
 

 

 

 

 

 

 

Quantitative evaluation of network inference 
methods for single-cell cancer regulomes 

 

 

 

 

Charlotte DE VOGELAERE 

 

 

 

 

 

Master’s dissertation submitted to obtain the degree of  

Master of Science in Biochemistry and Biotechnology 

Major Bioinformatics and Systems Biology 

Academic year 2015-2016 

 

 

 

 

Promoter: Prof. Dr. Ir. Katleen De Preter 

Scientific supervisor: Ir. Robrecht Cannoodt  

UGent  



 

 



 

 

 

 

 

 

 

 

 

Quantitative evaluation of network inference 
methods for single-cell cancer regulomes 

 

 

 

 

Charlotte DE VOGELAERE 

 

 

 

 

 

Master’s dissertation submitted to obtain the degree of  

Master of Science in Biochemistry and Biotechnology 

Major Bioinformatics and Systems Biology 

Academic year 2015-2016 

 

 

 

 

Promoter: Prof. Dr. Ir. Katleen De Preter 

Scientific supervisor: Ir. Robrecht Cannoodt  

UGent  



 

 

 

 



 

i 

 

Acknowledgements 
 

 

In the first place, I would like to thank my promoter Prof. Dr. Ir. Katleen De Preter for 
allowing me to conduct research in the translational bioinformatics group at the 
CMGG and for guiding me in the right direction during our weekly meetings. Working 
with single-cell sequencing data was challenging, but I was very grateful for the 
opportunity to explore this state-of-the-art data type. I would also like to thank Ir. 
Robrecht Cannoodt, my supervisor, for his feedback and all his help, especially with 
the R programming language. 

Further, I am grateful to my fellow Bioinformatics and Systems Biology students. The 
great atmosphere during out lectures and lunchbreaks really made the last two years 
the best years of my education at UGent.  

Finally, I would also like to thank my parents for helping me realize that Medicine 
was not the most suitable choice for me, and for allowing me to switch to 
Biochemistry and Biotechnology, my brothers for being great roommates and Stefan, 
for always helping me look on the bright side of things. 

 

 

Charlotte De Vogelaere, June 2016 

  



ii 

 



 

iii 

 

Table of contents 
 

Acknowledgements .....................................................................................i 

Table of contents ...................................................................................... iii 

List of Abbreviations ................................................................................ vi 

Nederlandse samenvatting ..................................................................... vii 

English summary .................................................................................... viii 

Part 1: Introduction ................................................................................ 9 

1.1. Oncogenesis ........................................................................................................... 9 

1.1.1. How do oncogenic cells differ from healthy cells .......................................... 9 

1.1.2. Glioblastoma multiforme .............................................................................. 10 

1.1.3. Melanoma ....................................................................................................... 12 

1.2. Single-cell RNA-seq ............................................................................................ 13 

1.2.1. Next generation sequencing for transcriptomics ........................................ 13 

1.2.2. Applications and advantages ........................................................................ 15 

1.2.3. Challenges ....................................................................................................... 16 

1.3. Network inference ............................................................................................... 17 

1.3.1. Absolute value of Pearson’s correlation ...................................................... 18 

1.3.2. Algorithm for the Reconstruction of Gene Regulatory Networks ............. 18 

1.3.3. Context likelihood relatedness ...................................................................... 18 

1.3.4. Gene Network inference with Ensemble of Trees ....................................... 19 

1.3.5. Biological networks have scale-free properties ........................................... 19 

Part 2: Aims ........................................................................................... 21 

2.1. Setting of the problem ........................................................................................ 21 

2.2. Evaluation of network inference methods ........................................................ 21 

Part 3: Results ....................................................................................... 23 

3.1. Single cell RNA-seq datasets .............................................................................. 23 

3.1.1. Quality control ............................................................................................... 23 

3.1.2. Mapping and normalization .......................................................................... 24 

3.1.3. Melanoma ....................................................................................................... 25 

3.2. Population vs. pooled vs. single cell ................................................................... 26 



iv 

 

3.2.1. Pooled single-cell expression levels ............................................................... 26 

3.2.2. Correlation ...................................................................................................... 26 

3.2.3. Dimensionality reduction .............................................................................. 28 

3.2.4. Conclusion ...................................................................................................... 31 

3.3. Network inference glioblastoma ........................................................................ 32 

3.3.1. Filtering of the expression matrix................................................................. 32 

3.3.2. Gold standard ................................................................................................. 32 

3.3.3. Nonmalignant cells ......................................................................................... 33 

3.3.4. Performance ................................................................................................... 33 

3.3.5. Conclusion ...................................................................................................... 36 

3.4. Network inference melanoma ............................................................................ 37 

3.4.1. Filtering of the expression matrix................................................................. 37 

3.4.2. Gold standard ................................................................................................. 37 

3.4.3. Nonmalignant cells ......................................................................................... 38 

3.4.4. Performance ................................................................................................... 38 

3.4.5. Hubs ................................................................................................................ 40 

3.4.6. Conclusion ...................................................................................................... 44 

Part 4: Discussion ................................................................................. 45 

4.1. Conclusion ........................................................................................................... 45 

4.2. Limitations ........................................................................................................... 46 

4.3. Future aspects of network inference in single-cells ......................................... 47 

Part 5: Samenvatting discussie ........................................................... 49 

5.1. Conclusie .............................................................................................................. 49 

5.2. Limitaties ............................................................................................................. 50 

5.3. Toekomstige ontwikkelingen.............................................................................. 51 

Part 6: Materials and Methods ........................................................... 53 

6.1. Glioblastoma data ............................................................................................... 53 

6.1.1. Download data ................................................................................................ 53 

6.1.2. Quality control ............................................................................................... 53 

6.1.3. Mapping and normalization .......................................................................... 53 

6.1.4. Filter expression matrix ................................................................................ 54 

6.2. Melanoma data .................................................................................................... 54 



 

v 

 

6.2.1. Download data ................................................................................................ 54 

6.2.2. Filter expression matrix ................................................................................ 54 

6.3. Control data ......................................................................................................... 54 

6.3.1. Glioblastoma ................................................................................................... 54 

6.3.2. Melanoma ....................................................................................................... 55 

6.4. Network inference ............................................................................................... 55 

6.4.1. Regulators ....................................................................................................... 55 

6.4.2. Gold standard ................................................................................................. 56 

6.4.3. ARACNE and CLR ........................................................................................ 56 

6.4.4. GENIE3 ........................................................................................................... 57 

6.4.5. Absolute value of Pearson’s correlation ...................................................... 57 

6.4.6. Hubs ................................................................................................................ 57 

6.5. Pooled single-cell vs. population RNA-seq........................................................ 58 

6.5.1. Pooling ............................................................................................................. 58 

6.5.2. Correlation ...................................................................................................... 58 

6.5.3. Comparison of the sequencing depth ........................................................... 58 

6.5.4. Dimensionality reduction .............................................................................. 58 

References ................................................................................................ 61 

Attachments ............................................................................................. 65 

I. Supplementary tables ................................................................................ 65 

II. Code ............................................................................................................. 65 

 

 



vi 

 

List of Abbreviations 
 

ARACNE Algorithm for the Reconstruction of Accurate Cellular Networks 

AUC Area under the curve 

CLR Context likelihood relatedness 

ECM Extracellular matrix 

ERCC External RNA controls consortium  

GENIE3 Gene Network Inference with Ensemble of Trees  

GEO Gene Expression Omnibus 

GO Gene Ontology 

GRN Gene regulatory network 

GST Gene set test 

MDS Multidimensional scaling 

MGDB Melanoma gene database 

NI Network inference 

NIH National Institute of Health 

PINA Protein Interaction Network Analysis  

PR precision-recall 

QC Quality control 

ROC Receiver Operating Characteristic  

scLVM single-cell Latent Variable Model 

scRNA-seq single-cell RNA-sequencing 

SRA Sequence Read Archive 

TCGA The Cancer Genome Atlas 

TPM Transcripts Per Million 

 

 



 

vii 

 

Nederlandse samenvatting 
 

Recente ontwikkelingen op het vlak van transcriptomics hebben de ontwikkeling van 
een high-throughput sequeneringsmethode die transcriptomen kan analyseren op 
single-cell niveau mogelijk gemaakt: single-cell RNA-seq. De eerste resultaten die 
gegenereerd werden aan de hand van deze methode, vooral in de 
ontwikkelingsbiologie en in immulogisch onderzoek, zijn veelbelovend. Daarbovenop 
is deze methode naar voor aan het treden in kankeronderzoek, waarbij vooral de 
nadruk gelegd wordt op het blootleggen van tumor heterogeniteit. Desondanks 
hebben onderzoekers nog altijd te kampen met enkele uitdagingen geassocieerd 

met dit nieuw datatype, op vlak van computationele methodes. Eén van de 
manieren om nieuwe biologische inzichten te verkrijgen op basis van expressiedata, 
is de inferentie van gen regulatorische netwerken. Momenteel bestaat er geen 
consensus over welke netwerk inferentie methode best gebruikt kan worden in 
single-cell data. De hoofddoelstelling van deze thesis is het evalueren van 
verschillende netwerk inferentie methodes aan de hand van een gouden standaard 
van kanker interacties in twee veelbestudeerde kankertypes: melanoma en 
glioblastoma. Ten eerste moest een gouden standaard van interacties in deze 
kankertypes opgesteld worden. Hiervoor werd een literatuurstudie uitgevoerd. Ten 
tweede werden de methodes geëvalueerd voor hun vermogen om deze interacties 
terug te vinden. Hierbij werd ook rekening gehouden met interacties die voorkomen 

in niet-kwaadaardige cellen. Tenslotte werd, voor de melanoma dataset, een analyse 
van de regulatoren uitgevoerd, waarbij regulatoren met een hoog aantal connecties 
geïdentificeerd werden als hubs. Deze regulatoren met veel connecties spelen 
mogelijks een belangrijke biologische rol. 

Op basis van deze analyse kon geen enkele methode naar voor geschoven worden 
als consensusmethode voor netwerk inferentie in single-cell RNA-seq. Het evalueren 
van een community-based benadering, waarbij de resultaten van verschillende 
netwerk inferentie methodes gecombineerd worden, lijkt echter interessant. Het 
gebruik van een dergelijke benadering zou potentieel interessante kandidaat genen 
naar voor kunnen schuiven, die dan verder geanalyseerd kunnen worden in vitro en 
in vivo.  
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English summary 
 

Recent developments in the field of transcriptomics have enabled the development 
of a high-throughput sequencing method that can analyze transcriptomes on a single 
cell level: single-cell RNA-seq. The first applications of this new technique have 
shown great promise in developmental and immunological research. Additionally, 
this method is also emerging in cancer research, focusing on uncovering tumor 
heterogeneity. However, researchers are still facing numerous computational 
challenges associated with this new datatype. One of the ways to obtain new 
biological insights based on expression data is the inference of gene regulatory 

networks. Currently, there is no consensus on which method to use for network 
inference in single-cell data. The main aim of this thesis is to evaluate network 
inference methods on their ability to find a set of gold standard interactions in two 
cancer types that have been extensively researched in the past: glioblastoma and 
melanoma. First, the gold standard needed to be constructed; this was done based 
on interactions described in literature. Secondly, the methods were scored using this 
gold standard, while taking into account interactions that occur in nonmalignant cells 
of the same type. Finally, for the melanoma dataset, the highly connected regulators 
were analyzed, as these were possible hubs in the network, meaning they could be 
of biological importance. 

No single method showed a superior performance based on this analysis. However, 

it might be worth investigating a community-based approach. Combining the results 
from different network inference methods for the analysis of highly connected 
regulators might identify interesting candidate genes for further investigation in vitro 
and in vivo.     
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Part 1: Introduction 

1.1. Oncogenesis 

1.1.1. How do oncogenic cells differ from healthy cells 

Cancer is a disease in which mechanisms involved in cellular growth and proliferation 
fail, causing cells to divide uncontrollably. It is suggested that the same fundamental 
capacities are acquired by most cancers, including resistance of cell death, replicative 
immortality and evasion of growth suppressors (Figure 1) (Hanahan & Weinberg 
2000; Hanahan & Weinberg 2011). This is facilitated by two enabling characteristics: 

genome instability and tumor-promoting inflammation (Hanahan & Weinberg 2011).  

 

 

Microscopically, a lack of contact inhibition can be observed as well as the specific 

characteristics of rapidly growing cells, i.e. a high nucleus-to-cytoplasm ratio, 
prominent nucleoli, an increased frequency of mitotic cells, and relatively little 
specialized structure. Nonmalignant cells are localized to their original tissue by cell-
cell adhesion signals and physical barriers, e.g. the basement membrane. This 
localization is also seen in benign tumors, while cells in malignant tumors, in 
contrast, have the ability to invade in the surrounding tissues, migrating to new sites 
and forming secondary tumors or metastases (Lodish et al. 2013). 

Currently, tumors are regarded as complex tissues, focusing not only on the cancer 
cells themselves, but also on the interactions with their neighboring nonmalignant 
cells, including immune cells, blood vessels, the extracellular matrix (ECM), etc. 
(Figure 2) (Hanahan & Weinberg 2000; Hanahan & Weinberg 2011). For instance, it is 

suggested that reciprocal signaling between stromal cells and cancer cells further 

Figure 1: The hallmarks of cancer – Several features need to be acquired by cancer cells in order for them to evolve to 
a neoplastic state. Figure adapted from Hanahan & Weinberg 2011. 



