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Summary

One of the largest enigmas in ecology is why species manage to coexist, and thus why biodi-

versity exists. Several explanations have been proposed, of which cyclic competition is one.

Species governed by this competition scheme outcompete each other much like rock, paper

and scissors do in the popular children’s game. A large number of scientific studies has in-

vestigated this competition scheme, but all of them considered competition as deterministic.

Since diversity also exists among individuals of the same species, it is more realistic to consider

non-deterministic competition. This means that although one species usually outcompetes

another, it is possible that at some point an individual of the weaker species can outcompete

an individual of the stronger species. To make this notion concrete, winning probabilities

were introduced, which define the probability of an individual of a species outcompeting an

individual of another species.

A literature review was conducted in order to become acquainted with the state-of-the-art

of the field, and to determine how non-deterministic competition fits in. Afterwards, an

individual-based model was formulated which incorporates the winning probabilities. On

the basis of simulations, it was concluded that non-deterministic competition has a strong

negative impact on coexistence, although sustained coexistence can occur for certain sets of

winning probabilities. Other models were considered to arrive at a more precise explanation

of this behaviour. The best results were obtained using partial differential equations, which

allowed for the characterisation of coexistence by defining three transients, from which the

second transient was examined in depth using analytical methods. This analysis showed

that pattern formation is an important facilitator for sustained coexistence, and that the

destruction of the patterns, due to an unfavourable combination of winning probabilities, can

cut short coexistence. Although the second transient gives an indication of why sustained

coexistence occurs for certain sets of winning probabilities, it was concluded that both the

first and third transient should be examined too.
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Dutch summary

Een van de grootste raadsels binnen de ecologie is de vraag waarom soorten erin slagen samen

te leven, en bijgevolg waarom er diverse gemeenschappen bestaan. Verschillende verklaringen

hiervoor werden opgeworpen, waarvan cyclische competitie er één is. Soorten die in cyclische

competitie treden, beconcurreren elkaar zoals blad, steen en schaar dat doen in het welbekende

spel op de speelplaats. Verscheidene wetenschappelijke studies hebben cyclische competitie

bestudeerd, maar allen namen aan dat deze deterministisch is. Daar er echter eveneens

diversiteit bestaat onder individuen van één soort, is het realistischer niet-deterministische

competitie te beschouwen. Dit betekent dat hoewel een bepaalde soort gewoonlijk een andere

soort weg concurreert, het nu mogelijk wordt dat een individu van de zwakkere soort een

individu van de sterkere soort kan weg concurreren. Om dit concept concreet te maken, werden

winstkansen gëıntroduceerd. Deze stellen niets anders voor dan de probabiliteit waarmee een

individu van een soort een individu van een andere soort weg concurreert.

Door middel van een literatuurstudie werd de stand van zaken binnen het veld in kaart

gebracht, en onderzocht hoe niet-deterministische competitie hier binnen past. Vervolgens

werd een individu-gebaseerd model voor het simuleren van niet-deterministische competitie

ontworpen. Na dit model gesimuleerd te hebben, werd geconcludeerd dat niet-deterministische

competitie een sterk negatieve impact heeft op het samenleven van soorten, hoewel voor

sommige scenario’s een langdurig samenleven mogelijk is. Andere modellen werden bestudeerd

met als doel een meer exacte verklaring te geven voor deze bevindingen. De beste resultaten

werden behaald door gebruik te maken van partiële differentiaalvergelijkingen. Deze lieten

de identificatie van drie transiënten in de evolutie van de in silico dynamiek toe, waarvan de

tweede transiënt grondig bestudeerd werd, gebruik makend van analytische methoden. Deze

analyse toonde aan dat de vorming van ruimtelijke patronen een belangrijke impact heeft

op het samenleven van soorten, en dat het verwoesten van deze patronen, bijvoorbeeld door

een ongunstige combinatie van winstkansen, het samenleven zeer moeilijk maakt. Hoewel het

bestuderen van de tweede transiënt een indicatie levert van waarom langdurig samenleven

mogelijk is voor bepaalde combinaties van winstkansen, werd er vastgesteld dat eveneens de

eerste en derde transiënten moeten bestudeerd worden om een compleet beeld te krijgen van

hoe soorten erin slagen onder niet-deterministische competitie samen te leven.
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CHAPTER 1
Background

1.1 Modelling microbial communities

Micro-organisms have played an important role throughout human existence, providing us

with fermented foods, drinks and natural selection through diseases. In the near future, they

might become even more important. With waste water volumes getting out of hand, fossil

resources slowly depleting and a growing demand for new medicines, the human eye is slowly

drawn towards micro-organisms and their sheer potential.

However, we only know a small fraction of what there is to know about micro-organisms.

This is partly due to the fact that 99 % of all micro-organisms have never been successfully

cultured in vitro. Such an obstacle, keeping us from acquiring possibly life-changing knowl-

edge, motivates new approaches. By mathematically modelling the more important traits of

some species, we might be able to gain a deeper understanding of them, without necessarily

having to cultivate them (Ferrer et al., 2008).

Moreover, since communities of micro-organisms are complex assemblies of large numbers of

individuals, results from studying them may be applicable to a broader spectrum of social

groups, such as mammals (Sherratt et al., 2000). This is because interactions between in-

dividuals lead to various kinds of system-level behaviour, and some system-level patterns of

bacteria resemble those found in systems of more complex organisms. These parallels make

bacteria excellent material for studying the fundamentals of ecology and evolutionary dynam-

ics, since they are relatively easy to cultivate and manipulate (Meyer-Ortmanns and Thurner,

2011).

By cultivating and modelling micro-organisms, we may one day be able to understand two

of the most intriguing concepts in evolution and ecology: cooperation and biodiversity. Co-

operation involves several organisms working together on providing a public good, beneficial
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for all individuals in the population. The catch is that one should expect the existence of

selfish intruders, benefiting from the cooperating species’ hard labour without cooperating

themselves, which may drive the cooperators to extinction. This reasoning implies that coop-

eration should not occur in nature. However, Gore et al. (2009) have researched yeast working

together hydrolysing sucrose, and devised a model which explains why cooperators live on,

despite the presence of selfish intruders.

The biodiversity phenomenon, on the other hand, will be the subject of this thesis. Biodi-

versity is a key aspect to the proper functioning of an ecosystem, and losing biodiversity can

cause a total system collapse, since the loss of one species can trigger a cascade of secondary

extinctions (Ebenman and Jonsson, 2005). It has been shown that species manage to coex-

ist, thereby maintaining biodiversity, through the formation of spatial patterns, like spirals

(Reichenbach et al., 2006).

1.2 Competition

Modelling systems is popular among population biologists. Population biology studies ecolog-

ical communities consisting of several different species interacting with each other (Hastings,

1997). These interactions can, for instance, involve the competition for resources, like sheep

and rabbits competing for their share of the grass, or the more bloody interaction between

predators and their prey.

In order to understand the behaviour of a population’s dynamics, mathematicians and bi-

ologists have proposed and improved several models. The logistic equation, for instance,

introduced by the Belgian mathematician Verhulst in 1838, tries to model the growth of a

single species (Verhulst, 1838), while around 1925, the well-known Lotka-Volterra equations

were devised, modelling the population dynamics in a predator-prey system (Lotka, 1920).

These models, despite being simple, are very informative and enable the description and

prediction of population dynamics of several real ecosystems. In this thesis however, the

ecosystems considered involve three species that are governed by a very specific competition

scheme, called cyclic competition. We will have to dive into more recent literature to come

across the more complex models required to aptly describe this behaviour.

1.2.1 Non-transitive competition

As mentioned, an important aim of ecology is to unravel mechanisms which maintain biodi-

versity and coexistence. As the previous section suggest, modelling population dynamics can

be an essential tool to establish whether a group of organisms manages to coexist.
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The form of competition governing an ecosystem determines the possibility of coexistence,

and therefore studying all possible competition schemes is the key to establish the conditions

leading to coexistence. In hierarchical competition, the species involved can be ranked un-

ambiguously in order of their competitive abilities. Thus, if a species A outcompetes some

species B, then species A also outcompetes every species outcompeted by species B, while B

outcompetes none of the species that outcompete A (Laird and Schamp, 2008). As the compet-

itive exclusion principle states: “complete competitors cannot coexist” (Hardin, 1960). Thus

when two species compete for the same resource, the one with the best competitive abilities

will eventually dominate. The principle therefore makes coexistence less probable in hier-

archically organized ecosystems, and this is exactly what makes non-transitive competition

interesting to study.

Non-transitive competition is the opposite of hierarchical competition, in that the species

involved cannot be ranked unambiguously in order of their competitive abilities. Therefore,

under the right conditions, non-transitive competition can result in coexistence.

Several ways for non-transitive competition to manifest itself in nature have been proposed

(Liard and Schamp, 2006), and three of them will be described here. They all involve either

inference competition or exploitative competition. Interference competition refers to species

competing by directly fighting for scarce resources, while exploitative competition refers to

species competing indirectly by consuming scarce resources, so that other species experience

a shortage for that resource. Non-transitive competition can manifest itself when under

exploitation competition, the species in an ecosystem compete for multiple resources and each

species competes best for a different resource, yet is limited by some other resource (Huisman

et al., 2001; Huisman and Weissing, 1999). In this way, each species can impede the growth

of another species by consuming its limiting resource, while in turn being impeded itself by

some third species. A large network of species outcompeting and being outcompeted can then

exist, which implies non-transitive competition. Non-transitivity also comes to existence when

the species’ ranks of exploitation competitive ability differ from their ranks of interference

competitive ability, as in this way networks can exist with species outcompeting other species

through exploitation competition, while being outcompeted through interference competition.

A third possibility occurs in pure interference competition under certain arrangements of

toxicity, susceptibility and resistance (Czárán et al., 2002). An example of such competition

will be discussed in Section 1.5.

The fact that competitive non-transitivity promotes coexistence has been shown by Liard

and Schamp (2006), amongst others. This study involved up to 25 in silico species (species

that exist in a computer simulation) and several randomly generated competition schemes

between these species were constructed. For each competition scheme, an index representing

its non-transitivity was calculated. Subsequently, the interactions between the species were
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simulated, in a manner similar to the method explained later in Section 1.4.3, to establish

whether the particular competition scheme resulted in coexistence. The conclusion of the

study was that the non-transitivity of the competition scheme indeed was positively correlated

with the species richness at the end of the simulations.

1.2.2 Cyclic competition

For cyclic competition, the simplest form of non-transitive competition, the competition

scheme is similar to that of the children’s game rock-paper-scissors. Imagine, for example,

three species A, B and C that are engaged in cyclic competition. Then A outcompetes B, B

outcompetes C and C outcompetes A, as shown in Figure 1.1. Such relationships emerge in

several ecosystems around the planet, and involve plants, algae, lizards, bacteria and other

species (Kerr et al., 2002). In this thesis, bacteria will be the subject of our investigation, as

motivated in Section 1.1.

Notice that with the competition scheme displayed in Figure 1.1, species A always beats

species B. One could also design a scheme in which species A beats species B with a certain

probability, but not always. The distinction between these two competition schemes is made

by calling the first one deterministic, and the second one non-deterministic.

Models for cyclic competition have been devised by, amongst others, May and Leonard (1975)

and Reichenbach et al. (2006), and will be introduced in Section 1.4. First, it is necessary

to understand the individual behaviour of micro-organisms, as the models are built on these

foundations.

Figure 1.1: Scheme representing cyclic competition between species A, B and C.

Species A outcompetes B, B outcompetes C and C outcompetes A.

1.3 Bacterial interactions

Bacteria are complex beings, and so are their interactions. If a model is to be constructed,

simplifications will be necessary. To reduce bacterial interactions to their simplest form, game

theory is often relied on (Meyer-Ortmanns and Thurner, 2011). This well-developed branch
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of mathematics is concerned with the behaviour of players faced with a certain dilemma: they

have to choose between several strategies while playing a simple game.

In the prisoner’s dilemma game for instance, players may choose to cooperate or to act

selfishly. Each scenario is associated with a certain penalty or gain, and so the best strategy

for the players can be deduced (Tucker, 1980).

Evolutionary game theory abandons the concept of rational game-play and uses the idea that

strategies are inherited programs that control the individual’s behaviour. Each species is thus

assigned a set of deterministic rules, with which it plays over and over again (Meyer-Ortmanns

and Thurner, 2011).

An interaction scheme incorporating cyclic competition was proposed by May and Leonard

(1975). Three species, A, B and C, each play by their own set of rules. They all reproduce with

rate µ if there is empty space available in their neighbourhood, but each species’ game-play

is distinguished by the way they undergo selection (with rate σ), as shown in Reactions 1.1.

Species A beats B, B beats C and C beats A. From this set of rules, cyclic competition

arises. Notice how these reactions can be interpreted as a different representation of the

cyclic competition scheme visualised in Figure 1.1.

A� µ−−→ AA AB
σ−−→ A�

B� µ−−→ BB BC
σ−−→ B� (1.1)

C� µ−−→ CC CA
σ−−→ C�

In the above reactions, � represents an empty site, which is not occupied by any bacteria.

1.4 Models for cyclic competition

1.4.1 Mean-field equations

Lotka-Volterra equations

On a microscopic scale, the occurrence of the interactions introduced in Section 1.3 is es-

sentially stochastic, as the underlying molecular processes are often inherently stochastic,

and there is variability between the individuals of the species involved (Meyer-Ortmanns and

Thurner, 2011). Assuming that the populations are of infinite size, however, these interactions

can be modelled through the use of deterministic systems, rather than stochastic ones. The

interactions of the individuals are then averaged into a single population-level effect, which

usually gives rise to a system of nonlinear ordinary differential equations (ODEs) (Jovanovic
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and Rosenthal, 1988). This approach, called the mean-field approximation, originated from

physics and was later used in economics and biology (Weiss, 1907).

The Lotka-Volterra equations, modelling the population of predators and prey through time,

will be used to illustrate this approach (Lotka, 1920). A number of fish x(t) (prey) and

sharks y(t) (predators) populate an ecosystem in the ocean. The fish eat plankton, which is

assumed to be abundantly available, and the sharks, when feeling hungry, eat the fish they

encounter. The interactions between sharks and fish are subject to variability, which is due

to, for instance, the number of encounters between fish and sharks in a certain amount of

time, the amount of time since a shark’s last meal, and the fitness of a shark or fish due to age

or injury. By using the mean-field approximation, one is able to average all these stochastic

variables, resulting in one averaged effect.

