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Nederlandse samenvatting

Biologisch inzicht verkrijgen uit high throughput gen expressie experimenten is tot op het

heden een grote uitdaging. Een groot aantal methoden zijn reeds ontwikkeld in deze pa-

thway analyse tak van de bio-informatica. Een groep van deze methoden evalueert de

significantie van de overlap tussen een set van differentieel geëxpresseerde genen en pa-

thways van een functionele annotatie databank zoals bijvoorbeeld KEGG. Enkele typische

voorbeelden van deze groep zijn BiNGO (Maere et al., 2005), DAVID (Huang et al., 2007)

en GoMiner (Zeeberg et al., 2003). Een fundamenteel probleem van deze methoden is

dat de huidige annotatie databanken ver van compleet zijn, wat het moeilijk maakt om

een significante overlap te verkrijgen. Om dit probleem te omzeilen zijn er recent een

aantal netwerk (of graaf) gebaseerdemethoden ontwikkeld zoals CrossTalkZ (McCormack

et al., 2013), BinoX (submitted for publication), NEA (Alexeyenko et al., 2012) en Enrich-

Net (Glaab et al., 2012). Deze berekenen de significantie van het aantal links tussen twee

sets van genen, en kunnen bij deze het probleem van incomplete databanken gedeeltelijk

omzeilen. Een ander probleem dat nog steeds onopgelost is, is dat de sets van genen vaak

“ruis” bevatten: genen die door experimentele variatie in de set terecht kwamen maar

eigenlijk niet differentieel geëxpresseerd zijn. Om dit probleem aan te pakken kan cluste-

ren eventueel helpen. Het idee is om een gen set te clusteren en pathway analyse uit te

voeren op de individuele modules, deze methode heeft het potentieel om de sensitiviteit

nog meer te verhogen.

In deze thesis heb ik het effect van deze clusteringmethode geëvalueerd op twee verschil-

lende onafhankelijk gecureerde gold standard datasets. Ik heb ondervonden dat,wanneer

grote gen sets gebruikt worden, de stijging in false positive rate groter is dan de stijging in

sensitiviteit. Het verkrijgen vanmeer sensitiviteit en de daling van specificiteit wordt min-

der extreem naargelang kleinere gen sets gebruikt worden. Helaas, zelfs voor kleine gen

sets is er geen voordeel te halen uit clusteren. Dit werd geobserveerd voor beide datasets

en lijkt ook het geval te zijn bij het analyseren van gen sets van de Human Proteome Atlas

(HPA).
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English summary

Extracting biological insight from high-throughput gene expression experiments is still a

major challenge and has led to the development of many new data analysis techniques.

One category of these, termed pathway analysis techniques are very powerful tools for

annotating functions to Differentially Expressed (DE) genes sets created by these experi-

ments. A large number of overlap based pathway analysis techniques have been devel-

oped such as BiNGO (Maere et al., 2005), DAVID (Huang et al., 2007), GoMiner (Zeeberg

et al., 2003) and many more. These tools are based on finding a significant overlap of the

given gene set with gene sets from annotation databases such as KEGG (Kanehisa et al.,

2014). A fundamental problem of overlap based methods is that these databases are

very incomplete, and thus it is often difficult to find a statistically significant overlap. To

overcome this limitation, newer techniques such as CrossTalkZ (McCormack et al., 2013),

BinoX (submitted for publication), NEA (Alexeyenko et al., 2012) and EnrichNet (Glaab

et al., 2012) have been developed. These tools interpret the gene sets in the context of

a functional association network such as FunCoup (Alexeyenko and Sonnhammer, 2009;

Schmitt et al., 2014), or String (Szklarczyk et al., 2015). By searching for a significant in-

teraction between gene sets in a network context, the sensitivity can be increased. A re-

maining problem is that gene sets derived from experimental data are often noisy, thus

clustering these gene sets and performing pathway analysis techniques on the separate

modules might increase the sensitivity even further.

In this thesis I have benchmarked the effect of clustering and found that the rise in false

positive rate outweighs the gain in specificity when dealing with large gene sets. The gain

in sensitivity and loss of specificity seem to decrease for smaller gene sets, but even for

small gene sets there is still no advantage from using clustering. This has been observed

for two independently curated gold standard datasets and also seems to be the casewhen

analysing gene sets from the Human Proteome Atlas (HPA).
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Part 1: Introduction

Part 1: Introduction

High throughput biologicalmethods, capable ofmeasuring thousands of biologicalmolecules

at the same time, have become an increasingly important source of information in the last

two decades. These methods provide us with enormous amounts of data, but extracting

useful biological insights from this data is still a major challenge. Many of these high

throughput techniques such as DNA and RNA sequencing or protein profiling lead to large

lists of interesting genes/proteins that are affected by a condition of interest. Although

these lists are useful for determining genes that have a role in a certain phenomenon or

condition, they are often too large to be easily interpreted by researchers. It is therefore

difficult to gain any biological insight into the underlying processes that causes a certain

condition or phenotype.

To tackle this problem, a suite of tools have been developed which search for biological

themes in these gene lists. These tools thus reduce a long list of genes into a shorter list

of themes or categories represented by the genes, reducing the complexity and providing

more mechanistic insights. Examples of such themes are pathways or sets of genes that

are typically affected by a certain phenotype or condition. A large number of databases

have been developed to provide such themes, such as the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database, providing curated pathways (Kanehisa and Goto, 2000;

Kanehisa et al., 2014), and the Gene Ontology (GO) database, providing gene sets be-

longing to biological processes, molecular functions or cellular components (Ashburner

et al., 2000; The Gene Ontology Consortium, 2014). This approach is now a routine task

when interpreting high throughput data and, when attempting to find pathways under-

lying a gene list, is frequently called “pathway analysis”. When one does not specifically

look for pathways however, the term “functional enrichment analysis” can also be used.

Although many tools and annotation databases exist, there are still major challenges in

the field of pathway analysis. For example, it is still an ongoing discussion which statistical

models are most appropriate for pathway analysis. Other problems are incompleteness

of annotation databases and the noisy data inherent to high throughput techniques to

name a few.

In the following sections I will first introduce the concept of functional annotation and

pathway databases. Then I will briefly explain the idea behind functional association net-

works. With this background information in mind, I will introduce the field of pathway

analysis, describing different ways to approach this problem and their drawbacks. Then I

will introduce four pathway analysis tools that are used throughout this thesis, followed
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by a short discussion of how graph based clusteringmight have potential to improve some

of these tools. Finally, I will briefly go over some of the biggest problems in the field—in

particular the absence of a standard benchmarking procedure—and how these problems

can be addressed.

1.1 Functional annotation and pathway databases

When the function of a gene or gene product is determined, this information can be de-

posited in one of several functional annotation databases. One of the most popular and

widely used functional annotation databases is hosted by the GO consortium (Ashburner

et al., 2000). This database annotates a large set of genes from different organisms and

contains three basic categories: biological process, molecular function and cellular com-

ponent. More fine-grained annotations are possible for genes of which there is more

knowledge. The GO annotations form a consistent description of genes which are inter-

pretable for both humans and computer programs. Another example is MSigDB (Subra-

manian et al., 2005), containing a large collection of annotated gene sets from different

sources. These gene sets include curated pathways as well as gene sets derived from

experiments. A certain category of these functional annotation databases are pathway

databases such as the KEGG and Reactome (Milacic et al., 2012; Croft et al., 2014), which

contain gene sets belonging to the same pathway, and are often highly curated. These

pathway databases are particularly interesting for analysing Differentially Expressed (DE)

gene lists with pathway analysis tools, because genes from the same pathway are often

co-regulated. A major disadvantage is that only a small part of known genes belong to a

certain pathway. The main focus of this thesis is on pathway analysis methods, making

use of these pathway databases.

1.2 Functional association networks

By integrating the large amounts of omics data freely available online (as well as text min-

ing and/or other data sources), high coverage biological networks can be constructed.

The nodes in these networks represent biological entities such as genes, and the edges

describe the degree of belief that these entities are somehow functionally related. Two

examples of such high coverage Functional Association (FA) networks are FunCoup (Alex-

eyenko and Sonnhammer, 2009; Schmitt et al., 2014) and String (Szklarczyk et al., 2015).

Both of these networks were constructed from a large collection of heterogeneous data

types using a supervised Bayesian learning algorithm.

1.3 Three generations of pathway analysis methods

The use of high throughout techniques has been on the rise since the last two decades,

and pathway analysis has become a routine task over the last ten years (Khatri et al.,

2
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2012). Over this last decade, concepts of how to interpret High Throughput Data (HTD)

have evolved from very simple models considering only overlap between a given gene set

and pathways in an annotation database to very complex models that take into account

gene to gene and pathway to pathway relationships. Khatri et al. (2012) have reviewed

68 of these tools in the last ten years and divided them into three generations: Over-

Representation Analysis (ORA) tools, Functional Class Scoring (FCS) approaches and Path-

way Topology (PT) based approaches.

1.3.1 Over-Representation Analysis

This is the first and conceptually most simple approach. Typically a list of genes affected

by a condition of interest is obtained from HTD using a test statistic and a significance

cutoff. A good example is a microarray experiment with x and y replicates in condition

a and b respectively. One t-test is then performed per gene to test for a difference in

mean expression between condition a and b. Finally all p-values are corrected formultiple

testing and all genes with a corrected p-value below a certain significance cutoff, typically

0.05, are considered to have a role in the condition that was tested. This is what is often

called an interesting gene list, although gene set would be a more accurate description

since the order of genes in the list is of no importance.

The obtained gene set is then used to query other gene sets in an annotation database

such as KEGG or Reactome (Croft et al., 2014; Fabregat et al., 2015). The first generation

methods perform their statistical tests on the number of overlapping genes between the

query gene set and the gene sets in the annotation database. Usually a two by two con-

tingency table is created and a statistical test based on the hypergeometric distribution,

binomial distribution or χ2 (chi-squared) distribution is used to assess the significance of

the overlap (see section 1.4.1 for an example). The output is then a list of pathways that

are present in the input gene set, associated with a test statistic or a p-value. Popular

first generation tools include BiNGO (Maere et al., 2005), DAVID (Huang et al., 2007) and

GOstats (Falcon and Gentleman, 2007).

There are obvious limitations to these first generation methods. First of all, every tool

tests for an overlap as extreme or more extreme as the observed overlap (taking into ac-

count gene set sizes and background genes). This means that whenever there is no over-

lap between two gene sets, the probability of observing an equally big or bigger overlap

is equal to 1. In other words, non-overlapping gene sets will always be deemed insignifi-

cant. The problem is that no overlap can occur when taking a too strict p-value cutoff for

determining the input gene list. No overlap can also be a consequence of a pathway in

the annotation database being incomplete. A second problem is that many genes are co-

regulated, leading to correlations between genes that are independent of the experiment

performed (see also section 1.4.3). First generation methods use a set based approach to

test significance, assuming that all genes are independent. This assumption is notmet and

gene-gene correlations severely impact the false positive rate of these first generation

tools (Gatti et al., 2010). A third problem is that statistics associated with the interesting

gene list are discarded, treating each gene equally, no matter their log-fold change or test

statistic. The fourth problem is that pathways are being treated as a mere collection of
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genes, without any internal structure. Regulatory links between genes in a pathway are

discarded, removing a lot information.

In conclusion, first generation methods make assumptions that do not hold, are depen-

dent of a subjective significance cutoff for generating interesting gene lists, do not cope

well with incomplete annotation databases and discard a lot of information. But de-

spite these shortcomings, first generation methods are still very popular because they

are quickly implemented and easy to use.

1.3.2 Functional Class Scoring approaches

FCS approaches generally work in three big steps. First a gene-wise statistic is computed,

assessing the importance of each gene to the tested condition. This can be a obtained by

a t-test or moderated t-test for example (Smyth, 2004). Second, a pathway-level statistic

is computed, such as the sum, mean or median of the genes that are in the pathway. Ex-

amples of more sophisticated statistics are themaxmean statistic used byGene Set Analy-

sis (GSA) (Efron and Tibshirani 2007) or a weighted running sum used by Gene Set Enrich-

ment Analysis (GSEA) (Subramanian et al., 2005). Third, the significance of the pathway

level statistic is assessed. Usually an empirical p-value is obtained by permuting the sam-

ple/phenotype labels of the samples x times and recomputing the pathway level statistic,

generating a distribution of pathway level statistics under the null hypothesis. The signifi-

cance of the pathway is then the proportion of test statistics in this null distribution that

are more extreme than the true pathway level test statistic. This method of significance

testing is used by most FCS approaches, including GSEA, GSA and Pathway Analysis with

Down-weighting of Overlapping Genes (PADOG) (Tarca et al., 2012).

FCS approaches address several of the inherent limitations of ORA based approaches.

Most importantly, they do not depend on a subjective p-value cutoff, but use all values

instead. In addition, they do not treat all genes as equal since they make use of the gene-

wise test statistics. Finally, they address the gene-gene correlation problem that ORA

based methods face, because swapping the sample labels creates a null distribution that

preserves gene-gene correlations. Currently there seems to be an agreement in the litera-

ture in favor of this sample-permutation based null hypothesis (Ackermann and Strimmer

(2009); Jiang and Gentleman (2007); Tian et al. (2005); Glazko and Emmert-Streib (2009);

Gatti et al. (2010) and Goeman and Bühlmann (2007), see also Khatri et al. (2012) supple-

mentary text S2.3 for a discussion on this topic).

FCS approaches still suffer from one major limitation: just like ORA methods, they treat

pathways merely as gene sets. Any additional information such as regulatory links be-

tween genes in a pathway is discarded.

1.3.3 Pathway Topology based approaches

A number of annotation databases, such as KEGG (Kanehisa and Goto, 2000; Kanehisa

et al., 2014) and Reactome (Croft et al., 2014; Fabregat et al., 2015) provide detailed in-

formation about regulatory links between genes in a pathway. This is important informa-
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tion that is not being used by ORA or FCS based approaches. This limitation is addressed

by PT based approaches, which give more weight to genes that are central to a pathway

and incorporate interaction types between upstream and downstream genes. A popular

PT tool for signaling pathways is Impact Factor Analysis (IFA) (Draghici et al., 2007), which

takes a gene set and a pathway graph as input, and a recent improvement (Voichita et al.,

2012) of IFA called pathway express, which eliminates the need for a significance cutoff

to obtain a gene set. A recent and promising tool is Network Based Gene Set Analysis

(NetGSA) (Ma et al., 2014), which accounts for changes in pathway topology based on the

experimental condition. However, it is often not known how pathways rewire depending

on the condition of the sample, which makes this method not widely applicable.

Although PT based methods address all inherent limitations of ORA and FCS based meth-

ods, they do introduce a new limitation on their own. To use these methods, detailed

knowledge of the pathways is required, which is only available for model organisms and

well studied pathways. In conclusion, PT based methods are the most sophisticated but

at the same time the most limiting tools, while ORA based methods are the most widely

applicable since they only require gene sets, and FCS based methods fall somewhere in

between. So, despite their shortcomings, ORA and FCS basedmethods will remain impor-

tant for the foreseeable future.

1.4 A selection of pathway analysis tools

In this thesis, I perform a benchmark for a few approaches to pathway analysis in com-

bination with clustering (see chapter 2). These approaches will be introduced here. The

first two are ORA based methods, while the third is a FCS approach. The fourth approach,

BinoX (submitted for publication, Stockholm University), is a fairly new method that does

not fit in any of the canonical categories in the literature. Conceptually, it belongs to a new

group of methods that use FA networks to provide extra information for pathway analysis.

1.4.1 The Fisher test

The Fisher test (also known as Fisher’s exact test) is most often used for first generation

pathway analysis methods. The Fisher test uses the hypergeometric distribution for as-

sessing the significance of overlap between an input gene set and gene sets from an an-

notation database. It is implemented by popular tools such as GoMiner (Zeeberg et al.,

2003) and BiNGO (Maere et al., 2005).

Suppose we have a genome comprising N genes, an input gene set of size n and a gene

set from an annotation database, for example a KEGG pathway, of size K. Also suppose

that of the n genes we have, k genes that overlapwith the pathway. With this information

we can create a 2× 2 contingency (table 1.1).

We have drawn n genes in total, of which k belong to the pathway and g belong to the

collection of genes in the genome that are not a member of the pathway. The probability

of getting exactly k genes out ofK and g genes outG when drawing n genes out ofN is
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in pathway not in pathway row total

in gene set k g n

not in gene set k̄ ḡ n̄

column total K G N

Table 1.1: A contingency table as used in the Fisher test.

then given by the hypergeometric distribution:

P (X = k) =

(
K
k

)(
G
g

)(
N
n

) (1.1)

For ORA, a one sided test is performed to determine the probability of obtaining an over-

lap that is equally big or bigger than the observed overlap. The probabilities of all possible

values of k equal or bigger than the observed k are summed up:

P (X ≥ k) =

min(n,K)∑
i=k

(
K
i

)(
G
g

)(
N
n

) (1.2)

This will give us the p-value of the pathway, which will then be corrected for multiple

testing across all gene set versus pathway combinations. Note that it does not matter

which gene set is used as input and as pathway. By expanding the binomial coefficients,

it can be shown that the following identity holds:(
K
k

)(
G
g

)(
N
n

) =

(
n
k

)(
n̄
k̄

)(
N
K

) (1.3)

As noted before, the Fisher test assumes that, under the null hypothesis, all genes are

drawn independently from each other. But, as was shown by Gatti et al. (2010), genes

within a pathway are often correlated, even if the pathway is not affected by the exper-

imental condition. That is, if one gene is drawn, then correlated genes are likely to be

drawn as well. This way the significance of the pathway is overestimated.

1.4.2 EASE

The online DAVID tool (Huang et al., 2007) uses the EASE score (Hosack et al., 2003) to

determine if a pathway is significantly enriched in a gene set. The EASE score is a slightly

modified version of the Fisher test: it uses exactly the same procedure but uses an overlap

of k − 1 instead of k. The reasoning behind this is that the Fisher test assigns too low

p-values when there is an overlap, especially if one of the gene sets is very small. By

reducing the overlap the p-value will be increased.

PEASE(k) =

min(n,K)∑
i=(k−1)

(
K
i

)(
G
g

)(
N
n

) (1.4)
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The EASE score, lacking a true statistical motivation, is not an ideal solution to this limi-

tation of the Fisher test. Also note that when k = 0, the EASE score is undefined. Still,

I decided to also include this approach in the benchmark, since the DAVID tool is quite

popular and the EASE score is quickly implemented.

1.4.3 PADOG

The PADOG tool (Tarca et al., 2012) belongs to the second generation of pathway analysis

approaches, and is specifically designed for microarray or RNA sequencing data. The first

step of any FCS approach is to compute a gene-wise test statistic, in this case the moder-

ated t-test is used (Smyth (2004), see also section 5.1 for details). Then, a pathway level

test statistic is computed using the following formula:

SGSi
=

1

|GSi|
∑
g∈GSi

abs(tg) · wg (1.5)

Where |GSi| is the set size (cardinality) of the i’th gene set,GSi, of an annotationdatabase.

The notation “abs(tg)” is used here for the absolute value of themoderated t-test statistic

of gene g. To summarize, SGSi
is the weighted mean of absolute moderated t-values of

gene set i. The weights wg are given by:

wg = 1 +

√√√√√ max
g′∈G

(fg′)− fg

max
g′∈G

(fg′)− min
g′∈G

(fg′)
(1.6)

Where fg is the frequency with which gene g occurs in all gene sets, andG is the superset

of all genes in all gene sets that are tested. This means that genes that appear in all gene

sets will be given a weight of 1 while genes that are unique to one gene set will be given

a weight of 2.

The pathway level statistic is then standardized by subtracting from SGSi
the mean of

abs(tg)·wg (for all genes inG) anddividing the result by the standard deviationof abs(tg) ·wg,

yielding a new value S∗
GSi

. This value is then standardized again by subtracting the mean

and dividing by the standard deviation of S∗
GSi

over all gene sets, yielding the final path-

way level statistic S∗∗
GSi

.

The significance of the pathway level statistic is, as for other FCS approaches, computed by

making sample label permutations and recalculating the pathway level statistic for every

permutation. The p-value of the pathway is the proportion of pathway level statistics

under the null hypothesis that are as high or higher than the observed pathway level

statistic.

As other FCS approaches, PADOG eliminates the need for an arbitrary p-value cutoff and

accounts for correlations between genes by using sample label permutations as the null

hypothesis. In addition it will give higher weights to genes that are unique to few path-

ways, increasing contrast between overlapping pathways. A limitation of PADOG and

other FCS based approaches is that all the information available on pathways is not used.

Pathway are treated as gene sets, instead of a complex system of interacting genes.
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Gene 
Set A

Significant overlap

Gene 
Set B

Significant crosstalk

Gene 
Set A

Gene 
Set B

Figure 1.1: ORA versus crosstalk analysis. Difference between network based methods and

traditional overlap basedmethods. (left) Traditional overlap-based tools will report an enrichment

if the overlap between two gene sets is more than what would be expected by chance. These

tools do not use any information from an underlying network. (right) Newer network-based tools

make use of an underlying network. BinoX for example counts the number of links between two

gene sets and will report an enrichment if this number is higher than what would be expected by

chance

1.4.4 BinoX

BinoX (submitted for publication, Stockholm University) is a very recently developed tool

and does not really fit into any of the categories previously mentioned (ORA, FCS, PT). It

takes gene sets and a FA network such as FunCoup (Alexeyenko and Sonnhammer, 2009;

Schmitt et al., 2014) or String (Snel et al., 2000; Szklarczyk et al., 2015) as input. BinoX

will then perform network crosstalk analysis: it compares the number of functional asso-

ciations (network links) between two gene sets with an estimation of the number of links

that would occur purely by chance. If two gene sets share more links than what would be

expected by chance, then they are said to be enriched to each other. On the contrary, if

the number of links is low, they are said to be depleted (fig. 1.1). In addition to BinoX, a

few other network based approaches exits:

• CrossTalkZ (McCormack et al., 2013), the predecessor of BinoX,

• NEA, standalone and web-server tool (Alexeyenko et al., 2012) and

• EnrichNet, a web-server tool (Glaab et al., 2012).