Introduction 

 

10 

 

enhances cancer cell evolution, on the one hand, and, on the other hand, 
reprograms stromal cells to assist the cancer cells in various aspects of tumor 
formation (Hanahan & Weinberg 2011). Furthermore, a pan-cancer analysis among 
12 cancer types reports that tumors often consist of multiple clones, each with a 
distinct genetic background. This intratumoral heterogeneity can be seen in all 
investigated cancer types. The amount of clones is reported to be predictive for the 
therapeutic outcome and to have implications for the development of therapeutic 
resistance (Andor et al. 2016). 

 

 

 

In 2005, The Cancer Genome Atlas (TCGA) was launched by the National Institute of 
Health (NIH) in an attempt to create a better understanding of genomic alterations 
involved in different types of cancer in order to improve cancer prevention, early 
detection and treatment. To this end, high-throughput technologies, based on 
microarrays and next-generation sequencing methods, were applied to over 30 
cancer types, studying single tumors as well as comparing diverse tumor types in 
pan-cancer analyses. The generated data is publicly available, enabling analysis by 
other researchers (Tomczak et al. 2015).  

 

1.1.2. Glioblastoma multiforme 

Glioblastoma multiforme or glioblastoma is the most common brain tumor in adults 
(Bleeker et al. 2012) and can arise de novo as a primary glioblastoma or secondary to 
a low-grade glioma. The former generally presents in older patients and is 
characterized by low survival rates and poor responses to therapy. Glioblastoma was 
the first cancer to be studied by TCGA (McLendon et al. 2008), and the initial findings 
were further researched in 2013 (Brennan et al. 2013), also including data generated 
by next-generation sequencing technology. 

The TCGA pilot project (McLendon et al. 2008) mapped somatic mutations in 91 
tumor samples to major pathways known to be involved in glioblastoma. This project 

Figure 2: Cells of the tumor microenvironment – A tumor does not only consist of cancer cells, but contains a diverse cell 
types which all contribute to tumor biology, collectively enabling tumor growth. Figure taken from Hanahan & Weinberg 2011 
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uncovered that most tumors showed biologically relevant deregulations in three 
core pathways: p53, retinoblastoma (RB) and receptor tyrosine kinase 
(RTK)/RAS/phosphoinositide-3 kinase (PI3K) (Figure 3). Based on this data, a 
molecular signature could be identified for two previously known (Phillips et al. 
2006) and two newly identified glioblastoma subtypes  (Verhaak et al. 2010). A list of 
210 signature genes is available for each of these subtypes. The classical subtype is 
associated with high levels of epithelial growth factor receptor (EGFR) and also 
shows high levels of EGFR alteration combined with low levels of TP53 mutations. 
Expression of neuron markers is predominantly seen in the neuronal subtype, while 
the mesenchymal subtype shows expression of mesenchymal markers. The latter is 
also associated with lower expression levels of neurofibromin 1 (NF1) as a 

consequence of a deletion of the chromosomal region containing this gene. The 
proneural subtype, finally, is associated with alterations in platelet-derived growth 
factor receptor alpha (PDGFRA) and point mutations in isocitrate dehydrogenase 1 
(IDH1). This subtype was generally associated with younger patients, longer survival 
and other characteristics associated with secondary glioblastoma. Data comparing 
treatment protocols suggests that these patients do not benefit from a more 
aggressive protocol. The expression patterns of the different subtypes suggest the 
presence of multiple stem cell-like populations, but this hypothesis requires further 
research. The classification of glioblastoma tumors has important consequences for 
the therapeutic strategies. 

 

 

Figure 3: Three core pathways involved in glioblastoma pathogenesis - The TCGA pilot project showed that most of the 
glioblastoma samples showed alterations in RB, p53 and RTK/RAS/PI-3K signalling. Figure taken from McLendon et al. 2008. 
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Further, high frequency loss of tumor suppressor mitogen inducible gene 6 (Mig-6) is 
reported to be involved in gliomagenesis. Mig-6 is a regulator of EGFR transport to 
the late endosomes and lysosomes, thus supporting its degradation (Ying et al. 
2010). Bcl2-Like-12 (Bcl2L12), a cell death regulator which represses p53 
transactivation, was identified to play a role in therapeutic resistance of glioblastoma 
(Stegh et al. 2010). It is shown to be upregulated in tumors with wild type p53 and is 
less overexpressed in tumors with compromised p53.  

More recently, single-cell RNA-seq (scRNA-seq) was used to uncover heterogeneity 
in glioblastoma, profiling cells from five patients (Patel et al. 2014). The dataset 
contains 672 single glioblastoma cells, five population controls, 192 single cells from 

two gliomasphere cell lines and six population samples from cell lines derived from 
three tumors and cultured under serum free and differentiated conditions.  

 

1.1.3. Melanoma 

Malignant melanoma or melanoma is a type of skin cancer that originates in the 
melanocytes, the cells producing the pigment melanin in the skin, eyes and hair. It 
shows a high incidence in Caucasians compared to other races. Despite having a low 
incidence compared to other types of skin cancer, the majority of the deaths 
associated with skin cancer are caused by melanoma. However, when diagnosed in 
an early stage, it is mostly curable (Cummins et al. 2006).  

TCGA integrated data from multiple platforms from a cohort of 333 samples from 
331 patients, resulting in the identification of four genomic melanoma subtypes 
which could have an impact on therapeutic decisions. The BRAF subtype is 
associated with BRAF hotspot mutations and is the most prevalent. It shows 
amplification of BRAF and MITF. The RAS subtype shows mutations in all three RAS 
family members (H, K and N) and is associated with increased MAP kinase (MAPK) 
activation and AKT3 expression. In the NF1 subtype, loss of function of NF1 is 
observed inhibiting downregulation of RAS activity, activating the MAP kinase 
pathway. In contrast, the triple wild type subtype shows no hot-spot mutations in 
BRAF, RAS and NF1. It does, however, show a significant amplification of KIT, MDM2, 

CDK4, CCND1 and TERT compared to the other subtypes (Watson et al. 2015). 

To date, one dataset containing single melanoma cell RNA-seq data has been 
reported  (Tirosh et al. 2016). This dataset contains 4645 cells, malignant as well as 
nonmalignant, from 19 melanoma patients with diverse pathogenic and therapeutic 
backgrounds. Each cell was marked as malignant, nonmalignant or unresolved, based 
on copy number variations (CNVs). The cells showing aneuploidy were classified as 
malignant. The nonmalignant cells were further categorized as T cells, B cells, 
macrophages, endothelial cells, cancer-associated fibroblasts (CAFs), and natural 
killer (NK) cells, based on the expression of marker genes. 
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1.2. Single-cell RNA-seq 

1.2.1. Next generation sequencing for transcriptomics 

In order to study the transcriptome - the assembly of all transcripts in the cell - in a 
high throughput fashion, several approaches have been developed. These 
approaches are aimed at quantifying expression levels under different conditions, 
assessing the transcriptional structure of genes and determining all classes of 
transcripts  (Wang et al. 2009). In hybridization-based methods such as microarrays, 
the principle of hybridization of complementary sequences is used. The messenger 
RNA (mRNA) from a sample of interest is reverse transcribed to copy DNA (cDNA) 

and fluorescently labeled. An array of probes is constructed based on sequence 
knowledge of the organism under study and hybridization of the cDNA with the 
probes is quantified by exciting and measuring the fluorescent signal  (Stears et al. 
2003). Sequence-based methods, on the other hand, allow direct determination of 
the cDNA sequence, which creates several advantages over hybridization based 
methods. Mainly, it is no longer required to know the sequence of the organism in 
advance, enabling detection of unknown transcripts and splice variants, and 
transcriptome analysis of non-model organisms. Secondly, sequencing-based 
methods have very low background signal compared to the signal generated by 
cross-hybridization in hybridization-based methods. Further, there is no upper limit 
for quantification, meaning that the dynamic detection range is large. Finally, 

expression levels are much easier to compare between different experiments if 
normalization techniques are used (Wang et al. 2009). The development of high-
throughput sequencing technologies and their subsequent application in 
transcriptomics, named RNA-seq, led to a revolution in this field in terms of mapping 
and quantifying transcripts.  

Generally, RNA-seq protocols begin by isolating a fraction of RNA from the input cells 
of interest and reverse-transcribing this to a library of cDNA-fragments, which are 
amplified with PCR. The amplified fragments are then sequenced from one end 
(single-end sequencing) or both ends (paired-end sequencing ), resulting in short 
reads of 30 - 400 base pairs (Wang et al. 2009; Stegle et al. 2015).  

All raw reads generated by high-throughput sequencing methods should undergo 

quality checks before further analysis. One of the tools that can be used to this 
extent is FastQC (Andrews, 2010), which focusses on identifying problems with the 
sequencer or the library starting material. It evaluates the following criteria: 

 Per base sequence quality: shows the range of quality for each position. Long 
reads might show inferior quality towards the end; 

 Per sequence quality score: evaluates the general quality of the sequences 
within a run. If a substantial part of the sequences in a run show low scores, 
this might indicate a systematic problem; 

 Per base sequence content: shows the proportion of each base at each 

position. The difference between the proportion of A and T or G and C is 
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expected to be under 10%, though a biased sequence composition might 
occur at the start of the read due to the method used for library production; 

 Per sequence GC content: the GC distribution for all sequences in one file is 
plotted and compared to a normal distribution; 

 Sequence length distribution: will raise a warning if all sequences are not the 
same length; 

 Duplicate sequences: raises a warning if the amount of non-unique 
sequences exceeds a certain threshold. This module does, however, not 
differentiate between biological and technical duplications; 

 Overrepresented sequences: the library is expected to be diverse; this 
module gives an error if one sequence occurs more than 1%. This could 
indicate a contamination;  

 Kmer content: looks for relative enrichment of 7-mers. If the library is 
constructed using random primers, this will show a bias as the start of the 
library; 

 Adapter content: will look for overrepresentation of adapters, indicating 
trimming is needed; 

 Per tile sequence quality (for illumina data): assesses whether a certain area 

of the flow cell shows a loss in quality, which could indicate a technical bias 

related to the flow cell. 

If the quality is deemed sufficient, the raw reads are either aligned to a reference 
genome or transcriptome, a process called mapping, or assembled de novo. Next, 
the number of mapped reads is quantified for each locus, generating counts. To 
remove technical biases caused by difference in length between transcripts and 
allow comparison of the counts across different samples, the counts should be 
normalized. Transcripts per million (TPM) is proposed as the measure of choice for 
transcript abundance (Wagner et al. 2012). Based on the normalized counts, an 
expression profile can be generated for each gene; the resulting gene expression 
value is an average of the levels across the population of input cells. Often, this is 

sufficient, but to solve certain biological problems, essential information is possibly 
masked when analyzing the average expression levels of a population of cells. In 
those cases, measurement of gene expression at single-cell resolution is required in 
order to correctly reflect tissue heterogeneity. 

Until recently, research on single cells was done through low-throughput techniques 
such as single-cell qPCR or single-molecule RNA fluorescent in situ hybridization 
(RNA FISH). However, recent innovations such as automation of the methods to 
generate cDNA libraries from single cells (Stegle et al. 2015) allow RNA-seq 
transcriptome analysis at the single cell level in a high-throughput fashion using a 
protocol very similar to that of population analysis. In the first step, single cells are 

isolated, for instance by microfluidics. Next, the RNA molecules are processed in a 
similar way as the RNA fraction from a population of cells in population RNA-seq. The 
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main difference is the small amount of starting RNA, which necessitates an 
amplification step.   

 

1.2.2. Applications and advantages 

Single-cell RNA-seq (scRNA-seq) is most often applied in developmental research, 
where there are very few cells - each with a very distinct profile - or in cases where 
the tissue under study is expected to be very heterogeneous.  

For example, differentiation of distal lung epithelium in mammalian lung tissue was 
studied by sequencing the RNA of single cells taken at four different time points, 

which lead to the discovery of formerly unknown cell-type markers (Treutlein et al. 
2014). In early blood cell development, gene expression measured in single cells at 
four time points predicted the involvement of certain transcription factors. The 
authors were able to validate these predictions experimentally, suggesting that 
similar approaches could unravel regulatory networks in other developing organs 
(Moignard et al. 2015). The commitment of conventional dendritic cells (cDCs) to 
cDC1 or cDC2 is not yet fully understood, but single-cell mRNA sequencing analysis of 
DC development indicates that this occurs before the cells leave the bone marrow 
(Schlitzer et al. 2015). Clustering of the single-cells enabled reordering of the cells 
along the developmental continuum, showing the progression of gene expression. 

Further, single-cell RNA-seq was used to study several populations of cells involved 

in the immune system. Sequencing of single dendritic cells at different time points, 
stimulated by three different pathogenic components, showed extensive 
heterogeneity between identically stimulated cells. This variability, suggested to play 
an important role in immune response plasticity, was less extensive when the cells 
were stimulated individually in their wells, suggesting the importance of paracrine 
signaling (Shalek et al. 2014). Th17 cells play a role in the adaptive immune system, 
but are also reported to be involved in pathogenesis of autoimmunity. 
Computational analysis of single-cell Th17 expression data and subsequent 
functional validation of candidate genes led to the detection of potential candidate 
genes involved in Th17 cell pathogenicity. These genes can be validated as 
therapeutic targets in autoimmune diseases caused by pathogenic Th17, meanwhile 

avoiding destruction of non-pathogenic, essential Th17 cells (Gaublomme et al. 
2015).  