Since the amount of available plankton is assumed to be infinite, the average per capita growth

rate of the fish population in the Lotka-Volterra equation is constant, so that, in absence of

sharks, the change of the fish population over time satisfies the ODE ẋ = λx, where ẋ denotes

the derivative of x with respect to time. The sharks, on the other hand, in the absence of fish,

have nothing to eat, and their population in this scenario would decay according to ẏ = −µ y.

The presence of fish increases the sharks’ per capita growth rate to −µ+ c x. Finally, the fish

are being eaten, decreasing their per capita growth rate to λ− b y. Combining these growth

rates gives rise to the Lotka-Volterra equations:

{
ẋ = x (λ− b y ),

ẏ = y (−µ+ c x ).

As such, the stochastic system is replaced by a deterministic system of nonlinear ODEs, with

parameters λ, µ, b and c, using the mean-field approximation (Brauer and Castillo-Chávez,

2001).

Mean-field equations for cyclic competition

The same rationale as the one leading to the Lotka-Volterra equations can be used to obtain

mean-field equations for the cyclic competition scheme we are interested in, by considering

Reactions 1.1. This gives rise to the following system of ODEs (Reichenbach et al., 2008):


ȧ = a [µ (1− ρ)− σ c ],

ḃ = b [µ (1− ρ)− σ a ],

ċ = c [µ (1− ρ)− σ b ],

(1.2)
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where µ denotes the reproduction rate, σ the selection rate, a, b and c the densities of species

A, B and C, respectively, and ρ the total density (ρ = a+ b+ c).

The evolution of species A’s density through time (ȧ) increases through reproduction and

decreases through selection. The amount of increase is dependent on the reproduction rate,

the population of species A and the amount of free space (1−ρ). This term basically represents

the probability of a member of species A reproducing in an empty space. The decrease, on

the other hand, is dependent on the selection rate and the population sizes of species A

and C. The corresponding term represents the probability of a member of species A being

killed by a member of species C. Notice that the probability of two species encountering each

other, and the probability of any species finding an empty space for reproducing, is only

dependent on the population of the species in the whole system, and not on their spatial

configuration. Therefore, and because this system of equations was derived using the mean-

field approximation, it only holds for a well-mixed system with a large number of individuals,

an important and restrictive assumption (Reichenbach et al., 2008).

1.4.2 Partial differential equations

As stated in Section 1.1, the formation of spatial patterns, such as spirals, is a key aspect

in maintaining coexistence. Despite being simple and very informative, System ((1.2)) does

not involve any spatial degree of freedom, and therefore is not adequate to study coexistence.

Moreover, bacteria are mobile beings, and the mean-field equations ignore this important

property of bacteria (Reichenbach et al., 2008).

To overcome this shortcoming, the following partial differential equations (PDEs) can be

constructed:



∂a

∂t
(r, t) = D∆ a(r, t) + µa(r, t) [1− ρ(r, t)]− σ a(r, t) c(r, t),

∂b

∂t
(r, t) = D∆ b(r, t) + µ b(r, t) [1− ρ(r, t)]− σ b(r, t) a(r, t),

∂c

∂t
(r, t) = D∆ c(r, t) + µ c(r, t) [1− ρ(r, t)]− σ c(r, t) b(r, t),

(1.3)

with r = (r1, ..., rd) in d -dimensional space, D a diffusion constant and ∆ the Laplacian

operator. In this way, population densities are now functions of both space and time. In

addition, diffusion is introduced, so that bacteria can move through the considered continuous

space (Reichenbach et al., 2008).
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1.4.3 Individual-based modelling

The models described in the previous subsections are the result of a top-down approach.

They use population-averaged values to characterize the individual bacteria, therefore local

phenomena and variability among species are neglected. These traits may, however, be the

key to understanding the behaviour exhibited by a system of bacteria in cyclic competition.

In addition, top-down approaches will not be of much use when examining how a specific

property of a bacteria influences the behaviour of the species on a macroscopic level.

Thanks to computers becoming increasingly faster, we can seize the opportunity to apply the

game theoretical ideas and concepts introduced in Section 1.3, which describes interactions

between individuals, on a massive scale. We can design an in silico ecosystem involving

numerous members of several species, and subsequently let individuals interact with their

neighbours, to then assess how the collective behaves. Each individual can be assigned its own

strategy for playing a certain game, thus introducing variability. This bottom-up approach is

called individual-based modelling, and makes use of an individual-based model (IBM) (Ferrer

et al., 2008).

In our case, three different species populating such an in silico ecosystem are assigned the rules

expressed by Reactions 1.1, complemented with the possibility of migration. This individual

behaviour is then simulated in a two-dimensional space, so that the consequences of the

individual sets of rules result in a certain system-level behaviour, also known as emergent

behaviour. The microscopic interactions thus give rise to a certain macroscopic strategy for

each species.

Individual-based modelling, being a unique way of working, creates several possibilities. One

can learn how applying certain rules to individuals influences the overall behaviour of the

system. Conversely, one can explore which set of rules mimics the system-level behaviour

observed by plating out micro-organisms and examining the system’s behaviour through a

microscope. An IBM can also be used as an alternative to experimental studies when these,

for instance in microbiology, are difficult to perform and expensive in terms of time and cost.

A hypothesis can then, up to a certain level, be compared to the results of an IBM, rather

than to the outcome of the tedious plating out of micro-organisms (Ferrer et al., 2008).

Individual-based modelling for cyclic competition

An algorithm introduced by Gillespie (1977), originally intended for simulating chemical re-

actions, can be used to simulate an IBM involving bacteria, in two dimensions.

A square grid is divided in a number of square cells of equal size, for instance 100 × 100. Then,

each of the cells is filled randomly with either a bacteria of a certain species or is left empty.
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Then, at each simulation step, a randomly selected cell interacts with one of the cells in its

neighbourhood. Interacting involves either: reproduction, with probability µ/(µ + σ + ε);

selection, with probability σ/(µ + σ + ε) or migration, with probability ε/(µ + σ + ε). A

neighbourhood in our case is defined as the von Neumann neighbourhood, which comprises

the four cells orthogonally surrounding a central cell (Von Neumann and Burks, 1966). In the

case of a migration event, a bacteria will swap places with an adjacent bacteria, or with an

empty space. This happens at rate ε and makes the bacteria mobile. The possible interactions

are schematically displayed in Figure 1.2. Species C (blue) kills species B (yellow) during a

selection event, and an empty cell remains. When an empty cell is available, an individual

in an adjacent cell can reproduce. This is what species A (red) does in this example. At

the bottom of the image, species B and species C exchange places in a migration event

(Reichenbach et al., 2007).

Figure 1.2: Members of three species A (red), B (yellow) and C (blue) occupy

squares on a 3 × 3 grid. Selection (with rate σ), reproduction (with rate µ) and

migration (with rate ε) are displayed(Reichenbach et al., 2007).

At the end of each simulation step, the outcome of the interaction is calculated, and the grid

is updated, meaning that the two cells involved in the interaction are assigned their new state

(empty or occupied by a species) accordingly. Figure 1.3 displays the flow-chart followed in

every consecutive simulation step.

Figure 1.4 shows an example of the spatio-temporal evolution of an in silico microbial com-

munity starting from (a) an initially random configuration, after (b) 5, (c) 13, (d) 44, (e) 100

and (f) 200 generations, governed by the model described in Section 1.4.3, on a 250 × 250

grid. After some generations, due to the cyclic nature of the competition scheme, spiral waves

emerge. For low mobilities (low migration rate ε), the radius of these spiral waves is small,

and coexistence is maintained. However, when mobility reaches a threshold, the spirals grow

larger than the size of the system, and eventually only one species remains while the others
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Figure 1.3: Flow-chart followed in each simulation step of the algorithm intro-

duced by Gillespie (1977). A random cell is selected together with one of its four

nearest neighbours. Subsequently, the individuals inhabiting the cells undergo a

certain interaction, after which the grid is updated.

have died out (Reichenbach et al., 2007). In Figure 1.4, the mobility is low enough to maintain

coexistence.

In Section 2.2 we will show how we have modified this foundational model to meet the needs

of our specific research.

1.5 Pattern formation

A notable real-life example in which pattern formation is observed is the cyclic competition

between three strains of Escherichia coli. The set-up of the experiment conducted by Kerr

et al. (2002) was the following. An ecosystem consisting of a colicin-producing strain, a

colicin-sensitive strain and colicin-resistant strain were cultivated in a flask and a static plate,

introducing an environment with high and low mixing, respectively. The nature of the cyclic

competition can be understood from the following facts. The colicin-producing strain out-

competes the colicin-sensitive strain by killing it. The colicin-sensitive strain outcompetes the

resistant strain by growing faster, as they do not have to produce the necessities for becoming

resistant. Finally, the colicin-resistant strain outcompetes the colicin-producing strain, as this

last strain needs to be resistant and produce colicin, and therefore grows the slowest. The

governing competition scheme is shown in Figure 1.5(a).

In the flask environment, two strains went extinct soon after the experiment had begun.

Coexistence thus seemed to be unlikely. On the static plate, however, all three species main-

tained high densities throughout the experiment. This phenomenon was explained by the

spatial pattern formed by the organisms on the static plate, which was hindered in the flask
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: These figures show the spatio-temporal evolution of the in silico

microbial community starting from (a) a random initial configuration, after (b) 5,

(c) 13, (d) 44, (e) 100 and (f) 200 generations, governed by the model described

in Section 1.4.3. Three species interact according to a cyclic competition scheme,

and thus species A (red) invades species B (blue), B invades species C (yellow)

and C invades A.
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environment due to the constant mixing. The spatial structures are a result of a balanced

chase, in which for example the colicin-producing strain invades the colicin-sensitive strain,

while being invaded by the colicin-resistant strain, as shown on Figure 1.5(b). This exper-

iment illustrates the shortcomings of the mean-field approach (cfr. Section 1.4.1), as the

assumption of well-mixedness makes it impossible to study the essential spatial features an

ecosystem governed by cyclic competition exhibits. While indeed locally two species will go

extinct, somewhere else on the petri dish this might not be the case, and thus a balanced

chase develops and coexistence occurs.

(a) (b)

Figure 1.5: The cyclic competition scheme for a colicin-producing strain, a colicin-

sensitive strain and a colicin-resistant strain of Escherichia coli (a) and the in vitro

ecosystem obtained after plating out the species on a static plate (b) Kerr et al.

(2002).

Laird (2014) modelled the Escherichia coli ecosystem using an IBM similar to the one dis-

cussed in Section 1.4.3, finding that the simulation results closely matches the results of the

study by Kerr et al. (2002). Laird (2014) highlighted the importance of pattern formation by

running simulations with differing spatial interaction structures. While in some simulations,

individuals were allowed to interact with their four nearest neighbours, other simulations used

a more random spatial interaction structure, in which a varying number of the regular, four

nearest neighbour spatial interactions were replaced by interactions with a random cell on

the grid.

The simulations showed that interaction with nearest neighbours resulted in coexistence, while

only small deviations towards a more random spatial interaction structure prevented strain

coexistence. This demonstrates that coexistence is not merely due to the limited number of

possible individuals to interact with in two-dimensional space (in this case four), but rather

that space itself, and thus the formation of spatial patterns, is essential for coexistence.



CHAPTER 2
Non-deterministic cyclic competition: a

computational approach

2.1 Extensions of the original model

Models are an approximation of reality. Since the model proposed by May and Leonard (1975)

is quite well understood today, it is now possible to make it more realistic by extending it. In

the following subsections, two extensions of the original model are presented. One considers

a higher number of species, and the other spatial heterogeneity. Our own adaptation of the

original model, which will be the subject of the remainder of this thesis, is introduced in

Section 2.2.

2.1.1 Number of species

A minimum of three species is required to construct a non-transitive competition scheme,

which makes the rock-paper-scissors model the simplest one for studying this aspect of coex-

istence. In nature, however, most ecosystems consist of more than just three species, which

makes a more complex model involving more diverse communities a logical extension.

Liard and Schamp (2006) performed IBM simulations involving up to 25 species. The con-

clusion was that the species richness at the end of the simulation was positively correlated

with the initial species richness, where species richness is the number of species present in

the ecosystem. Moreover, the number of coexistent species was also positively correlated

with the non-transitivity of the rather complex competition scheme. Highly non-transitive

communities of high species richness should thus be able to coexist.

More extensive research has been conducted for competitions involving four or five species.

The competition scheme investigated by Lutz et al. (2013), for instance, is shown in Fig-
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ure 2.1(a). It involves four species in cyclic competition and introduces a parameter χ that

denotes the rate of interaction beyond the single loop connecting the species. As χ increases

from zero to infinity, and thus the rate of interaction beyond the single loop, the competition

scheme becomes more hierarchical as species one and two then have two preys each and one

predator. The researchers found that four species are able to coexist as long as χ remains

lower than a critical value of χc ' 0.355. Above this value, the system decreases the transi-

tivity of the competition scheme by the extinction of one species, after which the remaining

three species coexist.

Cheng et al. (2014) studied five species in cyclic competition and the influence of mobility.

They found that in different regions, local communities of three species can coexist. As the

composition of these local communities varied, the species richness over the entire space was

determined by the interactions between these communities, mediated by mobility. For low

mobility, five species managed to coexist. However, upon increasing the migration rate, two

transitions occurred: first from five- to three-species coexistence and then from three-species

coexistence to a monoculture. These results are similar to the critical mobility observed in

the rock-paper-scissors game by Reichenbach et al. (2007).

(a) (b)

Figure 2.1: Competition schemes involving four species Lutz et al. (2013) (a) and

five species Cheng et al. (2014) (b).

2.1.2 Spatial heterogeneity

Typically, all cells in an IBM have the same properties. In reality, however, one can imagine

that, for example, the amount of available resources will be distributed unevenly across the

space where a community of species resides. The question then arises whether this spatial

heterogeneity has an impact on the possibility of coexistence. Allesina and Levine (2011)

tried to answer this question by simulating 100 species whose competitive abilities were ranked

randomly for five limiting factors. These factors could, for instance, represent resources which

the species need in order to grow or compete. The grid inhabited by the species was then

divided into patches, and each patch was assigned a certain number of each of the five limiting

factors. The 100 species were then allowed to compete on the grid.