The BinoX algorithm works in three big steps. First the functional association network

is randomized niter times (150 times by default) to generate the null hypothesis. Four

different methods can be used for randomizing the network: Link Permutation (LP), Node

Permutation (NP), Link Assignment (LA) and Link Assignment + Second-order conservation

(LA+S). LP will simply swap links between nodes until all original links have been replaced,

thus preserving the node degree distribution of the original network. NP will swap node

labels of all nodes, but label swaps are restricted to nodes with similar node degree (more

details in McCormack et al. (2013)). This approach will, approximately, preserve the node
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degree distribution of original network. LA will remove all links from the original network

and add random links to nodes as long as their node degree is lower than in the original

network. LA+S is similar too LA but adds an extra constraint to the links added in the

randomnetwork. For each node, the distribution of node degrees of the neighbour nodes

is determined. A link from node a to node b may only be formed if the degree of b is
similar to the degree of a neighbour of a and vice versa. This preservers not only the

node degree distribution, but also the node degree distribution of neighbours of nodes.

For LA and LA+S, it is often not possible to complete randomization due to the degree

constraints. This problem is solved by link-swapping between problematic nodes (see

McCormack et al. (2013) for details). The default option is LA+S as with this option the

network properties of the randomized network are most similar to the original network.

For the second step, the number of links, k, between two gene sets is assumed to follow

a binomial distribution under the null hypothesis:

k0 ∼ Bin(p, n) (1.7)

There are two parameters in the binomial distribution that have to be estimated: the

probability of success, p, and the number of Bernoulli trials, n:

n = min
(
dout(A), dout(B), |A| ∗ |B|

)
(1.8)

p =
1

niter

∑niter

i=1 ki

n
(1.9)

Where A and B are the gene sets, |X| is the size of setX and d(X) is the total number

of links of all members of X in the given FA network, excluding links from genes in X
to other genes in X . Here n is the number of links that can possibly occur between the

gene sets, and p is the average number of links between the gene sets in the randomized

networks divided by n.

Third, the probability that the observed number of links, kobs, or more would occur under

the null hypothesis is determined, yielding the enrichment p-value (eq. 1.10). The p-

value for depletion is calculated in a similar manner (eq. 1.11). Finally the p-values are

corrected for multiple testing using the Benjamini-Hochberg (BH) correction.

Penrich =
n∑

i=kobs

(
n

i

)
pi(1− p)n−i (1.10)

Pdeplete =

kobs∑
i=0

(
n

i

)
pi(1− p)n−i (1.11)

Two things are worth noting here. One is that the enrichment and depletion p-value are

two different things and are not complementary since both include the probability of kobs.
I.e., Penrich and Pdeplete do not add up to one. The other thing worth nothing is that if

a pathway is enriched or depleted to an interesting gene set, this should not be inter-

preted as upregulated or downregulated. Instead, enrichment should be interpreted as
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the pathway being affected by whatever condition gave rise to the gene list, while deple-

tion should be interpreted as the pathway being unaffected.

BinoX overcomes an important limitation of the ORA basedmethods: it can test gene sets

that have no overlap. This is important because our current knowledge of pathways is far

from complete, giving rise to missing genes in pathways. By using extra information from

a FA network, this limitation can be overcome. BinoX shares two important drawbacks

with ORA however: getting gene lists from HTD dependents on a subjective significance

cutoff, and pathway structure is not considered.

1.5 Introducing graph clustering

Gene expression experiments, which are the most common source of interesting gene

lists, are often noisy and often comprise multiple pathways. The same is true for most

other high throughputmethods such as DNAmethylation analysis andmass spectrometry.

The presence of noise and parts of different pathways in the gene listmake itmore difficult

for certain pathway analysis tools to find enriched gene sets. It might therefore be an

interesting idea to first divide the obtained gene set intomodules1 using a graph clustering

algorithm and a functional annotation network. The pathway analysis can then be carried

out on every individual module instead (see section 2.2).

In this thesis, I present the result of this formof pathway analysis using two different graph

clustering algorithms, Merge Gain Clustering (MGclus) (Frings et al., 2013) and Markov

Clustering (MCL) (van Dongen, 2000). I will briefly introduce both methods.

1.5.1 MGclus

Modules in a network are typically defined as groups of nodes that are tightly connected,

with a maximum number of internal connections (intra-module connectivity) and as few

as possible external connections (inter-module connectivity). But this definition might be

too simplistic to apply to the currently available biological networks, especially FA net-

works. Since they are static, condition specific edges will most likely be missing. In ad-

dition, most FA networks are derived from HTD, giving rise to many false positive edges.

Too compensate for this, MGclus does not only look at the intra versus inter module con-

nectivity but also considers shared neighbours of nodes as evidence that they belong to

the same module.

MGclus works by iteratively optimizing theMerge Gain (MG) score until a certain criterion

is met. The MG score is calculated as:

MG = 2Eij − (Ei + Ej) (1.12)

1 By graph clustering, a graph is divided into smaller, possibly overlapping sets of nodes, called “clusters”

or “modules”. The outcome of a clustering algorithm as a whole, considering all modules, is sometimes

called the “clustering” of the graph. To avoid confusion of the terms “cluster” and “clustering”, I will from

hereon always use the term “module” when referring to a “cluster” or “module”.
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Where Eij is the clustering efficiency (eq. 1.13) of the new module formed by the union

of modulesMi andMj . The clustering efficiency of any moduleMc is found by:

Ec =
Nc,intra

Nc,total

(1.13)

where Nc,total = |Mc|2 (1.14)

and Nc,intra =

|Mc|−1∑
x=1

|Mc|∑
y=x+1

w(x, y) +
√
wcnb(x, y) (1.15)

HereNc,intra (eq. 1.15) is calculated by iterating over all possible node pairs in themodule

Mc. The value of w(x, y) is the edge weight between node x and node y or 0 if there is

no edge andwcnb(x, y) is the sum of all edges linking x and y to every common neighbour

node of both x and y (which do not have to be a part of the module).

The MGclus algorithm takes as input a FA network and a parameter called the MG score

cutoffCmg. The MG is then optimized iteratively. This starts by considering every node as

a single module and then joiningmodules on every iteration. Clusters are only considered

for joining if they have a least one direct link. In every iteration allMG scores are calculated

and a sorted list of t new module candidates with the best MG score is created. Clusters

are then joined starting at the top of the list. If a new module candidate has a MG score

less than the cutoff Cmg the join operation is not performed. If a module appears twice

in the list, only the joining operation with the best MG score is done. This, in most cases,

leads to less than t joining operations per iteration. When no more new modules can

be made with a MG score above the cutoff, the iterations are stopped, yielding the final

clustering outcome. A high Cmg will generally lead to smaller module sizes.

The biggest strength of MGclus is that it is relatively robust to false positive and false neg-

ative edges in the FA network. Another nice property is that the granularity can be tuned

be changing theMG score cutoff. The biggest downside toMGclus is that recomputing the

MG scores in every iteration results in a high and difficult to predict runtime complexity.

TheMGclus program, implemented in java, is also completely single threaded. These two

factors make the MGclus program rather slow. Computation times of up to a few hours

can be expected as soon as the edge count is higher than about 50 000 (on Ubuntu linux

with a 2.2Ghz processor).

1.5.2 Markov Clustering

Markov clustering interprets a module as a set of nodes that, when making randomwalks

over the edges of the graph, it is likely to end up in the same set of nodes again. Another

but equivalent formulation is that a module has many high length paths that connect

members within the module compared to paths that connect one module with another.

The MCL algorithm deterministically computes these probabilities of random walks using

stochastic matrices or Markov matrices. A matrix is called column stochastic if all the

entries per column sum up to one. Any graph, weighted or not, can be transformed into a

matrix by using one row/columnper node and setting every entry in thematrix to the edge
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weight of the edge between the nodes indicated by the row/column index. By dividing

every entry by the column total, this matrix is made stochastic (fig. 1.2).

1

3

2

4

5

6

7



0 0.25 0.33 0.33 0 0 0
0.33 0 0.33 0.33 0 0 0.33
0.33 0.25 0 0.33 0 0 0
0.33 0.25 0.33 0 0 0 0
0 0.25 0 0 0 0.50 0.33
0 0 0 0 0.50 0 0.33
0 0 0 0 0.50 0.50 0


Figure 1.2: Transforming a graph into a stochastic matrix. The unweighted graph on the left

is represented as a stochastic matrix on the right. Row and column indices correspond to node

labels. Note how the modules in the graph are quite visible in structure of the matrix. The MCL

algorithm aims to further enhance this property (Example adapted from course notes of Steven

Maere, Ghent University).

By taking a power p of a stochasticmatrixM , every entrymp
ij will correspond to the prob-

ability of ending in node i aftermaking p randomwalks starting fromnode j. These proba-
bilities are used by theMCL algorithm to determine a clustering. A problem though is that

after a certain value for p, the entries inM p will have stabilized, and cluster structure will

no longer be visible in the matrix. To counteract this, the MCL algorithm will inflate the

probabilities after every expansion (=taking a power of) the stochastic matrix. Inflation of

the probabilities is done by raising every entry in the stochastic matrix by a power r and
then rescaling the columns to make the matrix stochastic again. This operation will make

the relatively higher probabilities even higher while lowering the lower probabilities.

To summarize, theMCL algorithmworks in three steps. First the graph is represented as a

stochasticmatrix.2 Second, thematrix is iteratively expandedwith p = 2 and inflatedwith
power r. The expansion stepwill compute randomwalk probabilities, whichwill be higher

between nodes within a module, and the inflation step boosts these probabilities even

further. After 3 to 10 iterations, the procedure will converge, setting many entries in the

matrix to approximately 0. Third, the matrix is converted back into a graph which, after

convergence of the algorithm, will be partitioned in a number of connected components.

Every such component is then interpreted as a module.

There are a few nice properties about the MCL algorithm. The outcome, although based

on probabilities, is deterministic. The granularity of the clustering can be tuned by chang-

ing the inflation parameter r. The algorithm itself is an elegant and simple succession of

mathematical operations, instead of a set of rules, giving it a predictable runtime com-

plexity ofO(Nk2) (N is the number of nodes, k is the maximum node degree). MCL has

been implemented in the C programming language with support for multi-threaded com-

2 When expanding a stochastic matrix with power p, there is strong effect from p being even or odd. To

counteract this, self loops are added to every node before casting the graph into a stochastic matrix. This

leads to more granular clusters and removes the parity effect. Explaining this would take us too far, see van

Dongen (2000) page 43 and 44 for an example of this parity effect.
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putation, making it orders of magnitude faster than MGclus. One disadvantage of MCL

is that it does not work very well to find modules that are very large compared to the

complete graph. In this setting, large modules are easily split into several small but highly

connected modules.

To conclude the section about clustering—there is no real answer to the question ofwhich

algorithm makes better modules. Better modules are a very subjective matter, in fact the

best algorithm depends on the context in which clustering is used.

1.6 Outstanding challenges

Here I will address two big and somewhat related problems in the field of pathway analy-

sis. The first problem is thatmore andmore tools are being createdwithout the availability

of a proper benchmark. The second problem is that there are so many pathway analysis

tools that it is now becoming impossible to decide which tools to use for any given exper-

iment, as the quality of many tools is never directly compared. Of course there are other

problems as well, many of which have been discussed in sections 1.3 and 1.4.

1.6.1 How to benchmark pathway analysis?

Many pathway analysis tools have been published, but remarkably, most of these have not

been benchmarked properly. There is currently no established method for benchmark-

ing pathway analysis methods and there is little training data available. A perfect training

dataset would contain experimental datasets where, for every dataset and for each path-

way, it is known whether they are enriched or not. Several methods have been tried to

match up to such training data.

The first method is to artificially generate positive and negative examples. The positive

examples are created by taking gene sets from known ontologies and splitting them in

two parts (while sometimes allowing a small overlap between both halves). This is then

used to determine how well a pathway analysis tool can find the other halve, which gives

an idea of the sensitivity of the tool. The negative examples are generated by taking gene

sets from experiments or from known annotations/pathways and randomising them. The

pathway analysis tool is then used to “enrich” the randomised gene sets, and every hit is

counted as a false positive, giving an idea about the specificity of the tool. This method

of generating training data (and variations thereof) is most commonly used. For example,

the authors of CrossTalkZ (McCormack et al., 2013) and RIDDLE (Wang et al., 2012) use

this method for performance evaluation. The biggest disadvantage of this approach is

that one can never be sure that the performance on the generated data is similar to the

performance on real data. It is all too easy to, consciously or unconsciously, generate

training data that works well with the assumptions of the tool you designed.

The second approach, which was used by the authors of EnrichNet (Glaab et al., 2012)

for example, is to use a number of methodologically different enrichment tools to en-

rich the same gene sets. The intersection of their results is then used as “gold standard”

13
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positive data. The idea originates from consensus methods in machine learning, where

the consensus of many methodologically different classifiers oftenmakes very reliable re-

sults, even if the classifiers themselves perform poorly. In some sense, pathway analysis

could be seen as some sort of classification problem, where there are possibly multiple

true classes or enriched pathways for every input data point. This approach unfortunately

does not provide any negative data. It is not because a pathway is not found significant

by any tool that it is certainly not relevant to the experiment or condition at hand. Since

all tools have limitations, they might all fail to find a relevant pathway. In addition, the in-

tersection of different tools provides you with a subset of all relevant pathways that are

relatively easy to find. Relevant pathways that are difficult to find will be recovered by

none or only a few tools. When a tool performs well on this data, it can safely be assumed

that it is good in finding pathways that other methods find as well, but it does not tell you

whether the tools extends coverage to unknown relevant pathways.

The third and so far most promising approach makes use of a small number of microarray

datasets. Each dataset contains samples of healthy human tissue and samples associated

with a human disease. In addition, for each of these diseases there is a KEGG pathway

driving the disease phenotype. It therefore relatively safe to say that the KEGG pathway

underlying the disease should be differentially expressed and therefore should be found

significant by a pathway analysis tool. Although this assumption cannot be guaranteed, it

is the most objective benchmark with real biological data that has been used so far. This

benchmark was introduced by Tarca et al. (2013), and has also been used later by Dong

et al. (2016). A modified version of this benchmark has also been used in this thesis, see

section 3.1 for a more in depth review.

In fact, most published tools have not been statistically evaluated at all. In most cases, the

tool is presented giving a theoretical background to showwhat it interprets as enrichment

and why it should perform well—in theory. Sometimes a small case study is included

where the output of the new tool is compared to other methods, but this is hardly suffi-

cient to prove that the new tool brings an improvement over previous methods. By this

I do not want to imply that all these tools have poor performance, only that we do not

know whether they are better or worse than previously existing tools.

To make any advancements in the field of pathway analysis, it will be necessary to estab-

lish a standardized benchmark using real biological data. Without this, we cannot know

whether new tools using more sophisticated models are actually an improvement or just

a guess in the dark.

1.6.2 Tool overload

Amajor challenge for researchers whowant tomake use of enrichment tools is themyriad

of tools available. A paper by Huang et al. (2009) listed 68 tools in all three categories

of pathway analysis, and a more recent paper by Mitrea et al. (2013) lists another 22 PT

based tools. These two lists are not exhaustive, and there are probably over a hundred

different tools available for the same purpose of pathway analysis. In addition, many

tools allow for using different databases, creating an exponential explosion of possibilities.
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Examining online fora (Biostar, forum and ResearchGate forum) the decision of which tool

to use is mostly based on the popularity of the tool and user friendliness. Newer and thus

less known tools are less frequently used, even if they overcome major methodological

limitations of older tools (Khatri et al., 2012).
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Part 2: Aim of Research Project

The aims of the study are to establish a robust benchmarking procedure for evaluating

the performance (sensitivity and specificity) of overlap-based pathway analysis tools and

the newer network-based crosstalk analysis tool BinoX. Once this benchmarking proce-

dure is established, I will use this to assess the effect of clustering on the performance of

enrichment tools. If clustered modules are more “pure” (they contain more genes from

the same pathway/biological process/etc.), then sensitivity—and, possibly, False Positive

Rate (FPR)—might be increased by running enrichment tools on separatemodules instead

of the entire list at once. The best performing tools, with or without clustering, will then

be used to enrich pathways in tissue specific gene lists from the Human Proteome Atlas

(Uhlen et al., 2010, 2015).

2.1 Benchmarking pathway analysis methods

The problems and possible solutions for benchmarking pathway analysis methods have

already been introduced in section 1.6.1. In this thesis, I will use an extension of the

third approach which was introduced by Tarca et al. (2012). This benchmark is based on

real data, which is preferable over simulated data because one cannot be certain that

findings based on simulated data will also be true in real use case scenarios. A part of

the workflow of this benchmark will have to be changed however to meet the needs of

BinoX and to guarantee certain quality criteria; this is explored in detail in section 3.1. In

addition to the overlap based tools and BinoX, I will also include the PADOG tool, made

by the same authors as the benchmark. This will allow comparison of results obtained by

the benchmark presented here with earlier results (Tarca et al., 2012; Dong et al., 2016).

2.2 Assessing the effect of clustering

We assume that gene sets derived from experiments are noisy and comprise multiple

pathways and/or biological processes. This can make it more difficult for pathway anal-

ysis methods to detect relevant pathways. Clustering the genes in the gene set prior to

running the tools can be used to counter this: instead of using the entire gene set, the

tools will be used for every module separately. The gene set can be clustered based on a

FA network. Any network based clustering tool can be used for this, examples are MCode
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(Bader and Hogue, 2003), FastCommunity (Clauset et al., 2004), MCL (van Dongen, 2000)

and MGclus (Frings et al., 2013), of which the latter two will be in used in this thesis. The

main motivation for doing this is that genes in one module are more likely part of the

same biological process or pathway. In addition noisy genes might be removed by cluster-

ing into single gene modules (fig. 2.1). Although this strategy might improve sensitivity, it

might also increase the false positive rate. I will evaluate the trade-off between sensitiv-

ity and false positive rate to determine whether clustering results in an improvement or

not.

2.3 Analysing the Human Proteome Atlas

Running the overlap based tools and BinoX—with and without clustering—on the Human

Proteome Atlas (HPA) might give more insight into each tool. Is it necessary to run several

tools or does one method find everything that the other methods find combined? Do

several tools find the same aspects of the underlying biology or are they complementary?

Are there important pathways that are missed by the tools without clustering, but can be

found with clustering?
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Figure 2.1: Combining pathway analysis with clustering. The traditional form of pathway anal-

ysis is to take a gene set in its entirety and enrich that to pathways from an annotation database

(1). Grey genes represent “noise”: genes that ended up in the gene set due to technical or bio-

logical variation but are not actually DE. Dark green and red genes are genes that belong to two

different pathways that have an important role in the condition/experiment that led to the input

gene set. The traditional method will, for most tools, give one p-value per pathway (2). An al-

ternative could be to first extract the subgraph comprising the nodes of the input gene set from

a FA network (3) & (4). By extracting the subgraph, some genes will become completely discon-

nected or might not have been in the FA network to begin with. These genes are then removed,

thus extracting a subgraph can lead to a loss of information (black crosses). Then, the subgraph

is clustered (5) and in the ideal scenario, different pathways would cluster together in the same

module. Poorly connected genes, primarily “noise” genes in the ideal case, might end up in single-

node modules and are removed before doing further analysis (white crosses). Finally, all modules

are enriched separately to pathways in an annotation database (6) and the results are combined

(7). Both the clustered and unclustered analysis might be combined into a meta analysis to get a

complete picture of the underlying biological processes.
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3.1 Benchmarking pathway analysis methods

Abenchmark for pathway analysismethods is necessary in order to determine if clustering

can be combinedwith pathway analysis in a beneficial way. Asmentioned in section 1.6.1,

a standardized benchmark for pathway analysis is currently absent. Here I will use an

adaptation of a benchmark proposed by Tarca et al. (2012), which I will now discuss in

more detail.

Tarca et al. (2012) have assembled a collection of 42 microarray datasets, all available at

the Gene Expression Omnibus (GEO, Edgar et al., 2002 and Barrett et al., 2013), hosted

by the National Center for Biotechnology Information (NCBI). Each of these datasets con-

tains a number of healthy human tissue samples and a number of human tissue samples

associated with a disease. In addition, for each of these diseases, a pathway driving the

disease is known. In other words, each of the 42 datasets is coupled with one pathway

that is know to be important for the studied phenotype. Pathway analysis methods aim

to find pathways underlying expression data or a gene set, which means they should be

able to find the known disease pathway for every dataset. This forms the basis for the

sensitivity test: the sensitivity of a pathway analysis method is the number of times the

known disease pathway is found to be significantly enriched, divided by the total amount

of datasets.

Another important aspect of a pathway analysis method is the prioritisation, i.e., when

sorting all pathways based on their significance, is the known disease pathway then found

somewhere close to the top of the list? A tool might for example label the known disease

pathway as significant for every dataset, but this might be only due to a very high false

positive rate, and the ranking might still be poor. On the contrary, a tool might have a very

poor sensitivity but might still rank the known pathway close the top of the list. Meaning

this tool systematically underestimates significance, but is still capable of setting biologi-

cally important pathways apart from irrelevant pathways.