Sequencing of single cells in cancer research uncovered a certain heterogeneity 
which could not be assessed previously using population based methods. This 
heterogeneity could have an impact on cancer diagnosis and treatment. Single cell 
expression analysis of 430 samples from five primary glioblastomas revealed 
intratumoral heterogeneity in relevant pathways. Based on population RNA-seq 
analysis, four of the tumors could be classified as one of the subtypes previously 
determined by TCGA. However, single-cell analysis showed that the tumors consisted 
of cells belonging to different subtypes, although the dominant subtype did 

correspond to the subtype determined by population RNA-seq analysis. In proneural 
tumors, the authors found that increased intratumoral heterogeneity is associated 
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with the clinical outcome; patients with high-heterogeneity tumors showed 
decreased survival. This finding also has an impact on targeted therapy, as the 
targeted molecules show high variability between cells (Patel et al. 2014). 
Experiments with single patient-derived xenograft (PDX) cells in lung 
adenocarcinoma (LUAD) confirm that single-cell RNA-seq experiments can identify 
possible factors involved in therapy resistance and metastases (Kim et al. 2015). 
Comparison of gene expression levels between population samples and pooled 
single-cell samples showed significant correlation, despite reported amplification 
bias in single-cell RNA-seq (Kim et al. 2015). The most recent large-scale single-cell 
RNA-seq study in cancer sequenced 4645 single cells from 19 metastatic melanoma 
patients, examining both malignant and non-malignant cells (stromal and immune 

cells) to explore the tumor microenvironment (Tirosh et al. 2016).  

 

1.2.3. Challenges 

Although the technique of single-cell RNA-seq shows great promise in unraveling the 
underlying biological mechanisms in oncogenesis, therapy resistance and metastatic 
potential of tumors, and the prediction of biomarkers and targets for targeted 
therapy, several challenges are still to be overcome to enable this technology to be 
used to its full potential (Prado et al. 2015).  

The existing computational and statistical methods for transcript quantification and 

quality control, developed for population RNA-seq analysis, require improvements in 
three domains (Stegle et al. 2015). In the first place, a normalization method should 
be developed that takes into account differences in mRNA content between cells, as 
normalization methods applied to population RNA-seq data assume that the amount 
of RNA in each sample is the same. When using extrinsic spike-ins, e.g. the external 
RNA controls consortium (ERCC) RNA spike-in mix, a known amount of control RNA 
molecules is added to each well, allowing comparison of cells based on the amount 
of spiked-in material. Methods using unique molecular identifiers (UMIs), in contrast, 
label individual cDNA molecules during the reverse transcriptase phase (prior to 
amplification) with short random sequences. Counts are generated by quantifying 
the UMIs aligned to each position rather than the transcripts, avoiding amplification 

bias (Islam et al. 2014). It is also possible to normalize data in absence of UMIs and 
spike-ins by using population-based normalization methods such as TPM. Secondly, 
methods will need to deal with confounding factors, which can be of technical 
nature, e.g. batch effects and allelic dropout, or of biological nature, e.g. periodic 
processes in the cell such as the cell cycle. When analyzing population data, most 
biological confounding effects are cancelled out due to the fact that the average 
expression levels of each gene are calculated for a high amount of cells. Single-cell 
latent variable model (scLVM) is proposed as a method to remove variation caused 
by cell cycle or other confounders (Buettner et al. 2015). To our knowledge, no other 
methods have been developed. Thirdly, a high level of technical noise needs to be 
distinguished from genuine biological variability. A method based on external RNA 
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spike-ins, decomposing the variance in a technical and biological component, is 
suggested by Kim et al. (K.-T.T. Kim et al. 2015).  

Other authors also pose that, in the area of experimental design, the number of cells 
that need to be sequenced in order to uncover covariant genes and the depth to 
which each of these cells should be sequenced, remain to be determined (Shapiro et 
al. 2013; Stegle et al. 2015).  

Like in population RNA-seq, the gene expression levels can be used for gene 
regulatory network (GRN) inference. It is expected that the existing methods will be 
able to be used, once adaptations have been made to deal with the additional levels 
of technical noise and confounding factors (Stegle et al. 2015).  

 

1.3. Network inference 

The expression of all genes in a cell is strictly regulated by a limited number of 
regulators or transcription factors and the measured expression levels can be seen as 
the output of a gene regulatory network. By characterizing the interactions between 
regulators and genes through co-expression analysis, a model of the network of 
regulatory interactions can be reverse-engineered or inferred (D’haeseleer et al. 
2000).  

Robust reconstruction of GRNs from high-throughput gene expression data is an 

established problem in computational biology. A wide range of methods have been 
developed that, when applied to the same data, often result in divergent networks. 
During a transcriptional network inference challenge, the DREAM project (Marbach 
et al. 2012) assessed several of these methods, using microarray gene expression 
data. The aim of this challenge was to rank the methods based on their performance, 
evaluating their reliability and stimulating the development of more accurate 
methods. The performance was evaluated using a gold standard and classified the 
methods accordingly within four categories - regression, mutual information, 
Bayesian networks and correlation - based on the computational approach. 
Additionally, methods that did not belong to one of these categories were classified 
as ‘other’ and the category ‘meta’ contained methods that combined several of 

these approaches. The results indicate complementarity of the different methods, 
and the authors suggest that combining as little as three different methods should 
improve the performance drastically, since the advantages will amplify each other 
and the limitations will be cancelled out. None of the six categories was superior to 
the others. To our knowledge, no analysis of this extent has been carried out for 
RNA-seq or single-cell RNA-seq expression data. 

Four of these methods will be discussed in more detail, selected based on their 
performance in the DREAM challenge and their popularity, including methods from 
various categories. 
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1.3.1. Absolute value of Pearson’s correlation 

The highest scoring method of the correlation-based methods was the absolute 
value of Pearson’s correlation (Equation 1) (Marbach et al. 2012). The absolute value 
of the correlation coefficient between all transcription factors and genes is 
calculated.  

 

 

 

The correlation coefficient is a value between -1 and 1, with 1 meaning the genes are 
perfectly correlated and -1 meaning they are perfectly anti-correlated. By using the 

absolute value, negative or inhibitory relations are also taken into account.  

This method has as an advantage that it is very fast, but it does not take into account 
the difference between direct regulation of a gene by a transcription factor binding 
to its promotor, and indirect interactions through gene regulatory cascades. 

 

1.3.2. Algorithm for the Reconstruction of Gene Regulatory Networks 

Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNE) 
reconstructs biological networks based on mutual information. Even though this 
method is widely used, it was outperformed by several other methods  (Marbach et 
al. 2012).  

Mutual information based methods consist of two steps. First, a mutual information 
matrix is calculated for all regulators and genes. Secondly, the edges are filtered. In 
ARACNE, all edges that can be explained by other interactions in the network are 
removed, suggesting that the remaining interactions are the direct interactions  

(Margolin et al. 2006). These remaining interactions are ranked according to their 
mutual information values.  

 

1.3.3. Context likelihood relatedness 

Context likelihood relatedness (CLR) was the highest ranking mutual information-
based method (Marbach et al. 2012) CLR filters the edges by comparing the mutual 
information value to a set threshold, i.e. a background distribution of mutual 
information scores. This is expected to remove indirect interactions by removing 
edges where one transcription factor interacts weakly with a large number of genes, 
or one gene interacts weakly with many transcription factors (Faith et al. 2007).  

Equation 1: Absolute value of Pearson’s correlation coefficient – Pearson’s correlation coefficient, r, for all transcription factors, 
x, and all target genes, y, with n the number of measurements of x and y. Equation from Marbach et al. 2012, supplemental data 
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1.3.4. Gene Network inference with Ensemble of Trees 

Gene Network Inference with Ensemble of Trees (GENIE3) was the highest scoring 
method from the category ‘other’. This method decomposes the problem into p 
regression problems, with p being the amount of genes in the network. The 
expression of each gene is assumed to be the function of the expression all other 
genes in the network, plus random noise. The importance of each transcription 
factor for the expression of each gene is predicted using a tree-based ensemble 
method, Random Forests. The ranking of all the edges is constructed from all 
possible regulatory links over all genes. 

 

1.3.5. Biological networks have scale-free properties 

Biological networks can be represented as a graph of directed, weighted 
interactions. All of the NI methods discussed above return a ranked list of weighed 
interactions which can be organized into network motifs, statistically significant 
subgraphs. These motifs, in turn, cluster into semi-independent modules. Finally, the 
ensemble of all modules will form the gene regulatory network (Figure 4) (Babu et al. 
2004).  

 

 

 

GRN are reported to approximate a scale-free topology  (Barabási & Oltvai 2004; 
Barabási 2009), meaning that the degree distribution follows a power law. Certain 
nodes, called hubs, are highly connected and hold the network together. In biology, 
these hubs are more likely to be essential.  

Figure 4: Structure of transcriptional regulatory networks at different levels – (a) the basic unit is the weighted, 
directed interaction from a transcription factor to a target gene, (b) interactions can be organized into motifs, (c) 
motifs cluster into modules and (d) the assembly of all modules forms the transcriptional regulatory network. 
Figure taken from Babu et al. 2004 
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Part 2: Aims 

2.1. Setting of the problem 

Tumors are known to be very heterogeneous and this is thought to be one of the 
main causes of metastasis and therapy resistance. In order to fully understand the 
pathways altered in certain subclones, making it possible for them to withstand 
applied therapy, gene expression analysis on a population level is insufficient. Recent 
developments enable measuring gene expression at the single-cell level in a high-
throughput way using NGS: scRNA-seq. Network inference from this data shows to 

be promising for the analysis of heterogeneous samples, such as tumor tissue, 
making it possible to identify subclones that were previously undetected. 

Single-cell RNA-seq is an emerging technique and there are a large number of 
challenges that will need to be dealt with in data generation, pre-processing and 
analysis (Stegle et al. 2015). Currently, there is no consensus method for network 
inference. Additionally, no evaluation methods for single-cell networks exist, making 
it hard to differentiate between true biological variation and technical noise (J. Kim 
et al. 2015). There is no golden standard available to evaluate the networks, nor 
simulated data resembling single-cell data to assess their robustness. 

 

2.2. Evaluation of network inference methods 

The research in the translational bio-informatics lab at the Centre for Medical 
Genetics (CMGG) focusses on the application of techniques that uncover possible 
cancer drivers in pediatric tumors. Gene regulatory network inference from gene 
expression data is one of the methods used to achieve this in an unbiased way. The 
purchase of a Fluidigm C1 microfluidic platform, enabling scRNA-seq library 
construction in a high-throughput fashion, allows a plethora of new possible 
experiments including the search for cell or patient specific transcriptional 
perturbations linked to the cancer phenotype. 

The main aim of the current thesis is to research whether network inference 
methods developed for the analysis of population RNA-seq can also be applied to 
scRNA-seq datasets, specifically containing cancer cells. A comparative evaluation of 
four widely used network inference methods based on three different computational 
methods will be performed. These methods will be scored for their ability to 
reconstruct GRN in these cells. To this end, in a first phase, the comparability of 
single-cell and population RNA-seq data will be evaluated. Secondly, a gold standard 
of interactions possibly involved in cancer will be constructed. Finally, the 
interactions inferred by the different methods will be compared to this gold 
standard, and to the interactions in nonmalignant cells, ultimately aiming to gain 
new insights in the impact of the specific features of this new datatype on the results 

of network inference. An overview of the aims is presented in Figure 5. 



Aims 

 

22 

 

 

Figure 5: Overview of the aims – After comparison of the pooled single-cells and the population samples, 
depending on the results, the expression matrix will be filtered and the four selected NI methods will be applied. 
The inferred networks will be evaluated using a gold standard, ultimately giving the methods a score. 
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Part 3: Results 

3.1. Single cell RNA-seq datasets 

The four selected GRN inference methods were evaluated based on their ability to 
identify a set of predicted interactions in scRNA-seq data from two cancer types that 
have been extensively studied in the past: glioblastoma (Brennan et al. 2013; 
McLendon et al. 2008; Stegh et al. 2010; Verhaak et al. 2010; Ying et al. 2010) and 
melanoma (Cummins et al. 2006; Watson et al. 2015). A first step in this process was 
to find suitable datasets containing scRNA-seq samples from cancer patients. The 

raw reads of a scRNA-seq glioblastoma dataset (GSE57872) were available through 
the sequence read archive (SRA, accession number SRP042162). To convert these 
raw reads to expression levels, the reads were mapped to a reference transcriptome 
and the amount of reads mapped to each transcript were counted. These counts 
were then normalized to expression levels. For the single-cell melanoma dataset 
(GSE72056), only a supplementary file with the normalized gene expression levels 
was available. This file also contains information on the cell type. 

 

3.1.1. Quality control 

When dealing with raw sequencing data generated by high-throughput sequencing 

methods, it is important to verify whether it is of sufficient quality before continuing 
the analysis. To this end, FastQC was used. The runs were evaluated on a pass/fail 
basis for eight of the eleven features validated by FastQC; sequence length 
distribution, and k-mer and adapter content were excluded from the analysis. 
Additionally, the number and percentage of reads mapped and the amount of 
expressed genes were evaluated. 

The dataset contains 875 samples in total, of which 672 are single glioblastoma cells. 
More than half of these single cells passed all quality control criteria (Figure 6).  

Figure 6: Number cells passing a certain number of QC criteria – About half of the samples pass all criteria 
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In order to verify if a certain criterion scores worse than the others, the amount of 

passing samples is counted for each of the criteria (Table 1). One criterion is passed 

by less than 80% of the samples: the amount of overrepresented sequences. A 

sequence present for more than 0.1% raises a warning and if a sequence makes up 

more than 1% of the total, this criterion is flagged as failed. A single overrepresented 

sequence could mean a contamination of the library.  

Table 1: Number of samples that passed each criterion - The criteria that are passed by less than 80% of the 
samples are marked in red. 