CHAPTER 2 NON-DETERMINISTIC CYCLIC COMPETITION: A COMPUTATIONAL APPROACH 15

In each patch, extinction events occurred until the ecosystem settled down to coexistence of

a limited number of species, determined by their competitive abilities regarding the limiting

factors and the connectivity of the competition scheme, as one would expect. However, as

all patches held different combinations of limiting factors, the types of species that coexisted

differed from patch to patch. Subsequently, the total number of different species coexisting

over all of the different patches was higher than what would be observed if the resources

were distributed in a spatially homogeneous way. Thus coexistence benefits from spatial

heterogeneity.

Schreiber and Killingback (2013) conducted a similar study, with the extension that individ-

uals were now allowed to diffuse from patch to patch. They concluded that coexistence can

benefit from a sufficient degree of spatial heterogeneity when mobility is low enough.

2.2 Non-deterministic cyclic competition

2.2.1 Motivation

The competition scheme shown in Figure 1.1 is deterministic since species A always beats

species B. This is, however, not a realistic assumption, as there is diversity among individuals

of the same species. Some member of species B may be more apt to compete with the members

of species A than the rest of its peers, and vice versa. An individual may even be more prone

to selection dependent on its age or the amount of sunlight it receives at a certain time of

day. Therefore, it is more realistic to resort to stochastic competition schemes, which will be

the main focus of the remainder of this thesis.

Hence, we introduce winning probabilities P1, P2 and P3, ranging between 0 and 1, as shown

in Figure 2.2. Species A now beats species B with winning probability P1, B beats C with

winning probability P2 and finally C beats A with winning probability P3. Moreover, species

B can now beat species A with probability (1− P1), and so on.

2.2.2 Simulating non-deterministic competition

In order to understand how the non-determinism influences coexistence between three species,

computer simulations were conducted using the IBM discussed in Section 1.4.3, with the mod-

ification of non-deterministic cyclic competition as explained above. To make communication

easier, we define sustained coexistence as three species living together for a significant amount

of time, while coexistence is defined as three species living together for any amount of time.

These definitions hold for the remainder of the thesis.
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Figure 2.2: Scheme representing non-deterministic cyclic competition between

species A, B and C. Species A only beats species B with a winning probability P1

while B beats A with probability (1− P1), and so on.

Through the IBM simulations, one is able to investigate for which combinations of winning

probabilities P1, P2 and P3, sustained coexistence is likely to occur, and one can attempt to

qualitatively describe the conditions necessary for sustained coexistence.

Experimental set-up

The algorithm used to simulate the interactions between the bacteria has been outlined in

Section 1.4.3. In order to avoid boundary effects, periodic boundary conditions were imposed,

so that the grid may be envisaged as a torus. The bacteria were allowed to interact for 10 000

generations on a 100 × 100 grid. In silico, a generation is defined such that, on average,

every cell has been randomly selected once. On a 100 × 100 grid, this means that 10 000

interactions constitute a generation, or equivalently, that the algorithm has to run 10 000

times through the flow-chart in Figure 1.3.

Experiments were conducted for various combinations of winning probabilities P1, P2 and P3.

They were varied between zero and one, with a step size of 0.05. In order to simulate all

combinations of these values, 9261 (= 213) simulations would be required. Since a stochas-

tic process was simulated, outcomes were evidently non-deterministic, thus twenty runs per

parameter combination were executed, each of them starting from a different random initial

spatial configuration.

For all simulations, the model parameters (ε, µ, σ) except P1, P2 and P3 were kept constant.

The reproduction rate µ, exchange rate ε and selection rate σ were all fixed to 1, which

made the mobility lower than the critical threshold (cfr. Section 1.4.3). Consequently, these

conditions permitted sustained coexistence, so that we could study the effects of the non-

deterministic competition experimentally.

For every run, the grid configuration was stored every ten generations. This provides us with

a dataset of thousands of in silico evolutions, which comes in handy if we want to investigate

other features of the evolution of the grids throughout a simulation, or if we want to match
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the analytical approach that will be presented in Chapter 3 with the computational approach

discussed in this chapter.

Reducing the simulation time

Simulations were carried out on UGent’s High Performance Computer (HPC). The computa-

tional resources (Stevin Supercomputer Infrastructure) and services used in this thesis were

thus provided by the VSC (Flemish Supercomputer Center), funded by Ghent University,

the Hercules Foundation and the Flemish Government department EWI. Since the required

computing time would be quite long, optimizing the code, written in Mathematica (Version

10.0, Wolfram Research Inc., Champaign, USA), would be very beneficial.

Significant gains in required computing time originated from making the code shorter and

more straightforward, using the most efficient built-in Mathematica functions and ensuring

that unnecessary calculations were avoided. The main reduction in computing time, however,

was achieved by acknowledging the symmetry in the interaction scheme. This can be un-

derstood by investigating the two competition schemes depicted in Figure 2.3. Suppose that

by carrying out simulations we know that for competition scheme (a) species A will be the

sole survivor after 10 000 generations. Then, we can say that for scheme (b), which has the

same winning probabilities as scheme (a) but cyclically permuted, species B will be the sole

survivor after 10 000 generations with high probability.

Relying on this symmetry we only needed to conduct 1561 simulations to obtain results for

the entire parameter space. This is only slightly more than one sixth of the original number

of simulations that was required (9 261), a significant reduction in the computing costs. If

one were to simulate all 1561 simulations on a single core, about 102 hours of computing time

would be required. The HPC, however, allowed us to use multiple cores at once, reducing the

calculation time to about one hour.

(a) (b)

Figure 2.3: Two competition schemes with cyclically permuted winning proba-

bilities: P1 = 0.9, P2 = 0.6, P3 = 0.3 (a), P1 = 0.3, P2 = 0.9, P3 = 0.6 (b)
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2.3 Simulation results

2.3.1 The parameter space

The results of the simulations give us an idea of the region in the parameter space where the

species still coexist after 10 000 generations, which we name the region of coexistence, or where

a certain species kills off the other two. The results are visualised in the end-state parameter

space (Figure 2.4). Black represents the region of coexistence, red represents survival of species

A, blue survival of species B and yellow survival of species C. The simulations were conducted

twenty times for all required combinations of winning probabilities in the parameter space,

starting from a different random initial configuration. The results shown are the outcomes

for each combination of winning probabilities, averaged over the twenty simulations. As the

end-state parameter space is three dimensional, each figure represents a slice of this space,

taken at a height determined by the value P3.

From these results, one can state that the region of coexistence can be found where the

winning probabilities are of similar magnitudes. In order to have a better insight into how

the in silico populations vary over time, their temporal evolutions are highlighted for four

points in the parameter space in Figures 2.5-2.8. Each figure shows the competition scheme

and the evolution of the species’ densities through time on a regular plot and on the simplex.

Also, an indication of the spatio-temporal evolution is given by the lattice configurations at

three instances in time for each of the considered parameter combinations.

To obtain a trajectory on the simplex, at every instance in time a state in the three-

dimensional phase space is projected onto the two-dimensional simplex. A point on the

simplex is closer to one of the vertices a, b or c as the relative density of the corresponding

species is higher. In the extreme case, when a point is on a vertex, two species went extinct,

and the remaining species’ name is on the concerned vertex. When one species goes extinct,

the trajectory has reached the edge of the simplex, from where it will move towards one of

the two vertices on the edge, indicating the extinction of a second species.

Note how this projection from three to two dimensions implies a loss of information. Indeed,

whereas it is possible in three-dimensional space to calculate the density of empty cells, this

is not possible from the information found on the simplex. Nevertheless, the simplex is an

informative way of visualising the dynamics of in silico ecosystems.

Figure 2.5 shows the evolution of the in silico populations for P1 = P2 = P3 = 0 up to the

1000th generation. Note that this implies that species B beats species A with probability 1,

and so on. Thus, this competition scheme represents deterministic competition, and looks

exactly like the scheme in Figure 1.1, but with the direction of the arrows reversed. The
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(a) P3 = 0 (b) P3 = 0.05 (c) P3 = 0.10

(d) P3 = 0.15 (e) P3 = 0.20 (f) P3 = 0.25

(g) P3 = 0.30 (h) P3 = 0.35 (i) P3 = 0.40

(j) P3 = 0.45 (k) P3 = 0.50 (l) P3 = 0.55
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(m) P3 = 0.60 (n) P3 = 0.65 (o) P3 = 0.70

(p) P3 = 0.75 (q) P3 = 0.80 (r) P3 = 0.85

(s) P3 = 0.90 (t) P3 = 0.95 (u) P3 = 1.00

Figure 2.4: The end-state parameter space resulting from the IBM simulations.

Black represents the region of coexistence, red represents survival of species A,

blue survival of species B and yellow survival of species C, and this state was

determined after 10 000 generations. P3 increases in increments of 0.05 for every

subsequent image. P1 and P2 vary between zero and one on the x- and y-axis,

respectively.
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Figure 2.5: The species densities during an IBM simulation with P1 = P2 = P3 =

0 are plotted through time on a regular plot and on the simplex, while the spatial

configuration is displayed at three instances in time.

species’ densities oscillate over time with a small amplitude around equilibrium values that

are almost equal for all species, indicating that they coexist in roughly equal proportions.

The trajectory on the simplex lies in the centre of the triangle, at relatively large distance

from the edges that correspond to extinction of one and eventually two species. On the lattice

configurations, spiral waves can be perceived. These are less pronounced than in Figure 1.4

due to the fact that the simulations leading to Figure 2.4 were carried out on a 100 × 100

lattice.

In Figure 2.6, the winning probabilities are P1 = 0.2, P2 = 0.1 and P3 = 0 and the in silico

population sizes are shown for the first 1000 generations. The oscillations demonstrate a

larger amplitude and a smaller frequency than in the deterministic case (Figure 2.5). The

equilibrium value of species C has shifted to a lower value. On the simplex, we see that the
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Figure 2.6: The species densities during an IBM simulation with P1 = 0.2, P2 =

0.1 and P3 = 0 are plotted through time on a regular plot and on the simplex,

while the spatial configuration is displayed at three instances in time.

trajectory now orbits close to the edge of the triangle. Although coexistence persists during

the entire course of the simulation, we anticipate that a larger change in winning probabilities

may result in extinction events. On the lattice, although spiral waves still emerge now and

then, the IBM has lost its refined configuration as displayed in Figure 2.5 and now shows the

balanced chase between large clumps of each species.

In Figure 2.7, P1 = 0.35 while P2 and P3 are 0.1 and 0, respectively, as was the case for

the setting depicted in Figure 2.6. These winning probabilities result in the extinction of

species C after 2200 generations, and of species A after 2800 generations. The equilibrium

value of species C has decreased for the worse, and the equilibrium value of species A has

strongly increased. On the simplex we see that the trajectory eventually reaches the edge,

after which species B outcompetes species A, which corresponds to the trajectory ending up
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Figure 2.7: The species densities during an IBM simulation with P1 = 0.35,

P2 = 0.1 and P3 = 0 are plotted through time on a regular plot and on the

simplex, while the spatial configuration is displayed at three instances in time.

on the vertex b. The frequency of the oscillations has decreased once more. On the lattice,

the density of species C decreases rapidly during the first 50 generations. After this initial

transient, species C manages to organize itself in a thin layer, chasing species B while being

chased by species A. Due to this organisation, species C is able to survive for another 2150

generations, after which it finally goes extinct. Note how species A signs its own death warrant

by driving species C to extinction, as species B now easily beats species A.

In Figure 2.8, with P1 = 0.45, a trajectory develops where species A is the sole survivor

after only 120 generations. This seemingly happens without the species’ densities oscillating.

Species B and C’s densities are seriously reduced after 30 generations. Although species B

has a slightly higher probability of defeating species A during a competition event, species B

goes extinct due to the high density of species A.
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Figure 2.8: The species densities during an IBM simulation with P1 = 0.45,

P2 = 0.1 and P3 = 0 are plotted through time on a regular plot and on the

simplex, while the spatial configuration is displayed at three instances in time.

2.3.2 Mobility

As stated in Section 1.4.3, Reichenbach et al. (2007) showed that sustained coexistence does

not occur when mobility is higher than a certain threshold. This can be explained by realising

that when mobility becomes higher, the system’s behaviour approximates that of a well-mixed

system. Under these circumstances, spatial patterns are not or barely developed, which

shortens the duration of coexistence considerably (Laird, 2014).

Thus, in the context of non-deterministic competition, we expect the region of coexistence

to shrink when mobility is increased. The end-state parameter space shown in Figure 2.4

is the result of simulations conducted with ε = 1. Reichenbach et al. (2007) showed that

the mobility, defined as the average area explored by one individual per unit of time, can
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be calculated using M = 2ε/N , with N the number of cells in the grid. Thus, with ε = 1,

M = 2× 10−4 on the 100× 100 lattice considered in our experiments. For a mobility higher

than the critical mobility Mc ≈ 4, 5±0.5×10−4, Reichenbach et al. (2007) found that sustained

coexistence becomes unlikely to occur.

Similar simulations to the ones presented in Section 2.3.1 were conducted for ε = 2.25, which

increases the mobility to the critical threshold. Five simulations, starting from a different

random initial configuration, were carried out for every combination of winning probabilities,

and the average outcomes are given in Appendix A, Figure A.1. The in silico behaviour across

the end-state parameter space looks similar to the behaviour in Figure 2.4, but the region of

coexistence is smaller. For slightly higher mobilities, the region will disappear entirely.

After the death of one species, the remaining two species compete to become the sole survivor.

The outcome of this competition is determined by the winning probability between these two

species, and their relative abundance when the third competitor is eliminated. Usually, the

competition between the remaining two species is settled quickly, but not when the two

species kill each other with a probability of 0.5, as the outcome in that case is the result of

fluctuations due to the finite size of the grid (Reichenbach et al., 2006). It is hard to notice

this in Figure 2.4, as there usually was almost always either coexistence or a sole survivor

after 10 000 generations, but this is not the case when mobility is increased. In Figure A.1,

white spots are clearly shown, for instance at P1 = 0.5, P2 = 1 and P3 = 0.1. This signifies

that after 10 000 generations, two species were still busy settling their fight.

In order to explain why this phenomenon seems to be more articulated for high mobilities,

more research is required. For starters, one could conduct several IBM simulations involving

two species with winning probability 0.5 until one species goes extinct, and this for different

mobilities. This then can result in a curve displaying the relationship between mobility and

the time until extinction. Some simulations like these were carried out on a small scale, with

a resulting curve that looked quite irregular. It can thus be concluded that explaining the

relationship between mobility and the time until extinction may be an elaborate task. Since

other aspects of non-deterministic competition seemed more important to research, it was

decided that further investigations about the competition between two species with winning

probability 0.5 are beyond the scope of this thesis.