A third important measure to assess the quality of a tool is its specificity, and this is quite

difficult to measure due to the lack of negative data. Two methods are often used in the

literature to generate negative data. One is based on microarray or RNA-seq based work-

flows: all sample labels are permuted and the pathway analysis is carried out on the same

data with the permuted sample labels. But, as mentioned in section 1.3.2, the FCS gen-

eration of tools uses exactly this as a null hypothesis for determining significance. Thus,
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the specificity of FCSmethods should always be spot on using this approach for specificity

testing. For network based methods another method, which is compatible with gene set

based workflows, has been used for benchmarking the specificity. Here, a collection of

actual gene sets is taken (e.g. from Molecular Signal DataBase (MSigDB), Subramanian

et al., 2005) and all genes are replaced with other genes having similar node degree in a

FA network. Regardless of how the negative data is generated, the specificity is defined

as the proportion of gene sets that is found to be significant amongst all randomgene sets.

Known problems Unfortunately, this benchmark is far from perfect. The sensitivity test

only tests how well known disease pathways can be found. A tool that performs well

on this test will not necessarily perform well in another context (e.g. in different organ-

isms or when analysing responses to environmental stimuli). There is also a problemwith

the prioritisation test, even when confining ourselves to the analysis of diseased tissues.

The known disease pathway does not necessarily have to rank first on the list, because

it will not be the only pathway that is affected by the disease. E.g. when analysing pan-

creatic cancer tissue, a known affected pathway is the pancreatic cancer KEGG pathway

(hsa05212), but another pathway that will probably be affected is the p53 signaling path-

way (hsa04115). We cannot state with certainty which of these two pathways should rank

before the other. Finally, the approaches for generating negative data are not perfect

either, there will always be a difference between simulated data and real data. Unfortu-

nately, real negative data is hard to find: it is difficult to prove that a certain pathway is

absolutely not important for a given disease.

3.1.1 General overview of the benchmark

An adaptation of the benchmark used by Tarca et al. (2012) has been implemented in a

new R package called BinoX. The general workflow of the benchmark is shown in fig. 3.1.

Here, I will also introduce some terminology that I will use later when describing the

benchmark and the results. In section 3.1, I introduced the concept of disease associated

datasets and their known affected pathways. From hereon, I will refer to these datasets

as the query dataset and the known pathway for a given query datasetwill be referred to

as the target pathway. Any other pathway is a non target pathway. Many pathway anal-

ysis tools cannot work with expression data directly but require a gene set instead, any

gene set for which a target pathway is known is called a query gene set.

Workflow First the datasets are downloaded from the Gene Expression Omnibus (GEO).

For testing sensitivity and prioritisation (fig. 3.1, solid arrows), the following steps are

carried out: first, probe-wise test statistics are computed (details in section 5.1), then

probesets are translated to gene identifiers supported by the pathway analysis tools to

be tested (see section 5.2). Then, after transforming the obtained data in the correct

input format, all the preprocessing required for FCS and PT tools is done. For ORA and

network based methods, one additional step is required, which is extracting a gene set

using the test statistic and optionally the fold change. These gene sets are either directly

used as input for ORA and network based methods, or they can undergo one additional
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step: clustering the gene set using a FA network. Finally the output of all tools is collected

to compare their performance in terms of sensitivity and prioritisation.

For specificity testing, two approaches are used: label swap and gene set permutation.

For the label swap, sample labels are permuted and the exact same workflow follows as

for the sensitivity test (fig. 3.1, black dotted arrows). For the gene set permutation, the

same workflow is followed as the sensitivity test, except that genes in the genes sets are

replaced with new genes with similar (within 5%) node degree before running any tool

(fig. 3.1, grey dotted arrows). The latter approach can of course not be used for FCS and

PT methods.

The complete pipeline, from downloading the gene expression data to running the path-

way analysis methods on positive or negative data is implemented in the BinoX package

(section 3.3). A detailed description of the whole procedure is given in section 5.4.1.

3.1.2 Gold standard data

Tarca et al. (2012) have assembled 42 datasets for which a target pathway is known. Un-

fortunately, 8 of these datasets have a Metacore pathway as target, and Metacore is a

proprietary database. These 8 datasets are therefore dropped from the benchmark. In

addition, another 8 datasets contain no differentially expressed genes are therefore also

dropped from the benchmark (see section 5.1 for details on determining differential ex-

pression). The final gold standard contains 26 microarray datasets, all of which have at

least 10 differentially expressed genes using a BH adjusted p-value cutoff of 0.01. An

overview of the gold standard data is given in table 3.1, additional information is given

in appendix A.1.

3.1.3 Comparing BinoX with earlier methods

Before testing BinoX in combination with clustering, it would be interesting to know how

good it performs compared to other tools. Therefore, BinoX was compared against the

previously establishedmethods using the benchmark implemented in the BinoX package.
It would be interesting to re-do the exact same benchmark as in Tarca et al. (2012) or

Dong et al. (2016), because then the outcome for BinoX could be directly compared to

16 other tools. Unfortunately, BinoX relies on the FunCoup network which uses Ensembl

identifiers (Cunningham et al., 2014), while the two previously mentioned publications

use Entrez IDs (Maglott et al., 2004). In addition, the same data could not be used either

(see section 3.1.2). Yet another difference is the method used to extract gene sets after

determining differential expression (section 5.1). Tarca et al. (2012) and Dong et al. (2016)

use a three-step method to select which genes to include in a DE gene set: 1) take all

genes with a q-value cutoff below 0.1, 2) if this set is smaller than 200, then take all genes

with p-value below 0.05 and a fold change above 1.5 and 3) if this set is again shorter than

200, then take the top 1% DE genes. This method is rather arbitrary and in some cases

selects over 10 000 genes. Since both up and downregulated genes are selected, the gene
set sizes can get quite big. In addition, if the sample sizes are very large then—even if
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Figure 3.1: Benchmarking pipeline. General workflow of the benchmark for testing sensitivity,

prioritisation and specificity of pathway analysis methods. Black arrows represent workflows that

can be taken for sensitivity and prioritisation tests. Dotted arrows represent workflows for speci-

ficity testing, with either label swap (black dotted arrows) or gene set permutation retaining node

degrees (grey dotted arrows). Preprocessing steps are shown in orange boxes, pathway analysis

tools are shown in dark green boxes. Some preprocessing steps and the pathway analysis tools

require external information, which is depicted with purple boxes and purple dashed arrows. All

workflows are supported by the BinoX package. In addition, parallelisation is supported for nearly

all steps.
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GEO target pathway KEGG n a b paired reference

GSE1145
Dilated

cardiomyopathy
hsa05414 26 15 11 no no reference

GSE3467 Thyroid cancer hsa05216 18 9 9 yes He et al. (2005)

GSE3585
Dilated

cardiomyopathy
hsa05414 12 7 5 no Barth et al. (2006)

GSE3678 Thyroid cancer hsa05216 14 7 7 yes no reference

GSE4107 Colorectal cancer hsa05210 22 12 10 no Hong et al. (2007)

GSE4183 Colorectal cancer hsa05210 23 15 8 no

Galamb et al. (2008);

Gyorffy et al. (2009)

GSE5281 Alzheimer’s disease hsa05010 21 9 12 no Liang et al. (2007, 2008)

GSE5281 Alzheimer’s disease hsa05010 23 10 13 no Liang et al. (2007, 2008)

GSE5281 Alzheimer’s disease hsa05010 31 19 12 no Liang et al. (2007, 2008)

GSE7305 Endometrial cancer hsa05213 20 10 10 yes Hever et al. (2007)

GSE8671 Colorectal cancer hsa05210 64 32 32 yes

Sabates-Bellver et al.

(2007)

GSE9348 Colorectal cancer hsa05210 82 70 12 no Hong et al. (2010)

GSE9476
Acute myeloid

leukemia
hsa05221 63 26 37 no Stirewalt et al. (2008)

GSE14762 Renal cell carcinoma hsa05211 21 9 12 no Wang et al. (2009)

GSE14924
Acute myeloid

leukemia
hsa05221 20 10 10 no Le Dieu et al. (2009)

GSE14924
Acute myeloid

leukemia
hsa05221 21 10 11 no Le Dieu et al. (2009)

GSE15471 Pancreatic cancer hsa05212 70 35 35 yes Badea et al. (2008)

GSE16515 Pancreatic cancer hsa05212 30 15 15 yes Pei et al. (2009)

GSE18842
Non-small cell lung

cancer
hsa05223 88 44 44 yes

Sanchez-Palencia et al.

(2011)

GSE19188
Non-small cell lung

cancer
hsa05223 153 91 62 no Hou et al. (2010)

GSE19728 Glioma hsa05214 21 17 4 no Liu et al. (2011)

GSE21354 Glioma hsa05214 17 13 4 no Liu et al. (2011)

GSE23878 Colorectal cancer hsa05210 38 19 19 yes Uddin et al. (2011)

GSE24739
Chronic myeloid

leukemia
hsa05220 12 8 4 no Affer et al. (2011)

GSE24739
Chronic myeloid

leukemia
hsa05220 12 8 4 no Affer et al. (2011)

GSE32676 Pancreatic cancer hsa05212 32 25 7 no Donahue et al. (2012)

Table 3.1: Gold standard data. The number of disease and healthy tissue samples are given in

columns a and b respectively, the total is in column n. When paired is yes, a paired microarray de-

sign was used (see section 5.1). In the digital copy of the thesis, GEO and KEGG IDs are hyperlinks.
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the biological variation is high—the variation of the sample mean can become extremely

small. Moreover, normal regulation can be disturbed so much in cancer tissues that for

nearly all genes there is at least a little difference in true mean expression. In conclusion,

this method leads to very large gene sets where many genes show a small—less than

10%—fold change. Instead of this three step method, gene sets were selected on two

criteria: 1) a gene must have a q-value lower than 0.01 and 2) a fold change of at least 1.5

(either 50% up or down regulated).

Finally, the FPR test is also done differently. In the previous publications, the phenotype

labels of the microarray data where permuted and gene sets were extracted using the

same test statistic and three-step method as described above. These gene sets were then

enriched and any significant enrichment was counted as a false positive. After the sample

label permutations, there are almost never DE genes when using a q-value cutoff of 0.01,

therefore step 1)would almost never be used, and step 2)would only sometimes be used.

In the majority of cases, gene sets would be selected by step 3), leading to much smaller

gene sets for the FPR test than those used for the True Positive Rate (TPR) test. Instead,

here I also permute phenotype labels and take the top n genes where n is drawn from the

gene set sizes used in the TPR test. However, a problem with the phenotype label swap

is that some of the original signal might still be retained. To completely eliminate this

possibility, a second FPR test is used as well where random gene sets are generated by

replacing every gene in the original gene set with a new one having similar node degree

in FunCoup. For both FPR tests, all 26 datasets were permuted 10 times, leading to a total

of 260 random gene sets (or microarray datasets) in each scenario (see sections 5.3.1

and 5.3.2 for the exact procedure).

In the end, four aspects differ from previous publications: 1) Ensembl IDs are used instead

of Entrez IDs (see section 5.2.1), 2) datasets with a Metacore target pathway or less than

10DE genes are not used, 3) a different gene set selectionmethod is used and4) a different

approach is used for the FPR test (sections 5.3.1 and 5.3.2). The exact protocol for the

whole benchmarking procedure is given in section 5.4.1.

Results

Figure 3.2 shows the results of the benchmark. BinoX certainly is the most sensitive tool,

although it also has the highest FPR. PADOG is in this perspective almost opposite to BinoX,

having the lowest sensitivity but also the lowest FPR for any p-value cutoff below 0.20. The
Fisher and EASEmethods fall somewhat in themiddle and, as expected, the EASEmethod

has a lower FPR than the Fisher method, but is worse in terms of sensitivity. Figure 3.2b

visualizes the performance of each tool in terms of prioritisation. The rank percentage is

defined as i/n× 100 where i is the rank of unadjusted p-value1 of the target pathway in

all n pathways that were tested. In terms of ranking, PADOG seems to be the clear winner,

although the other methods don’t fall far behind. It should be noted that PADOG has

1 Note that adjustment with the BH method is a monotonic function of the p-values. Therefore, sorting

on p-value or q-value should not make a difference. That being said, p-values close to 1 can become equal

to 1 after adjustment, losing their order in the process. This is why, in this thesis, ranking is always done on

the unadjusted p-values.

24



Part 3: Results

two clear advantages in this benchmark. Firstly it uses all the microarray data available,

whereas the other tools can only use the gene sets derived from the microarray samples.

Secondly, it is a FCS based tool, which uses sample label swaps as the null hypothesis to

determine an empirical p-value—this is the same null hypothesis as the first FPR test, so

it is obvious why it scores perfectly on this test. Any deviations from a 1:1 ratio (fig. 3.2c,

dashed line) are a result from the discrete number of iterations of label swaps (50 in this

case, the default setting), the more iterations used, the closer the convergence to a 1:1

ratio.

In the end all tools performed reasonably well. Of the 26 target pathways, 11 were re-

covered by all tools. BinoX found all pathways that were also found by other tools, and

three pathways were found by BinoX only (fig. 3.4a). For two datasets, the target path-

ways were not found by any tool (Chronic myeloid leukemia, hsa05220 and Alzheimer’s

disease, hsa05010), but these pathways were successfully recovered from other datasets

having the same target pathway.

Differences between FPR tests Using the sample label swap (fig. 3.2c), specificity ismuch

worse for every tool compared to the gene set permutations (fig. 3.2d). According to a

growing consensus in the literature, this is due to the tools not taking into account gene-

gene correlations (section 1.3.2). Although it might also be that some of the signal is still

preserved after swapping sample labels. Anyhow, both tests show that BinoX has the

highest FPR, followed by Fisher and then EASE.

Comparisonwith earlier publications Althoughmany steps in the benchmarkwere done

differently, the results for the EASE tool and for PADOGare qualitatively similar towhat has

been published before (Tarca et al., 2012; Dong et al., 2016). That is, PADOG outperforms

EASE in prioritisation, but has a lower sensitivity whereas EASE has a lower specificity.

Effect of gene set selection It is likely impossible to benchmark FCS methods and set

based methods such as BinoX or ORA tools against each other, as any benchmark would

include a crucial step where gene sets have to be extracted from microarray data. This

step influences the performance of all non FCS or PT tools only. To illustrate this, the

same benchmark was repeated but the size of gene sets was limited to a maximum of

600 genes, which is slightly more than the biggest KEGG pathway (Olfactory transduction,

hsa04740). Many DE genes are no longer included in the gene sets, leading to a worse

performance of set based tools (fig. B.1). Thus, although results from BinoX, EASE and

Fisher are directly comparable, they should be compared to PADOG with some caution.

3.2 Assessing the effect of clustering

The second objective is to assess whether clustering can be used to increase the perfor-

mance of set based tools, in particular BinoX, EASE and Fisher. The original idea was that

by clustering a gene set based on a FA network, you would get several big modules, and
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Figure 3.2: Comparing BinoX with earlier tools. The graph based tool BinoX, the two ORA meth-

ods, Ease and Fisher and the FCS tool PADOG are compared against each other using the gold

standard data from table 3.1. Gene sets were extracted using a BH adjusted p-value cutoff of 0.01
and a fold change cutoff of 1.5. True positive rates for each tool are shown in (a) for all significance

cutoff values from 0.01 to 1 (unadjusted p-value). Notice the log10 scale on the x-axis. Rank per-

centage of the target pathway is shown in (b). The value distributions of the 26 data points are

shown as violin plots, any target pathway that cannot be tested by the tool is given a rank of 100%.
Boxplots represent value distributions for all target pathways the tool can test for (e.g. for EASE

there is one target pathway that has no overlap with the gene set, and is hence is set 100% for the

violin plot but is not included in the boxplot). False positive rates for all tools are given in plots (c)

and (d), using phenotype label swap or gene permutation respectively (section 5.3). Gene permu-

tation is not an option for PADOG Because it is an FCS tool that requires microarray data as input.

The dashed black line indicates the 1:1 ratio. Ideally, any methods FPR should be on or below this

line. Notice again the log10 scale on the x-axis. Colors are given in the top right, and are the same

for all four plots. Figures (a), (c) and (d) are also given with q-values in fig. B.6.
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genes from the same pathway, would be brought together in these modules. Unrelated

genes that end up in the gene set by accident (e.g. due to technical variability) would not

cluster together and effectively be filtered out by the clustering process. In the end, you

would obtain several big clusters that are “purified” from the gene set, and the small clus-

ters would be of no importance. By taking for each pathway the module with the lowest

p-value, you would preferentially select one of these bigger modules, which should be

more pure. Hence the sensitivity would be increased by enriching the modules (instead

of the whole gene set) to pathways from an annotation database.

To test whether this would work as expected, the benchmark from section 3.1.3 was re-

peated but the gene sets were clustered first with either MCL or MGclus. All genes that

got disconnected from the graph were removed, and only clusters of at least two genes

were considered for further analysis. Then, for each pathway, the lowest p-value among

all modules was kept as the final p-value for this pathway. The results of this benchmark

compared with the previous one are shown in fig. 3.3.

It is clear that, for all tools that were tested, this method does not have a beneficial

effect. In fact, in all cases the sensitivity rose, but the FPR rose even more, a finding

that is supported by both of the FPR tests. Both MCL and MGclus seem to have the

same—unfortunately negative—effect on the performance of the pathway analysis tools,

although the results with MCL are slightly less worse than those with MGclus. The in-

crease in sensitivity and FPR is the most extreme for BinoX, starting of with a 70% false

positive rate at a p-value cutoff of 0.01 (and also a FPR of 70% at a q-value cutoff of 0.01,
see fig. B.7b). BinoX combined with clustering was able to recover all target pathways at

a p-value cutoff of 0.05 (fig. 3.4b), but in the light of the extreme FPR this is not really an

achievement.

Although the initial idea does not work out as was hoped for, it might still be possible

to find some way to reduce the enormous FPR and thus make it work. In the following

sections I will explore the results in more detail in an attempt to find out if there are ways

to improve the current situation.

3.2.1 BinoX combined with clustering

Clustering increased the FPR for all tools, but for BinoX the increase was certainly the

worst. A closer look to the modules created by either MCL or MGclus explains why this

happens. The input gene sets are quite large, ranging from less than a 100 genes to slightly
over 6 000, and it seems like both clustering algorithms create a large number of very

small modules (2–3 nodes). Especially MCL is likely to make over a hundred of these small

modules if the input graph is bigger than a thousand nodes. Figure 3.5 shows the adjusted

p-values of all these modules for the random gene sets from both FPR tests and both

clustering algorithms (260 random gene sets× ±10–200modules× 288 KEGG pathways

is± several millions of random module v.s. pathway combination tested).

Figure 3.5 shows some interesting differences in properties of both clustering algorithms.

MCL always seems to make one very big module that is about half of the input size, and

then a large number of small modules. Although all gene set sizes are mapped together
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Figure 3.3: Taking the module with the lowest p-value does not improve performance of path-

way analysis. The BinoX, EASE and Fisher methods were run on the same data as in fig. 3.2 but

now in combination with clustering. Shown here are: (a) rank percentage, (b) true positive rates,

(c) false positive rates using label swap and (d) false positive rates using gene permutations. Col-

ors indicate the tool used and linetypes indicate the clustering algorithm. Boxplots and violin plots

are as in fig. 3.2. Plots (b), (c) and (d) are also given with q-values in fig. B.7.

(a) No clustering (b) BinoX (c) Ease (d) Fisher

Figure 3.4: What is found by which tools?. Different tools and clustering methods lead too

different target pathways being recovered. (a) Number of target pathways found by running the

benchmark without clustering as explained in section 3.1.3 and with clustering: (b), (c) and (d). In

(b), all target pathway are found for BinoXwith bothMCL andMGclus, whereas without clustering,

24 pathways are found. A p-value cutoff of 0.05 was used in every diagram.
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on one graph here, the pattern seen here holds for any gene set size above a few hundred.

MGclus, on the contrary, makes less modules in total that are more balanced in size.

Any p-value shown in fig. 3.5 is a false positive, and it looks like, at least for MCL, the

huge amount of small modules are the main source of false positives. This might lead to

a solution for the high FPR, i.e. by removing all modules that contain less than e.g. 1% of

the nodes of the gene set, wemight eliminate themost important source of false positives

without harming the true positive rate too much. And maybe a similar trick might work

for MGclus as well.

Unfortunately, fig. 3.6 shows that this is not the case. The size distribution ofmodules that

show significant enrichment to their specific target pathway ( = true interaction) seems

to be identical to that of random modules that show significant enrichment to any KEGG

pathway ( = false interaction). That is, small modules whether real or random, give rise to

low p-values. The original hypothesis that the true underlying signal in a gene set would

cluster together in the same module(s) is not true. Instead, the target pathways are, in

most cases, spread across a number of small modules. Other properties of the modules

or properties of module-to-pathway combinations might show a different distribution for

true interactions than for false interactions. For example, the node degree of a module

or the number of links between a module and a pathway might be different for true in-

teractions than for false interactions. Unfortunately, as shown in fig. 3.6b, this is not the

case when looking at for example the average node degree of the module. In fact, there

seems to be no feature that can be used to separate the true interactions from false ones.