Criterion  Passes  Percentage (%) 

Total sequences 669 99,55 

Per base sequence quality 672 100 

Per tile sequence quality 576 85,71 

Per sequence quality scores 569 84,67 

Per base sequence content 656 97,62 

Per sequence %GC content 571 84,97 

Per base n content 672 100 

Overrepresented sequences 482 71,73 

Number of reads mapped 660 98,21 

Percentage mapped 599 89,14 

Genes expressed 640 95,24 

 

3.1.2. Mapping and normalization 

After the quality of the data is confirmed, the raw reads should be mapped to a 
reference genome or transcriptome, or aligned de novo. Because this data originates 
from human cells, a reference genome and transcriptome are available. The tool 
Salmon will be used for the mapping and quantification of the transcripts. This tool 
requires indexing of the reference genome or transcriptome if used in quasi-
mapping-based mode. For a read length of 75 base pairs, the length of the indices, k 
is ideally set to 31. Because the read length in the current dataset is 25 base pairs, a 
k of 11 is used. Depending on the read length and the number of errors permitted, 

mapping rates in Eukaryotic datasets are reported to be between 40 and 90% 
(Benjamin et al. 2014; Conesa et al. 2016; Mortazavi et al. 2008; Hatem et al. 2013). 
The mapping rates for the current dataset to the reference transcriptome are 
expected to be on the low end of this, due to short read length. The reads are 
mapped directly to the transcriptome, omitting problems with fragments 
overlapping splice junctions. Additionally, salmon is very robust to errors. However, 
when evaluating the mapping rates (Figure 7), much lower rates than expected were 
observed. This could, possibly be explained by the short read length causing 
fragments to match several loci, and thus be rejected by Salmon. Similar mapping 
rates are reported by the authors (Patel et al. 2014).  
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For all genes that have at least two samples with 5 counts, the expression is 
calculated as the amount of transcripts per million (TPM) and log transformed. 

 

3.1.3. Melanoma 

To date, only one dataset containing single melanoma cell RNA-seq data is reported, 
containing malignant as well as nonmalignant cells from 19 malignant melanoma 

patients. For the current analysis, the cells that were classified as malignant and that 
did not have a nonmalignant cell type category assigned to them (non-malignant cell 
type = 0) were selected. 1252 malignant cells (Table 2) were isolated from different 
patients. The tumors showed varying numbers of malignant cells. 

 

Table 2: Number of malignant cells for each melanoma patient – In total there are 1252 malignant samples from 
14 different patients. 

Patient Number of malignant cells 

53 16 

59 54 

60 9 

65 4 

71 54 

78 120 

79 468 

80 125 

81 133 

82 32 

84 14 

88 115 

89 98 

94 10 

 1252 

Figure 7: Mapping rates of single-cell samples – Most of the samples show a mapping rate of 21-30%, while rates 
between 40 and 90% are expected, depending on the data set and the allowed number of errors. 
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3.2. Population vs. pooled vs. single cell 

To obtain better insights in the features of scRNA-seq data and its comparability to 
its population counterpart, a comparison of population and single-cell glioblastoma 
expression data was carried out. The glioblastoma dataset under analysis did not 
only contain single glioblastoma patient data, but also a population sample for each 
patient, consisting of 2000 – 10000 cells. Gene expression levels in these samples 
were compared to levels in single-cells and pooled single-cells. Expression levels in 
the pooled single cells are expected to be comparable to those in the population 
samples, because certain biological confounders are expected to be levelled out the 
same way as they are in population RNA-seq. Prior to these analyses, no samples 

were excluded. 

 

3.2.1. Pooled single-cell expression levels 

First, the single-cell reads were concatenated, creating a file with all forward reads 
and a file with all reverse reads. Next, these reads were mapped to the human 
reference transcriptome and expression levels were quantified in the same way as 
described above for single-cell reads (supra 3.1.2 Mapping and normalization).  

Only protein coding genes that were expressed in at least one of the groups, i.e. 
single-cell, pooled or population, were regarded for further analysis. This led to the 

inclusion of 20740 genes, of which 19339 were expressed in all three groups (Figure 
8).  

 

  

3.2.2. Correlation 

To compare expression levels of the different genes in pooled and in population 
samples, the correlation was plotted (Figure 9) and calculated. If the results in 
patient MGH31 are disregarded, the shape of all the plots shows a similar trend, i.e. 

a linear relation between the expression values, but with a slight bend towards the x-

Figure 8: Comparison of the genes present in each of the expression matrices – 19339 genes are expressed in 
all three groups 
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axis for the lower expression values. This means that the expression of each gene, on 
average, is higher in pooled than in population samples.  

 

 

 

 

This trend is confirmed when studying the genes that are not expressed in one or 
both conditions (Table 3). Almost 1.5 times more genes are not expressed in 
population samples compared to pooled samples. 

 

 

 

 

Figure 9: Correlation of expression levels in pooled single cells vs. in population samples, per patient – For MGH26, MGH28, 
MGH29 and MGH30 there is a linear relation between the expression values but for lower values, the expression in the pooled 
samples is slightly higher. Correlation for MGH31 is poor. 

Table 3: Evaluation of the expression of all genes for the different patients in a binary discrete way: 
expressed (+) or not-expressed (-) – The population samples have about 1.5 times more non-expressed genes 
that are expressed by the pooled samples than vice versa. 
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To find a possible explanation for the aberrant results in patient MGH31, the average 
mapping rates per patient were analyzed. The mapping rate for this patient is slightly 
under 12%, while the others all have a rate higher than 15% (Supplementary table 1). 
Possibly, sequence data from this patient has a lower quality.   

 

3.2.3. Dimensionality reduction 

Of the 20740 genes that were present in at least one of the matrices, the top 50% 
genes with the highest variance were selected for further analysis, because it is most 
likely that these genes are of biological importance. The dimensions of the dataset 

were reduced from 682 samples and 10370 genes to three dimensions in the gene 
direction (Figure 10), based on a distance matrix containing correlation distances 
between all genes. This was done using classical Torgerson multidimensional scaling 
(MDS).  

Except for the data of patient MGH31 – which had also shown deviating results when 
studying correlation - population, pooled and single-cell data grouped together per 
patient. However, a subset of single-cell samples (Figure 10, circled in red) is 
observed that does not group together with the other samples from the same 
patient. This subset consists of all samples within the sphere with center (0.20, -0.3, 
0.28) and radius 0.29. In total, a group of 47 samples, containing samples from each 
of the patients, is selected. 

 Figure 10: Classical MDS in 3 dimensions, showing single-cell, pooled and population samples from all five 
patients – Most of the samples cluster together per patient, however, samples circled in red belong to a possibly 
interesting subset 
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To analyze why these samples do not group together with other single-cell samples 
from the same patient, a differential gene expression analysis is executed. First, the 
dataset is divided into six groups, i.e. the five patients and the subset. Next, 
differential expression between the subset and each of the patients is calculated for 
all 10370 genes. It does, however, need to be taken into account that, strictly 
speaking, the different samples cannot be seen as replicates of the same patient. 
Assuming they are replicates, will cause the difference to seem more significant than 
it is in reality. 1977 genes with a p-value of <0.01, which was corrected for multiple 
testing using the method of Benjamin-Hochberg, and a log fold change of >4 (Figure 
11) in at least one of the patient-subset analyses are retained for further analysis.  

 

 

 

Due to the large amount (1885) of genes that are downregulated in the subset as 
opposed to the patients, these samples are suspected to be of inferior quality. This is 
tested by comparing, among others, the mapping rate and number of genes 
expressed between the two groups (Figure 12). To assess whether the difference 
between the two groups is significant, Mann–Whitney U tests (α < 0.05) were 
performed for all features (Supplementary table 2), as the data does not have a 
normal distribution. These tests confirm that the quality of the subset differs 
significantly from the quality of the other samples. 

 

Figure 11: Volcano plot showing the log2 of the fold change of the gene expression versus - log10 of the p-value – samples 
in red, with p-value < 0.01 and a log fold change of > 4 are considered significant and retained for further analysis 
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The analysis is repeated only including the single-cell samples that passed more than 
8 of the quality control criteria evaluated (supra 3.1.1 Quality control). Again, only 
the genes that are expressed in at least one of the groups are included. 

Figure 12: Comparison of several quality control values between the subset and the other single-cell samples – levels of significance: p-
value < 0.05: *, p-value < 0.01: **, p-value < 0.001: *** 

Figure 13: MDS after exclusion of the low quality samples – exclusion of the low quality samples improves 
clustering per patient 
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After exclusion of the low quality samples, the dimensionality reduction plot (Figure 
13) shows a much better correlation for the single-cell samples of the different 
patients.  

 

3.2.4. Conclusion 

When comparing TPM-normalized expression levels in pooled and population 
samples, on average the genes show higher expression in the pooled samples, 
especially for genes with lower expression rates. Also, about 1.5 times more genes 
that show expression in pooled samples are not seen in population than vice versa. 
This could be explained by a difference in sequencing depth between the population 

samples and the single-cell samples, which compose the pooled samples 
(Supplementary table 3). A smaller sequencing depth causes the sensitivity to be 
lower for lowly expressed genes. 

The data was also visualized in three dimensions using MDS. Initially, no genes or 
samples were excluded from the analysis, leading to the grouping of a subset of 
single-cell samples. Evaluation of the mapping rate and the number of genes 
expressed by all samples, uncovered that there were significant differences in quality 
between this subset and the other samples. Exclusion of samples that passed less 
than 8 of the evaluated quality control criteria, led to a better clustering of the 
samples.  

These findings motivated the development of a filtering method of the expression 
matrices before network inference. The inferior correlation in patient MGH31 (supra, 
3.2.2 Correlation) is expected to be caused by low quality of the samples; if the 
considered filtering method is applied, these samples will also be removed. 
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3.3. Network inference glioblastoma 

In one of the previous steps, expression matrices have been generated from two 
single-cell cancer datasets. In the next step, the selected network inference methods 
were evaluated for their ability to reconstruct GRN in the cancer cells based on 
single-cell expression data. This requires a gold standard of expected interactions is 
these cancer types, which will be constructed by integrating data from different 
pathway databases. The interactions in nonmalignant cells, however, also need to be 
taken into account when evaluating the identified interactions. To reduce 
computational complexity, a list of transcription factors, which should be regarded 
as possible regulators, was passed to the algorithm.  

 

3.3.1. Filtering of the expression matrix 

As most network inference methods are computationally intensive, the size of the 
expression matrix was reduced in such a way that it only included samples of interest 
that showed sufficient quality, i.e. passed at least 8 of the aforementioned quality 
control criteria, and genes that code for proteins and are expressed in at least 10% of 
the samples. Further selection of the genes is done based on the variance of 
expression across all samples, considering genes with a higher variance have a higher 
chance to be of biological importance. The top 8000 genes with the highest variance 

are selected. 

 

3.3.2. Gold standard 

As a gold standard on glioblastoma cells does not exist, important genes and 
interactions were inferred from the literature. The TCGA pilot paper on glioblastoma 
(McLendon et al. 2008) reported three main pathways involved in glioblastoma: the 
p53 and retinoblastoma tumor suppressor pathway, dysregulation of cell growth via 
mutations in RTK genes and activation of the PI3K pathway. The human pathways 
PI3K-Akt signaling pathway, cell cycle and p53 signaling pathway were downloaded 

from the KEGG database and the interactions with type protein-protein interaction 
(PPrel) and gene expression interaction (GErel) were written to a file. From the KEGG 
disease database, interactions predicted to be involved in glioma were also added to 
the list of predicted interactions. Finally, stringDB was searched for proteins 
interacting with Mig-6  (Ying et al. 2010) Bcl2-L12  (Stegh et al. 2010) PTEN and 
interactions between genes predicted to be involved in glioblastoma by PathCards  
(Belinky et al. 2015)  This resulted in a total of 383 interactions, containing 189 
different genes. Additionally, four clinically relevant subtypes of glioblastoma were 
identified using TCGA data (Verhaak et al. 2010) . A list of 210 signature genes for 
each of these types is available, but only 679 of these genes could be mapped to an 
ensembl identifier. Finally, the KEGG pathway microRNAs in cancer (hsa05206) was 

consulted. Certain microRNAs are upregulated in glioblastoma, inhibiting tumor 
suppressor gene activity and the downregulation of other microRNAs may cause 
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oncogene activation. 8 genes that are possibly upregulated and 7 genes that are 
possibly downregulated were added to the list of relevant genes. 

Of these in 855 unique genes, three did not occur in the glioblastoma expression 
matrix; these genes were omitted from further analysis. When comparing the 
expected genes to the 8000 filtered glioblastoma genes (Figure 14), about half of the 
expected genes are included. The other half of these genes did not show sufficient 
variance over the different samples. 

 
 

 

3.3.3. Nonmalignant cells 

To avoid qualifying normal astrocyte interactions as false positives because they do 
not occur in the list of important interactions in glioblastoma, a control matrix 
containing expression levels of the filtered glioblastoma genes in astrocytes was 
subjected to the same network inference methods. This way, a list of control 
interactions was constructed. 

 

3.3.4. Performance 

As a first exploratory analysis, each of the ranked lists of predicted interactions was 

validated against the combined lists of control interactions and interactions involved 
in glioblastoma, plotting a bar if the inferred interaction occurred in the list of 
expected interactions (Figure 15). All interactions are expected to show a match with 
either a control interaction or a glioblastoma specific interaction. However, the 
matching rates are lower than expected.  

  

  

Figure 14: Number of expected genes included in filtered expression matrix – about half of the expected genes are included 
in the filtered gene list. 



Results 

 

34 

 

  

 

Figure 15: Barcode plot; a stripe is plotted if an interaction is found in the combined list of expected and control interactions 
– the edges are ranked from high to low, with the highest weight on the left hand side of the plot. The percentage indicates the 
fraction of interactions that were in the combined list. 