2.3.3 Number of generations until one species survives

Figure 2.9 shows the number of generations that were required for a single species to become

the sole survivor, as a function of P1, P2 and P3, while ε is either equal to 1 or 2.25. Since the

simulations ran for at most 10 000 generations, this is the maximum value displayed on the

figure, although coexistence could persist for more than 10 000 generations in some cases. For
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most parameter combinations, two species go extinct soon. However, this changes abruptly

once parameter values approach the region of coexistence as given in Figure 2.4. One can

thus state that a small change in winning probabilities can have a disastrous effect on the

duration of coexistence. The figure also confirms the findings of Section 2.3.2. The region of

coexistence is smaller for higher mobility, and at P1 = 0.5, it takes a long time for the two

remaining species to settle the fight.

2.4 Discussion

2.4.1 Bifurcations

In dynamical systems, a small change of a parameter value that results in a qualitative

change of the system’s behaviour is called a bifurcation (Strogatz, 1994). In the context of

non-deterministic competition, a change in winning probabilities might determine the stable

state the system ends up in, and thus whether species A, B or C becomes the sole survivor.

These qualitative changes are essentially bifurcations. Whether the transition from the region

of coexistence to extinction is a bifurcation, is hard to predict with the information we have

at this point. We do not expect coexistence to be a stable state for any set of winning

probabilities. What we call the region of coexistence is probably a set of parameter values for

which it takes a long time (more than 10 000 generations) to reach a stable state where only one

species survives. However, the sudden drop in the number of generations for which the species

manage to coexist, as shown in Figure 2.9, might indicate a bifurcation. Another bifurcation

may arise when the oscillations that usually appear in our system suddenly disappear for

certain parameter combinations (Figure 2.8). It may be possible to confirm some of these

presumptions by investigating the IBM analytically. This will be carried out in Chapters 3

and 4.

2.4.2 Survival of the weakest?

The original observation

Reactions (1.1) are often slightly adapted in such a way that competition and reproduction

are combined. It is then assumed that a victory in competition results in an increased repro-

duction ability, such that both processes actually occur at once. The corresponding reactions

are given by
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(a) P3 = 0 (b) P3 = 0.25 (c) P3 = 0.50

(d) P3 = 0 (e) P3 = 0.25 (f) P3 = 0.50

Figure 2.9: The number of generations that were required for a single species to

become the sole survivor, with ε = 1 (a, b, c) or ε = 2.25 (d, e, f).

A + B
kA−−→ A + A

B + C
kB−−→ B + B (2.1)

C + A
kC−−→ C + C

where species A outcompetes species B and reproduces at invasion rate kA, and similarly for

the other reactions. The mean-field equations of this system are then given by


ȧ = a [kA b− kC c],

ḃ = b [kB c− kA a],

ċ = c [kC a− kB b],

(2.2)
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and exhibit a slightly different dynamics than that of System (1.2). The fixed point corre-

sponding to coexistence becomes 1
kA+kB+kC

(kB, kC , kA) and is neutrally stable, and therefore

surrounded by neutrally stable closed orbits which allow for sustained coexistence with os-

cillating species densities. Most noticeable about the fixed point, however, is that the popu-

lations of the species are not determined by their own invasion rate but by the rates of the

species they outcompete, as at the fixed point corresponding to coexistence the density of

species A, for instance, is equal to kB
kA+kB+kC

.

Now, imagine that species A’s invasion rate kA was lowered, then the population density

of species C at the fixed point would shift to a lower value, while the density of species A

would increase. This makes species A the least probable species to go extinct in a stochastic

simulation, a counter-intuitive result (Frean and Abraham, 2001). Of course, these conclusions

are only valid when the mean-field assumptions are satisfied, but even in IBM simulations in

two-dimensional space a decrease in invasion rate of one species leads to a higher probability

of the other two becoming extinct. This phenomenon was named the “survival of the weakest”

(Frean and Abraham, 2001).

Comparison with winning probabilities

The main conclusion that can be drawn from the simulations for our system is that coexistence

persists where the three winning probabilities are of similar magnitudes. Sustained coexistence

is more likely to occur where all three winning probabilities are either low or high, and

intermediate values seem less likely to lead to sustained coexistence.

This is the result one should expect considering the competition scheme with a set of specific

winning probabilities. If a certain species kills the other two with relatively high probability,

this species will eventually dominate the system, and remain as the sole survivor. When it

holds that for each species the probability of outcompeting is similar to the probability of

being outcompeted, sustained coexistence is more likely to occur.

This outcome seems to contradict the study carried out by Frean and Abraham (2001). But

this is a mere consequence of the fact that the rules governing the species in their model

are slightly different from the ones in our adaptation. While the strongest is defined as the

species with the highest reaction rate in the system by Frean and Abraham (2001), it is the

one with the highest probability of winning from the others that is considered the strongest

in our setting. One may therefore be inclined to relax the term “survival of the weakest” to

“survival of the least aggressive”, and reinstate “survival of the strongest” as a result from

the simulations carried out in this thesis.



CHAPTER 3
Towards an analytical description of in

silico microbial dynamics

The computational approach presented in Chapter 2 allowed us to gain some insight into

how the behaviour of the IBM with non-deterministic cyclic competition changes across the

parameter space. But there is a black box feeling to our endeavours. Despite knowing where

the region of coexistence lies, this is only an approximation, and moreover we do not know why

a certain set of winning probabilities allows for sustained coexistence, and another set does

not. Obtaining more precise, and possibly analytical results would increase our knowledge

and understanding of the system’s behaviour. The best possible result to obtain would be a

closed-form expression for the region of coexistence in the parameter space, as a function of

the winning probabilities. Trying to obtain this result, we will explore modelling approaches

in this chapter that allow us to approximate the behaviour of the IBM, but that are simpler

and thus possibly allow for obtaining analytical results. Some of these modelling approaches

have already been introduced in Section 1.4, while others will be introduced in this chapter.

Models that are more closely related to the IBM will be introduced first, while models built

upon a continuous time, space or state domain will be discussed last.

3.1 Every possible interaction

The IBM used in Chapter 2 has two sources of stochasticity. Firstly, the initial configuration

of the grid is constructed at random. Secondly, at every step a random individual is selected to

interact with a random neighbour, and the type of interaction is selected randomly. The idea

of the model proposed in this section is to eliminate the randomness as a consequence of the

interaction processes, so that the outcome of a model simulation is completely determined by

the initial condition and the rules applied to the individuals. In this way, at every consecutive

time step, every individual will interact with each neighbour through every possible interaction

at once.
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In this setting, every grid cell can be characterised by three numbers, rather than one. Each

number stands for the probability that the individual in that cell belongs to species A, B

or C. The grid is initialised in a similar way as in the case of the IBM model, but now the

states of the cells are either
(
1, 0, 0

)
,
(
0, 1, 0

)
,
(
0, 0, 1

)
or
(
0, 0, 0

)
, reflecting a 100% chance

of containing an individual of species A, B or C, or of being empty, respectively. After the

initialisation, the grid is updated. During the evolution, every cell on the grid is assigned

three new values at every consecutive time step, and this happens synchronously. The new

states are calculated using formulae based on the probability of selecting an individual, of

selecting a neighbour and of selecting an interaction.

Adopting notation from graph theory (Bondy and Murty, 2008), let us denote the probability

of finding a member of species A in cell k as P kA, and similarly for species B and C. Then

P kA(t+ 1) =P kA(t)︸ ︷︷ ︸
1

+
1

ND

(
ε/ξ

|Nk|
[1− P kA(t)]

∑
l∈Nk

P lA(t)︸ ︷︷ ︸
2(a)

− ε/ξ

|Nk|
P kA(t)

∑
l∈Nk

[1− P lA(t)]︸ ︷︷ ︸
2(b)

− σ/ξ

|Nk|
P kA(t)

∑
l∈Nk

[P3 P
l
C(t) + (1− P1)P

l
B(t)]︸ ︷︷ ︸

2(c)

+
µ/ξ

|Nk|
[1− P kA(t)− P kB(t)− P kC(t)]

∑
l∈Nk

P lA(t)︸ ︷︷ ︸
2(d)

)

+
∑
l∈Nk

1

ND

(
ε/ξ

|Nl|
P lA(t)[1− P kA(t)]− ε/ξ

|Nl|
[1− P lA(t)]P kA(t)

− σ/ξ

|Nl|
[P3 P

l
C(t) + (1− P1)P

l
B(t)]P kA(t)

+
µ/ξ

|Nl|
P lA(t)[1− P kA(t)− P kB(t)− P kC(t)]

)
︸ ︷︷ ︸

3

,

(3.1)

with ε, σ and µ as defined in Section 1.4.3, ξ = ε+ σ + µ and P1 and P3 as in Section 2.2.1,

ND the number of cells in a D-dimensional lattice, and |Nk| the number of cells l in the

neighbourhood Nk of cell k. Similar equations can be constructed for P kB(t+1) and P kC(t+1),

but they are omitted for the sake of brevity.
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Since a von Neumann neighbourhood is used for the two-dimensional IBM simulations, we

have |Nk| = |Nl| = 4 (Von Neumann and Burks, 1966). The neighbours of cell k are then the

elements of the set {l1, l2, l3, l4}, as displayed in Figure 3.1.

Figure 3.1: The neighbours of cell k in a von Neumann neighbourhood are the

elements of the set {l1, l2, l3, l4}.

The right hand side of Eq. (3.1) has three terms, two of which consist of four parts. They

can be understood as follows:

1. The probability of finding species A in cell k at time t;

2. The probability that cell k is randomly selected to interact is 1
ND . The probability of

finding species A in cell k can then be changed by an interaction, in the following ways:

(a) An individual of species A from a neighbouring cell l takes part in an exchange event

with an individual of species B or C, or an empty space, in cell k. The probability

of such an exchange event is ε/ξ. The probability that cell k is not inhabited by

species A is [1−P kA(t)], while P lA(t) is the probability that a neighbouring cell l is

inhabited by species A. This neighbouring cell is selected for interaction with cell

k with probability 1
|Nk| . Since every neighbour l can be selected for interaction, a

summation over all these neighbours is necessary;

(b) An individual of species A leaves cell k by exchanging its place with a neighbour

in l that is not A. Everything is similar to the previous term, except that it is now

required that cell k is inhabited by species A and its neighbours l are not inhabited

by species A;

(c) An individual of species A in cell k is killed by its adversary in a neighbouring cell

l. Cell k is inhabited by species A with probability P kA(t), and selection occurs

with probability σ/ξ. The individual in cell l then kills species A in k. Again,

summation over all neighbours is necessary, and a certain neighbour is selected

with probability 1
|Nk| ;

(d) When cell k is empty, it is possible that an individual of species A in a cell l

produces offspring that is placed in its neighbouring cell k. The probability of

cell k being empty is [1− P kA(t)− P kB(t)− P kC(t)] and the probability that cell l is

inhabited by species A is P lA(t);
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3. The third term works the other way around. One of the neighbouring cells l is selected

first, and subsequently interacts with a neighbour which happens to be cell k. This term

thus is the sum over all cells l that can be selected, which happens with probability
1
ND . The components of this term are very similar to those in term two. Cell l has a

probability 1
|Nl| of selecting cell k to interact with. Based on the species in cells l and

k, the results of the possible interactions are calculated.

Eq. (3.1) is now simplified and restricted to a two-dimensional lattice, where |Nk| = |Nl| = 4,

as in the IBM simulations. If we further denote P kA(t) + P kB(t) + P kC(t) by P kT (t), we obtain

P kA, P kB and P kC at time (t+ 1) as follows:



P kA(t+ 1) =

(
1− 1

2N2ξ

[
4ε− σ

(
P3

∑
l∈Nk

P lC(t) + (1− P1)
∑
l∈Nk

P lB(t)
)])

P kA(t)

+
1

2N2ξ

(
ε+ µ

[
1− P kT (t)

]) ∑
l∈Nk

P lA(t),

P kB(t+ 1) =

(
1− 1

2N2ξ

[
4ε− σ

(
P1

∑
l∈Nk

P lA(t) + (1− P2)
∑
l∈Nk

P lC(t)
)])

P kB(t)

+
1

2N2ξ

(
ε+ µ

[
1− P kT (t)

]) ∑
l∈Nk

P lB(t),

P kC(t+ 1) =

(
1− 1

2N2ξ

[
4ε− σ

(
P2

∑
l∈Nk

P lB(t) + (1− P3)
∑
l∈Nk

P lA(t)
)])

P kC(t)

+
1

2N2ξ

(
ε+ µ

[
1− P kT (t)

]) ∑
l∈Nk

P lC(t).

(3.2)

After initialising the grid, System of Equations (3.2) can be applied to every cell simultane-

ously. Note that N2 updates are necessary to evolve one generation.

Mimicking the IBM simulations by means of System (3.2) would definitely be interesting, as

the evolution of the grid would then be deterministic. Unfortunately, there is a flaw in the

reasoning leading to them. This can be illustrated by considering the following very simple

system. A one-dimensional space made up of three cells, with periodic boundary conditions,

is inhabited by one species. The species can only reproduce, meaning that µ = 1 while

ε = σ = 0. Then, we can construct the counterpart of System (3.2) for the simple system

considered here:

P k(t+ 1) = P k(t) +
1

3

[
1− P k(t)

] ∑
l∈Nk

P l(t). (3.3)
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Let us take
(
0, 0, 1

)
as initial condition. The rightmost cell is inhabited by an individual,

while the two other cells are empty. In an IBM simulation, one of the three cells will be

selected, and then one of the neighbours of this cell will be chosen for interaction. Since

µ = 1 and ε = σ = 0, the type of interaction will always be reproduction. Thus, from this

initial condition, six possible transitions can occur as the result of one interaction in the IBM,

each with probability 1
6 :

(
0, 0, 1

) 1
6−→

(
1, 0, 1

)
1
6−→

(
0, 0, 1

)
1
6−→

(
0, 0, 1

)
1
6−→

(
0, 1, 1

)
1
6−→

(
0, 1, 1

)
1
6−→

(
1, 0, 1

)
The results of these transitions reduce to three configurations, each of them occurring with

probability 1
3 . Taking the sum over these configurations, we obtain the probabilities of finding

an individual in each of the cells, i.e.
(
1
3 ,

1
3 , 1
)
. These probabilities also follow from using

System (3.3). The three configurations can now undergo another reproduction interaction in

the IBM, resulting in the following possible transitions:

(
1, 0, 1

) 1
3−→

(
1, 0, 1

)
2
3−→

(
1, 1, 1

)
(
0, 0, 1

) 1
3−→

(
0, 0, 1

)
1
3−→

(
1, 0, 1

)
1
3−→

(
0, 1, 1

)
(
0, 1, 1

) 1
3−→

(
0, 1, 1

)
1
3−→

(
1, 1, 1

)
From this, it follows that the probabilities of finding an individual in each of the cells after

two interactions is
(
2
3 ,

2
3 , 1
)

for the IBM. However, applying Eq. (3.3) twice to initial condi-

tion
(
0, 0, 1

)
yields

(
17
27 ,

17
27 , 1

)
, a slight underestimate. This is because Eq. (3.3) interprets

the probabilities after one interaction, i.e.
(
1
3 ,

1
3 , 1
)
, wrongly. The equation assumes that the
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probability of the configuration where both the leftmost cell and the central cell are inhabited

by an individual is 1
3 ×

1
3 = 1

9 . From writing out the first interaction in an IBM simulation

explicitly, however, we see that the probability of this configuration is zero after one inter-

action, since then the individual in the rightmost cell would have to reproduce both in the

leftmost and the central cell during one interaction. System (3.2) is thus too simple to exactly

describe the nature of an IBM simulation.