Clustering does not add value to BinoX In conclusion, by clustering a gene set, espe-

cially a large one, noise gets clustered together almost as well as the true signal. The

statistical test—the probability of observing a number of links in a binomial distribution

in the case of BinoX—then evaluates this module in isolation, as if it were the entire gene

set. In other words, the test statistic is calculated on the module without the context of

the whole gene set, but the null hypothesis used to determine significance of the test

statistic treats the module as if were the entire gene set, therefore the significance of

this isolated module is overestimated. This effect is happening both for false and for true

interactions. Significance for false module-to-pathway combinations gets overestimated,

but it seems like significance for true interactions gets overestimated even more. There-

fore, taking the lowest p-value per pathway might just as well be the least worst option

to at least prioritise true interactions before false interactions. But the actual meaning of

the p-value gets lost when testing a module in isolation, i.e. the p-value can not be inter-

preted as the probability that the observed test statistic—the number of links in the case

of BinoX—is observed by chance. By using clustering, the probability of observing an ex-

treme test statistic is increased enormously, and this is not accounted for. As the meaning

of the p-value is lost by clustering, it can only be used as a ranking statistic, and even then

it ranksworse than just using the normal p-valuewithout the intermediary clustering step.
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(c)MCL, gene set permutation
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(d)MGclus, gene set permutation

Figure 3.5: Distribution of false positives for the BinoX tool. Differentially expressed gene sets

were extracted from themicroarray data given in table 3.1 using an adjusted (BH) p-value cutoff of

0.01 and a fold change cutoff of 1.5 (50% up or down regulated). Using the same strategy, random

gene sets were generated using phenotype label permutations of the same data (label swap, (a)

and (b)). As an alternative, random gene sets were generated by taking the original gene sets and

replacing each gene with a new gene having a similar node degree in the FunCoup network (gene

set permutation, (c) and (d)). With both methods, 10 randomizations were done for each dataset.

Finally, all randomized gene sets were clustered with MCL and MGclus and then all modules were

analysedwith BinoX versus all KEGG pathways. Shown here are the adjusted p-values of all module

to pathway combinations that are below 0.05. The relative size of the module compared to the

complete gene set graph is shown in log2 scale on the x-axis. Colors correspond to counts after 2

dimensional binning of the p-values.
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Figure 3.6: Distribution of true positives for the BinoX tool. Differentially expressed gene sets

were extracted from the microarray data given in table 3.1 using an adjusted (BH) p-value cutoff

of 0.01 and a fold change cutoff of 1.5. Gene sets were then clustered with MCL and the modules

were enriched to KEGG using BinoX. Shown here is (a), the distribution of the BH adjusted p-values

with respect to the relative module sizes (relative to gene set graph) and (b), to average node

degree of nodes in the module. All p-values corresponding to a module and its target pathway

(true positive) are colored according to the top color scale and the bins are surrounded by a black

border. The other p-values (to non-target pathways, here interpreted as false positives) are shown

in the background and are colored according to the bottom color scale. The same results using

MGclus are shown in fig. B.3.
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Figure 3.7: Distribution of true positives for the EASE tool. Gene sets were obtained and clus-

tered with MCL as explained in fig. 3.6 and the modules were enriched to KEGG using the EASE

score. Shown here is (a), the distribution of the BH adjusted p-values with respect to the relative

module sizes and (b), to the number of overlapping genes between the module and the KEGG

pathway. Color scales are the same as in fig. 3.6. Results obtained with MGclus are shown in

fig. B.4.

3.2.2 EASE combined with clustering

As with BinoX in the previous section, the biggest source of false positives is again a large

number of very small modules (fig. B.2). Unfortunately, the reasons why clustering does

not work out for BinoX seem to be equally valid for the EASE method. There are no distin-

guishing features—such as module size or node size (fig. 3.7)—that set true interactions

apart from false ones. Even if there was some way to filter out only the “good” modules,

this would still not be very helpful, since for EASE the sensitivity increases little to nothing

by introducing clustering (fig. 3.3b).

In conclusion it is save to say that, at least for the data tested here, there is not much to

gain with clustering, neither with BinoX or EASE. Although not tested, this is probably true

for the Fisher test as well, since the EASE method differs very little from the Fisher test.

3.2.3 Testing the effect of clustering on MSigDB data

So far, clustering has not been successful, but this is based on a small sample of only 26

datasets. To confirm what has been found so far, a second sample of 61 MSigDB datasets

is used. MSigDB is a large repository where scientists can deposit gene sets that were

found to be altered by a certain condition/experiment or that share a common property

(Subramanian et al., 2005). These gene sets are divided into 7 (C1–C7) broad categories

and cover for example genes associated with chromosomal regions, genes sharing Tran-
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scription Factors (TFs), curated gene sets such as KEGG or Reactome pathways and gene

sets from transcription profiling experiments.

Here I use the MSigDB C2::CGP collection which contains over three thousand gene sets

associatedwith chemical and genetic perturbations. These gene setswere download from

theMSigDBwebsite (http://software.broadinstitute.org/gsea/msigdb/index.
jsp) and their names were matched against KEGG pathways, giving a list of gene sets

that contained a KEGG pathway in their name. The descriptions of these gene sets were

checked quickly to see if each gene set actually was relevant to the matched KEGG path-

way. In addition, there are some gene sets that contain the suffix UP or DN in their name,

indicating that the genes were up or downregulated in the experiment. Since pathway

genes can be perturbed in both directions, these gene sets were joined together. In the

end, a collection of 61 gene sets was left, each having an associated pathway that is likely

to be affected. Finally, all KEGG and MSigDB gene sets are translated to Ensembl ID’s to

be able to make use of FunCoup (section 5.2.2).

The MSigDB data is used here as a new gold standard to validate previous findings. The

microarray gold standard data used before is manually curated and matched to KEGG

pathways, whereas the MSigDB gold standard introduced here is curated less carefully.

Therefore, even though it has more data, it might be of lesser quality. An overview of the

MSigDB gold standard data is given in table A.1.

Results

Clustering seems to have almost no effect on the prioritisation test, but the previously

made observation that both TPR and FPR increase for all tools is also true here (fig. 3.8).

Although it matters little which clustering algorithm is used for the ranking, a higher TPR

and FPR are observed when using MGclus compared to MCL, which is in agreement with

previous results. For BinoX, none of the modules of one of the 61 gene sets had any

links with the target pathway and hence the rank was set to 100% in the violin plot in

fig. 3.8a, but was omitted in the boxplot. For EASE, the modules of several gene sets had

no overlapwith the target pathway, so a fewmore rankswere set 100% (and omitted from

the boxplot) compared to the non-clustered run. So, keep in mind that the boxplot for

EASE after clustering is made on less data, and there is no real improvement in the overall

ranking. For Fisher, all target pathways that could be assigned a rank without clustering

could also be assigned a rank with clustering. In conclusion, except for the ranks being not

much affected by the clustering, all other results seem to agree with previous findings.

When looking at BinoX, the lowest p-values for module to target pathway combinations

do not originate from the biggest modules—instead, many small modules give rise to low

p-values (fig. 3.9a). When looking at the average node degree within a module, true in-

teractions seem to be similarly distributed to false interactions (fig. 3.9b).

When looking at EASE, there seems to be a slight preference for true interactions to orig-

inate from larger modules (fig. 3.9c). Note that the black dots in fig. 3.9c are module to

non target pathway combinations. Although they are considered as true negatives here,

they are not necessarily wrong, i.e. they might be biologically meaningful. One could ar-
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gue that by removing small modules, the FPR problem would be solved without harming

the sensitivity. But this is only supported for the few pathways that are found by EASE,

and only on this data. When looking at the overlap, there seems to be a very slight pref-

erence for true interactions to have a slightly larger overlap than other interactions. But

once again this is only supported by this data.

3.2.4 Can clustering improve pathway analysis?

The bigger the input gene set is, the easier it is for some random genes to group together

in a module that will suddenly become “significant”. This is observed in all the tests I

conducted in this thesis: the larger the gene set, theworse the significance overestimation

will be and conversely, the smaller the gene set, the lower the significance overestimation

will be—as there is less noise that can cluster together in the first place. For example,

when limiting gene set sizes too 600 (fig. B.1), the impact of the intermediary clustering

step (compared to not clustering) is not as bad—although setting this arbitrary size limit of

600 is a bad idea in itself. When looking at theMSigDB gene sets (fig. 3.8), which aremuch

smaller than 600 on average, the effect of significance overestimation is almost gone for

the EASE and Fisher methods. There even seems to be a very small improvement for the

Fisher method when using MCL, although the difference is so small that it might just as

well be due to the low sample size.

Can we combine modules? The target pathway is most often spread across multiple

modules of the gene set, but one could assume that the true signal in the gene set ( = links

or overlap to a target pathway) is usually spread across more modules than a randomly

picked pathway. Therefore, taking into account the number of significant modules for a

pathway might help to recover the target pathway. This assumption might be true for

BinoX but does not hold for Ease (figs. B.10 and B.11). So for BinoX, tricks like taking

into account the number of significant modules or somehow combining the p-values for

different modules might work to get a good prioritisation. For EASE, when looking at

the number of modules that show at least some significance to a pathway (p-value <
1), it seems like target pathways have higher module counts (figs. B.12 and B.13). Hence,

ranking pathways on this statistic might improve the prioritisation.

When trying things likemultiplying the p-values or ranking pathways on significant or total

module counts, I was not able to improve theprioritisationenough tobeat the unclustered

method. Although a slight improvement in prioritisation can be gained in some cases

compared to the method of taking the lowest p-value. Also keep in might that such tricks

lack any statistical motivation and do not give you confidence values, making sensitivity

and specificity testing impossible.

3.3 The BinoX package for R

To facilitate further research, an R package was made to run the BinoX tool, either stan-

dalone or in combination withMCL orMGclus. In addition, the package provides an inter-
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Figure 3.8: Clustering has little effect on pathway analysis applied to MSigDB gene sets. The

BinoX, EASE and Fishermethodwere appliedwith andwithout clustering to the gold standard data

based on MSigDB gene sets (table A.1). Boxplots and violin plots in (a) are as in fig. 3.2. True

positive rates as well as false positive rates using gene set permutation are given in (b) and (c)

respectively. Figures (b) and (c) are also given using q-values in fig. B.9.
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Figure 3.9: Distribution of true positives for MSigDB gene sets. A selection of gene sets from

MSigDB (table A.1) were clustered using MCL and the modules were enriched to KEGG pathways.

The BH adjusted p-values obtained from BinoX are shown in (a) and (b), colors and scales are as in

fig. 3.6. The same modules were enriched using EASE, p-values are shown in (c) and (d). Module

to target pathway combinations (true positives) are shown in red, all other p-values are shown in

black. Additional results using MGclus instead are shown in fig. B.5.
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face to easily plug-in any clustering method. The complete benchmark depicted in fig. 3.1

is also included in the package. The source code is hosted in a git repository and is avail-

able at https://DMSam@bitbucket.org/DMSam/binox-r.git. All public functions are
fully documented in the reference manual for the package.

3.3.1 Using BinoX from within R

To be able to run BinoX from within R, the BinoX package and its dependencies must be

installed (see first page of reference manual). Also, the BinoX command line tool must be

installed and must be available on the systems $PATH. The BinoX command line tool can

be downloaded from http://sonnhammer.org/BinoX.

BinoX works in two steps: first the FA network must be randomised, then gene sets can

be enriched to each other. Since randomising the network can take quite some time,

the advised workflow is to do this first and store the result on the disk. The randomised

network can then be reused for every analysis. This can be done very easily from within

R:

1 library(BinoX)
2 library(igraph)
3
4 # for reproducibility
5 set.seed(1234)
6
7 # make up a scale free network
8 fa_network <- sample_pa(1000, directed = F)
9

10 # randomize the network and store result to disk
11 random_network_path <- tempfile()
12 Binox_randomizeNetwork(randNetPath = random_network_path,
13 network = fa_network ,
14 seed = 1234, # Seed for BinoX network randomizer.
15 edgeWeightName = NA) # Prevent using edge weights , all
16 # edge weights are set to 1.0

If this returns TRUE then the randomisation is finished. The next step is to do the actual

analysis:

1 # make up some gene sets and pathways
2 gene_sets <- rbind(
3 data.frame(members = 1:200 , gene_set = "set1"),
4 data.frame(members = 300:600, gene_set = "set2")
5 )
6
7 pathways <- rbind(
8 data.frame(members = 50:210 , pathway = "pw1"),
9 data.frame(members = 500:600, pathway = "pw2")

10 )
11
12 # enrich with BinoX
13 output <- Binox(groupsA = gene_sets, groupsB = pathways ,
14 randNetPath = random_network_path)
15 print(output)

If everything went well, this should return a data.frame with four rows; one row for

every gene set versus pathway combination:
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1 NameGroupA NameGroupB ID p.value FDR relationType PFC module
2 1 set1 pw1 1 0.00890549 0.0178110 + 1 NA
3 2 set1 pw2 2 0.00705778 0.0282311 - 1 NA
4 3 set2 pw1 3 0.07663070 0.1021740 - 1 NA
5 4 set2 pw2 4 0.14139800 0.1413980 + 1 NA

To include clustering in the analysis, first make a closure2 to prepare the clustering algo-

rithm with the FA network, then pass the closure to the BinoX function:

1 # make a closure for Markov clustering with default settings , we are not using
2 # edge weights in this example
3 mcl_cluster_function <- prepare.MCL.ClusterFun(fa_network ,
4 edgeWeightName = NA)
5 # cluster a gene set with Markov clustering
6 modules <- mcl_cluster_function(1:20)
7 print(modules)
8
9 # run BinoX with clustering

10 output_clus <- Binox(groupsA = gene_sets, groupsB = pathways ,
11 randNetPath = random_network_path,
12 clusterFun = mcl_cluster_function)
13 print(output_clus)

This will cluster every gene set and enrich every module to every pathway. The output is

a data.frame with p-values and q-values for all module to pathway combinations. Note

that any function that takes a vector of identifiers as input and returns a list of vectors

with identifiers (one vector per module) as output will be accepted. So any clustering

algorithm, such as those from the igraph package (http://igraph.org/r), can easily

be plugged into the BinoX function as well. More details are available in the reference

manual.

For making MCL or MGclus work, the mcl and MGclus programs must be available on the

command line. They can be downloaded from http://micans.org/mcl/index.html?
sec_thesisetc andhttp://sonnhammer.sbc.su.se/download/software/MGclus re-
spectively.

3.3.2 Command Line Interface

In addition to the R interface, there is also a command tool included in the BinoX package.
The command line tool allows the user the run BinoX in combination with either MCL or

MGclus, provided that the R package and all the dependencies listed above are installed.

Although the Command Line Interface (CLI) is quicker to use, it is far less flexible and

exposes only a subset of the functionality provided with the R interface. The --help of

the CLI is also provided in the section BinoX-cli of the reference manual.

2 Closures are functions with associated data. When defining a function in R, it can “catch” objects from

its parent environment and store them immutably as a part of the function.
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3.3.3 Benchmarking pipeline

The complete benchmarking pipeline used in this thesis is also available in the R package.

The PWAbenchmark class keeps track of all the settings such as which identifiers to use and

how to select gene sets frommicroarray data. Every component of the benchmark can be

swapped out easily by the user, and nearly all steps can be executed in parallel by simply

setting the ncores argument to the number of processor cores you want to use. More-

over, the package will store intermediary results such as probeset to gene identifier map-

pings or differential expression statistics in a structured fashion on the hard drive. When-

ever a setting is changed, the package will automatically determine which results have to

be computed andwhich results can be reused fromprevious runs, and it will only compute

what is necessary. Even when the computations have been interrupted by the user or due

to an external failure, no progress will be lost andwhen the benchmark is resumed later, it

will pick up fromwhere itwas interrupted. An introduction to thebenchmark is included in

the package repository (https://DMSam@bitbucket.org/DMSam/binox-r.git, in the

file demo/benchmark-demo.html), and a complete reference is available in the package

manual.

3.4 Human Proteome Atlas

One of the objectives (chapter 2) was to run BinoX and Ease on the tissue specific gene

sets from the HPA with and without clustering (Uhlen et al., 2015). Unfortunately, clus-

tering turned out to have a rather negative effect on pathway analysis. Still, it might be

interesting to see how BinoX and EASE behave on this data, and whether there are any

important pathways that can only be found with clustering.

Tissue specific gene sets have been downloaded from the HPA website (http://www.
proteinatlas.org/humanproteome/tissue+specific). There are three categories

used by HPA to indicate how “tissue specific” a gene is to a certain tissue. These categories

are “tissue enriched”, “group enriched” and “tissue enhanced”. Because some gene sets

in either of these three categories can be extremely small (e.g. the “tissue enriched”

gene set for smooth muscle comprises only one gene), the gene sets used here are the

union of these categories. Pathway analysis was then carried out on all gene sets versus all

KEGG pathwayswith BinoX and EASEwith andwithout clustering withMGclus. Functional

enrichment (with EASE) towards GO terms has been done before by the authors of the

HPA project, and for three tissues there were none to a few significant GO terms, these

tissues were 1) Adipose tissue, 2) Lung tissue and 3) pancreas.

Results

When enriching the same tissues for KEGG pathways there are once again almost no path-

ways found using EASE. As was clear from the benchmark, BinoX is much more sensitive

and finds more significantly enriched pathways. A brief overview of these three tissues is

shown in figure fig. 3.10, and complete results are given in tables C.1 to C.3.
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(a) Adipose tissue (b) Lung tissue (c) Pancreas

Figure 3.10: Pathway analysis for three tissues of the HPA. Pathway analysis was done on tissue

specific gene sets provided by the HPA. Three example tissues are shown here: adipose tissue (a),

lung tissue (b) and pancreas (c). The venn diagrams show how many KEGG pathways are found

by each tool using a q-value cutoff of 0.05. The tools used are BinoX and EASE with and without

clustering of the gene sets withMGclus. The full data for these three tissues is given in appendix C.

Adiposetissue BinoX, BinoX +MGclus and EASE found the PPAR signalling pathway, a key

pathway for regulating fatty acidmetabolism,which is an important functionof adipocytes

(Fujii, 2005). Another pathway found by BinoX, BinoX + MGclus and EASE + MGclus was

Neuroactive ligand-receptor signalling. This is a very broad pathway containingmany pro-

teins involved in signal transduction, but it has no apparent relation to adipose tissue.

There is one key pathway that is only found by EASE: the AMPK signaling pathway, which

is well known to have an important role in adipose tissue energy metabolism (Steinberg

and Kemp, 2009; Bijland et al., 2013; Daval et al., 2006).

These three pathways are the only ones found by EASE or EASE + MGclus, whereas there

are 60 pathways that are only found by either BinoX or BinoX + MGclus. Among these are

quite a few well known important pathways for adipose tissue such as the adipocytokine

signaling pathway, fatty acid biosynthesis/degradation/metabolismand glycerolipidmetabolism.

Moreover, there are some key pathways that are only found by BinoX + MGclus that are

completelymissed by BinoXwithout clustering. An example is the JAK-STAT signaling path-

way, which has an important role in adipose tissue development and regulation of adipose

tissue metabolism (Richard and Stephens, 2014; Xu et al., 2013; Moisan et al., 2015).

Lung tissue One pathway that is found by BinoX, BinoX + MGclus and EASE is the focal

adhesion pathway. This pathway has an important role in lung cancer (Lagares et al.,

2012) and might be involved in pulmonary fibrosis (Kinoshita et al., 2013). This is the only

pathway found by EASE. BinoX and BinoX + MGclus on the contrary together found 150
significant pathways. Given that there are 288 KEGG pathways in total, there are likely

many false positives among those, some likely examples are drug metabolism, prostate

cancer, pancreatic cancer and dilated cardiomyopathy, which are not of importance in

normal lung tissue.

Pancreas Some known pancreatic pathways such as insulin secretion, fat digestion and

absorption and Maturity onset diabetes of the young (MODY)—a genetic disorder that
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causes type II diabetes—are found by both BinoX and EASE. Three important pathways

are only found by EASE: carbohydrate digestion and absorption, protein digestion and

absorption and pancreatic secretion. Especially the latter is a key pathway and is almost

found by BinoX but missed completely by BinoX + MGclus (q-values are 0.071 and 0.146
respectively, see table C.3).

Conclusions

From the examples above, it is clear that using multiple tools is important to get a full

picture. It is not because one method is more sensitive that other less sensitive methods

should not be used. In two of three examples above, the less sensitive EASE tools could

find important pathways that were not found by BinoX. Finally, clustering added some

important pathways for the analysis of adipose tissue and the pancreas, but it also added

many nonsense pathways for the lung tissue. Hence the results from clustering should be

interpreted with extreme caution.
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Part 4: Discussion

4.1 Assessing the performance of a new pathway analysis

tool

Here I have benchmarked the new BinoXmethod versus earlier methods. On a qualitative

level, the results are in agreement with earlier publications dealing with benchmarking

pathway analysis tools (Tarca et al., 2012, 2013; Dong et al., 2016). Thus, despite changing

a few major aspects of the benchmark compared to earlier work (section 3.1.3), it might

still be possible to compare previous findings with the results presented here. If so, then

BinoX, even though it does not use microarray data, performs quite well in comparison to

other pathway analysis methods. When analysing small gene sets (< ±500 genes), there
is often no overlap. Especially in this scenario BinoX has a clear advantage. This has been

illustrated not only by the benchmark, but also when analysing gene sets from the HPA,

where BinoX was able to findmany relevant pathways that were not found by the overlap

based EASE method. Although, when dealing with large gene sets, the FPR of BinoX can

bequite high and a very strict significance cutoff combinedwithmultiple testing is advised.

Therefore if the goal is to get as much insight as possible from a gene set, BinoX should

be used, especially for small gene sets. But if the goal is to prioritise pathways for follow

up experiments, then overlap based methods might still be preferable. Even if microarray

data is available, BinoX is still advised to gain insight in the underlying biology. But for pri-

oritising pathways for follow up experiments, FCS basedmethods should be used instead.

In conclusion: there is no silver bullet, every tool has advantages and disadvantages. The

best advice is to always use as many tools as possible and then compare the output while

keeping the strengths and weaknesses of the tools in mind. This method is slow and

requires an understanding of how each of the tools work, but is guaranteed to bring the

most insight. Ensemble1 methods that pool the output frommany tools into one analysis

might be very useful as a quick way for prioritising pathways. But might not bring as much

insight in the underlying mechanics as comparing the outputs manually.