Results  

35 

 

Next, the occurrence of interactions involved in glioblastoma was evaluated in the 

ranked interactions inferred from the cancer expression data and compared to those 

inferred from control expression data (data not shown). The same was done for the 

genes involved in these interactions (Figure 16). As some of these interactions also 

exist in nonmalignant cells, they are expected to be positive in that dataset but to 

occur at random. In malignant cells, on the other hand, they should rank highly. 

These hypotheses are not confirmed by the data. Only 11 of the interactions in 

cancer and control data is also in the list of expected interactions (data not shown) 

and the pattern generated by the evaluation of the genes involved in these 

interactions in cancer data is more random than expected.  

  

 

 

 

 

Figure 16: Barcode plot showing the ranks of expected genes in cancer; these are compared in cancer and control data – 
the edges are ranked from high to low, with the highest weight on the left hand side of the plot. clr = context likelihood 
relatedness, aracne = Algorithm for the Reconstruction of Accurate Cellular Networks, corr = correlation, ctrl = control. 

Max  Ranking edges  Min Max  Ranking edges  Min 
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Finally, the performance of each of the methods was evaluated by calculating the 

area under the receiver operating characteristic (ROC) curve (AUROC) and the area 

under the precision-recall curve (AUPR) (Figure 17). Ideally, these areas approach 1 

as closely as possible. For this dataset, none of the methods score better than a 

random method would.  

 

 

 

 

3.3.5. Conclusion 

Analysis of NI methods through this dataset has not enabled the designation of a 
single method that seems promising for the inference of GRN in scRNA-seq data. On 
the contrary, none of the methods achieved a better score than a random method 

would, based on the AUROC scores. This could be explained in a number of ways. 

Due to the short raw reads and, possibly, subsequent low mapping rates, it is 
possible that expression values of several genes that are expressed in vivo, are not 
included in the expression matrix. Also, the values in the matrix might not reflect the 
true expression levels. Since GRN are inferred from the expression levels, this might 
have an impact on the amount of false negative interactions.  

Alternatively, the lack of existence of a true gold standard for glioblastoma, resulting 
in the construction of a list of putative cancer interactions based on interactions 
known in literature, might have led to these results. Though the interactions 
reported in literature are highly confident, not all data sources used to create this list 

have the same level of curation. The use of interaction prediction databases, such as 

Precision-recall curve glioblastoma 

Figure 17: Receiver operating characteristics (A) and precision-recall curve (B) for all the different network inference methods 
for analyzing single-cell glioblastoma data – None of the methods score better than random (0,50). 

A B 
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stringDB, which integrates several prediction tools, will also include interactions of 
lower confidentiality. 

It also needs to be taken into account that the control data originated from 
microarray experiments due to the absence of control scRNA-seq experiments. The 
comparison of their derived GRNs will be more accepted if the raw data has the 
same source. 

 

3.4. Network inference melanoma 

3.4.1. Filtering of the expression matrix 

As mentioned before (supra, 3.1.3 Melanoma), only malignant samples were 
included in this analysis. No information on sample quality or mapping rates was 
available. The genes were filtered in a similar way as the glioblastoma genes: first, 
only the genes that have a gene type ‘protein_coding’ were selected. Next, the 
variance of the genes that are expressed in at least 10% of the samples was 
calculated. Due to the amount of samples, the top 6000 genes with the highest 
variance were selected for network inference. 

 

3.4.2. Gold standard 

As for glioblastoma, no melanoma golden standard is available. The Melanoma Gene 
Database (MGDB) (Zhang et al. 2015), a manually curated database containing 
information on 527 genes reported in literature to be involved in melanoma, was 
consulted. First, the list of genes, obtained from PubMed abstracts by the authors, 
was downloaded. A distinction was made between 422 coding and 105 non-coding 
genes. For further analysis, only the coding genes were obtained. Secondly, the file 
containing interaction information for these genes downloaded. This information 
had been obtained by the authors through the Protein Interaction Network Analysis 
(PINA) (Cowley et al. 2012) platform. Of the 422 genes, roughly one third had a 
highly variant expression and was included in the filtered expression matrix (Figure 
18). 

 Figure 18: Number of expected genes included in filtered expression matrix – about half of the expected genes are included in 
the filtered gene list of genes included in the melanoma expression matrix 
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3.4.3. Nonmalignant cells 

Microarray expression data from 7 melanocytes was filtered to include only the 6000 
genes that were filtered in the melanoma single cell data. Only 4730 of these genes 
were found in the control dataset, probably caused by incomplete mapping between 
the control dataset’s gene symbols and the melanoma ensembl identifiers.  

 

3.4.4. Performance 

The initial analyses executed for the inferred networks in melanoma data were the 

same as for glioblastoma data. First, the ranked interactions were verified against 
the combined list of predicted and control interactions. The number of inferred 
interactions that could be found in the combined list was higher in melanoma than in 
glioblastoma, but in terms of percentage, the increase seems insignificant (data not 
shown).  

The ranks of interactions (data not shown) and genes (Figure 19) likely to be involved 
in melanoma were compared in cancer and control interactions. Here too, we would 
expect the interactions to occur at random in the control interactions and to rank 
highly in the cancer dataset, but the results are comparable to those in glioblastoma.  

 

 

 
Figure 19: Comparison - in cancer versus control - of the ranks of genes expected to be important for melanoma - clr = 
context likelihood relatedness, aracne = Algorithm for the Reconstruction of Accurate Cellular Networks, corr = correlation, 
ctrl = control. 
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The performance of each of the methods was evaluated by calculating the area 
under the receiver operating characteristic (ROC) curve (AUROC) and the area under 
the precision-recall curve (AUPR) (Figure 20). 

 

 

 

Figure 20: Receiver operating characteristics (A) and precision-recall curve (B) for all the different network inference 
methods for analyzing single-cell melanoma data – None of the methods score better than random (0.50) 
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3.4.5. Hubs 

Biological networks are reported to have scale-free properties, meaning that more 
nodes than expected have a high degree and the node connectivity follows a power-
scale distribution. As a result, to evaluate the importance of a gene in a biological 
network, it is not sufficient to evaluate the weight of its edges, but it is also 
important to evaluate its connectivity. Highly connected genes, the so called hubs, 
are more likely to be essential.  

The degree distribution was verified for each of the methods (Figure 21). These plots 
show that there are a few highly connected nodes, and a high amount of genes with 
a very low connectivity. 

 

 

Figure 21: Degree density for the networks inferred by the different NI methods – all degrees are not normally distributed but have 
a small amount of highly linked nodes and a large amount of nodes that are lowly linked. 
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Next, the ranked interactions are evaluated one by one, verifying the degree of the 

regulators with each step. Regulators that rapidly gain a high degree are more likely 

to be of biological importance as these nodes have a lot of connections with a high 

weight. For each of the regulators, this change in degree with descending weight is 

plotted and the area under the curve is calculated. For example, in the case of CLR 

(Figure 22), most regulators show a linear increase in degree. However, a few 

regulators have a large amount of high weighted edges and show a more logarithmic 

increase in degree; these are possible hubs. 

 

 

 

Secondly, a gene set test (GST) is performed to test whether the set of regulators is 

ranked more highly as opposed to a randomly chosen set of genes. For each of the 

methods, the log transformed p-value of the GST for each regulator is plotted against 

its area under the change-in-degree curve. The 10 most significant regulators are 

labeled (Figure 23). 

 

Figure 22: Plot showing the degree in function of the index – most regulators show a linear relation but some regulators 
have a large amount of high weight edges; these are possible hubs. 

Degree for increasing index - CLR 
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Figure 23: the log transformed p-value, corrected for multiple testing, is plotted against the area under the degree curve for each 
of the methods – the top 10 genes with the most significant p-value are labeled and genes which are in the melanoma gold 
standard are colored light blue. 
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These plots show that the regulators with the highest area under the curve are not 

necessarily the regulators show the most significant results for the gene set test. 

Finally, the 10 most significant regulators are compared for each NI method in the 

melanoma and the control data, and evaluated against the gold standard for 

melanoma (Table 4). 

Table 4: Top 10 most significant regulators for each method – For each of the methods, the top 10 most 
significant regulators compared between melanoma and control. The regulators that occur in the gold standard, 
are marked with a * 

 ARACNE Correlation GENIE3 CLR 

 Melanoma Control Melanoma Control Melanoma Control Melanoma Control 

1 TFAP2C * HIF1A TFAP2C *  DRAP1 TFAP2C * ID1 TFAP2C * ZNF195 

2 SMARCA4 RELA SMARCA4 PCBP2 TSC22D3 NOC4L TSC22D3 ZNF207 

3 SNAI2 PHB2 GARS AEBP1 SNAI2 TSC22D2 SNAI2 ZNF672 

4 TSC22D3 PIAS4 SNAI2 HMGA1 SMARCA4 ZFP36L2 MITF * CENPT 

5 DNMT1 PCBP2 TSC22D3 PHB2 MYC * GATAD2A ATF3 SFPQ 

6 GARS FOXJ3 MLLT11 CREB3L2 GARS E2F6 MAEL NFKBIB 

7 MLLT11 ARID5B DNMT1 KAT5 SOX4 ARNT2 SOX4 DDB2 

8 SOX4 ZNF451 AHR HMG20B AHR KAT5 EGR1 * MBD4 

9 MYC * TSC22D1 ELOF1 RELA DNMT1 TFB1M EGR2 NFE2L1 

10 NFATC2 * ZNF593 GTF3A CERS4 NFATC2 * ZBTB48 ETV4 * ZNF174 

 

For the melanoma data, 19 different regulators are seen in total, of which three, 
SNAI2, TFAP2C and TSC22D3, are reported by all four methods. These highly 
connected genes can be seen as hubs. Transcription factor AP-2 gamma (TFAP2C) is 
most significant in all methods. Silencing of TFAP2C by micro RNAs (miRNAs) is 
reported to be involved in oncogenesis of melanoma (Penna et al. 2011). 

Apart from TFAP2C, five other hubs can also be found in the gold standard, i.e. EGR1, 
ETV4, MITF, MYC and NFATC2 (indicated with *, table x). However, it is possible that 

the gold standard is incomplete. SNAI2, for instance, which is ranked third by three 
of the methods, is reported to play a role in the epithelial-to-mesenchymal transition 
(EMT) in healthy melanocyte development. It is also suggested that it influences 
melanoma progression by enhancing motility and invasiveness (Shirley et al. 2012). 

The same publication also reported an association between expression of SNAI2 and 
MITF, a gene that was present in the current gold standard. MITF activates SNAI2 in 
vivo.  

Finally, the regulators were sorted by descending AUC and ascending GST q-value. 
The ranks of each of the 422 gold standard melanoma genes were evaluated for both 
criteria (Figure 24). The melanoma genes clearly rank higher, showing that these 
genes are more likely to be highly connected. 
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3.4.6. Conclusion 

Similar to the glioblastoma dataset, analysis of the ranked interactions has not led to 
the anticipated result. Analysis of transcription factor connectivity, however, showed 
that genes that are involved in melanoma are more highly connected. This means 
that these genes, hubs, are more likely to be involved in important interactions. 

Of the 19 most highly connected regulators, only six are reported in the gold 

standard. However, it is possible that the gold standard is incomplete. Several of 
these regulators have also been identified to play a role in oncogenesis of other 
cancer types and might be interesting to investigate in vitro and in vivo.  

Figure 24: The ranks of each of the 422 gold standard melanoma genes evaluated for AUC and GST - The melanoma genes 
clearly rank higher, showing that these genes are more likely to be highly connected. AUC = area under the curve, GST = 
gene set test. 
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Part 4: Discussion  

4.1. Conclusion 

Due to recent developments in the field of microfluidics, it has become possible to 
analyze transcriptomes on a single-cell level in a high-throughput fashion: scRNA-
seq. This technique has already shown promising results in developmental and 
immunological research and is also emerging in cancer research, particularly in 
uncovering aspects of tumor heterogeneity. To date, there is no consensus on which 
computational methods to use for the analysis of this new data type. For some steps 

of the analytical process, it is suggested that tools developed for the analysis of 
population RNA-seq can be used, although adaptations will be required. For other 
steps, new tools will need to be developed.  

One of the ways to obtain biological insights from expression data is through 
reconstructing gene regulatory networks from this data. It has been reported that 
network inference (NI) methods developed for population RNAseq can be used for 
single-cell data, but that adjustments will be required to deal with the higher levels 
of technical noise and with confounding factors. The main aim of this thesis was to 
evaluate selected NI methods for their ability to correctly infer gene regulatory 
networks (GRN) using scRNA-seq data.  

Since scRNA-seq has only been developed recently and not much has been reported 

about the comparability of this data to its population counterpart, the first part of 
the analysis consisted of a comparison between average single-cell expression levels 
and population expression levels. Plots of the correlation between expression levels 
in the pooled single-cells and the population cells showed that, especially for lowly 
expressed genes, the expression values in pooled samples were slightly higher. Also, 
the amount of non-expressed genes was lower in these samples. A possible 
explanation for this was the difference in sequencing depth, with the depth being 
lower in the population samples. Next, the samples were visualized in 3D using 
dimensionality reduction. This analysis led to the detection of a group of outliers. 
The quality of these samples was markedly lower than the other samples; their 
exclusion led to better clustering results and motivated the exclusion of low quality 

samples for further analysis. 