Interestingly, on a two-dimensional grid, spiral waves emerge when an initial configuration is

evolved according to System (3.2). When they are applied in one dimension, travelling waves

and irregular behaviour occur, two phenomena that we will also encounter in Chapter 4. Thus,

although not entirely correct, the equations seem to embody behaviour that is very similar to

the behaviour of the IBM. It would therefore be interesting to research the magnitude of the

error introduced by the equations. However, this is beyond of the scope of this thesis. We

have thus not used System (3.2) to obtain more information on the behaviour of the IBM,

and have instead resorted to other, more established models.

3.2 Coupled map lattice

In a coupled map lattice, space and time are discrete, while the state of the spatial entities is

continuous (Kaneko, 1993). Space is divided into cells, much like in the IBM, and the dynamics

in each cell is governed by a recursion relation, called a map. The logistic map (Verhulst,

1838) is probably the best known example of a map, because of its simple formulation and

its very complicated dynamics (May, 1976). Such a map determines the value of xt+1, based

on the value xt at the previous time step.

A similar map can also be constructed using the rules presented in Section 2.2. Imagine a

well-mixed vessel, at time step t, where the three species are present with densities at, bt and

ct, and it holds that at + bt + ct = ρt ≤ 1 for all t. Following the rules from Section 2.2,

some of these species will be killed through competition, whereas reproduction might cause

the density of these species to rise. The densities a, b and c after one more time step are thus

given by


at+1 = at

[
1− σ (1− P1) bt − σ P3 ct + µ (1− ρt)

]
,

bt+1 = bt
[
1− σ (1− P2) ct − σ P1 at + µ (1− ρt)

]
,

ct+1 = ct
[
1− σ (1− P3) at − σ P2 bt + µ (1− ρt)

]
.

(3.4)

This three-dimensional map can now be used in every cell of the grid. These cells can

subsequently be coupled in order to mimic diffusion. In this way, the densities of the three
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species in every cell are compared to the densities in neighbouring cells, so that the number

of species migrating to another cell can be calculated.

Although it is possible to analyse coupled map lattices of one-dimensional maps (Kaneko,

1993; Atmanspacher et al., 2005), no analysis involving three-dimensional maps was found in

literature. This comes as no surprise, as three-dimensional maps, coupled by diffusion, make

the analysis much harder. We therefore decided not to consider coupled map lattices in this

thesis any further.

3.3 The mean-field equations

The mean-field equations have already been introduced in Section 1.4.1. They are built

upon a continuous state and time. Space, however, is neglected, which might make them an

inappropriate tool for understanding the behaviour of the IBM. We will first briefly discuss

the dynamics of the mean-field equations with deterministic competition, and we will then

state how non-deterministic competition influences this dynamics.

3.3.1 Deterministic competition

The mean-field equations for deterministic competition, given by System (1.2), possess five

fixed points. These correspond to the values for a, b and c at which the system is in equilib-

rium, meaning that the time derivatives in System (1.2) are all equal to zero (De Baets, 2013).

The first of them, x∗1 = (0, 0, 0), is unstable, and represents the situation where no species are

present. Three fixed points are saddle points, and each of them signifies the survival of one

species: x∗2 = (1, 0, 0), x∗3 = (0, 1, 0) and x∗4 = (0, 0, 1). These three fixed points are connected

by a heteroclinic orbit. The fifth fixed point is unstable, and corresponds to the situation

where the three species coexist, x∗5 = µ
3µ+σ (1, 1, 1).

The phase space for System (1.2) is visualised in Figure 3.2. Fixed points x∗2, x∗3, x∗4 and

x∗5 sit on an invariant manifold, illustrated by the grey surface. This manifold is called

invariant because trajectories that are on this manifold, stay on this manifold for ever. All

trajectories (except for those starting from and thus remaining in x∗1) approach the invariant

manifold exponentially fast (Zeeman, 1993), since the eigendirection normal to the manifold

is stable. Once trajectories are close to the invariant manifold, they spiral away from the

unstable coexistence fixed point, and approach the boundary of the invariant manifold. This

boundary is the heteroclinic orbit. Trajectories will now remain close to the heteroclinic

orbit, yet while travelling through the phase space, repeatedly visiting the neighbourhoods

of fixed points x∗2, x∗3 and x∗4. This oscillating behaviour will go on for an infinite amount

of time, but with increasing cycle duration. The trajectories will thus keep on visiting the
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neighbourhoods of fixed points x∗2, x∗3 and x∗4, but they will remain in these neighbourhoods

for increasingly longer times. The densities of the species will thus oscillate, and the frequency

of this oscillation will decline. This is illustrated in Figure 3.3, where the trajectory, after a

short transient, ends up in the vicinity of the heteroclinic orbit, causing the species densities

to oscillate.

Thus in theory, these trajectories never end up on the heteroclinic orbit, they only approach

it ever closer. However, this is an unrealistic scenario for the finite-size population of an

IBM, as trajectories of finite-size systems will eventually end up on the heteroclinic orbit,

due to fluctuations. This illustrates the somewhat limited applicability of the mean-field

equations, as discussed in Section 1.4.1. As a consequence of their underlying assumptions,

they only hold for perfectly well-mixed, infinite size systems, and will therefore exhibit a

slightly different dynamics compared to the one displayed by the IBM. As an illustration, a

trajectory starting off close to the coexistence fixed point is shown in Figure 3.2. After a short

transient, it approaches the heteroclinic orbit. Due to finite-size fluctuations, it eventually

ends up at fixed point x∗2 = (1, 0, 0) (Reichenbach et al., 2008).

Figure 3.2: The phase space of System (1.2), spanned by the densities a, b and c

of species A, B and C. The invariant manifold (grey surface) is shown, with the

three fixed points corresponding to survival of one species (on the edges of the grey

surface) and the fixed point of coexistence (in the center of the grey surface). The

heteroclinic orbit is the boundary of the invariant manifold. A trajectory starting

off close to the coexistence fixed point is also displayed (Reichenbach et al., 2008).
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Figure 3.3: Qualitative illustration of how the density of a species A, subject to

cyclic competition, varies through time when the trajectory is in the vicinity of

the heteroclinic orbit. (May and Leonard, 1975).

3.3.2 Non-deterministic competition

Mean-field equations

In order to derive the mean-field equations for the in silico ecosystem governed by non-

deterministic competition, we first derive the non-deterministic counterpart of Reactions (1.1).

While the reactions modelling reproduction remain unchanged, the selection rate is now

modulated by the winning probabilities. The selection rate remains σ, but species A only

beats species B at a rate P1σ, while B beats A at a rate (1− P1)σ, and so on. The reactions

for the non-deterministic system are thus given by

A� µ−−→ AA AB
P1σ−−→ A� AB

(1−P1)σ−−−−−→ �B

B� µ−−→ BB BC
P2σ−−→ B� BC

(1−P2)σ−−−−−→ �C (3.5)

C� µ−−→ CC CA
P3σ−−→ C� CA

(1−P3)σ−−−−−→ �A

where � represents an empty site.

Following the reasoning laid out in Section 1.4.1, we derive the mean-field equations for the in

silico ecosystem governed by non-deterministic competition, based on Reactions (3.5). The

change of the density of species A through time, denoted ȧ, increases through reproduction

and decreases through selection. The difference with the deterministic system is that species
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A can now be beaten by both species B and C, and thus both these selection rates should be

included. The overall governing system of equations is given by


ȧ = µa (1− ρ)− σ a

[
P3 c+ (1− P1) b

]
,

ḃ = µ b (1− ρ)− σ b
[
P1 a+ (1− P2) c

]
,

ċ = µ c (1− ρ)− σ c
[
P2 b+ (1− P3) a

]
,

(3.6)

with P1, P2 and P3 the winning probabilities as defined in Figure 2.2.

It is possible to write these equations in a more general form, which clarifies that they are a

specific case of the equations investigated by May and Leonard (1975). We rescale time by

setting t∗ = µt, and take k = σ/µ, to get


ȧ = a

[
1− a− β1 b− γ1 c

]
,

ḃ = b
[
1− α1 a− b− γ2 c

]
,

ċ = c
[
1− α2 a− β2 b− c

]
,

(3.7)

with β1 = 1 + k(1−P1), γ1 = 1 + kP3, α1 = 1 + kP1, γ2 = 1 + k(1−P2), α2 = 1 + k(1−P3),

β2 = 1 + kP2, and where the asterisks were dropped for the sake of brevity.

Fixed points

It is not possible to solve Systems (3.6) and (3.7) analytically, due to their nonlinear nature.

However, a more qualitative analysis can provide us with a good understanding of their

behaviour.

First of all, we can determine the system’s fixed points. We do so by setting ȧ = ḃ = ċ = 0,

after which the resulting system of nonlinear algebraic equations can be solved. Since we are

interested in the influence of the winning probabilities on the dynamics, we will assume k = 1

for simplicity. In contrast to the system considering deterministic competition, System (3.6)

has eight fixed points, representing four cases:

1. No species are present:

x∗1 = (0, 0, 0);

2. One species is present:

x∗2 = (1, 0, 0),

x∗3 = (0, 1, 0),

x∗4 = (0, 0, 1);
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3. Two species are present:

x∗5 =
1

1 + P1(1− P1)
(1− P1, P1, 0),

x∗6 =
1

1 + P3(1− P3)
(P3, 0, 1− P3),

x∗7 =
1

1 + P2(1− P2)
(0, 1− P2, P2);

4. Three species are present:

x∗8 = w
(
a∗8, b

∗
8, c
∗
8

)
,

with
w = (P 2

1 + P 2
2 + (P3 − 2)2 + P2(3P3 − 4) + P1(3P3 + 3P2 − 4))−1,

a∗8 = P 2
2 + P2(P3 + P1 − 2)− P1 + 1,

b∗8 = P 2
3 + P3(P2 + P1 − 2)− P2 + 1,

c∗8 = P 2
1 + P1(P3 + P2 − 2)− P3 + 1.

Since we are working with a biological system, negative population densities are not allowed.

Therefore, we only consider states (a, b, c) in R3
+ = {(a, b, c) ∈ R3| a, b, c ≥ 0} (Zeeman, 1993).

Fixed point x∗8 does not always lie in R3
+, while fixed points x∗5, x∗6 and x∗7 do. The following

equalities should hold so that one of the densities at fixed point x∗8 becomes zero:

a∗8 = 0⇔ P3 = −(P2 − 1)(P1 + P2 − 1)

P2
,

b∗8 = 0⇔ P3 =
1

2

(
2− P1 − P2 ±

√
P 2
1 + 2P1P2 − 4P1 + P 2

2

)
,

c∗8 = 0⇔ P3 =
−P 2

1 − P1P2 + 2P1 − 1

P1 − 1
.

(3.8)

These three surfaces thus cut out a region in the winning probability parameter space where

fixed point x∗8 does not lie in R3
+, as visualised with grey shades in Figure 3.4.

Stability of the fixed points

The next step involves studying the stability of the fixed points. When a dynamical system

is at a fixed point, it can stay there for an infinite amount of time, or a perturbation can

push it away from that fixed point, possibly forcing the system to end up somewhere else. A

fixed point is defined to be stable if all sufficiently small perturbations away from the fixed

point damp out in time, so that the system eventually returns to the original fixed point.

Conversely, a fixed point is called unstable if perturbations grow over time. The stability of
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Figure 3.4: The region in the winning probability parameter space where fixed

point x∗
8 /∈ R3

+ is visualised with grey shades.

the fixed points can be studied through linearisation of the governing equations, using the

Jacobian matrix (J ) of the system (Strogatz, 1994). The elements Ji,j of the Jacobian matrix

of System (3.6) are given by:

J11 = 1− 2a∗ + b∗(P1 − 2)− c∗(P3 + 1),

J12 = a∗(P1 − 2),

J13 = −a∗(P3 + 1),

J21 = −b∗(P1 + 1),

J22 = 1− 2b∗ + c∗(P2 − 2)− a∗(P1 + 1),

J23 = b∗(P2 − 2),

J31 = c∗(P3 − 2),

J32 = −c∗(P2 + 1),

J33 = 1− 2c∗ + a∗(P3 − 2)− b∗(P2 + 1).

where a∗, b∗ and c∗ are the population densities at a fixed point.

The densities at each fixed point can now be substituted into the Jacobian, and the eigenvalues

and corresponding eigenvectors of the resulting matrix can be calculated. Based on the sign of

the eigenvalues, one can determine whether the directions corresponding to the eigenvectors

are unstable or stable. More precisely, a positive sign corresponds to unstable behaviour, and

vice versa. The fixed points for System (3.6) are classified in Table 3.1 following the rules

found in Nolte (2014).
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Fixed point Eigenvalues (λ1, λ2, λ3) Classification

x∗1 (1, 1, 1) Repellor

x∗2 (−1,−P1,−1 + P3) If λ2, λ3 6= 0: Attracting node

x∗3 (−1,−1 + P1,−P2) If λ2, λ3 6= 0: Attracting node

x∗4 (−1,−1 + P2,−P3) If λ2, λ3 6= 0: Attracting node

x∗5

(
P1(P1−1)
P1(P1−1)−1 ,−1,

1−P3+P1(P1+P2+P3−2)
P1(P1−1)−1

) If λ1, λ3 6= 0:

Saddle node index 1 or 2

x∗6

(
P3(P3−1)
P3(P3−1)−1 ,−1,

1−P2+P3(P1+P2+P3−2)
P3(P3−1)−1

) If λ1, λ3 6= 0:

Saddle node index 1 or 2

x∗7

(
P2(P2−1)
P2(P2−1)−1 ,−1,

1−P1+P2(P1+P2+P3−2)
P2(P2−1)−1

) If λ1, λ3 6= 0:

Saddle node index 1 or 2

x∗8 (−1,#,#)

If λ2, λ3 6= 0:

Spiral saddle index 2 or

Saddle node index 2

Table 3.1: The fixed points of System (3.6) are classified using the eigenvalues of

the Jacobian (Strogatz, 1994; Nolte, 2014). The eigenvalues of fixed point x∗
8 are

too complicated to fit the table.