1 Not to be confused with the Ensembl database (http://www.ensembl.org/).
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4.2 Remaining problems for benchmarking pathway analy-

sis

Benchmarking pathway analysis tools has always been a difficult topic. The method used

here for testing sensitivity is solid only if the gold standard data is of goodquality and forms

a representative sample. The second condition might still be a problem since the sample

only deals with disease phenotypes and is heavily biased towards cancer pathways. In ad-

dition themicroarray standard is quite small and the analysis involvesmany decisions such

aswhich test statistic to use and how to compile DE gene sets. It is therefore susceptible to

the phenomenon known as researcher degrees of freedom: the ability of a researcher to,

with or without bad intentions, obtain any desired outcome by changing parameters of

the analysis. To combat this, a second gold standard based on MSigDB data is used here

which, in many aspects, corroborates the results obtained from the first benchmark. Un-

fortunately, the second benchmark is also biased towards cancer pathways, it is therefore

still not completely certain if what is found here can be extrapolated to pathway analy-

sis in general. Moreover, the prioritisation benchmark is not perfect either, since there is

always more than one “target pathway” that should rank close to the top, so the target

pathway used here does not necessarily have to be in the first place. Thus, the MSigDB

gold standard helps to solve the benchmarking problem but is not the final solution.

Testing the false positive rate is also still problematic. There is a growing consensus form-

ing in literature that correlations within gene sets should be accounted for in the null hy-

pothesis, or as Gatti et al. (2010) puts it: “correlation within a gene set is largely a persis-

tent property that is preserved across a wide variety of sample sources and experimental

conditions”. Thus, correlated genes in a gene set should not be seen as independent evi-

dence, because this phenomenon is independent of the condition under study. Any good

benchmark should thus not rely its specificity test on gene sets were this correlation struc-

ture is not present. A proposed solution is permuting the sample labels, but this poses a

problem for FCS tools: benchmarking FCS tools with data generated by the same null hy-

pothesis as used by those tools gives them an unfair advantage. Another problem is that

by using sample label swaps the true signal might still be preserved to some degree. Yet

another problem is that this method does not work for set based data. The alternative

specificity test (using gene set permutations) solves the these problems but does not in-

clude the correlation structure of real gene sets. When comparing both tests, then the

specificity of BinoX is much worse on the first, which is to be expected as BinoX does not

account for correlations within gene sets in its null model. EASE and Fisher perform also

worse on the first specificity test, but the results are not as extreme due to their inherent

poor sensitivity.

In conclusion, although this benchmark is an improvement upon previous benchmarks, it

is still uncertain whether results can be extrapolated to other conditions than diseases or

even to other organisms. And the nature of specificity testing of pathway analysis is still

problematic.
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What is pathway analysis?

The problems presented above all tie to one underlying question: what do we mean with

pathway analysis? An obvious answer would be that the aim of pathway analysis is to find

pathways that have an important role in the what is being studied. But this poses a new

question: what does “an important role” mean? What do we actually mean if we say that

a pathway is important to a disease/phenotype/etc.? There is no strict definition of what

an “important pathway”—or pathway analysis in general—means. Different tools model

the answer to this question in different ways, e.g. in terms of overlap, link counts, ranking

of pathwaymembers in gene lists andmore. But how dowe knowwhich of these answers

is the closest to the truth if the truth is still undefined?

In the benchmark used here, it is unambiguous that if a sample is taken from disease

tissue, than the disease pathway is important. But for many other pathways ambigu-

ity arises. Especially when we ask ourselves the opposite question: which pathways are

not relevant? For example, what if an energy metabolism pathway remains completely

unaffected in cancer cells compared to healthy cells of the same tissue? Is this pathway

then important? One could argue that it is not since, as it is functioning the same as in

healthy cells, it could not cause the cancer phenotype. But one could also argue that it

is very important since, despite the many mutations of cancer cells, this pathway is still

functioning in exactly the same way. Thus, keeping this pathway going in the same state

is essential for cancer cell survival. This explains why, while it is hard to test the sensitiv-

ity, it is even harder to test the specificity. There is no way to know whether a pathway

is truly irrelevant. Of course, we can generate completely random pathways or gene sets

and be certain that they are not relevant. But how do reliably can we extrapolate from

simulation studies to real data?

In the end, creating the best pathway analysis method—or benchmark—is an impossible

task, since every method or benchmark uses a different definition of what pathway anal-

ysis actually is. Therefore the best method can only be chosen once your have answered

for yourself the question of what exactly you are looking for with pathway analysis.

Future perspectives

A few things can be done to further improve the benchmark. For the sensitivity test, gold

standard datasets fromdifferent conditions and different organisms are required. It would

also be nice to know how results differ when using another annotation database such

as Reactome or GO. Once there is enough testing data to form a representative sample,

the sensitivity testing problem is more or less solved. Although compiling this data in an

objective manner would be difficult and time consuming, it is certainly not impossible. A

possibility to improve the specificity test would be to keep using real data but randomize

the pathways. One could enrich real data to a fake annotation database containing only

the target pathway and a random pathway. Then sensitivity and specificity testing could

be done in one go and it would be possible to generate ROC curves and use the AreaUnder

Curve (AUC) as the ultimate measure to compare methods.
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4.3 Should clustering be used?

Here, clustering gene sets prior to pathway analysis has been attemptedwith twodifferent

clustering methods on three tools. The hypothesis that clustering would purify pathways

from the gene sets into the same modules as illustrated in fig. 2.1 appears to be false.

Instead, pathways are spread across a number of small modules and “experimental noise”

is also clustered together in modules with similar properties, making it more difficult to

differentiate the signal from the noise. The only property that gives a slight indication

in the right direction is the number of modules that are enriched to a given pathway.

If this number is high compared to other pathways, then the given pathway is likely to

be more important. But combining modules like this is a self defeating exercise because

then it would be better to just use the whole gene set instead. Another problem is that

clustering inflates the p-values so much that they cannot longer be trusted, making the

relative ranking of pathways the only valuable output. Fisher and EASE appear to rank

pathways in a more or less similar order after clustering, regardless of what clustering

algorithm is used (fig. 4.1) but for BinoX the ranking is affected to a larger extend. Finally,

PADOG is quite orthogonal to any other method tested here. This highlights again the

need to always use different tools for analysing your data.

In conclusion, clustering seems to be a noise inducing step rather than a noise eliminating

step and should not be used in combination with pathway analysis. Instead it is better to

use conceptually different approaches which answer the question of which pathways are

relevant to the study in different ways.

Fisher-MGC

Padog

Ease-MCL

BinoX

Ease

Ease-MGC

Fisher

BinoX-MGC

BinoX-MCL

Fisher-MCL

Figure 4.1: Similarity of tools in terms of ranking. For each dataset in table 3.1 the Kendall’s tau

coefficient was computed on the p-values of the KEGG pathways for each pair of tools. Line thick-

ness corresponds to the average Kendall’s tau across the 26 datasets. The smallest rank correla-

tion is between BinoX + clustering and PADOG (≈ 0.20), the largest is between Fisher and EASE

(≈ 0.85). MGC is short for MGclus.
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4.4 Korte discussie in het Nederlands

Onderzoek naar de kwaliteit van een nieuwe pathway analyse methode

De nieuwe BinoX methode voor pathway analyse werd hier onderzocht en vergeleken

met eerder gepubliceerde tools. Kwalitatief gezien zijn de resultaten vergelijkbaar met

vroegere publicaties (Tarca et al., 2012, 2013; Dong et al., 2016). Dus, ondanks enkele

grote verschillen in de analyse is het misschien toch nog mogelijk om eerdere resultaten

the vergelijkenmet wat hier is waargenomen. Als dit het geval is, dan is BinoX een redelijk

goede tool gegeven het feit dat het geen gebruik maakt van microarray data. BinoX lijkt

voornamelijk goed te werken op kleine gen sets waar een overlap vaak niet wordt waar-

genomen. Voor grotere gen sets wordt de FPR van BinoX erg hoog, en gebruik van een

hoge significantie cutoff in combinatie metmultiple testing correction is aanbevolen.

Dus, om een dieper inzicht te krijgen in de onderliggende biologie is BinoX een aanbevo-

len methode, maar om pathways the prioriteren voor verder onderzoek kan een overlap

gebaseerde methode nog steeds nuttig zijn. Zelfs alsmicroarray data beschikbaar is is het

nuttig om BinoX te gebruiken om meer inzicht te krijgen in de data. Voor prioritering is

een FCS methode echter meer geschikt.

Ten slotte kanmen stellen dat er geen silver bulletmethode is voor pathway analyse. Elke

methode heeft voor en nadelen en verschillende methoden gebruiken op dezelfde data

is altijd aangeraden.

Onopgeloste problemen voor het evalueren van pathway analyse methoden

Het is altijd moeilijk geweest om pathway analyse methoden objectief te evalueren. De

methode die hier gebruikt is is enkel geldig als de data van goede kwaliteit is en een repre-

sentatief staal vormt. Aangezien de “gouden standaard” data voornamelijk kanker weef-

sels bevat kan de tweede voorwaarde een probleem zijn. De vele beslissingen in de da-

ta analyse en de beperkte grootte van het staal kunnen ook leiden tot het probleem van

researcher degrees of freedom: de mogelijkheid van een onderzoeker om, met of zonder

slechte intentie, elk gewenst resultaat te observeren door parameters in de analyse aan

te passen. Dit probleem kan effectief aangepakt worden door een tweede “gouden stan-

daard” te introduceren, zoals bijvoorbeeld de MSigDB data die hier is gebruikt. Zowel de

MSigDB data als demicroarray data lijken dezelfde conclusie te ondersteunen. Helaas be-

vat ook de MSigDB data veel kanker gerelateerde gen sets, waardoor het misschien ook

een niet representatief staal is voor pathway analyse in het algemeen. Dus, ondanks dat

de MSigDB data helpt, is het zeker niet de finale oplossing.

Ook het testen van de specificiteit is nog steeds een onopgelost probleem. Dit heeft vooral

te maken met het feit dat er geen vaste definitie is voor wat pathway analyse werkelijk

is. Het nog moeilijker om te zeggen welke pathways niet relevant zijn voor een bepaalde

studie/ziekte of fenotype. Dit maakt het dan weer moeilijk om een goede nul hypothese

te formuleren.
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We kunnen concluderen dat deze benchmark een verbetering is ten opzichte van vorige

methoden, maar het is nog niet zeker of we de resultaten gebaseerd op ziekte gerelateer-

de weefsels kunnen doortrekken naar een bredere context.

Kunnen we gebruik maken van clusteren?

Het effect van clusteren voor het toepassen van pathway analyse methoden is hier on-

derzocht met twee verschillende clustering methoden en drie verschillende tools. De hy-

pothese dat clusteren een pathway zou uitfilteren in een aparte module lijkt niet te klop-

pen. In plaats daarvan wordt het signaal verspreid over een groot aantal kleine modules.

Daarbovenop wordt experimentele ruis ook samen gebracht in kleine modules met ge-

lijkaardige eigenschappen. Een tweede probleem is dat clustering de p-waarden zoda-

nig versterkt dat ze niet langer kunnen gebruikt worden als p-waarden. Het enige wat

een beetje overeind blijft is de prioritering van de pathways, vooral voor Fisher en EASE

(fig. 2.1). Wat duidelijk is van fig. 2.1 is dat PADOG, BinoX en EASE/Fisher elk andere path-

ways prioriteren, wat nogmaals het belang van het gebruik van verschillende methodes

bevestigd.
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Part 5: Materials and Methods

5.1 Moderated t-test

All microarray studies in the benchmark (section 3.1) compare samples associated with a

certain disease to healthy samples, they fall under two categories in terms of experimental

design:

1. Either a disease tissue samples versus b healthy tissue samples, not paired, or

2. a disease tissue samples versus a paired healthy tissue samples, each pair coming

from one patient.

From hereon, I will refer to the first and second design as the “unpaired” and “paired”

design respectively.

The moderated t-test was used to assess which genes are DE between the disease and

healthy phenotypes (Smyth, 2004). Here, the moderated t-values are derived from the

coefficients of a linear model that is fitted for each gene.

yg = Xα + ε (5.1)

Where the column vector yg contains the normalized and summarized expression values

of the microarray probes of one gene for all samples. X is the design matrix of the linear

model and α is a column vector containing the coefficients to be estimated.

Model specification For the unpaired designs, consider a response vector yg of length

a+ b where the first a entries are expression values from diseased tissues, and the last b
entries are expression values from healthy tissues. Then, the following design matrix was

used:

X =

1 0
...

...

0 1

 (5.2)

Where the first a rows are [1, 0] and the last b rows are [0, 1]. By minimizing the residual

sum of squares for this model, the estimate of the first coefficient α̂g1 will simply be the

average of the disease expression values, and the estimate of the second coefficient α̂g2

will be the average of the healthy expression values.
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For the paired designs, consider a response vector yg of length 2a, where every entry

from ygi, i ∈ [1, . . . , a] is paired with an entry yg(i+a). Then, the following design matrix

was used:

X =



1 0 0 0 . . .
1 0 1 0 . . .
1 0 0 1 . . .
...

...
...

...
. . .

0 1 0 0 . . .
0 1 1 0 . . .
0 1 0 1 . . .
...

...
...

...
. . .


(5.3)

Where the first a rows correspond to disease samples, and the last a rows correspond to

healthy samples. In thismodel, the first coefficientαg1 represents the expression value for

gene g in diseased tissue of patient 1 (an arbitrarily chosen patient). Similarly, the second

coefficient αg2 represents the expression value of gene g in healthy tissue of patient 1. All
other coefficients αg(i+1), i ∈ [2, . . . , a], represent the difference in expression of gene g
for patient i versus patient 1.

Contrast specification After fitting the model, the following contrast matrix, a vector in

this case,1 is specified:

unpaired

designs
: c =

[
1
−1

]
paired

designs
: c =


1
−1
0
0
...

 (5.4)

The contrast of interest2, βg, which is the difference in expression of a gene between the

disease and healthy phenotype, is then obtained by:

βg = c>αg (5.5)

For unpaired designs, β̂g is simply the difference of the mean for the disease and healthy

samples. For paired designs, β̂g = α̂g1− α̂g2, which is the estimated difference in expres-

sion excluding patient effects.

Moderated t-value The ordinary t-value for the contrast βg would be obtained by:

tg =
β̂g

sg
√
vg

(5.6)

1 Using the notation of Smyth (2004), the contrast matrix would be written asC, but since there is only

one contrast of interest here,C reduces to a vector, which I will denote as c.
2 In Smyth (2004), the contrasts of interest are denoted as the vector βg , and an individual contrast j as

βgj . Since there is only one contrast of interest here, I am dropping the subscript j.
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Where sg is the estimated standard deviation of yg and vg is the unscaled variance of βg.

I.e.: vg = c>Vgcwhere Vg is the unscaled covariance matrix of α. This means that for an

ordinary t-statistic, the variance of each gene is estimated independently. Smyth (2004)

proposed amoderated t-statistic where the variance of a gene is weighted by the ordinary

variance and a prior variance derived from all genes:

s̃2g =
d0s

2
0 + dgs

2
g

d0 + dg
(5.7)

Where s20 and d0 are the prior variance and degrees of freedom respectively, which are

estimated from the data (see Smyth (2004) for derivation of these values). Using s̃g in-
stead of sg in eq. 5.6 and expanding vg = c>Vgc = c>(X>X)−1c yields, in this case,

the following equation for the moderated t-value:

t̃g =
α̂g1 − α̂g2

s̃g

√
1
a
+ 1

b

(5.8)

Where, for paired designs, b = a and, as mentioned earlier, for unpaired designs, α̂g1

and α̂g2 are simply the sample means. Thus, the variance of the contrast will decrease

proportional to the sample sizes and to howwell balanced the sample sizes are (a/b ≈ 1).

The variance of yg is easily estimated too small by accident in microarray studies with low

sample sizes, inflating the corresponding p-value. The opposite, overestimation of the

variance, can also easily happen for the same reason. Using the moderated t-test, sample

variances are shrunken towards a common value, reducing the effect of variance over-

or underestimation. Therefore the moderated t-test is advantageous over the ordinary

t-value.

Final notes Using the procedure described above, a moderated t-value is obtained for

each gene. Positive t-values indicate that a gene has higher expression in diseased tissues,

while negative t-values indicate the opposite.

P-values obtained from these t-statistics were adjusted for multiple testing using the BH

procedure (Benjamini and Hochberg, 1995).

All steps described in this section were carried out in R (R Development Core Team, 2016)

using the packagelimma (Ritchie et al., 2015). See the Implementationof themakeModerated
TTestTopTable function in the BinoX package for the code.

5.2 Translating gene identifiers

Twomethods havebeenused tomapprobeset identifiers to Ensembl IDs. Thefirstmethod,

used in section 5.2.1 was used for the benchmark based on the microarray data. The

second, used in section 5.2.2 was used for the MSigDB based benchmark.
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5.2.1 Mapping IDs to Ensembl through the FunCoup network

All microarray datasets in the benchmark are either based on the Affymetrix hgu133a
chip or the hgu133plus2 chip. Both chips have an annotation package in Bioconductor

named hgu133a.db and hgu133plus2.db respectively. For both packages version 3.2.2

was used. These packages provide direct probeset to Ensembl translations, but there are

often many to many relationships between probeset and gene identifier. This problem

was dealt with in two steps: First, from all Ensembl IDs, the one with highest node degree

in FunCoup was taken. Second, if multiple probesets—each one having an associated test

statistic for differential expression–map to the same Ensembl ID, the one with lowest p-

value was taken. In pseudocode:

Require: probeset IDs mapped to a test statistic (and p-value) for differential expression

Ensure: Ensembl IDs mapped to a test statistic (and p-value) for differential expression

{Step 1}

mapping← empty dictionary

for all probeset ID from platform do

matching Ensembl IDs← all Ensembl IDs from annotation package matching probeset ID

if there are matching Ensembl IDs then

if any matching Ensembl IDs ∈ FunCoup network then

mapping(probeset ID)← highest degree node frommatching Ensembl IDs

else

mapping(probeset ID)← first ID frommatching Ensembl IDs

end if

end if

end for

{Step 2}

EnsemblID_to_testStatistic← empty dictionary

for all Ensembl ID in values ofmapping do

matching probeset IDs← all keys (probeset IDs) that map to the current Ensembl ID inmapping

testStat←most extreme test statistic for all probesets inmatching probeset IDs

pValue← p-value associated with TestStat

EnsemblID_to_testStatistic(Ensembl ID)← (testStat; pValue)

end for

In the end, a non-redundant list of Ensembl IDs is obtained, each one having an associated

test statistic and p-value for differential expression. The translated list will be shorter than

the number of probeset IDs since some probeset IDs cannot be translated to Ensembl IDs

and because many to many mappings are resolved.

For translatingKEGG IDs to Ensembl, the sameprocedure as “Step 1”was used, except that

Entrez IDs were translated instead of probeset IDs. For mapping Entrez to Ensembl, the

org.Hs.eg.db package version 3.2.3 from Bioconductor was used. Duplicate Ensembl

IDs (arising from multiple Ensembl to one Entrez ID mappings) were removed to obtain

non redundant gene sets.
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5.2.2 Entrez to Ensembl mapping from earlier publication

The CrossTalkZ pathway analysis tool (McCormack et al., 2013), also requiring Ensembl

IDs, has been tested earlier with simulated data as well as with KEGG and MSigDB gene

sets. For the benchmark based onMSigDB data in this thesis (section 3.2.3), I have reused

these already translated gene sets.

5.3 False positive rate estimation

5.3.1 Sample label swap

For testing the FPR, microarray data was taken but the sample labels were permuted n
times. Thisway, every sample is randomly assigned a disease or healthy label. Because the

groups are now random, differential expression should not be observed after correcting

for multiple testing. This is true in all but a few cases were the permuted sample labels

closely match the original sample labels. Using this sample label swap, genes that are

correlated are more likely to be selected together. Therefore, this method can be useful

for testing whether tools account for gene-gene correlations.

5.3.2 Gene set permutation

For the alternative FPR test, the query gene sets were permuted by replacing every gene

by a new one with similar node degree (maximum 5% difference). Replacement genes

were not allowed to be in the query gene set set and may not have been picked before.

When there are no such genes, a completely random gene from FunCoup is picked as

replacement.

Require: input gene set; FA network

Ensure: permuted gene set with approximately the same node degree distribution as input gene set

permuted gene set← empty set

for all gene ∈ input gene set do

candidates← genes differing no more than 5% in node degree from gene given FA network

candidates← all candidates /∈ input gene set

candidates← all candidates /∈ permuted gene set

if there are candidates then

add random gene from candidates to permuted gene set

else

unpicked← genes from FA network /∈ input gene set

unpicked← all unpicked /∈ permuted gene set

add random gene from unpicked to permuted gene set

end if

end for
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5.4 Procedures used for benchmarking

5.4.1 Benchmark based on microarray data

Sensitivity and prioritisation test

1. The 26 datasets from table 3.1 were downloaded from NCBI GEO.

2. The moderated t-test was done as described in section 5.1 using the samples given

in appendix A.1.

3. Probeset identifiers were translated to Ensembl as described in section 5.2.1.

PADOG was run by passing the following input to the PADOG function from the

PADOG Bioconductor package http://www.bioconductor.org/packages/
release/bioc/html/PADOG.html.:

(a) The probeset to Ensembl translations from step 3

(b) The microarray data from step 1

(c) The KEGG pathways translated to Ensembl as described in section 5.2.1

(d) Number of iterations = 50

4. For each dataset, all genes with a BH adjusted p-value of at least 0.01 and a fold

change of at least 50% were used to form a gene set. This means both up and

downregulated genes are included in the gene set.

BinoX was run on these gene sets with relationType = +, i.e. only enrichment

p-values were calculated. The FunCoup network version 3.0 was used with

and edge weight cutoff of 0.8 and 150 randomisations. KEGG pathways were

the same as for PADOG.

EASE & Fisher methods were run on the same gene sets and KEGG pathways as

BinoX.