The second part of the current thesis consisted of the scoring of the performance of 
four selected NI methods, using data from two publicly available single cancer cell 
RNA-seq experiments. First, a gold standard of interactions reported in these two 
cancer types, glioblastoma and melanoma, needed to be constructed. For the 
glioblastoma dataset, this was done integrating data from different pathway and 
interaction prediction databases, based on a literature study. Analysis of the 
networks inferred by the different methods, did not show the expected results: few 
of the gold standard interactions were found by any of the methods and ROC 
analysis showed that none of the methods scored better than random. For the 

melanoma gold standard, all coding genes from the highly curated melanoma gene 
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database (MGDB) were used. Again, none of the NI methods showed to be superior 
in a ROC analysis. Finally, the connectedness of the regulators was evaluated for 
each of the networks. The interactions were ranked based on the predicted edge 
weights, and a gene set test (GST) was used to evaluate whether certain regulators 
were ranked more highly than expected by chance. For each of the regulators, the 
degree was also evaluated with ascending interaction weight. Regulators for which 
the degree rises more rapidly within the first - higher weighted - interactions, are 
expected to be biologically more important, as they have more connections with a 
higher weight. For each method, the top ten genes with the most significant p-value 
for the GST were compared. In total, this resulted in 19 different genes, of which six 
were also reported in the gold standard, although a superficial literature search 

shows that many of the other genes are reported in cancer, and some of them even 
in melanoma. These genes are possible candidates for further investigation. It would 
also be interesting to evaluate the effect on the network of the removal of one of 
these genes in silico, and compare those to knock-out or knock-down experiments in 
vitro or in vivo. The results of these experiments could help to improve the accuracy 
of the model, while the results in silico could help to make predictions on the effect 
of certain drugs that inhibit a specific gene. 

 

4.2. Limitations 

The fact that not one single NI method could be suggested for further analysis in 
single-cell data could have a number of possible causes. If, in the future, NI methods 
would be evaluated for use in single-cell data, the following remarks should be taken 
into account: 

For the glioblastoma dataset, the raw data was obtained from the SRA and 
preprocessed; this process includes mapping the raw reads, generating counts and 
normalizing these counts. Mapping of the 25 base pair paired-end raw reads showed 
mapping rates that were lower than expected. A possible cause was the length of the 
reads; shorter reads are statistically more likely to have more than one match with 
the transcriptome, causing them to be excluded by the used mapping tool. Mapping 

rates of around 30% indicate that 70% of the reads is not used to generate the 
expression matrix. The effect of this on the inference of networks is difficult to 
assess. Secondly, normalization of the counts was done using TPM, the method of 
choice for sequencing depth correction in population based data. This method is 
based on the assumption that the amount of RNA in each sample is approximately 
the same, which does not hold true for scRNA-seq data. A suggested method to deal 
with this is the use of extrinsic spike-ins to estimate the amount of RNA in each 
sample. As these spike-ins had not been added to the raw data, it was not possible to 
correct for the difference in RNA content between the samples. 

One of the main sources of variability between single-cell and population RNA-seq is 
biological variability, caused by periodic processes in the cell, such as the cell cycle. 

In a population of cells, this variability is masked by the fact that expression levels of 
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the genes are in fact the average expression levels over the total population of cells. 
Though this biological confounder has been reported, only one method, scLVM, has 
been developed that allegedly removes these effects. Due to lack of evidence, this 
method was not used in the current analysis.  

For the melanoma data, an expression matrix containing the normalized counts was 
obtained, as the raw data had not yet been made available. The mapping of 30 base 
pair paired-end reads was done using bowtie, allowing single-base mutations. No 
mapping rates were available. Normalization was done using TPM. If possible in the 
future, it would be interesting to preprocess the melanoma data using the same 
workflow as was used for the glioblastoma data. This way, results will be more 
comparable and possible computational bias associated with the preprocessing 

method, will be eliminated. 

In terms of the method used to score the NI methods, there are also several 
improvements which can be made. Firstly, in the construction of the gold standard 
for the glioblastoma data, interaction prediction databases were used. As these 
interactions are predicted with different levels of confidence, these are not suited 
for a gold standard. Including these genes could lead to a lot of seemingly false 
negative predictions, giving the methods a worse score than they have in reality. This 
was taken into account when constructing the gold standard for melanoma. The 
authors manually extracted the genes from PubMed abstracts, drastically increasing 
levels of confidence. Interacting partners for these genes were inferred from PINA, a 
protein-protein interaction database containing data from six manually curated 

interaction databases. However, the higher confidence levels of the gold standard 
did not have an influence on the score. This could indicate that the scoring method, 
AUROC, should be reevaluated.  

Another issue could be that the importance of a regulator should not only be 
measured by the weight of its edges, but also by the number of edges. To this end, 
an analysis of possible hubs was executed for the melanoma data, ranking the 
regulators by their degree, while also taking into account the weight of the edges.  

Additionally, none of the methods takes into account the origin (patient) of each of 
the samples. Including this information in the analysis and combining this with 
metadata on the progress of the disease in this particular patient, could lead to new 

biological insights. 

Even though CLR identified the highest number of gold standard genes, it is not 
possible to recognize this as the best method based on this data. If, however, a way 
is found to overcome all challenges mentioned above, the method to identify hubs 
shows great promise as a tool for prioritizing genes.  

 

4.3. Future aspects of network inference in single-cells 

The main priority for the near future of scRNA-seq data analysis should be the 

development of appropriate tools to deal with specific issues of this new data type, 
for instance cell cycle effects and differences in RNA content between the samples. 
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Once the problems concerning generation of correct expression values have been 
tackled, more specific methods can be developed to obtain new biological insights 
based on this data.  

Network inference in single cells, specifically, could focus on predicting which 
pathways are responsible for the cell’s phenotype. Uncovering subclones in 
heterogeneous tissue samples such as tumors could lead to a better understanding 
of driver genes playing a role in therapy resistance or the development of 
metastases. These in silico uncovered genes could be validated in vitro and in vivo, 
ultimately leading to the discovery of a more effective therapy.  

Similar to the results of the DREAM challenge, no single method performs optimally 

based on this analysis. The solution proposed by the authors is a community-based 
method, combining information from different methods to generate the most robust 
networks; this is an approach worth investigating. 

One of the main problems of scRNA-seq is its cost. Currently, however, the field is 
evolving towards the development of higher-throughput methods, analyzing 1000-
5000 cells but with a much lower coverage using methods like, for instance, drop-
seq. Increasing the amount of samples could have beneficial effects on the statistical 
power of the tests, although the lower coverage might present researchers with new 
computational challenges. Additionally, the lower cost and high speed of these 
methods could increase the amount of experiments, making this data more 
accessible, which could benefit the progress in the field. 
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Part 5: Samenvatting discussie 

5.1. Conclusie 

Dankzij recente ontwikkelingen in het veld van de microfluidics is het mogelijk 
geworden om het transcriptoom te analyseren van één enkele cell, waarbij 
meerdere cellen in parallel kunnen geanalyseerd worden. Deze techniek wordt 
single-cell RNA-seq genoemd (scRNA-seq). In ontwikkelingsbiologisch en 
immunologisch onderzoek heeft het gebruik van deze methode al geleid tot enkele 
veelbelovende resultaten en ook in kanker onderzoek is deze manier van 

transcriptoom analyse aan het opkomen, meer specifiek om aspecten van tumor 
heterogeniteit bloot te leggen. Tot op de dag van vandaag is er geen consensus over 
de computationele methodes die gebruikt dienen te worden bij de analyse van dit 
nieuwe data type. Voor bepaalde stappen binnen het analytische proces wordt 
gesuggereerd dat methodes die ontwikkeld werden voor de analyse van de RNA-seq 
data van een groep cellen, population RNA-seq, zouden moeten gebruikt kunnen 
worden, hoewel aanpassingen nodig zullen zijn. Voor andere stappen zullen nieuwe 
methodes ontwikkeld moeten worden. 

Eén van de manieren waarop nieuwe biologische inzichten verkregen kunnen 
worden aan de hand van expressie data, is door het reconstrueren van gen 
regulatorische netwerken (GRNs) aan de hand van deze data. Bepaalde auteurs 

hebben gerapporteerd dat netwerk inferentie (NI) methodes voor population RNA-
seq ook gebruikt kunnen worden voor single-cell data, mits enkele aanpassingen die 
rekening houden met verhoogde niveaus van technische ruis en bepaalde 
verstorende factoren. De hoofddoelstelling van deze thesis was het vergelijken van 
het vermogen van verschillende geselecteerde NI methodes om de juiste netwerken 
te infereren op basis van single-cell data. 

Aangezien scRNA-seq een vrij recent ontwikkelde techniek is, bestaan er weinig 
publicaties over de vergelijking van deze data met population RNA-seq. Het eerste 
deel van deze thesis bestond uit een vergelijking van de gemiddelde single-cell 
expressie waarden met de population expressie waarden. Plots van de correlatie 
tussen deze waarden toonden aan dat de gemiddelde expressie waarden in de 

single-cells enigermate hoger waren dan die in de population stalen; dit gold 
voornamelijk voor de genen die laag tot expressie komen. Het aantal genen dat 
helemaal niet tot expressie kwam was ook hoger in de population stalen. Een 
mogelijke verklaring hiervoor is het verschil in sequencing depth. Vervolgens werden 
de stalen gevisualiseerd in drie dimensies met behulp van dimensionaliteitsreductie. 
Hierbij werd een groep van outliers gevonden die van lagere kwaliteit bleken te zijn. 
Het uitsluiten van deze stalen leidde tot betere clustering resultaten en toonde aan 
dat de stalen van lage kwaliteit uitgesloten moesten worden bij verdere analyses. 

Het tweede deel van deze thesis bestond uit het evalueren van de vier geselecteerde 
NI methodes. Hierbij werd scRNA-seq data gebruikt van twee verschillende kanker 

types, nl. melanoma en glioblastoma; deze data was publiekelijk beschikbaar. Ten 
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eerste moest een gouden standaard van gekende interacties in deze twee kanker 
types opgesteld worden. Voor glioblastoma werd hiervoor data van verschillende 
pathway en interactie-predictie databanken geïntegreerd. ROC analyse toonde aan 
dat geen enkele van de NI methodes erin slaagde om de juiste interacties te 
voorspellen. Voor melanoma werden de genen van MGDB gebruikt. Opnieuw kon 
geen enkel van de methodes de interacties op een significante manier voorspellen. 
Een evaluatie van de hubs in het netwerk, de regulatoren met een hoge 
connectiviteit, konden echter wel enkele belangrijke genen voorspeld worden. Voor 
elke methode werden de beste tien hubs vergeleken. Bij het opstellen van de top 
tien werd niet alleen rekening gehouden met het aantal connecties, maar ook met 
hun voorspelde belang. In totaal bevatten deze lijsten 19 verschillende genen, 

waarvan zes ook in de gouden standaard opgenomen waren. Een oppervlakkige 
literatuurstudie toonde wel aan dat voor veel van de 13 andere genen aangetoond 
was dat ze een rol speelden in oncogenese, en sommige zelfs meer specifiek in 
melanogenese. 

 

5.2. Limitaties 

Geen enkele van de NI methodes kon naar voor geschoven worden als de beste 
methode voor gebruik in single-cell analyse. Indien in de toekomst opnieuw een 
evaluatie van NI methodes zou gebeuren, moet voor het verwerken van de datasets 

rekening gehouden worden met de factoren die hieronder opgesomd worden: 

 Bij het mappen van de glioblastoma reads op het humaan transcriptoom, 
werd een zeer lage graad van mapping geobserveerd. Vermoedelijk komt dit 
doordat ze reads zeer kort zijn, nl. 25 basenparen, waardoor ze mogelijks op 
meer dan één plaats in het transcriptoom mappen. De gebruikte tool zal 
dergelijke fragmenten verwerpen. Het is moeilijk om het effect hiervan op 
de NI in te schatten. 

 Normalizatie van de counts van de glioblastoma data werd gedaan door 
middel van TPM. Hierbij wordt er van uit gegaan dat de hoeveelheid RNA in 
elk staal bij benadering hetzelfde is; deze veronderstelling klopt niet voor 

scRNA-seq data. Het gebruik van spike-ins  zou hiervoor kunnen corrigeren, 
maar in deze dataset waren geen spike-ins aanwezig. 

 Een deel van de variabiliteit tussen single-cell en population RNA-seq is 
biologische variabiliteit veroorzaakt door periodieke processen in de cel, 
zoals bijvoorbeeld de cel cyclus. Deze processen hebben geen invloed op de 
expressieniveaus bij population RNA-seq omdat hierbij het gemiddelde 
niveau over een groep van cellen wordt genomen. De methode scLVM zou 
deze effecten verwijderen, maar doordat deze methode nog maar recent 
ontwikkeld is en zijn effectiviteit nog niet uitgebreid bewezen is, werd ervoor 
gekozen om deze niet te gebruiken. 
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 Voor de melanoma data waren er ten tijde van de analyse nog geen raw 
reads ter beschikking. Hierdoor moest gewerkt worden met data die 
gepreprocessed was door de auteurs. Indien deze raw data in de toekomst 
ter beschikking komt, zou het interessant zijn om zelf de preprocessing uit te 
voeren, om technische verschillen tussen de datasets uit te sluiten. 

Verder zijn er op vlak van de methodologie ook nog verschillende verbeteringen 
mogelijk: 

 Het gebruik van interactie-predictie databanken voor het construeren van 
een gouden standaard is niet doeltreffend. Interacties in dergelijke 
databanken hebben een verschillend niveau van betrouwbaarheid, wat zou 
kunnen leiden tot veel schijnbaar vals negatieve resultaten. Een aantal van 

deze interacties zullen nl. onjuist zijn, waardoor het onmogelijk is voor de NI 
methodes om ze te voorspellen.  

 Met het bovenstaande werd rekening gehouden bij het construeren van de 
gouden standaard voor de melanoma dataset. Desalniettemin was er geen 
significant verschil bij het scoren van de verschillende NI methodes; geen 
enkele methode scoorde beter dan random. Dit resultaat geeft aan dat de 
gebruikte score methode, AUROC, misschien geherevalueerd moet worden 
voor gebruik in deze context. 