We now see how the introduction of the winning probabilities P1, P2 and P3 impacts the

system used by Reichenbach et al. (2008). Fixed points x∗2, x∗3 and x∗4 are stable, and thus

attract trajectories, whereas they are saddle nodes in the case of deterministic competition.

Fixed points x∗5, x∗6 and x∗7 are saddle nodes with either one or two unstable eigendirections,

called saddle node index 1 and 2, respectively (Nolte, 2014). Eigenvalue λ1 at these three

fixed points is always positive, while eigenvalue λ3 is either negative or positive. The sign

changes when P3 takes the following values:

λ3(x
∗
5) = 0 ⇔ P3 = −(P2 − 1)(P1 + P2 − 1)

P2
,

λ3(x
∗
6) = 0 ⇔ P3 =

1

2

(
2− P1 − P2 ±

√
P 2
1 + 2P1P2 − 4P1 + P 2

2

)
,

λ3(x
∗
7) = 0 ⇔ P3 =

−P 2
1 − P1P2 + 2P1 − 1

P1 − 1
.

(3.9)

These are the same equations that determine whether x∗8 lies in R3
+ (Eqs. (3.8)). When the

winning probabilities of the system are thus altered so that the coexistence fixed point leaves
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R3
+, then, at the same time, eigenvalue λ3 of one of the fixed points x∗5, x∗6 or x∗7 will become

positive, hence providing this fixed point with a second unstable eigendirection. Moreover, it

can be confirmed that the regions cut out by the surfaces defined by Eqs. (3.9) only intersect

when P1 = 0 and P3 = 1, or P2 = 1 and P3 = 0, or P1 = 2 and P2 = 0, while otherwise they

are disjoint. At most one of the fixed points x∗5, x∗6 and x∗7 can thus be a saddle node index 2.

Eigenvalues λ2 and λ3 of fixed point x∗8 can either be real or imaginary, and the real part of

λ3 is always strictly positive. It then follows from a proof by Zeeman (1993) that the real

part of λ2 is also positive. Therefore, when λ2 and λ3 are imaginary, x∗8 is a spiral saddle

index 2, which repels trajectories on the invariant manifold. When the eigenvalues are real,

the fixed point becomes a saddle node index 2, and also repels trajectories on the invariant

manifold, but not in a spiralling manner.

A proof was presented by Zeeman and van den Driessche (1998), from which it can be con-

cluded that System (3.6) does not possess any limit cycles. Since all trajectories approach

the invariant manifold, and since there are no other attractors on the invariant manifold

than fixed points, we can conclude that fixed points x∗2, x∗3 and x∗4 are the only attractors of

System (3.6) (Strogatz, 1994).

The previous findings thus show that the dynamics of System (3.6) on the invariant manifold

can be divided in three classes, displayed in Figure 3.5. To obtain these figures, the dynamics

on the invariant manifold were projected on the unit simplex, for which it holds that a+b+c =

1, so that the dynamics can be conveniently displayed (Zeeman, 1993). Figure 3.5 (a) displays

the dynamics when x∗8 ∈ R3
+ and two eigenvalues of x∗8 have an imaginary part, (b) when

x∗8 ∈ R3
+ and the eigenvalues of x∗8 are real, and (c) when x∗8 /∈ R3

+.

(a) (b) (c)

Figure 3.5: The three possible classes of dynamics of System (3.6) on the invariant

manifold are displayed on the unit simplex. When a fixed point attracts on the

invariant manifold, it is displayed by (•), and when it repels, by (◦). Fixed points

acting as saddle nodes on the invariant manifold can be found at the intersection

of their unstable and stable manifolds. The dynamics when x∗
8 ∈ R3

+ and two

eigenvalues of x∗
8 have an imaginary part is displayed in (a), when x∗

8 ∈ R3
+ and

the eigenvalues of x∗
8 are real in (b), and when x∗

8 /∈ R3
+ in (c).
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Impact of non-deterministic competition on the mean-field equations

As explained in Section 3.3.1, May and Leonard (1975) concluded that the mean-field equa-

tions without winning probabilities could produce sustained coexistence due to trajectories

approaching the heteroclinic orbit while never reaching it, although this behaviour was deemed

unrealistic for a real ecosystem. However, the analysis of the mean-field equations involving

the winning probabilities shows that the heteroclinic connection between fixed points x∗2,

x∗3 and x∗4 does not exist, and thus neither does the endless approach to the heteroclinic

orbit. These findings are confirmed by Zeeman (1993). The mean-field equations for non-

deterministic competition thus indicate that a trajectory will end up in a state where only

one species survives, thus jeopardizing any possibility of sustained coexistence of the three

species.

Relation between mean-field dynamics and sustained coexistence in the IBM

It can now be stated whether or not there is a relation between the three classes of dynamics

shown in Figure 3.5, and the number of generations for which species managed to coexist in the

IBM simulations. Therefore, Figure 2.9, where the number of generations required for a single

species to become the sole survivor in the IBM was displayed as a function of the winning

probabilities, has been reproduced in Figure 3.6. The regions where x∗8 /∈ R3
+ and where

x∗8 ∈ R3
+ while two eigenvalues of x∗8 are imaginary are indicated. For the region in between,

it then holds that x∗8 ∈ R3
+ while all eigenvalues of x∗8 are real. The figures show no clear

relationship between the three classes of dynamics and the number of generations for which

species managed to coexist in the IBM simulations. In Figures 3.6 (a) and (b), the region of

coexistence seems to fit quite neatly in the region where x∗8 has two imaginary eigenvalues.

To state that this region thus predicts sustained coexistence is a mistake, however, because of

the situation in Figure 3.6 (c). The region where x∗8 /∈ R3
+ seems to occur where coexistence

between three species is a short term phenomenon. However, as short term coexistence also

occurs outside of this region, it is not possible to predict where sustained coexistence occurs

based on the three classes of dynamics.

As stated earlier, trajectories of System (3.6) are attracted to a fixed point where only one

species survives. Coexistence is thus a transient phenomenon, which eventually disappears.

The time it takes for a trajectory to travel from the initial condition to the vicinity of one of

the attracting fixed points, x∗2, x∗3 or x∗4, will therefore quantify how long species manage to

coexist under the mean-field assumptions, and could possibly give an indication of how long

coexistence persists in the IBM. Calculating how long a trajectory travels, however, is often

impossible when working with non-linear systems. Subsequently, several measures have been

devised that enable an approximation (Neubert and Caswell, 1997). Often, these measures

require numerical methods, or are not adequate for the duration we want to calculate. How-
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(a) P3 = 0 (b) P3 = 0.25 (c) P3 = 0.50

Figure 3.6: The impact of the dynamics of the coexistence fixed point on the

number of generations that were required for a single species to become the sole

survivor. In regions restricted by the edges of the frame and the white curves,

x∗
8 has two imaginary eigenvalues and x∗

8 ∈ R3
+, while in regions restricted by the

edges of the frame and the black curves, x∗
8 /∈ R3

+. For the region in between, it

holds that x∗
8 ∈ R3

+ while x∗
8 has three real eigenvalues.

ever, one measure that could be used is called resilience, which gives an indication of how

fast perturbations to a stable state decay. It could be used to qualitatively indicate how fast

a trajectory approaches x∗2, x∗3 or x∗4, once it is in the vicinity of one of these fixed points

(Neubert and Caswell, 1997).

The resilience of a system at a fixed point is defined as the opposite of the largest eigenvalue

of the Jacobian evaluated at that fixed point. Thus high resilience corresponds to fast decay.

In our case, we only considered the eigenvalues that determine the dynamics on the invariant

manifold, since the other eigenvalue, determining attraction to the invariant manifold, always

equals minus one. Also, since there are three attracting fixed points, we calculated the

average of the resilience at each of these three fixed points. The average resilience was

calculated for several sets of winning probabilities, in Figure 3.7. Comparing this figure with

Figure 2.9 shows that the average resilience is high in the region of coexistence. Stating that

high resilience invokes sustained coexistence, however, would be too bold. Also, the abrupt

transition from sustained coexistence to short term coexistence shown in Figure 2.9 contrasts

with the gradual change of the resilience through the parameter space.
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(a) P3 = 0 (b) P3 = 0.25 (c) P3 = 0.50

Figure 3.7: Average resilience of the attracting nodes of System (3.6).

3.4 Partial differential equations

Since neglecting space impedes the applicability of System (3.6), we will now introduce the

dependence of the population densities on both time and space, and add a diffusion coefficient.

In this way, the following PDEs are obtained:


∂at(r, t) = D∆a(r, t) + µa(r, t)[1− ρ(r, t)]− σP3a(r, t)c(r, t)− σ(1− P1)a(r, t)b(r, t)

∂bt(r, t) = D∆b(r, t) + µb(r, t)[1− ρ(r, t)]− σP1b(r, t)a(r, t)− σ(1− P2)b(r, t)c(r, t)

∂ct(r, t) = D∆c(r, t) + µc(r, t)[1− ρ(r, t)]− σP2c(r, t)b(r, t)− σ(1− P3)c(r, t)a(r, t)

(3.10)

with r = (r1, ..., rd) in the d -dimensional lattice considered, D a diffusion constant and ∆ the

Laplacian operator.

The two-dimensional version of these equations was solved numerically using Mathematica,

over the domain [0, 1]× [0, 1]× [0, 1000]. A random initial condition was used, and the winning

probabilities were all set equal to one. The resulting solution, shown in Figure 3.8, displays

spiral waves after a short transient. These spiral waves will exist for an infinite amount

of time. When comparing the PDE solution to the spatio-temporal evolution of an IBM

simulation, shown in Figure 2.5, it can be stated that the spiral waves are more clearly visible

in the former. Also, when considering the plot of the densities through time, the densities of

the PDE solution oscillate in a regular way, while those in the IBM simulation oscillate rather

irregularly. Both these discrepancies result from the fact that the IBM simulations consider

finite populations, and are thus subject to fluctuations. Still, the PDEs seem to be a more

appropriate tool for gaining insight into the behaviour of the IBM than the other approaches
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described in this chapter. We will analyse these further in Chapter 4, examining numerical

solutions of the PDEs, and applying analytical approaches to the PDEs.

(a) (b)

Figure 3.8: Numerical solution of the two-dimensional version of System (3.10).

Figure (a) shows the evolution of the species densities through time, while Fig-

ure (b) displays the the densities in space at time t = 1000.

3.5 Conclusion

System (3.2), constructed in Section 3.1, seems to approximate the behaviour of the IBM

simulations, without making use of stochastic interactions. Although we will not use this

system of equations in this thesis, it might make for an interesting tool to investigate the

IBM’s dynamics.

The dynamics of the mean-field equations, just like with the IBM simulations, indicates

that the introduction of winning probabilities shortens the amount of time that species can

coexist. However, the results obtained in Section 3.3.2 do not adequately explain why certain

combinations of winning probabilities allow species to live together for a longer time than

other combinations. This could be due to the fact that space is neglected, since it has been

stated that it is essential to consider the spatial distribution of species, as only then is one able

to analyse the phenomena that produce sustained coexistence (Solé and Bascompte, 2006).

Additionally, the difficult analysis of non-linear DEs hampers obtaining useful results.

Because of these mediocre results, we will attempt to explain sustained coexistence using

PDEs. Although the analysis of PDEs is usually more complicated, they take into account

the spatial distribution of the species’ densities, which allows us to investigate the impact of

pattern formation on coexistence.



CHAPTER 4
In-depth study of the governing partial

differential equations

4.1 Three transients

In order to succeed in explaining why certain combinations of winning probabilities allow for

sustained coexistence, it is essential to keep the spatial distribution of species in consideration,

as only then one can study pattern formation. Of course, when one wants to use the presence

and absence of spiral waves (Cfr. Section 2.3.1) in order to explain sustained coexistence,

two-dimensional space should be considered. However, this often seems to be a tedious job,

and has so far only led to limited success. Although Reichenbach et al. (2008) managed to

obtain some characteristics of the spiral waves through recasting System (1.3) into the form of

a complex Ginzburg-Landau equation, this approach seems too coarse to explain the influence

of winning probabilities on coexistence.

Luckily, in one dimension, the system seems to exhibit a one-dimensional counterpart of

spiral waves, called travelling waves (Rulands et al., 2011). A travelling wave is a wave with a

constant shape which travels through space at a constant speed (Murray, 2002). To illustrate

this, System (3.10) was solved numerically in one dimension for different winning probabilities,

using Mathematica with appropriate initial and boundary conditions. All calculations were

carried out using the same initial conditions, and the diffusion coefficient was set to D = 10−4.

This value corresponds to the mobility ε = 1 used in the IBM simulations, since D = εN−2

(Rulands et al., 2011). The equations were solved over the domain (x, t) ∈ [0, 1]× [0, 1200].

The species densities are plotted next to each other for several instances in time and through

one-dimensional space in Figure 4.1. Figure 4.1(a) shows a travelling wave that will continue

to exist for infinite time, as species A (red) chases species B (yellow) with the same speed

as species B chases species C (blue) and C chases A. In Figure 4.1(b), species A chases
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species B slightly slower than in Figure 4.1(a). Therefore, after some time, the travelling

wave configuration will be destroyed and replaced by a more complicated and seemingly

irregular pattern. These irregular waves exist for a large but finite amount of time, and seem

visually similar to certain cellular automata. In Figure 4.1(c), both the travelling wave and

the irregular wave are short-lived, while in Figure 4.1(d), the irregular wave does not emerge

after the travelling waves are destroyed.

