggles can’t. Therefore, failing to replicate a
study just shows you lack the magic touch.
Scientists are a smart bunch, so it is no surprise that they can find creative ways to defend
their theories in the face of contradicting evidence, forgetting that science, unlike law, is at
least in principle a collaborative search for the truth and not an adversarial process.
Paul Meehl blamed the slow progress in much of psychology on this tendency of researchers
to get defensive about their pet theory: “There is a period of enthusiasm about a new theory,
a period of attempted application to several fact domains, a period of disillusionment as the
negative data come in, a growing ba�ement about inconsistent and unreplicable empirical
results, multiple resort to ad hoc excuses, and then finally people just sort of lose interest in
the thing and pursue other endeavors.” (Meehl 1978, 807)

Perverse incentives

Attempts at setting higher statistical standards are likely to backfire, but we can set higher
standards in other ways. We have already mentioned how the CONSORT guidelines encourage
or require full disclosure of any conflicts of interest and preregistration of the protocol. The
Panton Principles (Murray-Rust et al. 2010) and Science Code Manifesto (Barnes 2011) are
making scientists aware of the need to freely share code with colleagues to allow for their
analyses to be verified independently. Fields like neuroscience are slowly converging around a
couple of accepted techniques for analyzing fMRI data, all of which keep the false discovery
rate low. The journal Basic and Applied Social Psychology no longer requires null hypothesis
significance testing (circumventing the low power lottery) and PLOS ONE published a
collection of papers in 2015 dedicated to “Negative, Null and Inconclusive Results”. Scientific
Data and dozens of other scientific journals now exist dedicated solely to the publication of
data so researchers can get credit for good experimental design and not just for significant
findings.
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With all of these high profile examples, though, it is easy to forget that today’s scientific
institutions and practices are overwhelmingly the same they were 10 or 20 years ago. It is
easy to be lulled into complacency by thinking of the replication crisis as something akin to
growing pains. Growing pains, after all, disappear without much active intervention. But
consider that much of what John Ioannidis described in 2005 in large part echoes work by Paul
Meehl in the 1960s. Fifty years is a long time and if anything the pressure to publish or perish
has become worse, with more perverse incentives than ever to conduct and publish shoddy
science. The replication crisis will not abate until these perverse incentives are removed:
when publications stop judging the quality of scientific work on the basis of P-values, when
tenure committees look beyond publications and impact factors, and when universities and
governments realize there’s more important things in the world than the latest Shanghai
Ranking.
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Appendix: calculating posterior predictive value

# Operating characteristics of scientific publications for a given
# nominal Type I error, Type II error, fertility of a field of study,
# bias in favor of significant findings and multiple teams testing the
# same associations. A reformulation of the 2005 Ioannidis model.
roc <- function(alpha, beta, prior=0.5, bias=0, n=1) {

fertility <- prior

aridity <- 1 - fertility

false_negative_rate <- beta^n

true_negative_rate <- (1 - alpha)^n

false_positive_rate <- 1 - true_negative_rate

true_positive_rate <- 1 - false_negative_rate

true_positives <- fertility * true_positive_rate +

bias * false_negative_rate

false_positives <- aridity * false_positive_rate +

bias * true_negative_rate

true_negatives <- aridity * true_negative_rate

false_negatives <- fertility * false_negative_rate

all_positives <- true_positives + false_positives

all_negatives <- true_negatives + false_negatives

odds <- true_positives / false_positives

list(

true_positives=true_positives,

false_positives=false_positives,

true_negatives=true_negatives,

false_negatives=false_negatives,

sensitivity=true_positives / fertility,

miss_rate=false_negatives / fertility,

specificity=true_negatives / aridity,

fall_out=false_positives / aridity,

positive_likelihood_ratio=true_positives / false_positives,

negative_likelihood_ratio=false_negatives / true_negatives,

diagnostic_odds_ratio=(true_positives * true_negatives) /

(false_positives * false_negatives),

positive_predictive_value=true_positives / all_positives,

false_omission_rate=false_negatives / all_negatives,

false_discovery_rate=false_positives / all_positives,

negative_predictive_value=true_negatives / all_negatives,

accuracy=true_positives + true_negatives

)

}
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