 Tot nu toe werd geen rekening gehouden met de herkomst van elk staal. Het 
integreren van patient data, gaande van biometrische kenmerken tot het 

verloop van de ziekte, zou tot nieuwe biologische inzichten kunnen leiden. 

Tenslotte heeft de analyse van de melanoma data aangetoond dat het belang van 
een regulator misschien niet enkel af hangt van het gewicht van zijn interacties, 
maar ook van het aantal interacties. Deze laatste methode lijkt veelbelovend voor 
het naar voor schuiven van nieuwe kandidaat regulatoren die verder onderzocht 
kunnen worden in vitro en in vivo. 

 

5.3.  Toekomstige ontwikkelingen 

De prioriteit voor de analyse van scRNA-seq data zou moeten liggen bij het 
ontwikkelen van geschikte methodes die kunnen omgaan met specifieke aspecten 
van dit nieuwe data type, zoals bijvoorbeeld effecten van de cel cyclus en verschillen 
in RNA inhoud tussen de stalen. Eens de problemen omtrent het genereren van een 
correcte expressie matrix opgelost zijn, kunnen meer specifieke methodes 
ontwikkeld worden die helpen bij het verkrijgen van nieuwe biologische inzichten op 
basis van deze data. 

Het infereren van netwerken op basis van single-cell data zou erop gericht kunnen 
zijn om te voorspellen welke pathways verantwoordelijk zijn voor het fenotype van 
een bepaalde cel. Het blootleggen van subklonen in heterogene weefsel stalen zoals 
tumoren zou kunnen leiden tot een beter inzicht in de driver genen die een rol 

spelen in therapie resistentie, of het ontwikkelen van metastasen. Deze in silico 
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ontdekte genen zouden gevalideerd kunnen worden in vitro en in vivo. Het ultieme 
doel zou zijn om een meer effectieve behandeling te ontwikkelen. 

Het feit dat geen enkel van de methodes, volgens experimenten die hier uitgevoerd 
werden, optimaal presteerde is een resultaat dat ook gezien werd door de auteurs 
van de DREAM challenge. Zij stelden een meta-methode voor waarbij NI data van 
verschillend methodes geïntegreerd wordt. Een dergelijke benadering zou ook in dit 
geval nagegaan kunnen worden. 

Huidige trends wijzen er op dat er binnenkort scRNAseq methoden, bvb. drop-seq, in 
gebruik zullen genomen worden waarbij er veel meer cellen (1000 à 5000) 
gesequeneerd worden maar aan een veel lagere coverage. Een groter aantal cellen 

per dataset zou de statistische power vergroten. De lagere coverage zal 
onderzoekers mogelijks voor nieuwe computationele uitdagingen stellen. Dergelijke 
methodes zijn goedkoper dan de bestaande methodes en werken snel, wat ervoor 
zou kunnen zorgen dat het aantal experimenten snel stijgt, met als gevolg dat meer 
onderzoekers zich kunnen toeleggen op scRNA-seq, wat de vooruitgang in dit veld 
ten goede zou komen. 
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Part 6: Materials and Methods   

6.1. Glioblastoma data 

6.1.1. Download data 

The raw sequencing data from a publicly available dataset of 5 patients with 
glioblastoma multiforme (GSE57872) (Patel et al. 2014) was downloaded from NCBI’s 
sequence read archive (SRA), using the SRA accession number SRP042161. This 
dataset contains the expression profiles of 576 single glioblastoma cells, 192 cells 
from glioblastoma cell lines and a population glioblastoma sample for each patient, 

containing 2000–10000 cells. The reads were generated using the SMART-seq 
protocol; this resulted in paired-end reads of 25 base pairs. The metadata for this 
dataset was composed combining the information on the runs from the SRA run 
selector and the metadata associated with the GEO samples. The latter was accessed 
by using the getGEO function from the Bioconductor package GEOquery. 

 

6.1.2. Quality control  

The quality of the sequencing data was evaluated using FastQC. This tool requires 
that the input data is in fastQ, BAM or SAM format. The downloaded runs, which 

were in the sra format, were converted to fastQ using the sra toolkit fastq-dump 
tool. The option --split-files was added to split forward and reverse reads.  

For each of the runs, 8 of the criteria were evaluated using a fail/pass system and all 
results were combined in a single table. When checking the per base sequence 
content, the first 9 bases were excluded from the analysis, avoiding warnings related 
to a technical bias caused by library production. The sequence length distribution is 
excluded from the analysis, as well as k-mer and adapter content.  

Besides the quality control criteria included in the fastQC analysis, three alternative 
criteria were included: the number of reads mapped, the percentage of reads 
mapped and the number of genes expressed. Passing levels were set respectively to 

100000, 7% and 5000. 

 

6.1.3. Mapping and normalization 

The transcripts were mapped to the human reference transcriptome, assembly 
version GRCh38, using salmon beta version 0.6.1 in quasi mapping mode. First, the 
transcripts were indexed, setting k-mer length to 11. Secondly, the paired-end reads 
were quantified against the transcriptome with library type matching and 
unstranded (MU) using ensembl transcript identifiers, version 83. Genes that did not 
have at least two samples with 5 counts are removed. The counts were normalized 
by calculating the amount of transcripts per million (TPM). Subsequently, the 
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expression levels were log transformed and the ensembl transcript identifiers were 
mapped to ensembl gene identifiers.  

6.1.4. Filter expression matrix 

The mapping of the transcripts resulted in an expression matrix with 875 samples, 
including single cell, population and cell line samples, and 54435 transcripts, mapped 
to their corresponding gene. Only the single cell samples that had passed 8 of the 
evaluated quality control criteria were accepted for further analysis, retaining a total 
of 629 samples.  

The genes that did not have a transcript and gene biotype of protein coding were 

excluded from the analysis. Genes that were expressed in at least 10% of the 
samples were ranked according to their standard deviation. The top 8000 genes with 
the highest standard deviation were used for network inference.  

 

6.2. Melanoma data 

6.2.1. Download data 

The GEO series GSE72056 contains 4645 single cells from 19 melanoma tumors from 
patients with a range of clinical backgrounds. Malignant as well as nonmalignant 

cells were sequenced. The processed expression matrix (Tirosh et al. 2016, 
supplementary materials) was downloaded directly from the GEO platform. The 
metadata were accessed through the bioconductor GEOquery package. 

 

6.2.2. Filter expression matrix 

To create the expression matrix for network inference, only the malignant samples 
were included. The genes that did not have protein coding as gene biotype, were 
excluded from analysis. The remaining genes that were expressed in at least 10% of 
the samples were ranked according to their standard deviation among all samples. 
Due to the size of the dataset, only the top 6000 genes with the highest standard 

deviation were used for network inference. 

 

6.3. Control data 

6.3.1. Glioblastoma 

A microarray analysis in the context of an experiment looking for candidate genes 
involved in glioblastoma relapse (GEO series GSE67089) included 5 astrocyte control 
samples (Mao et al. 2013). These samples were hybridized onto Affymetrix human 
genome U219 arrays. Log transformed GC-Robust Multiarray Averaging (GC-RMA) 

normalized expression values were available through GEO. The probe identifiers 
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were mapped to gene symbols. When several probes mapped to one gene, the 
average expression levels were calculated. Vice versa, no gene mapped to more than 
one probe.  

For network inference, only genes that were in the top 8000 genes with the highest 
standard deviation in the glioblastoma single cell RNA-seq dataset, were retained. 

 

6.3.2. Melanoma 

The GEO series GSE3189 is a microarray analysis of 7 normal skin, 18 nevi and 45 
melanoma samples (Talantov et al. 2005). These samples were hybridized onto 

Affymetrix human genome U133A arrays. The raw expression data and series 
metadata were accessed by using the bioconductor GEOquery package. Only the 
normal skin samples were regarded for further analysis and the probe identifiers 
were mapped to gene symbols. When several probes mapped to one symbol, the 
average expression levels were calculated. Vice versa, no symbol mapped to more 
than one probe. 

For network inference, only genes that were in the top 6000 genes with the highest 
standard deviation in the melanoma single cell RNA-seq dataset, were retained. 

 

6.4. Network inference 

6.4.1. Regulators 

A list of probable and possible human transcription factors was published by 
Vaquerizas and colleagues (Vaquerizas et al. 2009). Proteins containing selected DNA 
binding domains were mapped to the human genome (Ensembl version 51), which 
resulted in 1960 loci. These loci were classified as 'a', 'b', 'c' or 'x', according to the 
authors’ confidence in their transcription factor functionality. 27 probable 
transcription factors were added from other databases and classified as ‘other’ 
(Vaquerizas et al. 2009). To construct the list of regulators for network inference, 
transcription factors with class ‘a’, ‘b’ and ‘other’ were retained. Their HCNC symbols 

were mapped to ensembl identifiers, version 83. This resulted in a list of 1333 
probable transcription factors. 

A more recent list of predicted human transcription factors was downloaded from 
the AnimalTFDB version 2.0 (Zhang et al. 2015) and from Semantic catalogue of 
Samples, Transcription initiation And Regulators (SSTAR). 

The final list of transcription factors consisted of a union of these three lists and 
contained 1798 transcription factors, of which 1198 were present in all three lists. 
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6.4.2. Gold standard 

To evaluate the interactions found in the glioblastoma and melanoma dataset, a gold 
standard of important interactions in these types of cancer was composed. 

The TCGA pilot paper on glioblastoma (McLendon et al. 2008) reported three main 
pathways involved in glioblastoma: the p53 and retinoblastoma tumor suppressor 
pathway, dysregulation of cell growth via mutations in RTK genes and activation of 
the PI3K pathway. The human pathways PI3K-Akt signaling pathway (hsa04151), cell 
cycle (hsa04110) and p53 signaling pathway (hsa04115) were downloaded from the 
KEGG database and the interactions with type protein-protein interaction (PPrel) and 
gene expression interaction (GErel) were written to a file. From the KEGG disease 

database, interactions predicted to be involved in glioma (disease H00042) were also 
added to the list of predicted interactions. Finally, stringDB was searched for 
proteins interacting with Mig-6  (Ying et al. 2010), Bcl2-L12  (Stegh et al. 2010) and 
PTEN and interactions between genes predicted to be involved in glioblastoma by 
PathCards  (Belinky et al. 2015).  This resulted in a total of 383 interactions predicted 
to be important in glioblastoma.  

Further, four clinically relevant subtypes of glioblastoma were identified using TCGA 
data (Verhaak et al. 2010) . A list of 210 signature genes for each of these types is 
available, but only 679 of these genes could be mapped to an ensembl identifier. 
Finally, the KEGG pathway microRNAs in cancer (hsa05206) was consulted. Certain 

microRNAs are upregulated in glioblastoma, inhibiting tumor suppressor gene 
activity and the downregulation of other microRNAs may cause oncogene activation. 
8 genes that are possibly upregulated and 7 genes that are possibly downregulated 
were added to the list of relevant genes. 

An analysis of 331 melanoma patients by TCGA (TCGA. 2015) reported four 
melanoma subtypes: mutant BRAF, mutant RAS, mutant NF1 and Triple-WT. In the 
BRAF subtype, amplifications of BRAF and MITF were seen. The RAS subtype showed 
MAPK activation and AKT3 overexpression. In the NF1 subtype, a loss of NF1 function 
was described. From MGDB, a list of 527 genes reported in literature to be involved 
in melanoma, was downloaded. These genes had been manually curated by the 
authors from 682 PubMed abstracts. A distinction was made between 422 coding 

and 105 non-coding genes. For further analysis, only the coding genes were 
obtained. Secondly, the file containing interaction information for these genes 
downloaded. This information had been obtained by the authors through the Protein 
Interaction Network Analysis (PINA) (Cowley et al. 2012) platform.  

 

6.4.3. ARACNE and CLR 

The Bioconductor package minet implements several algorithms for mutual 
information network inference, including ARACNE and CLR. In the first step, a mutual 
information matrix (mim) is build based on the expression matrix, computing mutual 

information between all pairs of genes. The default entropy estimator is Spearman’s 
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correlation. Secondly, this mim is used by the algorithms as input. A weighted 
adjacency matrix is returned. By default, the ARACNE algorithm removes the least 
significant edge in a triplet of nodes (Equation 2). The threshold for removal (eps) is 
set to 2, meaning that the weakest edge is only removed if its weight is 2 below the 
minimum of the other two edges. 

Equation 2: Removal of the weakest edge in ARACNE – by default, eps is 0 

 

The weights of interactions between regulators and the set of all genes were sorted 
and the top 100000 were retained for further analysis.  

 

6.4.4. GENIE3 

A python2 implementation of GENIE3 was downloaded and adapted for use in 
python3. The default parameters of this implementation were used. An array with 
conditions in the rows and genes in the columns was passed to the algorithm, 

together with a list of gene names and a list of regulators. The default tree method 
and number of trees is respectively Random Forest and 1000 trees. K, the number of 
selected attributes at each node of one tree is the square root of the number of 
regulators. The output is the sorted ranking of links that are directed from the 
candidate regulators. The top 100000 links were retained for further analysis. 

 

6.4.5. Absolute value of Pearson’s correlation 

To calculate correlation between all samples, the python module pandas was used. 
The tsv file containing the expression matrix was read into a pandas DataFrame. 
Next, the function corr was used to calculated pairwise correlation between all 
genes. The default method is Pearson correlation. To exclude self-to-self correlation, 
all values on the diagonal of the correlation matrix were set to zero. Finally, the 
absolute values of the correlation coefficients were ranked and the top 100000 
edges were retained for further analysis. 