From these space-time diagrams, one could conclude that the progression from an initial

condition to a monoculture is subject to three transients. We will define the first transient to

be the transition from the initial condition to the second transient. The second transient is

then the travelling wave transient, where three travelling domains, one for each species, chase

each other. The third transient will be the irregular transient. The duration of these transients

will determine how long coexistence persists, and will probably also give an indication of the

duration of coexistence in IBM simulations.

4.2 Travelling waves

At first glance, the travelling wave transient appears to be the easiest to analyse, since its

behaviour is quite straightforward. Figure 4.2(a) displays the profile of the travelling wave

that was depicted in Figure 4.1(a), at time t = 60. If we know the wave speed of the travelling

wave between two species as a function of the winning probability governing the competition

between those species, we would have a good idea of how long the second transient persists.

The goal of this section is thus to obtain this wave speed.

4.2.1 Lotka-Volterra equations for two species

Considering Figure 4.2(a), it is clear that at the wave front, the density of the third species

is very small. It may therefore be reasonable to assume that the travelling wave between two

species can be approximately described by tracking the interaction between only two species,

while ignoring the dynamics of the third species. System (3.10) then reduces to


∂a

∂t
(r, t) = D∆ a(r, t) + µa(r, t) [1− a(r, t)− b(r, t)]− σ (1− P1) a(r, t) b(r, t),

∂b

∂t
(r, t) = D∆ b(r, t) + µ b(r, t) [1− a(r, t)− b(r, t)]− σ P1 b(r, t) a(r, t).

(4.1)

To verify that this simplified system also has travelling wave solutions, as System (3.10), it

was again solved using Mathematica, and the result is shown in Figure 4.2(b).
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(a) P1 = P2 = P3 = 1 (b) P1 = 0.95 and P2 = P3 = 1

(c) P1 = 0.90 and P2 = P3 = 1 (d) P1 = 0.80 and P2 = P3 = 1

Figure 4.1: Numerical solutions of the one-dimensional counterpart of Sys-

tem (3.10) for different winning probabilities.
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(a) (b)

Figure 4.2: Profile of the travelling wave solution of System (3.10), as displayed

on Figure 4.1(a) at time t = 60 (a) and a travelling wave solution of System (4.1)

(b).

We can now rescale time and space by introducing t∗ = µt and x∗ =
√
µ/Dx and we take

k = σ/µ. For the sake of brevity, the asterisks are dropped in the remainder, we stop writing

down the dependence on space and time explicitly, and denote ∂a
∂t by at and ∂2a

∂x2
by axx, so

that the system becomes

{
at = axx + a[1− a− (1 + k(1− P1))b],

bt = bxx + b[1− (1 + kP1)a− b].
(4.2)

Since we are interested in the impact of the winning probabilities, we will take k = 1.

System (4.2) is a specific case of a more general system of Lotka-Volterra equations for two

species with diffusion (Hung, 2012; Lotka, 1920), given by

{
at = axx + a[1− a− α1 b],

bt = d bxx + γ b[1− α2 a− b],
(4.3)

where d, γ, α1 and α2 are positive parameters. By setting d = 1, γ = 1, α1 = 2 − P1 and

α2 = 1 + P1, one obtains System (4.2). As indicated in Section 3.3.2, it should hold that

a ≥ 0 and b ≥ 0 since we are working with a biological system. Equivalently, all (a, b) ∈ R2
+.

It is known that System (4.3) has four fixed points, x∗1 = (0, 0), x∗2 = (1, 0), x∗3 = (0, 1) and

x∗4 = ( 1−α1
1−α1α2

, 1−α1
1−α1α2

). This last one corresponds to coexistence, and does not always lie in

R2
+. The stability of the fixed points divide the dynamics into four possible regimes as a

function of α1 and α2 (Hung, 2012):
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1. α1 < 1 < α2: x∗2 is the only stable fixed point;

2. α2 < 1 < α1: x∗3 is the only stable fixed point;

3. α1, α2 > 1: x∗2 and x∗3 are both stable;

4. α1, α2 < 1: x∗4 is the only stable fixed point.

System (4.2) belongs to Case Three, also called the bistable case.

4.2.2 Minimal wave speed

General system

Analysing travelling waves usually involves the coordinate transformation z = x− ct, with c

the wave speed. By doing so, the coordinate system essentially moves at the same speed as

the wave, so that it observes a stationary solution. The sign of c then determines in which

direction the wave travels. Applying this transformation to System (4.3) yields:

{
0 = a′′ + ca′+ a[1− a− α1 b],

0 = d b′′ + cb′ + γ b[1− α2 a− b],
(4.4)

where the prime is used to denote the derivative with respect to z. This system can now be

converted into a four-dimensional system of first order ODEs. We do so by defining v = a′

and w = b′:



a′ = v,

b′ = w,

v′ = −cv − a[1− a− α1 b],

dw′ = −cw −γ b[1− α2 a− b].

(4.5)

With a travelling wave solution, the system is at a steady state for z → −∞ and for z → +∞
(Murray, 2002). When considering the travelling wave from Figure 4.2(b), for instance, we

indeed notice that (a, b)(−∞) = (1, 0) and (a, b)(+∞) = (0, 1), which are both fixed points

of System (4.3), and correspond to fixed points (1, 0, 0, 0) and (0, 1, 0, 0) of System (4.5). A

travelling wave solution, in the context of the latter system, thus looks like a trajectory con-

necting (1, 0, 0, 0) and (0, 1, 0, 0) in the phase space (Murray, 2006). The path this trajectory

describes in four-dimensional space can provide insight into the wave speed. In order to il-

lustrate this, we will first consider Case One. After that, the method will be applied to Case

Three, as this is where System (4.2) belongs.
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Case One

Let us consider System (4.3) with α1 < 1 < α2, i.e. Case One. For this setting, Kan-

on (1997) proved that the minimal wave speed is cmin ≥ 2
√

1− α1 for a travelling wave

with (a, b)(−∞) = (1, 0) and (a, b)(+∞) = (0, 1). The minimal wave speed is defined as

cmin = inf{c > 0 | travelling wave with speed c exists} (Guo and Wu, 2012). Lewis et al.

(2002) proved that for a restricted parameter range, it holds that cmin = 2
√

1− α1. An

intuitive argument for these results, although not a strict proof, can be made by assessing the

stability of the involved fixed points of System (4.5).

The eigenvalues of the system linearised around fixed point (0, 1, 0, 0) are λ1,2 = −1
2 c ±√

c2 + 4γ and λ3,4 = −1
2 c ±

√
c2 + 4(α1 − 1). Eigenvalues λ1,2 are always real, but the

argument of the square root in the expression for λ3,4 can be negative, causing the trajectory to

spiral around the fixed point before reaching it, since the eigenvalues become imaginary. Due

to this spiralling, density a becomes negative at some point, which is biologically meaningless.

If we require eigenvalues λ3,4 to be real, it is necessary that c ≥ 2
√

1− α1, which is the minimal

wave speed stated earlier (Murray, 2006; Okubo et al., 1989). It has been conjectured that

the actual speed c of the travelling wave is equal to the minimal wave speed cmin (Murray,

2006). Although this often seems to be true, Hosono (1998) found a numerical example for

which this is not the case. However, it is clear that finding a minimal wave speed would give

us an indication of the actual wave speed.

Case Three

Let us now consider System (4.5) with d = 1, γ = 1, α1 = 2 − P1 and α2 = 1 + P1, as in

System (4.2). Eigenvalues of this system linearised around (1, 0, 0, 0) are λ1,2 = −1
2 c±
√
c2 + 4

and λ3,4 = −1
2 c ±

√
c2 + 4(1− P1), and those around (0, 1, 0, 0) are λ1,2 = −1

2 c ±
√
c2 + 4

and λ3,4 = −1
2 c±

√
c2 + 4P1. Unfortunately, the eigenvalues are always real since 0 ≤ P1 ≤ 1,

so that we do not have a means to find a restriction on the wave speed.

Rigorous results for the parameter ranges of Case Three are rather limited. It was proved

by Gardner (1982), Conley and Gardner (1984) and Kan-on (1995), using different methods,

that a travelling wave connecting (a, b)(−∞) = (1, 0) and (a, b)(+∞) = (0, 1) exists and is

unique. Moreover, Kan-on (1995) proved that this solution is monotone with a wave speed c

for which it holds that −2 < c(γ, α1, α2) < 2
√
γd, with c(γ, α1, α2) depending monotonically

on the parameters γ, α1 and α2.

The sign of the wave speed determines in which direction the wave travels. In our case, it

indicates whether species A chases species B or the other way around. Guo and Lin (2013)

proved that the sign of the travelling wave connecting (a, b)(−∞) = (1, 0) and (a, b)(+∞) =

(0, 1) in System (4.3), with γ = d, is given by:
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sign
[
c(γ, α1, α2, d)

]
=


1, if α2 > α1 > 1,

0, if α2 = α1 > 1,

−1, if α1 > α2 > 1.

Applying this to System (4.2), P1 = 0.5 should result in a standing wave with speed c = 0.

Intuitively, this is indeed what one should expect, as both species are equally strong when

P1 = 0.5. This was confirmed by numerically solving System (4.2). When P1 > 0.5, α2 > α1

and thus the wave travels in the direction where (a, b) = (0, 1). This again tallies with the

fact that when P1 > 0.5, species A is stronger than species B. Similar arguments hold for

P1 < 0.5, and were confirmed numerically, as will be discussed in Section 4.2.4.

From all the results stated above, we cannot derive an exact or approximate wave speed

c(P1) for System (4.2). Our hope is that this system is in some way simpler than the general

System (4.4), so that a wave speed can be obtained.

4.2.3 Exact solutions

It is possible to obtain some analytical travelling wave solutions connecting (a, b)(−∞) = (1, 0)

and (a, b)(+∞) = (0, 1) for specific values of the parameters in System (4.4) (Rodrigo and

Mimura, 2001, 2000; Kudryashov, 2012; Kudryashov and Zakharchenko, 2015). Figure 4.2(b)

indicates that the travelling wave solution has the form of a hyperbolic tangent. Since the

derivative of this function is expressible in terms of itself, it is assumed that da
dz = F (a).

Furthermore, it is assumed that b = G(a). Substituting these expressions into System (4.3),

the following system is obtained:


0 = F

dF

da
+ c F + a[1− a− α1G],

0 = d
(
F
dF

da

dG

da
+ F 2d

2G

da2
)

+ c F
dG

da
+γ G[1− α2 a−G].

(4.6)

The forms of F and G are assumed to be F (a) =
m∑
i=0

kia
i and G(a) =

n∑
i=0

lia
i, respectively

(Rodrigo and Mimura, 2000). The boundary conditions (a, b)(−∞) = (1, 0) and (a, b)(+∞) =

(0, 1) can now be imposed, and a relation between n and m can be established by substituting

the general forms of F and G into System (4.6) and balancing the highest order terms of the

derivatives with those of the nonlinear Lotka-Volterra terms. A value for m can now be

chosen, and its counterpart n can be calculated (Rodrigo and Mimura, 2000).

Substituting these specific forms for F and G into System (4.6) results in two polynomials

that are a function of a. If the coefficients accompanying the terms in a equal zero, the forms

of F and G solve the system. Setting all coefficients equal to zero yields a system of equations
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that can be solved for specific Lotka-Volterra parameter values, so that all coefficients ki and

li are obtained (Rodrigo and Mimura, 2000).

However, the solutions obtained in this way require Lotka-Volterra parameter values different

from the ones in System (4.2). We are thus not able to obtain an exact solution, and an exact

wave speed, using this method. A hyperbolic tangential function was fitted to the numerical

solution of System (4.2), as shown in Figure 4.3. The almost immaculate fit indicates how

close the solution we are seeking for is to the hyperbolic tangential form.

Figure 4.3: The graph of 1
2

[
1+tanh[a0(z−z0)]

]
fitted to data (◦) from a numerical

travelling wave calculation.

4.2.4 Approximating the wave speed

Let us now consider the Lotka-Volterra system for two species, without diffusion:


da

dt
= a[1− a− (2− P1) b],

db

dt
= b[1− (1 + P1) a− b].

(4.7)

These equations were already given for three species in Section 3.3.2. The phase portrait for

System (4.7), in Case Three, is shown in Figure 4.4. Fixed points (1, 0) and (0, 1) are stable,

fixed point (0, 0) is unstable and the coexistence fixed point is a saddle node. Zeeman (1993)

proved that there exists an invariant manifold, also called the carrying simplex, which attracts

every non-zero trajectory. All fixed points, except (0, 0) thus lie on this manifold. The aim of

the following section is to approximate the equation describing this manifold, and then, since

the manifold attracts all non-zero trajectories, to confine the dynamics for System (4.7) to
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this manifold, so that we hopefully obtain a one-dimensional DE that can approximate the

behaviour of System (4.7). For this equation, we will then attempt to derive a wave speed.

Change of coordinate system

The approximation of the invariant manifold has been done for System (1.2) by Reichenbach

et al. (2008). We use their method as inspiration for approximating the invariant manifold

in the case of System (4.2).

The unstable manifold of the coexistence fixed point lies on the invariant manifold. The

eigenvector of the system at the coexistence fixed point corresponding to a positive eigenvalue

will thus be tangent to the invariant manifold. This vector, ya, is shown in Figure 4.4.

Orthogonal to this vector, we construct a vector yb. We will transform the coordinate system

so that the axes of the new coordinate system are aligned with ya and yb, and we will require

that the coexistence fixed point becomes the new origin.

The coordinates of the coexistence fixed point are
(
− 1−P1

−1−P1+P 2
1
,− P1

−1−P1+P 2
1

)
, and the system’s

unstable eigendirection at that point is v1 = ya =
(−2+P1

1+P1
, 1
)
, while the stable eigendirection

is v2 =
(
− 1 + 1

P1
, 1
)
. We now construct a vector orthogonal to ya, i.e. yb =

(
1, 2−P1

1+P1

)
. To

obtain the new coordinates Y = (Ya, Yb), we thus perform the transformation Y = S x with

x = (a + 1−P1

−1−P1+P 2
1
, b + P1

−1−P1+P 2
1

) and S =

( −2+P1
1+P1

1

1
2−P1
1+P1

)
. Expressing the old coordinates

in terms of the new ones, we can use these expressions in System (4.7) to obtain a system of

ODEs in terms of dtYa and dtYb.