5. Gene sets were clustered by:

(a) Extracting a subnetwork from the complete FunCoup graph (no cutoff) con-

taining the genes from the gene set.

(b) Removing genes that have no edges in the subnetwork.

(c) Applying either MGclus or MCL to the obtained subnetwork. Both tools were

run with default settings: merge gain cutoff of 0 for MGclus and inflation of 2
for MCL. Edge weights were used for both algorithms.

(d) Removing all genes that end up in a one-node module.

BinoX was run on each module of each gene set versus all KEGG pathways. The

minimum allowed gene set size was lowered to 2. P-value correctionwas done
across all module to pathway combinations tested. Per pathway, the lowest

p-value across all modules was kept.
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EASE & Fisher were also run on all modules versus all KEGG pathways, and also cor-

rected for all combinations. Per pathway, the lowest p-value across allmodules

was kept.

6. Sensitivity and prioritisation was done on the output from PADOG in step 3 and the

output from BinoX, EASE and Fisher from step 4 and 5.

sensitivity This is the number of target pathways that have a p-value below the

significance cutoff. The sensitivity over a range of cutoff values is given in

figs. 3.2a and B.1b.

prioritisation The pathways are sorted on p-value per gene set, then their position

in the sorted list is determined. This is divided by the total number of pathways

andmultiplied by 100 to get the rank percentage. Sometimes a p-value cannot

be determined or is equal to exactly 1. In this case, the rank percentage was

set to 100% for the violin plots in figs. 3.3a and B.1a. For the boxplots these

rank percentages were omitted.

Specificity test

Two tests have been used. For the first, the sample labels from the microarrays were per-

muted (see section 5.3.1). Then step 2 and step 3 of the sensitivity benchmark is repeated

on this false data. Instead of step 4, the first n genes are picked (sorted on p-value for

DE) where n is a number drawn randomly from the gene set sizes of the true gene sets

obtained in step 4. Then, step 5 is again the same as in the sensitivity test. The specificity

is simply the proportion of p-values that fall below a certain cutoff. The specificity over a

range of cutoffs is shown in figs. 3.3c and B.1c. For the second: the true gene sets from

step 4 of the sensitivity test were permuted as explained in section 5.3.2. These gene sets

where then clustered as described in step 5 of the sensitivity test. Specificity is again the

proportion of p-values below a certain cutoff (figs. 3.3d and B.1d).

Both of the specificity tests have been repeated 10 times on all 26 datasets/gene sets.

5.4.2 Benchmark based on MSigDB gene sets

Sensitivity and prioritisation test

KEGG and MSigDB gene sets were already made available in Ensembl IDs by McCormack

et al. (2013). The MSigDB gene sets from table A.1 were enriched versus all KEGG path-

ways. They were also clustered as described in step 5 of section 5.4.1 and then every

module was enriched to every KEGG pathway. Sensitivity and prioritisation were calcu-

lated as described in step 6 of section 5.4.1.

Specificity test

Since nomicroarray data is available, sample label swaps have not beenused for specificity

testing. Specificity testing based on gene set permutations was done in exactly the same
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way as described in section 5.4.1: by permuting theMSigDB gene sets while retaining first

order node degree. Once again, every gene set was permuted 10 times.

5.5 Hardware and software used

hardware

Two platforms have been used for both building the BinoX package and running the

benchmarks:

OS kernel release cores max speed (MHz) memory (kb)

Arch linux 4.5.1-1-ARCH 4 3000.000 8046156
Ubuntu 14.04.4 LTS 3.13.0-79-generic 8 800.000 33013632

Table 5.1: Computer platforms used. Arch linux has a rolling release model, no version numbers

are used.

Software for data analysis

The R version and packages used are listed below:

R version 3.3.0 (2016-05-03)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.4 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=sv_SE.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=sv_SE.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=sv_SE.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=sv_SE.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] BinoX_0.0.1 nvimcom_0.9-14

loaded via a namespace (and not attached):
[1] igraph_1.0.1 Rcpp_0.12.3 AnnotationDbi_1.32.3
[4] magrittr_1.5 roxygen2_5.0.1 BiocGenerics_0.16.1
[7] devtools_1.10.0 IRanges_2.4.8 munsell_0.4.3

[10] doParallel_1.0.10 colorspace_1.2-6 foreach_1.4.3
[13] plyr_1.8.3 stringr_1.0.0 tools_3.3.0
[16] parallel_3.3.0 grid_3.3.0 Biobase_2.30.0
[19] gtable_0.2.0 DBI_0.3.1 withr_1.0.1
[22] iterators_1.0.8 digest_0.6.9 readr_0.2.2
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[25] ggplot2_2.1.0 S4Vectors_0.8.11 codetools_0.2-14
[28] memoise_1.0.0 RSQLite_1.0.0 limma_3.26.8
[31] stringi_1.0-1 scales_0.4.0 stats4_3.3.0

Software used for making this document

This document was typeset by the author using LuaTEX (http://www.luatex.org/), im-

ages were created with: inkscape (https://inkscape.org/en/), TikZ (https://www.
ctan.org/pkg/pgf), ggplot2 (http://ggplot2.org/), VennDiagram (https://cran.
r-project.org/web/packages/VennDiagram/index.html) and Cytoscape (http://
www.cytoscape.org/).
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Gold standard data

Part A: Gold standard data

A.1 Value distributions of gold standard microarray data

Below are the samples used for every dataset in table 3.1, boxplots of the expression value

distributions are also included. The first a boxplots are the disease tissue samples while

the last b boxplots are the healthy tissue samples.

GSE1145
disease samples: GSM18422 GSM18423 GSM18424 GSM18425 GSM18426 GSM18427 GSM18428 GSM18429 GSM18430

GSM18431 GSM18432 GSM18433 GSM18434 GSM18435 GSM18436

control samples: GSM18442 GSM18443 GSM18444 GSM18445 GSM18446 GSM18447 GSM18448 GSM18449 GSM18450

GSM18451 GSM18452

GSE14762
disease samples: GSM368639 GSM368640 GSM368641 GSM368642 GSM368643 GSM368644 GSM368645 GSM368646

GSM368648

control samples: GSM368649 GSM368650 GSM368651 GSM368652 GSM368653 GSM368654 GSM368655 GSM368656

GSM368657 GSM368658 GSM368659 GSM368660
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Gold standard data

GSE14924-CD4
disease samples: GSM372701 GSM372702 GSM372703 GSM372704 GSM372705 GSM372706 GSM372707 GSM372708

GSM372709 GSM372710

control samples: GSM372721 GSM372722 GSM372723 GSM372724 GSM372725 GSM372726 GSM372727 GSM372728

GSM372729 GSM372730

GSE14924-CD8
disease samples: GSM372711 GSM372712 GSM372713 GSM372714 GSM372715 GSM372716 GSM372717 GSM372718

GSM372719 GSM372720

control samples: GSM372731 GSM372732 GSM372733 GSM372734 GSM372735 GSM372736 GSM372737 GSM372738

GSM372739 GSM372740 GSM372741

GSE15471
disease samples: GSM388115 GSM388117 GSM388119 GSM388121 GSM388122 GSM388123 GSM388124 GSM388125

GSM388126GSM388127GSM388128GSM388129GSM388130GSM388131GSM388132GSM388133GSM388134GSM388135GSM388136

GSM388137GSM388138GSM388139GSM388140GSM388141GSM388142GSM388143GSM388144GSM388145GSM388146GSM388147

GSM388148 GSM388149 GSM388151 GSM388152 GSM388153

control samples: GSM388076 GSM388078 GSM388080 GSM388082 GSM388083 GSM388084 GSM388085 GSM388086

GSM388087GSM388088GSM388089GSM388090GSM388091GSM388092GSM388093GSM388094GSM388095GSM388096GSM388097

GSM388098GSM388099GSM388100GSM388101GSM388102GSM388103GSM388104GSM388105GSM388106GSM388107GSM388108

GSM388109 GSM388110 GSM388112 GSM388113 GSM388114

65



Gold standard data

GSE16515
disease samples: GSM414927 GSM414929 GSM414933 GSM414937 GSM414939 GSM414941 GSM414946 GSM414952

GSM414954 GSM414956 GSM414962 GSM414965 GSM414969 GSM414971 GSM414974

control samples: GSM414928 GSM414930 GSM414934 GSM414938 GSM414940 GSM414942 GSM414947 GSM414953

GSM414955 GSM414957 GSM414963 GSM414966 GSM414970 GSM414972 GSM414975

GSE18842
disease samples: GSM466947 GSM466949 GSM466951 GSM466952 GSM466954 GSM466956 GSM466958 GSM466960

GSM466962GSM466963GSM466965GSM466967GSM466969GSM466971GSM466973GSM466975GSM466977GSM466980GSM466982

GSM466983GSM466985GSM466987GSM466989GSM466991GSM466993GSM466994GSM466996GSM466998GSM467004GSM467006

GSM467008GSM467010GSM467012GSM467014GSM467016GSM467018GSM467021GSM467023GSM467026GSM467028GSM467029

GSM467032 GSM467034 GSM467036

control samples: GSM466948 GSM466950 GSM466953 GSM466955 GSM466957 GSM466959 GSM466961 GSM466964

GSM466966GSM466968GSM466970GSM466972GSM466974GSM466976GSM466978GSM466979GSM466981GSM466984GSM466986

GSM466988GSM466990GSM466992GSM466995GSM466997GSM466999GSM467000GSM467001GSM467002GSM467003GSM467005

GSM467007GSM467009GSM467011GSM467013GSM467015GSM467017GSM467020GSM467022GSM467025GSM467027GSM467031

GSM467033 GSM467035 GSM467037
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Gold standard data

GSE19188
disease samples: GSM475656 GSM475661 GSM475662 GSM475664 GSM475668 GSM475670 GSM475672 GSM475674

GSM475676GSM475677GSM475679GSM475681GSM475683GSM475685GSM475687GSM475689GSM475691GSM475692GSM475694

GSM475696GSM475698GSM475700GSM475701GSM475703GSM475706GSM475708GSM475709GSM475710GSM475712GSM475713

GSM475715GSM475717GSM475719GSM475720GSM475722GSM475724GSM475727GSM475728GSM475730GSM475731GSM475733

GSM475735GSM475737GSM475739GSM475741GSM475744GSM475747GSM475748GSM475751GSM475753GSM475756GSM475758

GSM475759GSM475760GSM475761GSM475762GSM475763GSM475765GSM475768GSM475769GSM475770GSM475772GSM475773

GSM475774GSM475776GSM475777GSM475778GSM475779GSM475780GSM475782GSM475784GSM475785GSM475787GSM475788

GSM475789GSM475791GSM475792GSM475793GSM475794GSM475795GSM475796GSM475797GSM475799GSM475801GSM475802

GSM475803 GSM475804 GSM475805 GSM475806 GSM475808 GSM475810

control samples: GSM475657 GSM475658 GSM475660 GSM475663 GSM475665 GSM475667 GSM475669 GSM475671

GSM475673GSM475675GSM475678GSM475680GSM475682GSM475684GSM475686GSM475688GSM475690GSM475693GSM475695

GSM475697GSM475699GSM475702GSM475704GSM475705GSM475707GSM475711GSM475714GSM475716GSM475718GSM475721

GSM475723GSM475725GSM475726GSM475729GSM475732GSM475734GSM475736GSM475738GSM475740GSM475742GSM475743

GSM475745GSM475746GSM475749GSM475750GSM475752GSM475754GSM475755GSM475757GSM475764GSM475766GSM475767

GSM475771 GSM475775 GSM475783 GSM475786 GSM475790 GSM475798 GSM475800 GSM475807 GSM475809 GSM475811

GSE19728
disease samples: GSM492650 GSM492651 GSM492652 GSM492653 GSM492654 GSM492655 GSM492656 GSM492657

GSM492658 GSM492659 GSM492660 GSM492661 GSM492662 GSM492663 GSM492664 GSM492665 GSM492666

control samples: GSM492649 GSM525014 GSM525015 GSM525016
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Gold standard data

GSE21354
disease samples: GSM492653 GSM492654 GSM492655 GSM492656 GSM533622 GSM533623 GSM533624 GSM533625

GSM533626 GSM533627 GSM533628 GSM533629 GSM533630

control samples: GSM492649 GSM525014 GSM525015 GSM525016

GSE23878
disease samples: GSM588828 GSM588829 GSM588831 GSM588832 GSM588833 GSM588835 GSM588838 GSM588839

GSM588840GSM588841GSM588842GSM588843GSM588844GSM588845GSM588846GSM588847GSM588849GSM588850GSM588852

control samples: GSM588863 GSM588864 GSM588865 GSM588867 GSM588868 GSM588871 GSM588873 GSM588874

GSM588875GSM588876GSM588877GSM588878GSM588879GSM588880GSM588881GSM588882GSM588884GSM588885GSM588886

GSE24739-G0
disease samples: GSM609346 GSM609347 GSM609348 GSM609349 GSM609350 GSM609351 GSM609352 GSM609353

control samples: GSM609354 GSM609355 GSM609356 GSM609357
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Gold standard data

GSE24739-G1
disease samples: GSM609358 GSM609359 GSM609360 GSM609361 GSM609362 GSM609363 GSM609364 GSM609365

control samples: GSM609366 GSM609367 GSM609368 GSM609369

GSE32676
disease samples: GSM811004 GSM811005 GSM811006 GSM811007 GSM811008 GSM811009 GSM811010 GSM811011

GSM811012GSM811013GSM811014GSM811015GSM811016GSM811017GSM811018GSM811019GSM811020GSM811021GSM811022

GSM811023 GSM811024 GSM811025 GSM811026 GSM811027 GSM811028

control samples: GSM811029 GSM811030 GSM811031 GSM811032 GSM811033 GSM811034 GSM811035

GSE3467
disease samples: GSM77363 GSM77365 GSM77367 GSM77369 GSM77371 GSM77373 GSM77375 GSM77377 GSM77379

control samples: GSM77362 GSM77364 GSM77366 GSM77368 GSM77370 GSM77372 GSM77374 GSM77376 GSM77378
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Gold standard data

GSE3585
disease samples: GSM82386 GSM82387 GSM82388 GSM82389 GSM82390 GSM82391 GSM82392

control samples: GSM82381 GSM82382 GSM82383 GSM82384 GSM82385

GSE3678
disease samples: GSM85222 GSM85223 GSM85224 GSM85225 GSM85226 GSM85227 GSM85228

control samples: GSM85215 GSM85216 GSM85217 GSM85218 GSM85219 GSM85220 GSM85221

GSE4107
disease samples: GSM93789 GSM93920 GSM93921 GSM93922 GSM93923 GSM93924 GSM93925 GSM93926 GSM93927

GSM93928 GSM93929 GSM93932

control samples: GSM93938 GSM93939 GSM93941 GSM93943 GSM93944 GSM93946 GSM93948 GSM93950 GSM93952

GSM93954
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Gold standard data

GSE4183
disease samples: GSM95496 GSM95497 GSM95498 GSM95499 GSM95500 GSM95501 GSM95502 GSM95503 GSM95504

GSM95505 GSM95506 GSM95507 GSM95508 GSM95509 GSM95510

control samples: GSM95473 GSM95474 GSM95475 GSM95476 GSM95477 GSM95478 GSM95479 GSM95480

GSE5281-EC
disease samples: GSM238790 GSM238791 GSM238792 GSM238793 GSM238794 GSM238795 GSM238796 GSM238797

GSM238798

control samples: GSM119615 GSM119616 GSM119617 GSM119618 GSM119619 GSM119620 GSM119621 GSM119622

GSM119623 GSM119624 GSM119625 GSM119627

GSE5281-HIP
disease samples: GSM238799 GSM238800 GSM238801 GSM238802 GSM238803 GSM238804 GSM238805 GSM238806

GSM238807 GSM238808

control samples: GSM119628 GSM119629 GSM119630 GSM119631 GSM119632 GSM119633 GSM119634 GSM119635

GSM119636 GSM119637 GSM119638 GSM119639 GSM119640
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Gold standard data

GSE5281-VCX
disease samples: GSM238872 GSM238873 GSM238874 GSM238875 GSM238877 GSM238941 GSM238942 GSM238943

GSM238944GSM238945GSM238946GSM238947GSM238948GSM238949GSM238951GSM238952GSM238953GSM238955GSM238963

control samples: GSM119677 GSM119678 GSM119679 GSM119680 GSM119681 GSM119682 GSM119683 GSM119684

GSM119685 GSM119686 GSM119687 GSM119688

GSE7305
disease samples: GSM175766 GSM175767 GSM175768 GSM175769 GSM175770 GSM175771 GSM175772 GSM175773

GSM175774 GSM175775

control samples: GSM175776 GSM175777 GSM175778 GSM175779 GSM175780 GSM175781 GSM175782 GSM175783

GSM175784 GSM175785

GSE8671
disease samples: GSM215083 GSM215084 GSM215085 GSM215086 GSM215087 GSM215088 GSM215089 GSM215090

GSM215091GSM215092GSM215093GSM215094GSM215095GSM215096GSM215097GSM215098GSM215099GSM215100GSM215101

GSM215102GSM215103GSM215104GSM215105GSM215106GSM215107GSM215108GSM215109GSM215110GSM215111GSM215112

GSM215113 GSM215114

control samples: GSM215051 GSM215052 GSM215053 GSM215054 GSM215055 GSM215056 GSM215057 GSM215058

GSM215059GSM215060GSM215061GSM215062GSM215063GSM215064GSM215065GSM215066GSM215067GSM215068GSM215069

GSM215070GSM215071GSM215072GSM215073GSM215074GSM215075GSM215076GSM215077GSM215078GSM215079GSM215080

GSM215081 GSM215082
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Gold standard data

GSE9348
disease samples: GSM237914 GSM237915 GSM237916 GSM237917 GSM237918 GSM237919 GSM237920 GSM237921

GSM237922GSM237923GSM237924GSM237925GSM237926GSM237927GSM237928GSM237929GSM237930GSM237931GSM237932

GSM237933GSM237934GSM237935GSM237936GSM237937GSM237938GSM237939GSM237940GSM237941GSM237942GSM237943

GSM237944GSM237945GSM237946GSM237947GSM237948GSM237949GSM237950GSM237951GSM237952GSM237953GSM237954

GSM237955GSM237956GSM237957GSM237958GSM237959GSM237960GSM237961GSM237962GSM237963GSM237964GSM237965

GSM237966GSM237967GSM237968GSM237969GSM237970GSM237971GSM237972GSM237973GSM237974GSM237975GSM237976

GSM237977 GSM237978 GSM237979 GSM237980 GSM237981 GSM237982 GSM237983

control samples: GSM237984 GSM237985 GSM237986 GSM237987 GSM237988 GSM237989 GSM237990 GSM237991

GSM237992 GSM237993 GSM237994 GSM237995

GSE9476
disease samples: GSM239345 GSM239346 GSM239348 GSM239363 GSM239371 GSM239460 GSM239485 GSM239487

GSM239488GSM239489GSM239490GSM239491GSM239492GSM239493GSM239494GSM239495GSM239496GSM239497GSM239498

GSM239516 GSM239520 GSM239580 GSM240405 GSM240406 GSM240427 GSM240429

control samples: GSM239170 GSM239323 GSM239324 GSM239326 GSM239328 GSM239329 GSM239331 GSM239332

GSM239333GSM239334GSM239335GSM239338GSM239339GSM239340GSM239341GSM239342GSM239343GSM239344GSM240430

GSM240431GSM240432GSM240494GSM240495GSM240496GSM240497GSM240498GSM240499GSM240500GSM240501GSM240502

GSM240503 GSM240504 GSM240505 GSM240506 GSM240507 GSM240508 GSM240509
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Gold standard data

A.2 Gene sets used for MSigDB gold standard data

The original gold standard data given in table 3.1 only contains 26 data points, therefore

results based on this might be unreliable. To confirm that the effects seen with the orig-

inal gold standard data set are not a result of specific peculiarities of this data, another

validation set was needed. Below is the validation set comprising 61 gene sets compiled

from the MSigDB C2 collection. Each of these is matched to a KEGG pathway that is ex-

pected to be affected by the experimental condition giving rise to the gene set. This is the

data that was used in section 3.2.3.