 

6.4.6. Hubs 

For the melanoma dataset, an analysis of the hubs was executed. The change in 
degree with descending edge weight is calculated and plotted for each regulator, 
and the area under the curve is calculated. Secondly, a gene set test is used to verify 
whether the set of regulators is ranked more highly as opposed to a randomly 
chosen set of genes. Significance is verified using a Wilcoxon signed rank test. The p-
values are corrected for multiple testing using the method of Benjamini-Hochberg 
and the top 10 genes with the most significant p-value are compared between the 
different methods.  
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6.5. Pooled single-cell vs. population RNA-seq 

6.5.1. Pooling 

After the conversion of the sra files to the fastq format, each run was split in two 
separate files, one containing the forward reads and another containing the reverse 
reads. To combine all the raw sequencing information per patient, all forward 
respectively reverse reads of cells from that patient were written to a single file. 
Then, counts were generated and normalized for these pooled samples using the 
same method as previously described (supra 5.1.3 Mapping and normalization). 

  

6.5.2. Correlation 

The correlation between the pooled and population samples was evaluated by 
plotting the expression levels for each gene in pooled versus population samples on 
respectively the x- and y-axis. Spearman and Pearson correlation coefficients, as well 
as the coefficient of determination (R²) were evaluated. 

 

6.5.3. Comparison of the sequencing depth 

To compare the sequencing depth, the following equation was used (Equation 3): 

Equation 3: Sequencing depth 

 

With read length 25 and genome size 3234.83 Mb. For the pooled samples, the 
number of sequences was calculated as the sum of the number of sequences of the 
individual single-cells. 

 

6.5.4. Dimensionality reduction 

Before reducing the dimensionality of the data, the top 50% most variant genes were 
selected. First, the different expression matrices - single-cells, population and pooled 
– were combined to a single expression matrix containing only genes present in all 
datasets. Secondly, the variances were calculated for all genes and sorted from high 
to low, finally selecting the top 50% genes. The correlation distances were calculated 
for each pair of genes. Dimensions in the gene direction were reduced to 3 using 
classical – Torgerson - multidimensional scaling (MDS). 

Dimensionality reduction on the full dataset showed a group of outliers. Differential 
gene expression analysis was used to identify differentially expressed genes. Genes 
were defined as differentially expressed if their log fold change was larger than 4 and 

the p-value smaller than 0.01. The p-values were corrected for multiple testing 
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usingthe method of Benjamini-Hochberg. Difference in quality between these 
outliers and the other samples was assessed using the Mann-Whitney U test (α < 
0.05).  



 

60 

 



 

61 

 

References 
 

Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA. 2016. Pan-cancer analysis of the extent and 
consequences of intratumor heterogeneity. Nature medicine [Internet]. Available from: 
http://www.nature.com/nm/journal/v22/n1/abs/nm.3984.html. 

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online 
at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc 

Babu M, Luscombe N, Aravind, Gerstein M, Teichmann S. 2004. Structure and evolution of 
transcriptional regulatory networks. Current Opinion in Structural Biology.283–291. 

Barabási A-L, Oltvai Z. 2004. Network biology: understanding the cell’s functional organization. Nature 
reviews Genetics.101–13. 

Barabási A-L. 2009. Scale-free networks: a decade and beyond. Science (New York, NY).412–3. 

Belinky F, Nativ N, Stelzer G, Zimmerman S, Iny Stein T, Safran M, Lancet D. 2015. PathCards: multi-
source consolidation of human biological pathways. Database (Oxford). 2015. 

Benjamin AM, Nichols M, Burke TW, Ginsburg GS, Lucas JE. 2014. Comparing reference-based RNA-
Seq mapping methods for non-human primate data. BMC Genomics. 15:570. 

Bleeker FE, Molenaar RJ, Leenstra S. 2012. Recent advances in the molecular understanding of 
glioblastoma. Journal of neuro-oncology [Internet]. 108:11–27. Available from: 
http://link.springer.com/article/10.1007/s11060-011-0793-0 

Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty 
D, Sanborn JZ, Berman SH, et al. 2013. The Somatic Genomic Landscape of Glioblastoma. Cell. 
155:462–477. 

Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, 
Stegle O. 2015. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data 
reveals hidden subpopulations of cells. Nat Biotechnol. 33:155–60. 

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MWW, 
Gaffney DJ, Elo LL, Zhang X, Mortazavi A. 2016. A survey of best practices for RNA-seq data analysis. 
Genome Biol. 17:13. 

Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi S, 
Wu J. 2012. PINA v2.0: mining interactome modules. Nucleic Acids Res. 40:D862–5. 

Cummins DL, Cummins JM, Pantle H. 2006. Cutaneous malignant melanoma. Mayo Clinic … [Internet]. 
Available from: http://www.sciencedirect.com/science/article/pii/S0025619611618983 

Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS. 2007. 
Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium 
of expression profiles. PLoS Biol. 5:e8. 

Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, Pandolfi PP, Mak T, Satija R, Shalek AK, et 
al. 2015. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell. 163:1400–
12. 

Genomic Classification of Cutaneous Melanoma. 2015. Cell. 161:1681–96. 

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. cell [Internet]. Available from: 
http://www.sciencedirect.com/science/article/pii/S0092867400816839 

Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell. 144:646–74. 

Hatem A, Bozdağ D, Toland AE, Çatalyürek ÜVV. 2013. Benchmarking short sequence mapping tools. 
BMC Bioinformatics. 14:184. 



 

62 

 

Islam S, Zeisel A, Joost S, Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. 2014. Quantitative 
single-cell RNA-seq with unique molecular identifiers. Nature Methods. 11. 

Kim J, Kolodziejczyk A, Illicic T, Teichmann S, Marioni J. 2015. Characterizing noise structure in single-
cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nature 
communications. 6:8687. 

Kim K-TT, Lee HW, Lee H-OO, Kim SC, Seo YJ, Chung W, Eum HH, Nam D-HH, Kim J, Joo KM, Park W-YY. 
2015. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of 
lung adenocarcinoma cells. Genome Biol. 16:127. 

Kwon T. 2015. Benchmarking Transcriptome Quantification Methods for Duplicated Genes in Xenopus 
laevis. Cytogenet Genome Res. 145:253–64. 

Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Amon A. 2013. Molecular cell 
biology. 7th ed. New York: W.H. Freeman and Company. 

Mao P, Joshi K, Li J, Kim S-H, Li P, Santana-Santos L, Luthra S, Chandran U, Benos P, Smith L, et al. 
2013. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving 
aldehyde dehydrogenase 1A3. Proceedings of the National Academy of Sciences.8644–8649. 

Marbach D, Costello J, Küffner R, Vega N, Prill R, Camacho D, Allison K, Aderhold A, Allison K, Bonneau 
R, et al. 2012. Wisdom of crowds for robust gene network inference. Nat Methods. 9:796–804. 

Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Califano A. 2006. ARACNE: An 
Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. Bmc 
Bioinformatics. 7:S7. 

McLendon R, Friedman A, Bigner D, Meir E, Brat D, Mastrogianakis G, Olson J, Mikkelsen T, Lehman N, 
Aldape K, et al. 2008. Comprehensive genomic characterization defines human glioblastoma genes 
and core pathways. Nature. 455:1061–1068. 

Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, 
Jawaid W, Diamanti E, et al. 2015. Decoding the regulatory network of early blood development from 
single-cell gene expression measurements. Nat Biotechnol. 33:269–76. 

Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian 
transcriptomes by RNA-Seq. Nature Methods.621–628. 

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahil DP, Nahed BV, Curry WT, 
Martuza RL, et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary 
glioblastoma. CANCER GENOMICS. 344. 

Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, Poliseno L, Haimovic A, Osella-Abate S, 
Pittà C, et al. 2011. microRNA-214 contributes to melanoma tumour progression through suppression 
of TFAP2C. The EMBO Journal.1990–2007. 

Phillips H, Kharbanda S, Chen R, Forrest W, Soriano R, Wu T, Misra A, Nigro J, Colman H, Soroceanu L, 
et al. 2006. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of 
disease progression, and resemble stages in neurogenesis. Cancer Cell. 9:157–173. 

Prado M, Frampton A, Stebbing J, Krell J. 2015. Single-cell sequencing in cancer research. Expert 
review of molecular diagnostics. 

Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J, Lum J, Malleret B, Zhang S, Larbi A, 
Zolezzi F, et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage 
priming at the common DC progenitor stage in the bone marrow. Nat Immunol. 16:718–28. 

Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef 
N, et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 
510:363–9. 

Shapiro E, Biezuner T, Linnarsson S. 2013. Single-cell sequencing-based technologies will revolutionize 
whole-organism science. Nature Reviews Genetics. 14:618–630. 



 

63 

 

Shirley SH, Greene VR, Duncan LM, Torres Cabala CA, Grimm EA, Kusewitt DF. 2012. Slug expression 
during melanoma progression. Am J Pathol. 180:2479–89. 

Stears RL, Martinsky T, Schena M. 2003. Trends in microarray analysis. Nature medicine [Internet]. 
Available from: http://arrayit.com/confidential/Trends_Microarray_Analysis.pdf 

Stegh A, Brennan C, Mahoney J, Forloney K, Jenq H, Luciano J, Protopopov A, Chin L, DePinho R. 2010. 
Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Gene Dev. 24:2194–2204. 

Stegle O, Teichmann SA, Marioni JC. 2015. Computational and analytical challenges in single-cell 
transcriptomics. Nat Rev Genet. 16:133–45. 

Talantov D, Mazumder A, Yu J, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y. 2005. Novel genes 
associated with malignant melanoma but not benign melanocytic lesions. Clinical cancer research : an 
official journal of the American Association for Cancer Research.7234–42. 

Tirosh I, Izar B, Prakadan S, Wadsworth M, Treacy D, Trombetta J, Rotem A, Rodman C, Lian C, Murphy 
G, et al. 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. 
Science. 352:189–196. 

Tomczak K, ska P, Wiznerowicz M. 2015. The Cancer Genome Atlas (TCGA): an immeasurable source 
of knowledge. Contemporary oncology [Internet]. 19:A68. Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322527/ 

Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake 
SR. 2014. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. 
Nature. 509:371–5. 

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. 2009. A census of human transcription 
factors: function, expression and evolution. Nat Rev Genet. 10:252–63. 

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller RC, Ding L, Golub T, Mesirov 
JP. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma 
characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell [Internet]. 17:98–110. 
Available from: http://www.sciencedirect.com/science/article/pii/S1535610809004322 

Wagner GP, Kin K, Lynch VJ. 2012. Measurement of mRNA abundance using RNA-seq data: RPKM 
measure is inconsistent among samples. Theory in Biosciences [Internet]. Available from: 
http://link.springer.com/article/10.1007/s12064-012-0162-3 

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 
Genet. 10:57–63. 

Watson IR, Wu CJ, Zou L, Gershenwald JE, Chin L. 2015. Genomic classification of cutaneous 
melanoma. Cancer Research [Internet]. Available from: 
http://cancerres.aacrjournals.org/content/75/15_Supplement/2972.short 

Ying H, Zheng H, Scott K, Wiedemeyer R, Yan H, Lim C, Huang J, Dhakal S, Ivanova E, Xiao Y, et al. 2010. 
Mig-6 controls EGFR trafficking and suppresses gliomagenesis. Proc Natl Acad Sci USA. 107:6912–7. 

Zhang D, Zhu R, Zhang H, Zheng C-HH, Xia J. 2015. MGDB: a comprehensive database of genes 
involved in melanoma. Database (Oxford). 2015. 

Zhang H-MM, Liu T, Liu C-JJ, Song S, Zhang X, Liu W, Jia H, Xue Y, Guo A-YY. 2015. AnimalTFDB 2.0: a 
resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids 
Res. 43:D76–81. 

 



 

64 

 



 

65 

 

Attachments 
I. Supplementary tables 

 

Patient Mapping rate (%) 

Single cell mRNA-seq_MGH26 16,73 

Single cell mRNA-seq_MGH28 19,71 

Single cell mRNA-seq_MGH29 24,09 

Single cell mRNA-seq_MGH30 15,52 

Single cell mRNA-seq_MGH31 11,86 

Supplementary table 1: Average mapping rates of all single-cell samples for each patient – Patient MGH31 has a lower 
mapping rate than the other patients, suggesting the sequencing quality is lower for these cells 

 

 number of 

QC passes 

Number of 

reads 

mapped 

Total 

sequences 

Percentage 

mapped 

Genes 

expressed 

Non-zero 

expression 

Samples subset 7,52 91124,07 2070665,22 0,05 8438,96 3882,07 

Other single-cell 

samples 

10,26 1138425,69 6160122,19 0,18 27127,79 9881,20 

p-value 2,71E-30 2,708E-30 1,423E-16 2,22E-22 2,03E-24 1,3E-24 

Supplementary table 2: Mean values of several quality control features for the samples of the subset versus the other 
single-cell samples – Each of the QC aspects are compared in the two groups using the Mann-Whitney U test for non-
normally distributed data 

 

 Pooled single-cell Population 

 total sequences sequencing depth total sequences sequencing depth 

MGH26 9,96E+08 7,70E-01 1,54E+07 1,19E-02 

MGH28 6,95E+08 5,37E-01 2,28E+07 1,76E-02 

MGH29 4,90E+08 3,79E-01 8,43E+06 6,51E-03 

MGH30 6,39E+08 4,94E-01 2,21E+07 1,71E-02 

MGH31 6,22E+08 4,81E-01 7,70E+07 5,95E-02 

Supplementary table 3: Total amount of sequences and the sequencing depth for each patient compared in pooled 
samples and population samples – The sequencing depth of the pooled samples is higher than in the bulk samples, which 
could explain the difference in expression levels (supra 3.2.2 Correlation). 

II. Code 
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The code used to obtain the results presented in this thesis, can be consulted at: 

https://github.ugent.be/cdvogela/masterthesis  

https://github.ugent.be/cdvogela/masterthesis