MSigDB gene set target pathway KEGG ID n

AGUIRRE-PANCREATIC-CANCER-COPY-NUMBER-

UP

AGUIRRE-PANCREATIC-CANCER-COPY-NUMBER-

DN

Pancreatic cancer hsa05212 572

ALCALA-APOPTOSIS Apoptosis hsa04210 87

BARIS-THYROID-CANCER-UP

BARIS-THYROID-CANCER-DN
Thyroid cancer hsa05216 73

BEIER-GLIOMA-STEM-CELL-UP

BEIER-GLIOMA-STEM-CELL-DN
Glioma hsa05214 108

BENNETT-SYSTEMIC-LUPUS-ERYTHEMATOSUS
Systemic lupus

erythematosus
hsa05322 23

BOHN-PRIMARY-IMMUNODEFICIENCY-

SYNDROM-UP

BOHN-PRIMARY-IMMUNODEFICIENCY-

SYNDROM-DN

Primary

immunodeficiency
hsa05340 62

CONCANNON-APOPTOSIS-BY-EPOXOMICIN-UP

CONCANNON-APOPTOSIS-BY-EPOXOMICIN-DN
Apoptosis hsa04210 428

DELYS-THYROID-CANCER-UP

DELYS-THYROID-CANCER-DN
Thyroid cancer hsa05216 614

DUTTA-APOPTOSIS-VIA-NFKB Apoptosis hsa04210 31

EGUCHI-CELL-CYCLE-RB1-TARGETS Cell cycle hsa04110 19

GEORGES-CELL-CYCLE-MIR192-TARGETS Cell cycle hsa04110 59

GRUETZMANN-PANCREATIC-CANCER-UP

GRUETZMANN-PANCREATIC-CANCER-DN
Pancreatic cancer hsa05212 542

HAMAI-APOPTOSIS-VIA-TRAIL-UP

HAMAI-APOPTOSIS-VIA-TRAIL-DN
Apoptosis hsa04210 460

HEIDENBLAD-AMPLIFIED-IN-PANCREATIC-

CANCER
Pancreatic cancer hsa05212 31
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http://software.broadinstitute.org/gsea/msigdb/cards/AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_DN.html
http://software.broadinstitute.org/gsea/msigdb/cards/AGUIRRE_PANCREATIC_CANCER_COPY_NUMBER_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05212
http://software.broadinstitute.org/gsea/msigdb/cards/ALCALA_APOPTOSIS.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04210
http://software.broadinstitute.org/gsea/msigdb/cards/BARIS_THYROID_CANCER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/BARIS_THYROID_CANCER_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/BEIER_GLIOMA_STEM_CELL_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/BEIER_GLIOMA_STEM_CELL_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05214
http://software.broadinstitute.org/gsea/msigdb/cards/BENNETT_SYSTEMIC_LUPUS_ERYTHEMATOSUS.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05322
http://software.broadinstitute.org/gsea/msigdb/cards/BOHN_PRIMARY_IMMUNODEFICIENCY_SYNDROM_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/BOHN_PRIMARY_IMMUNODEFICIENCY_SYNDROM_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/BOHN_PRIMARY_IMMUNODEFICIENCY_SYNDROM_DN.html
http://software.broadinstitute.org/gsea/msigdb/cards/BOHN_PRIMARY_IMMUNODEFICIENCY_SYNDROM_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05340
http://software.broadinstitute.org/gsea/msigdb/cards/CONCANNON_APOPTOSIS_BY_EPOXOMICIN_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/CONCANNON_APOPTOSIS_BY_EPOXOMICIN_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04210
http://software.broadinstitute.org/gsea/msigdb/cards/DELYS_THYROID_CANCER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/DELYS_THYROID_CANCER_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/DUTTA_APOPTOSIS_VIA_NFKB.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04210
http://software.broadinstitute.org/gsea/msigdb/cards/EGUCHI_CELL_CYCLE_RB1_TARGETS.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04110
http://software.broadinstitute.org/gsea/msigdb/cards/GEORGES_CELL_CYCLE_MIR192_TARGETS.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04110
http://software.broadinstitute.org/gsea/msigdb/cards/GRUETZMANN_PANCREATIC_CANCER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/GRUETZMANN_PANCREATIC_CANCER_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05212
http://software.broadinstitute.org/gsea/msigdb/cards/HAMAI_APOPTOSIS_VIA_TRAIL_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/HAMAI_APOPTOSIS_VIA_TRAIL_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04210
http://software.broadinstitute.org/gsea/msigdb/cards/HEIDENBLAD_AMPLIFIED_IN_PANCREATIC_CANCER.html
http://software.broadinstitute.org/gsea/msigdb/cards/HEIDENBLAD_AMPLIFIED_IN_PANCREATIC_CANCER.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05212


Gold standard data

HOLLMAN-APOPTOSIS-VIA-CD40 Apoptosis hsa04210 489

HWANG-PROSTATE-CANCER-MARKERS Prostate cancer hsa05215 29

KAUFFMANN-MELANOMA-RELAPSE-UP

KAUFFMANN-MELANOMA-RELAPSE-DN
Melanoma hsa05218 63

KONDO-PROSTATE-CANCER-HCP-WITH-

H3K27ME3
Prostate cancer hsa05215 97

KONDO-PROSTATE-CANCER-WITH-H3K27ME3 Prostate cancer hsa05215 196

KUUSELO-PANCREATIC-CANCER-19Q13-

AMPLIFICATION
Pancreatic cancer hsa05212 28

LAIHO-COLORECTAL-CANCER-SERRATED-UP

LAIHO-COLORECTAL-CANCER-SERRATED-DN
Colorectal cancer hsa05210 214

LAU-APOPTOSIS-CDKN2A-UP

LAU-APOPTOSIS-CDKN2A-DN
Apoptosis hsa04210 60

LINDGREN-BLADDER-CANCER-CLUSTER-1-UP

LINDGREN-BLADDER-CANCER-CLUSTER-1-DN
Bladder cancer hsa05219 496

LINDGREN-BLADDER-CANCER-CLUSTER-2A-UP

LINDGREN-BLADDER-CANCER-CLUSTER-2A-DN
Bladder cancer hsa05219 149

LINDGREN-BLADDER-CANCER-CLUSTER-2B Bladder cancer hsa05219 389

LINDGREN-BLADDER-CANCER-CLUSTER-3-UP

LINDGREN-BLADDER-CANCER-CLUSTER-3-DN
Bladder cancer hsa05219 548

LINDGREN-BLADDER-CANCER-HIGH-

RECURRENCE
Bladder cancer hsa05219 43

LINDGREN-BLADDER-CANCER-WITH-LOH-IN-

CHR9Q
Bladder cancer hsa05219 116

LIN-MELANOMA-COPY-NUMBER-UP

LIN-MELANOMA-COPY-NUMBER-DN
Melanoma hsa05218 106

LIU-PROSTATE-CANCER-UP

LIU-PROSTATE-CANCER-DN
Prostate cancer hsa05215 102

LUI-THYROID-CANCER-CLUSTER-1 Thyroid cancer hsa05216 53

LUI-THYROID-CANCER-CLUSTER-2 Thyroid cancer hsa05216 44

LUI-THYROID-CANCER-CLUSTER-3 Thyroid cancer hsa05216 29

LUI-THYROID-CANCER-CLUSTER-4 Thyroid cancer hsa05216 27

LUI-THYROID-CANCER-CLUSTER-5 Thyroid cancer hsa05216 19

LUI-THYROID-CANCER-PAX8-PPARG-UP

LUI-THYROID-CANCER-PAX8-PPARG-DN
Thyroid cancer hsa05216 96

MONTERO-THYROID-CANCER-POOR-SURVIVAL-

UP

MONTERO-THYROID-CANCER-POOR-SURVIVAL-

DN

Thyroid cancer hsa05216 19
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http://www.genome.jp/dbget-bin/www_bget?path:hsa04210
http://software.broadinstitute.org/gsea/msigdb/cards/HWANG_PROSTATE_CANCER_MARKERS.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05215
http://software.broadinstitute.org/gsea/msigdb/cards/KAUFFMANN_MELANOMA_RELAPSE_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/KAUFFMANN_MELANOMA_RELAPSE_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05218
http://software.broadinstitute.org/gsea/msigdb/cards/KONDO_PROSTATE_CANCER_HCP_WITH_H3K27ME3.html
http://software.broadinstitute.org/gsea/msigdb/cards/KONDO_PROSTATE_CANCER_HCP_WITH_H3K27ME3.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05215
http://software.broadinstitute.org/gsea/msigdb/cards/KONDO_PROSTATE_CANCER_WITH_H3K27ME3.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05215
http://software.broadinstitute.org/gsea/msigdb/cards/KUUSELO_PANCREATIC_CANCER_19Q13_AMPLIFICATION.html
http://software.broadinstitute.org/gsea/msigdb/cards/KUUSELO_PANCREATIC_CANCER_19Q13_AMPLIFICATION.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05212
http://software.broadinstitute.org/gsea/msigdb/cards/LAIHO_COLORECTAL_CANCER_SERRATED_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LAIHO_COLORECTAL_CANCER_SERRATED_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05210
http://software.broadinstitute.org/gsea/msigdb/cards/LAU_APOPTOSIS_CDKN2A_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LAU_APOPTOSIS_CDKN2A_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa04210
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_1_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_1_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05219
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_2A_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_2A_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05219
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_2B.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05219
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_3_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_CLUSTER_3_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05219
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_HIGH_RECURRENCE.html
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_HIGH_RECURRENCE.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05219
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_WITH_LOH_IN_CHR9Q.html
http://software.broadinstitute.org/gsea/msigdb/cards/LINDGREN_BLADDER_CANCER_WITH_LOH_IN_CHR9Q.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05219
http://software.broadinstitute.org/gsea/msigdb/cards/LIN_MELANOMA_COPY_NUMBER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LIN_MELANOMA_COPY_NUMBER_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05218
http://software.broadinstitute.org/gsea/msigdb/cards/LIU_PROSTATE_CANCER_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LIU_PROSTATE_CANCER_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05215
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_CLUSTER_1.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_CLUSTER_2.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_CLUSTER_3.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_CLUSTER_4.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_CLUSTER_5.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_PAX8_PPARG_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/LUI_THYROID_CANCER_PAX8_PPARG_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216
http://software.broadinstitute.org/gsea/msigdb/cards/MONTERO_THYROID_CANCER_POOR_SURVIVAL_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/MONTERO_THYROID_CANCER_POOR_SURVIVAL_UP.html
http://software.broadinstitute.org/gsea/msigdb/cards/MONTERO_THYROID_CANCER_POOR_SURVIVAL_DN.html
http://software.broadinstitute.org/gsea/msigdb/cards/MONTERO_THYROID_CANCER_POOR_SURVIVAL_DN.html
http://www.genome.jp/dbget-bin/www_bget?path:hsa05216


Gold standard data

NGO-MALIGNANT-GLIOMA-1P-LOH Glioma hsa05214 7

NUTT-GBM-VS-AO-GLIOMA-UP

NUTT-GBM-VS-AO-GLIOMA-DN
Glioma hsa05214 94

OSMAN-BLADDER-CANCER-UP

OSMAN-BLADDER-CANCER-DN
Bladder cancer hsa05219 411

OUYANG-PROSTATE-CANCER-MARKERS Prostate cancer hsa05215 24

OUYANG-PROSTATE-CANCER-PROGRESSION-UP

OUYANG-PROSTATE-CANCER-PROGRESSION-DN
Prostate cancer hsa05215 41

ROSS-ACUTE-MYELOID-LEUKEMIA-CBF Acute myeloid leukemia hsa05221 86

ROVERSI-GLIOMA-COPY-NUMBER-UP

ROVERSI-GLIOMA-COPY-NUMBER-DN
Glioma hsa05214 132

ROVERSI-GLIOMA-LOH-REGIONS Glioma hsa05214 39

SATO-SILENCED-BY-METHYLATION-IN-

PANCREATIC-CANCER-2
Pancreatic cancer hsa05212 48

SATO-SILENCED-EPIGENETICALLY-IN-PANCREATIC-

CANCER
Pancreatic cancer hsa05212 46

SCIAN-CELL-CYCLE-TARGETS-OF-TP53-

AND-TP73-UP

SCIAN-CELL-CYCLE-TARGETS-OF-TP53-

AND-TP73-DN

Cell cycle hsa04110 31

SETLUR-PROSTATE-CANCER-TMPRSS2-

ERG-FUSION-UP

SETLUR-PROSTATE-CANCER-TMPRSS2-

ERG-FUSION-DN

Prostate cancer hsa05215 83

STEGMEIER-PRE-MITOTIC-CELL-CYCLE-

REGULATORS
Cell cycle hsa04110 11

TOMLINS-PROSTATE-CANCER-UP

TOMLINS-PROSTATE-CANCER-DN
Prostate cancer hsa05215 73

WALLACE-PROSTATE-CANCER-UP

WALLACE-PROSTATE-CANCER-DN
Prostate cancer hsa05215 24

WALLACE-PROSTATE-CANCER-RACE-UP

WALLACE-PROSTATE-CANCER-RACE-DN
Prostate cancer hsa05215 456

WANG-HCP-PROSTATE-CANCER Prostate cancer hsa05215 82

WANG-PROSTATE-CANCER-ANDROGEN-

INDEPENDENT
Prostate cancer hsa05215 72

WINNEPENNINCKX-MELANOMA-METASTASIS-UP

WINNEPENNINCKX-MELANOMA-METASTASIS-DN
Melanoma hsa05218 207

WONG-ENDOMETRIAL-CANCER-LATE Endometrial cancer hsa05213 9

WU-APOPTOSIS-BY-CDKN1A-NOT-VIA-TP53 Apoptosis hsa04210 11

WU-APOPTOSIS-BY-CDKN1A-VIA-TP53 Apoptosis hsa04210 37
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Gold standard data

WU-SILENCED-BY-METHYLATION-IN-BLADDER-

CANCER
Bladder cancer hsa05219 44

YEGNASUBRAMANIAN-PROSTATE-CANCER Prostate cancer hsa05215 158

Table A.1: MSigDB gold standard data. The first column is the name of theMSigDB gene set used,

up and down regulated gene sets of the same condition were joined together in one gene set. The

target pathway and the KEGG identifier are shown in the second and third column respectively. The

fourth column, n, is the number of genes in the, optionally combined, gene set after translating to

Ensembl IDs. In the digital version of this thesis, all MSigDB gene set names and KEGG identifiers

are clickable hyperlinks.
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Additional results on clustering combined with pathway analysis

Part B: Additional results on clustering

combined with pathway analysis

There are many parameters that can be changed in the benchmark presented in this the-

sis. There are two clustering methods and two ways of estimating the FPR for example.

There is also the alternative gold standard data based on MSigDB gene sets. Finally there

are different tools that can be used in combination with clustering. This leads to dozens

of possible ways to run the benchmark. To keep the main text to the point, not all combi-

nations I examined are included there. Here I present a few other results from the bench-

mark using different settings.
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Additional results on clustering combined with pathway analysis

B.1 First benchmark: microarray data
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Figure B.1: Performance of pathway analysis combined with clustering on smaller gene sets.

The method used for extracting a gene set from microarray data has a huge impact on pathway

analysis methods that take a gene set as input. This effect is illustrated here by extracting gene

sets using the same cutoffs as in fig. 3.3 but limiting the maximum gene set size to 600, which is

a little over the largest KEGG pathway size (olfactory transduction, hsa04740). Shown are (a) the

rank percentages of the target pathways, (b) the true positive rates and (c), (d), the false positive

rates using label swap and gene permutation respectively. Additional figures using q-values are

given in fig. B.8.
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Additional results on clustering combined with pathway analysis
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(a)MCL, label swap

0.00

0.05

0.10

0.15

0.20

1/
2

1/
4

1/
8

1/
16

1/
32

1/
64

1/
12

8
1/

25
6

1/
51

2

1/
10

24

1/
20

48

nodes in module/nodes in graph

ad
ju

st
ed

 p
−

va
lu

e

1

4

16

63

250

(b)MGclus, label swap
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(c)MCL, gene set permutation
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(d)MGclus, gene set permutation

Figure B.2: Distribution of false positives for the EASE tool. Randomized modules were gener-

ated as explained in fig. 3.5 and all module to KEGG pathway combinations were analysed using

the EASE score. Shown here are the BH adjusted p-values for enrichment that are below 0.20.

Axes and colors are as in fig. 3.5.

80



Additional results on clustering combined with pathway analysis
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Figure B.3: Distribution of true positives for the BinoX tool using MGclus. In the main text, I

only show this distribution for BinoX combined with MCL and argue that module size and average

node degree are not informative features that set target pathways apart from other pathways. The

same seems to be true when using MGclus instead of MCL. Axes and colors in (a) and (b) are as in

fig. 3.6.
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Figure B.4: Distribution of true positives for the Ease tool using MGclus. The analysis from

fig. 3.7 was repeated but using MGclus instead. Due to sparsity of the data, two dimensional bin-

ning is not very well suited to visualise the data. The data is now displayed as a scatterplot instead,

but the meaning of the axes have not changed from fig. 3.7. Big red dots represent a module to

target pathway combination, all other dots are module to non target pathway combinations.
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Additional results on clustering combined with pathway analysis

B.2 Second benchmark: MSigDB data
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Figure B.5: Distribution of true positives for MSigDB gene sets using MGclus. The MSigDB data

from table A.1 that was analysed in fig. 3.9 is here reanalysed using MGclus instead of MCL. Axes

and colors are again as in fig. 3.9. BinoX output is shown in (a) and (b) and EASE output is shown

in (c) and (d).
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Additional results on clustering combined with pathway analysis

B.3 Sensitivity and specificity tests using q-values

In the main text, sensitivity and specificity plots have been given using p-values instead of

q-values (= p-values controlled with BH procedure). The reason for this is that for some

tools there aremanyties created at either 0or 1by adjusting the p-values. These tiesmake

it more difficult to distinguish the lines on the plots. But it is common practice to control

the p-value for multiple testing. For completeness, here are the same plots repeated but

the sensitivity/specificity is given over a range of q-values instead of p-values. The results

are always corrected across all pathways and datasets at once. When clustering is used,

the correction is done across all pathways and modules at once. Every figure below is

linked to an equivalent figure somewhere else in the text that uses p-values. Follow these

links for the figure description.
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Figure B.6: Comparing BinoX with earlier tools (q-values). The same data as presented in fig. 3.2

is presented here but using q-values as a significance cutoff instead of p-values.
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Figure B.7: Assessing the effect of clustering (q-values). The same data as presented in fig. 3.3 is

presented here but using q-values as a significance cutoff instead of p-values.
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Figure B.8: Assessing the effect of clustering on smaller gene sets (q-values). The same data as

presented in fig. B.1 is presented here but using q-values as a significance cutoff instead of p-values.
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Figure B.9: Assessing the effect of clustering on MSigDB data (q-values). The same data as

presented in fig. 3.8 is presented here but using q-values as a significance cutoff instead of p-

values.
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B.4 Module counts for target pathways andnon target path-

ways
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Figure B.10: Distribution of the number of significantly enriched modules using MCL. After

running the benchmark on both themicroarray andMSigDB data, the amount ofmodulesmade by

MCL that showa significant enrichment to a pathwaywas counted. In plot (a) for example, the gene

sets obtained from the microarray data (section 3.1.2) were clustered using MCL and then BinoX

was run on eachmodule versus all KEGGpathways. Shown in blue is the distribution of the number

of modules that show significant enrichment for a gene set versus target pathway combination. In

pink, the same distribution is shown for gene set versus non target pathway combinations. Take

plot (b) for example: for every query gene set there was only one module that was significantly

enriched towards the target pathway. Since for all the query gene sets there was only 1 significant
module, the bar at 1 is set to 100% ( = 1.0). And in plot (c) for example, about 45% of the gene sets

had only one module that was enriched to the target pathway, hence the blue bar at 1 is set to

±45%. Modules in plots (a) and (c) were counted as “significant” if the BH adjusted q-value from

BinoX was at least 0.05. For plots (b) and (d), modules were “significant” if the q-value from EASE

was at least 0.10.
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Figure B.11: Distribution of the number of significantly enriched modules using MGclus. The

gene sets from both benchmarks (microarray data andMSigDB data) were clustered using MGclus

and the number of significant modules was counted. Module to target pathway combinations are

shown in blue, all other combination are shown in pink. Modules in (a) and (c) were counted as

“significant” if the q-value from BinoX was at least 0.05. Modules in (b) and (d) were counted as

“significant” if the q-value from Easewas at least 0.1. See fig. B.10 for amore in-depth explanation.
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Figure B.12: Distribution of the number of modules with a p-value less than 1 using MCL. The

gene sets from both benchmarks (microarray data and MSigDB data) were clustered using MCL

and the number of modules that have an unadjusted p-value of less than one to a pathway were

counted for BinoX in (a) and (c) and for EASE in (b) and (d). In the case of BinoX, the p-value for

enrichment between a pathway and a module is less than 1 if there is at least one link between

the module and the pathway. If there are no links, then the probability of seeing at least as many

links under null hypothesis is equal to 1. In the case of EASE the p-value is less than 1 if the overlap
between a module and a pathway is at least two genes. If the overlap is only one gene than k− 1
in eq. 1.4 becomes zero, and the probability of seeing an overlap as extreme as zero is equal to

1. If there is no overlap, then k − 1 will become −1 and the p-value is undefined. Module to

target pathway combinations are shown in blue, all other combinations are shown in pink. Axes

are explained in detail in fig. B.10.
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Figure B.13: Distributionof the number ofmoduleswith a p-value less than 1 usingMGclus. The

gene sets from both benchmarks (microarray data andMSigDB data) were clustered using MGclus

and the number of modules that have an unadjusted p-value of less than one to a pathway were

counted for BinoX in (a) and (c) and for EASE in (b) and (d). Module to target pathway combinations

are shown in blue, all other combinations are shown in pink. For a more thorough explanation,

see fig. B.12. Axes are explained in detail in fig. B.10.
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Part C: Human Proteome Atlas

In section 3.4 a few tissue specific gene sets from the HPA were briefly explored to see

if pathway analysis combined with clustering could pick up any important pathways that

were not found without clustering. The data for constructing fig. 3.10 is shown here.

In the tables below, a pathway is given if it is found significant by at least one of the tools.

A pathway is considered significant if it has a BH adjusted p-value of at least 0.05. These
q-values are given in the last four columns; q-values below 0.05 have a gray background

and q-values equal to 1 have been omitted. The pathways are grouped based on which

tools found them significant. Within each group the pathways are sorted in alphabetical

order. In the digital version of this thesis, the KEGG identifiers are hyperlinks.

C.1 Adipose tissue

pathway name KEGG ID BinoX
BinoX +

MGclus
EASE

EASE +

MGclus

PPAR signaling pathway hsa03320 0.038 3.59×10−03 7.77×10−03

Neuroactive ligand-receptor

interaction
hsa04080 1.89×10−03 1.47×10−03 0.958 0.012

ABC transporters hsa02010 5.99×10−05 5.06×10−07

Adipocytokine signaling

pathway
hsa04920 3.79×10−05 2.95×10−04

Amino sugar and nucleotide

sugar metabolism
hsa00520 0.030 2.44×10−03

Arginine and proline

metabolism
hsa00330 0.021 0.048

Biosynthesis of amino acids hsa01230 1.02×10−05 4.87×10−05

Carbon metabolism hsa01200 3.56×10−10 2.11×10−07

Citrate cycle (TCA cycle) hsa00020 1.04×10−04 7.64×10−04

Cytokine-cytokine receptor

interaction
hsa04060 1.04×10−05 0.041 0.110

Fatty acid biosynthesis hsa00061 6.38×10−06 8.04×10−07

Fatty acid degradation hsa00071 2.53×10−08 1.37×10−04

Fatty acid metabolism hsa01212 5.05×10−07 1.37×10−04

Glycerolipid metabolism hsa00561 9.98×10−04 1.74×10−03 0.219

Glycolysis / Gluconeogenesis hsa00010 1.09×10−07 8.82×10−06
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Maturity onset diabetes of

the young
hsa04950 7.06×10−04 0.031

Nicotine addiction hsa05033 0.020 0.045

Olfactory transduction hsa04740 9.70×10−15 2.53×10−57

Pentose and glucuronate

interconversions
hsa00040 0.016 0.021

Peroxisome hsa04146 1.71×10−10 8.59×10−16

Pyruvate metabolism hsa00620 2.82×10−06 1.02×10−04

Spliceosome hsa03040 1.41×10−06 0.048

Starch and sucrose

metabolism
hsa00500 6.01×10−04 4.73×10−04

Sulfur metabolism hsa00920 0.035 0.013

Synaptic vesicle cycle hsa04721 8.42×10−03 0.031

Ascorbate and aldarate

metabolism
hsa00053 0.028 0.098

Biosynthesis of unsaturated

fatty acids
hsa01040 0.033

Cell cycle hsa04110 3.63×10−03

Collecting duct acid secretion hsa04966 0.049 0.399

Complement and coagulation

cascades
hsa04610 6.71×10−04 0.947

Cysteine and methionine

metabolism
hsa00270 0.025 0.354

DNA replication hsa03030 4.40×10−03

Focal adhesion hsa04510 0.048

Fructose and mannose

metabolism
hsa00051 0.015 0.212

Glyoxylate and dicarboxylate

metabolism
hsa00630 1.93×10−03 0.153

Histidine metabolism hsa00340 0.015 0.087

Lysine degradation hsa00310 0.011 0.160

Mismatch repair hsa03430 9.52×10−03

Nucleotide excision repair hsa03420 8.17×10−03

Pentose phosphate pathway hsa00030 0.033 0.146

Platelet activation hsa04611 0.020

Propanoate metabolism hsa00640 0.030 0.538

Pyrimidine metabolism hsa00240 7.94×10−03

Regulation of actin

cytoskeleton
hsa04810 0.025

Ribosome biogenesis in

eukaryotes
hsa03008 0.030

Ribosome hsa03010 1.06×10−03

Tryptophan metabolism hsa00380 0.013 0.219

Type II diabetes mellitus hsa04930 0.038 0.225

Valine, leucine and isoleucine

degradation
hsa00280 0.045

Vitamin digestion and

absorption
hsa04977 0.018 0.056

Wnt signaling pathway hsa04310 0.020
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Alzheimer’s disease hsa05010 0.194 0.041

Bile secretion hsa04976 0.221 0.021

Calcium signaling pathway hsa04020 0.052 7.60×10−04 0.296

cGMP-PKG signaling pathway hsa04022 0.226 2.78×10−03

Endocytosis hsa04144 0.078 0.012

Ether lipid metabolism hsa00565 0.199 1.09×10−03

Jak-STAT signaling pathway hsa04630 0.175 0.033 0.592

N-Glycan biosynthesis hsa00510 0.498 0.011

Oxidative phosphorylation hsa00190 0.107 0.040

Parkinson’s disease hsa05012 0.477 0.035

Salivary secretion hsa04970 0.421 0.037

AMPK signaling pathway hsa04152 0.158 0.121 0.014

Table C.1: Pathway analysis of the HPA adipose tissue genes. Data used for constructing

fig. 3.10a. See also the introduction of appendix C and section 3.4.
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C.2 Lung tissue

pathway name KEGG ID BinoX
BinoX +

MGclus
EASE

EASE +

MGclus

Focal adhesion hsa04510 4.31×10−05 7.46×10−19 0.062 0.020

ABC transporters hsa02010 5.09×10−06 2.14×10−05

Adherens junction hsa04520 5.33×10−04 1.62×10−09

Adipocytokine signaling

pathway
hsa04920 0.018 3.42×10−05

Aldosterone-regulated

sodium reabsorption
hsa04960 3.12×10−03 4.26×10−04

Allograft rejection hsa05330 4.68×10−09 7.69×10−16

Antigen processing and

presentation
hsa04612 8.80×10−09 1.98×10−16

Arrhythmogenic right

ventricular cardiomyopathy

(ARVC)

hsa05412 0.022 5.86×10−04

Asthma hsa05310 2.38×10−06 6.19×10−11

Autoimmune thyroid disease hsa05320 3.86×10−09 7.67×10−16

Axon guidance hsa04360 3.68×10−06 4.34×10−12

Bacterial invasion of

epithelial cells
hsa05100 5.56×10−03 9.66×10−11

Bile secretion hsa04976 5.37×10−05 0.012 0.505

Bladder cancer hsa05219 0.016 5.32×10−04

cAMP signaling pathway hsa04024 1.51×10−03 9.37×10−05

Cell adhesion molecules

(CAMs)
hsa04514 8.62×10−16 1.66×10−15

Chemical carcinogenesis hsa05204 0.032 2.09×10−05

Chemokine signaling pathway hsa04062 2.95×10−05 3.15×10−09

Collecting duct acid secretion hsa04966 8.11×10−03 4.17×10−04

Cytokine-cytokine receptor

interaction
hsa04060 5.32×10−05 3.65×10−10

Dorso-ventral axis formation hsa04320 0.025 0.016

Drug metabolism hsa00982 0.029 2.82×10−07

ECM-receptor interaction hsa04512 6.38×10−07 7.28×10−06 0.736

Endocrine and other

factor-regulated calcium

reabsorption

hsa04961 3.88×10−03 1.62×10−03

Endocytosis hsa04144 1.04×10−09 2.37×10−09

Epithelial cell signaling in

Helicobacter pylori infection
hsa05120 3.82×10−03 6.11×10−03

Estrogen signaling pathway hsa04915 0.020 3.16×10−03

Ether lipid metabolism hsa00565 7.82×10−04 6.13×10−04

Fatty acid biosynthesis hsa00061 3.82×10−03 1.16×10−06

Fc gamma R-mediated

phagocytosis
hsa04666 0.016 8.40×10−03
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GABAergic synapse hsa04727 2.83×10−03 4.17×10−04

Gap junction hsa04540 0.015 5.28×10−05

Glioma hsa05214 0.032 1.45×10−05

Glutamatergic synapse hsa04724 6.41×10−05 2.27×10−04

GnRH signaling pathway hsa04912 1.84×10−03 5.08×10−07

Graft-versus-host disease hsa05332 1.09×10−09 9.91×10−17

Hematopoietic cell lineage hsa04640 1.67×10−04 1.07×10−04

Herpes simplex infection hsa05168 8.70×10−03 1.11×10−07

Hippo signaling pathway hsa04390 0.031 1.21×10−04

Inflammatory bowel disease

(IBD)
hsa05321 9.93×10−06 4.58×10−10

Intestinal immune network

for IgA production
hsa04672 2.21×10−07 6.64×10−12

Leishmaniasis hsa05140 1.91×10−07 4.25×10−08

Leukocyte transendothelial

migration
hsa04670 7.29×10−05 3.01×10−08

Long-term depression hsa04730 4.84×10−05 1.51×10−04

Lysosome hsa04142 2.56×10−05 6.81×10−03

MAPK signaling pathway hsa04010 8.30×10−03 6.43×10−07

Melanoma hsa05218 4.06×10−03 1.21×10−05

Metabolism of xenobiotics by

cytochrome P450
hsa00980 8.36×10−03 2.09×10−05

MicroRNAs in cancer hsa05206 3.17×10−04 2.94×10−11

Mineral absorption hsa04978 2.18×10−03 0.020

Morphine addiction hsa05032 1.20×10−03 5.10×10−03

Natural killer cell mediated

cytotoxicity
hsa04650 6.58×10−04 3.52×10−03

Neuroactive ligand-receptor

interaction
hsa04080 0.021 1.21×10−03

Nicotine addiction hsa05033 0.030 1.33×10−03

Osteoclast differentiation hsa04380 0.029 0.012

Ovarian steroidogenesis hsa04913 2.33×10−04 7.34×10−04

Pancreatic cancer hsa05212 2.67×10−03 3.05×10−03

Pancreatic secretion hsa04972 1.27×10−03 3.12×10−05

Pathways in cancer hsa05200 1.11×10−03 1.29×10−10

Phagosome hsa04145 2.97×10−14 1.42×10−08 0.257

PI3K-Akt signaling pathway hsa04151 1.49×10−03 2.14×10−12

Protein digestion and

absorption
hsa04974 6.34×10−03 6.53×10−03

Proteoglycans in cancer hsa05205 3.42×10−05 1.65×10−17

Proximal tubule bicarbonate

reclamation
hsa04964 1.37×10−03 0.021

Rap1 signaling pathway hsa04015 2.55×10−06 3.01×10−16

Ras signaling pathway hsa04014 8.76×10−05 3.96×10−15

Regulation of actin

cytoskeleton
hsa04810 7.73×10−03 4.43×10−09
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Retrograde endocannabinoid

signaling
hsa04723 5.00×10−03 5.71×10−05

Rheumatoid arthritis hsa05323 5.47×10−07 1.20×10−06

Serotonergic synapse hsa04726 8.96×10−04 1.70×10−03

Signaling pathways regulating

pluripotency of stem cells
hsa04550 7.93×10−03 5.18×10−05

Small cell lung cancer hsa05222 0.017 0.013

Staphylococcus aureus

infection
hsa05150 7.92×10−11 5.04×10−11

Steroid hormone biosynthesis hsa00140 0.031 1.13×10−03

Synaptic vesicle cycle hsa04721 0.011 1.38×10−03

Systemic lupus

erythematosus
hsa05322 3.25×10−03 2.05×10−06

TGF-beta signaling pathway hsa04350 3.24×10−03 1.25×10−05

Toxoplasmosis hsa05145 2.18×10−06 1.88×10−05

Tuberculosis hsa05152 1.48×10−05 4.04×10−05

Type I diabetes mellitus hsa04940 2.13×10−07 4.11×10−14

Type II diabetes mellitus hsa04930 0.021 0.012

VEGF signaling pathway hsa04370 4.64×10−03 3.19×10−08

Viral myocarditis hsa05416 1.14×10−06 9.80×10−13

Carbohydrate digestion and

absorption
hsa04973 0.044 0.059

Cell cycle hsa04110 1.46×10−04 0.098

Chagas disease (American

trypanosomiasis)
hsa05142 7.52×10−04 0.141

Cocaine addiction hsa05030 0.025 0.090

Complement and coagulation

cascades
hsa04610 4.97×10−04 0.071

Gastric acid secretion hsa04971 4.58×10−03 0.067

Huntington’s disease hsa05016 0.013 0.220

Insulin secretion hsa04911 0.023 0.164

mRNA surveillance pathway hsa03015 6.50×10−03

Nucleotide excision repair hsa03420 1.60×10−03

Olfactory transduction hsa04740 1.25×10−04 0.652

Oocyte meiosis hsa04114 8.19×10−03 0.951

Pertussis hsa05133 2.09×10−04 0.093

Proteasome hsa03050 7.87×10−04

Pyrimidine metabolism hsa00240 9.83×10−03

Ribosome hsa03010 5.46×10−10 0.136

RNA degradation hsa03018 0.036

RNA transport hsa03013 7.32×10−05

Salivary secretion hsa04970 8.75×10−03 0.127

Spliceosome hsa03040 2.73×10−07 0.683

Thyroid hormone synthesis hsa04918 0.016 0.074

Ascorbate and aldarate

metabolism
hsa00053 0.076 4.00×10−06
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B cell receptor signaling

pathway
hsa04662 0.343 7.03×10−03

Calcium signaling pathway hsa04020 0.148 6.75×10−05

cGMP-PKG signaling pathway hsa04022 0.055 0.025

Chronic myeloid leukemia hsa05220 0.357 3.74×10−03

Circadian entrainment hsa04713 0.135 0.047

Dilated cardiomyopathy hsa05414 0.067 0.035 0.781

Dopaminergic synapse hsa04728 0.211 5.30×10−03

Endometrial cancer hsa05213 0.071 8.67×10−06

ErbB signaling pathway hsa04012 0.177 1.54×10−05

Fatty acid degradation hsa00071 0.260 9.78×10−05

Fatty acid metabolism hsa01212 0.296 1.14×10−04

Fc epsilon RI signaling

pathway
hsa04664 0.119 1.92×10−03

FoxO signaling pathway hsa04068 0.148 3.28×10−04

Glycerophospholipid

metabolism
hsa00564 0.111 0.032

Glycolysis / Gluconeogenesis hsa00010 0.141 0.016

HIF-1 signaling pathway hsa04066 0.268 0.022

HTLV-I infection hsa05166 0.071 2.31×10−04

Hypertrophic

cardiomyopathy (HCM)
hsa05410 0.086 0.044 0.669

Influenza A hsa05164 0.214 9.55×10−04

Inositol phosphate

metabolism
hsa00562 0.080 0.031

Insulin signaling pathway hsa04910 0.070 1.04×10−04

Neurotrophin signaling

pathway
hsa04722 0.369 0.046

N-Glycan biosynthesis hsa00510 0.691 6.43×10−03

Non-small cell lung cancer hsa05223 0.086 3.12×10−03

Notch signaling pathway hsa04330 0.456 0.029

Oxytocin signaling pathway hsa04921 0.060 3.04×10−03

Pentose and glucuronate

interconversions
hsa00040 0.065 8.15×10−05

Peroxisome hsa04146 0.382 6.02×10−05

Platelet activation hsa04611 0.066 6.84×10−04

Porphyrin and chlorophyll

metabolism
hsa00860 0.205 3.25×10−04

PPAR signaling pathway hsa03320 0.423 2.64×10−04

Primary immunodeficiency hsa05340 0.403 0.033

Prolactin signaling pathway hsa04917 0.413 0.043

Prostate cancer hsa05215 0.198 5.04×10−04

Renin-angiotensin system hsa04614 0.107 0.048

Retinol metabolism hsa00830 0.110 4.73×10−05

Starch and sucrose

metabolism
hsa00500 0.172 7.94×10−04
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Thyroid hormone signaling

pathway
hsa04919 0.111 0.025

Tight junction hsa04530 0.141 0.039

Toll-like receptor signaling

pathway
hsa04620 0.382 0.025

Transcriptional misregulation

in cancer
hsa05202 0.325 2.59×10−03

Vascular smooth muscle

contraction
hsa04270 0.151 3.39×10−05

Vibrio cholerae infection hsa05110 0.141 0.012

Wnt signaling pathway hsa04310 0.381 0.027

Table C.2: Pathway analysis of the HPA lung tissue genes. Data used for constructing fig. 3.10b.

See also the introduction of appendix C and section 3.4.
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C.3 Pancreas tissue

pathway name KEGG ID BinoX
BinoX +

MGclus
EASE

EASE +

MGclus

Insulin secretion hsa04911 0.022 2.58×10−04 0.021 0.181

Olfactory transduction hsa04740 1.42×10−23 4.12×10−43

Fat digestion and absorption hsa04975 6.22×10−03 1.79×10−03 0.025

Maturity onset diabetes of

the young
hsa04950 0.022 0.350 7.75×10−06

Neuroactive ligand-receptor

interaction
hsa04080 5.32×10−03 0.346 0.039

Starch and sucrose

metabolism
hsa00500 2.28×10−04 0.513 0.059 0.024

Adipocytokine signaling

pathway
hsa04920 2.77×10−03 0.349

Amino sugar and nucleotide

sugar metabolism
hsa00520 0.032 0.584

AMPK signaling pathway hsa04152 2.52×10−05

Biosynthesis of amino acids hsa01230 1.22×10−08

Carbon metabolism hsa01200 6.91×10−10

Circadian rhythm hsa04710 1.62×10−05

FoxO signaling pathway hsa04068 0.020
Fructose and mannose

metabolism
hsa00051 8.93×10−03

Galactose metabolism hsa00052 3.39×10−05 0.350

Glycine, serine and threonine

metabolism
hsa00260 0.027 0.313

Glycolysis / Gluconeogenesis hsa00010 5.29×10−10 0.895

HIF-1 signaling pathway hsa04066 5.16×10−03

Hypertrophic

cardiomyopathy (HCM)
hsa05410 1.39×10−03 0.511

Insulin signaling pathway hsa04910 2.36×10−04

Oxytocin signaling pathway hsa04921 6.17×10−03

Pantothenate and CoA

biosynthesis
hsa00770 1.78×10−04

Pentose phosphate pathway hsa00030 4.40×10−05

Porphyrin and chlorophyll

metabolism
hsa00860 0.010

Pyruvate metabolism hsa00620 4.05×10−03

Rheumatoid arthritis hsa05323 0.045

Ribosome hsa03010 4.30×10−04

Synaptic vesicle cycle hsa04721 0.011 0.718
Carbohydrate digestion and

absorption
hsa04973 0.035 0.017

Pancreatic secretion hsa04972 0.071 0.146 3.10×10−22 3.07×10−09

Protein digestion and

absorption
hsa04974 0.534 1.06×10−09 4.50×10−07

Table C.3: Pathway analysis of the HPA pancreas tissue genes. Data used for constructing

fig. 3.10c. See also the introduction of appendix C and section 3.4.

97

http://www.genome.jp/dbget-bin/www_bget?path:hsa04911
http://www.genome.jp/dbget-bin/www_bget?path:hsa04740
http://www.genome.jp/dbget-bin/www_bget?path:hsa04975
http://www.genome.jp/dbget-bin/www_bget?path:hsa04950
http://www.genome.jp/dbget-bin/www_bget?path:hsa04080
http://www.genome.jp/dbget-bin/www_bget?path:hsa00500
http://www.genome.jp/dbget-bin/www_bget?path:hsa04920
http://www.genome.jp/dbget-bin/www_bget?path:hsa00520
http://www.genome.jp/dbget-bin/www_bget?path:hsa04152
http://www.genome.jp/dbget-bin/www_bget?path:hsa01230
http://www.genome.jp/dbget-bin/www_bget?path:hsa01200
http://www.genome.jp/dbget-bin/www_bget?path:hsa04710
http://www.genome.jp/dbget-bin/www_bget?path:hsa04068
http://www.genome.jp/dbget-bin/www_bget?path:hsa00051
http://www.genome.jp/dbget-bin/www_bget?path:hsa00052
http://www.genome.jp/dbget-bin/www_bget?path:hsa00260
http://www.genome.jp/dbget-bin/www_bget?path:hsa00010
http://www.genome.jp/dbget-bin/www_bget?path:hsa04066
http://www.genome.jp/dbget-bin/www_bget?path:hsa05410
http://www.genome.jp/dbget-bin/www_bget?path:hsa04910
http://www.genome.jp/dbget-bin/www_bget?path:hsa04921
http://www.genome.jp/dbget-bin/www_bget?path:hsa00770
http://www.genome.jp/dbget-bin/www_bget?path:hsa00030
http://www.genome.jp/dbget-bin/www_bget?path:hsa00860
http://www.genome.jp/dbget-bin/www_bget?path:hsa00620
http://www.genome.jp/dbget-bin/www_bget?path:hsa05323
http://www.genome.jp/dbget-bin/www_bget?path:hsa03010
http://www.genome.jp/dbget-bin/www_bget?path:hsa04721
http://www.genome.jp/dbget-bin/www_bget?path:hsa04973
http://www.genome.jp/dbget-bin/www_bget?path:hsa04972
http://www.genome.jp/dbget-bin/www_bget?path:hsa04974

	Acknowledgements
	Table of contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Terms
	Nederlandse samenvatting
	English summary
	Introduction
	Functional annotation and pathway databases
	Functional association networks
	Three generations of pathway analysis methods
	ORA
	FCS approaches
	PT based approaches

	A selection of pathway analysis tools
	The Fisher test
	EASE
	PADOG
	BinoX

	Introducing graph clustering
	MGclus
	MCL

	Outstanding challenges
	How to benchmark pathway analysis?
	Tool overload


	Aim of Research Project
	Benchmarking pathway analysis methods
	Assessing the effect of clustering
	Analysing the HPA

	Results
	Benchmarking pathway analysis methods
	General overview of the benchmark
	Gold standard data
	Comparing BinoX with earlier methods

	Assessing the effect of clustering
	BinoX combined with clustering
	EASE combined with clustering
	Testing the effect of clustering on MSigDB data
	Can clustering improve pathway analysis?

	The BinoX package for R
	Using BinoX from within R
	CLI
	Benchmarking pipeline

	HPA

	Discussion
	Assessing the performance of a new pathway analysis tool
	Remaining problems for benchmarking pathway analysis
	Should clustering be used?
	Korte discussie in het Nederlands

	Materials and Methods
	Moderated t-test
	Translating gene identifiers
	Mapping IDs to Ensembl through the FunCoup network
	Entrez to Ensembl mapping from earlier publication

	False positive rate estimation
	Sample label swap
	Gene set permutation

	Procedures used for benchmarking
	Benchmark based on microarray data
	Benchmark based on MSigDB gene sets

	Hardware and software used

	References
	Attachments
	Gold standard data
	Value distributions of gold standard microarray data
	Gene sets used for MSigDB gold standard data

	Additional results on clustering combined with pathway analysis
	First benchmark: microarray data
	Second benchmark: MSigDB data
	Sensitivity and specificity tests using q-values
	Module counts for tpw and non tpw

	HPA
	Adipose tissue
	Lung tissue
	Pancreas tissue