Approximating the invariant manifold

We now search for an expression of the invariant manifold Yb = G(Ya). We choose to ap-

proximate it up to third order, and thus we take G(Ya) = J(P1)Ya + K(P1)Y
2
a + L(P1)Y

3
a ,

with parameters J(P1), K(P1) and L(P1) to be determined. Since trajectories stay on the

invariant manifold, we know that dtG(Ya) = ∂G
∂Ya

dtYa = dtYb. Thus, ∂G
∂Ya

dtYa = (J(P1) +

2K(P1)Ya + 3L(P1)Y
2
a ) dtYa = dtYb. We substitute dtYb and dtYa calculated earlier into

this equation, and in order to make the equation hold up to third order, we find the values

for the coefficients J(P1), K(P1) and L(P1), given in Appendix B. In this way, we have now

approximated the invariant manifold. Upon substituting our new expression for Yb into the

equation for dtYa, we obtain:

dtYa = c0(P1)Ya + c1(P1)Y
2
a + c2(P1)Y

3
a , (4.8)

with c0(P1), c1(P1) and c2(P1) given in Appendix B.
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Figure 4.4: The phase plane of System (4.7) for some generic value of P1. Stable

fixed points are represented by (•) and unstable fixed points by (◦). An invariant

manifold connects the coexistence fixed point with the fixed points where only one

species survives. The vectors ya and yb are displayed.

This ODE has three fixed points: Y1(P1) ≤ 0, Y2 = 0 and Y3(P1) ≥ 0. Using this, ODE (4.8)

can be rewritten to obtain

dtYa = c2(P1)Ya(Ya − Y1(P1))(Ya − Y3(P1)), (4.9)

with Y1(P1) and Y3(P1) as in Appendix B.

It can be verified that the fixed point Y1(P1) then corresponds to the fixed point (1, 0) in

System (4.7), while Y3(P1) corresponds to (0, 1). Note that the third order approximation of

the invariant manifold conveniently assures that dtYa is equal to a polynomial of third degree,

with one negative root and one positive, surrounding a root at the origin. Both the negative

and the positive fixed points are stable, while the fixed point at the origin is unstable. This

is indeed the behaviour we want to approximate (cfr. Figure 4.4).

Solving the approximate equation with diffusion

Now, we reintroduce diffusion in Equation (4.9) and make Ya dependent on space again, which

yields:

∂tYa = ∂xxYa + c2(P1)Ya(Ya − Y1(P1))(Ya − Y3(P1)). (4.10)
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Again, we choose z = x− ct and obtain:

0 = Y ′′a + cY ′a + c2Ya(Ya − Y1)(Ya − Y3) = L(Ya), (4.11)

and we look for a travelling wave solution with Ya(−∞) = Y1(P1) and Ya(+∞) = Y3(P1).

Murray (2002) proposes an approach to solve a similar equation. The following ansatz is used:

Y ′a = r(Ya − Y1(P1))(Ya − Y3(P1)), (4.12)

where r is a parameter, to be determined. This ODE can be solved analytically:

Ya(z) =
Y3(P1) +KY1(P1) exp(r(Y3(P1)− Y1(P1))z)

1 +K exp(r(Y3(P1)− Y1(P1))z)
, (4.13)

with K some constant that shifts the solution along the z-axis. This solution has some

properties we want for the solution of Equation (4.11), as Ya(−∞) = Y1(P1) and Ya(+∞) =

Y3(P1) when r is negative. If we now substitute Equation (4.12) into Equation (4.11), we

obtain:

L(Ya) = (Ya−Y1(P1))(Ya−Y3(P1))
[
(2r2+c2(P1))Ya−(r2(Y3(P1)+Y1(P1))−cr)

]
= 0. (4.14)

Since L(Ya) must equal zero, we require 2r2 + c2(P1) = 0 and r2(Y3(P1) + Y1(P1))− cr = 0.

Solving this system of equations results in two solutions. We select the solution that has r < 0,

which leads to r(P1) = −
√
−c2(P1)

2 and wave speed c(P1) = −
√
−c2(P1)

2 (Y3(P1)+Y1(P1)). The

square root of −c2(P1) is real since it holds for 0 ≤ P1 ≤ 1 that c2(P1) < 0. If parameter r(P1)

and wave speed c(P1) satisfy these restrictions, then Solution (4.13) solves Equation (4.11).

Since parameters c2(P1), Y3(P1) and Y1(P1) are all functions of only P1, the wave speed c(P1)

can be plotted as a function of P1, as in Figure 4.5. The approximated wave speed fits the

numerically obtained wave speeds reasonably well. The error is probably due to confining the

dynamics to the invariant manifold, and the approximation of this manifold up to third order

only.

Travelling waves and coexistence

From the approximate travelling wave speed obtained in the previous section, we will now

estimate how long the travelling wave transient exists for a certain set of winning probabilities.

From an initial condition consisting of three domains, with a domain being a region in space

inhabited by individuals of a single species, we will thus calculate which domain is destroyed

first, and how long it takes to destroy this domain. These results will depend not only on

the winning probabilities, but also on the length of the domains when the travelling wave

transient emerges.
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Figure 4.5: The wave speed c(P1) = −
√

−c2(P1)
2 plotted against the winning

probability P1. Wave speeds (◦) obtained by numerically solving System (4.2) are

also displayed.

Figure 4.6: The three domains displayed on the circle, with the winning proba-

bilities on the three wave fronts.
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In Figure 4.6, the three domains are displayed on the circle, which is possible by imposing

periodic boundary conditions as in the case of the IBM simulations. Competition at the wave

fronts between two domains is decided by a certain winning probability. In order to calculate

how fast a domain grows or shrinks, we can use the following formulae:

vA = c(P1)− c(P3),

vB = c(P2)− c(P1),

vA = c(P3)− c(P2),

(4.15)

where vA, vB and vC represent the growth speed of the domains belonging to species A, B

and C, respectively. It can be verified that vi is positive if the domain of i grows.

At most two domains can have a negative growth speed. For these two domains, the time

until destruction tD is given by:

tD,i = −Li
vi
, (4.16)

with vi the growth speed and Li the initial length of the domain concerned. The species with

the smallest tD will be the one whose domain is destroyed first, after which the travelling

wave vanishes.

An extensive study can now be conducted, where for various combinations of winning proba-

bilities and various initial domains the life span of the travelling wave transient is calculated.

As this is beyond the scope of this thesis, we only consider an initial state where each domain

covers 1/3 of the space, and the range of winning probabilities used for running the IBM

simulations. The results of these calculations for some sets of winning probabilities are shown

in Figure 4.7. In order to facilitate its comparison with Figure 2.9 (ε = 1), winning proba-

bilities for which an infinite amount of time is required for the first domain to be destroyed,

were replaced by the maximal finite value obtained in the calculations. Also, the time was

rescaled between 60 and 10 000, because these values are the minimal and maximal number

of generations displayed in Figure 2.9.

When comparing Figures 4.7 and 2.9, it is clear that the travelling wave transient does not

explain everything. It should be noted that the infinitely long existence of travelling waves

resulting from some winning probabilities are unrealistic, as in the IBM simulation fluctuations

will always destroy the travelling wave transient after some time, due to the stochastic nature

of the IBM. Overall, it is clear that the first and the third transient should also be accounted

for in order to properly explain where coexistence persists for a long time. Besides, it is

also possible that the simplification from two dimensions to one influences the coexistence

time. However, Figure 4.7 shows that it takes a significant amount of time for one domain
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(a) P3 = 0, ε = 1 (b) P3 = 0.25, ε = 1 (c) P3 = 0.50, ε = 1

Figure 4.7: The relative time until one domain is destroyed.

to be destroyed in the region of coexistence. Thereby, it is thus confirmed that the existence

of travelling waves, and their two-dimensional counterparts spiral waves, can significantly

prolong the number of generations for which species manage to coexist.

4.3 Irregular waves

As indicated in Section 4.1, aside from travelling waves, solving the one-dimensional coun-

terpart of System (3.10) can also produce irregular waves. The irregular waves observed in

Figures 4.1(b) and 4.1(c) may be caused by more complex spatio-temporal dynamics than

the monotone travelling waves between two species we researched in the previous section.

Such dynamics include pulse waves and possibly non-monotone travelling waves (Chen et al.,

2013; Ikeda, 2002, 2007). Although similar behaviour has been observed (Rulands et al.,

2011; Venkat and Pleimling, 2010), it seems that no profound research has been conducted

to unravel the nature of these irregularities. Although a further investigation of the irregular

waves could explain an important part of the coexistence time, this is beyond the scope of this

thesis. On a different note, it can be stated that this irregular behaviour holds some visual

similarities to the space-time diagrams evolved by some cellular automata, such as Rule 30

(Wolfram, 1983). This becomes even more apparent for lower diffusion constants, as shown

in Figure 4.8.
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Figure 4.8: A numerical solution of System (3.10) on the domain (x, t) ∈ [0, 1]×
[0, 3000], with D = 3× 10−6.

4.4 Transient from initial condition

It is clear that the random initial configuration used in the simulations of Chapter 2 will have

a strong influence on how the system behaves once it reaches the travelling wave transient.

For instance, in one dimension it will partly determine the density distribution of the three

species in space at the beginning of the travelling wave transient, and therefore it will also

affect the lifetime of this transient.

In the IBM simulation, small domains containing only one species will emerge from the random

initial conditions due to stochastic effects. This behaviour is called coarsening (Frachebourg

et al., 1996; Rulands et al., 2011). These domains will then chase each other, much like

travelling waves do, but on a smaller scale. Due to this small scale chasing, some domains
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will vanish, while others will grow in size. At some point in time, only three domains will

remain, which signifies the start of the travelling wave transient. The first transient is visible

in Figure 4.8 until time 200.

Using IBM simulations, coarsening theory and the results obtained concerning travelling

waves, one can research exactly how the first transient determines the densities with which

the travelling wave transient starts off. This, however, is also beyond the scope of this thesis.

4.5 Conclusion

Numerical solutions of System (3.10) allowed for the identification of three transients during

which coexistence persists. The duration of the second transient was investigated analytically

by approximating a travelling wave speed. Although this confirmed that pattern formation

can prolong coexistence significantly, the second transient does not entirely explain why sus-

tained coexistence occurs for certain sets of winning probabilities. In order to do so, the first

and third transient should also be considered. It is clear that the short first transient will

strongly influence the duration of the second transient. The duration of the third transient

remains an open problem, and it is also unclear how this transient will manifest itself in a

two-dimensional solution of the PDEs, or in an IBM simulation. Moreover, the influence of

stochasticity on the duration of the transients should be investigated in order to apply the

results obtained by studying PDEs to the IBM.
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Conclusions

5.1 Conclusions

The results of the IBM simulations described in Chapter 2 show that the introduction of the

winning probabilities has a disastrous impact on the duration of coexistence, as conveniently

displayed in Figure 2.9. While for deterministic cyclic competition, the three species manage

to maintain sustained coexistence as long as mobility is sufficiently low (Reichenbach et al.,

2007), the introduction of non-deterministic competition makes this impossible for a large

number of winning probability combinations (Section 2.3.3). The winning probabilities can

thus play a significant role in the possibility of sustained coexistence, and it is thus important

to consider them when studying coexistence.

It was also concluded that the stronger species, e.g. the species with the highest probability of

beating the other two species, is often the most likely to be the sole survivor. This contradicts

a study by Frean and Abraham (2001). Although this contradiction is only the result of the

fact that the individuals considered in their study interact by slightly different rules than

the individuals in our research, it seems appropriate to relax “survival of the weakest”, as

proposed by Frean and Abraham (2001), to “survival of the least aggressive” (Section 2.4.2).

In Chapter 3 it was shown that the trajectories of the mean-field equations governing non-

deterministic cyclic competition end up in a fixed point where only one species survives

(Section 3.3.2). This behaviour also differs from that for deterministic cyclic competition, as

trajectories in that case engage in a neverending approach towards a heteroclinic orbit, so

that the three species are present at all times (May and Leonard, 1975). The dynamics of the

mean-field equations thus confirms that the winning probabilities have a disastrous effect on

the possibility of sustained coexistence, as species under non-deterministic competition only

coexist during the transient from the initial condition to a state where one species survives.
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Further investigations did not enable us to predict which combinations of winning probabilities

induce sustained coexistence.

Several other modelling paradigms were considered in Chapter 3, in order to determine which

one seemed the most appropriate for explaining the region of coexistence using analytical

methods. A model was devised which is closely related to the IBM, but which avoids the

random interactions that make the IBM stochastic. Therefore, the spatio-temporal evolution

of this newly devised model is the deterministic consequence of the initial condition and

the game-theoretic rules assigned to the involved individuals (Section 3.1). Although this

model does not perfectly mimic the possible spatio-temporal dynamics displayed by the IBM

simulation, it seems to approach it, as it exhibits phenomenological behaviour very similar to

that of the IBM. It would thus be useful to investigate whether this model can be used for

studying IBMs.

From the models presented in Chapter 3, the PDEs were selected for further investigation, as

they account for the spatial distribution of the population densities, while, to some extent,

their dynamics can be investigated in an analytical way. The PDEs were numerically solved

in one-dimensional space, and, as with the mean-field equations, coexistence was only a

temporary phenomenon in these solutions. The spatial distribution of the species’ densities

during coexistence allowed for the identification of three transients. The first transient is

the transition from the initial condition to the second transient, which is characterized by

travelling waves. When these travelling waves are destroyed, irregular waves emerge for some

sets of winning probabilities, and this is defined as the third transient (Section 4.1). The

duration of these transients determines how long species manage to coexist.

The duration of the travelling wave transient can be calculated after obtaining the three wave

speeds of the wave fronts between species A and B, B and C, and C and A. However, the

determination of these wave speeds, to the best of our knowledge, remains an open problem.

Still, we were able to approximate them in Section 4.2.4, from which we could subsequently

calculate the duration of the travelling wave transient. Although this duration partly explains

why sustained coexistence occurs for certain sets of winning probabilities, it is clear that the

first and third transients should also be considered (Section 4.2.4). By doing so, one could

quantify the time for which species coexist in the solutions of the one-dimensional PDE, and

this information could be used to explain the region of coexistence that was identified on the

basis of the IBM simulations. This, however, is beyond the scope of this thesis.
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5.2 Limitations

Non-deterministic cyclic competition is a broad subject. For instance, one could focus on

IBM simulations and numerical solutions of the PDEs. By solving the PDEs numerically for a

multitude of well-devised initial conditions, the dynamics of the three transients (Section 4.1)

could be extensively researched in function of the winning probabilities. The use of IBM

simulations could then indicate how these dynamics are altered by the stochastic interactions.

This approach could lead to a more complete description of the emergent phenomena and

their influence on the lifetime of coexistence, possibly resulting in a thesis covering an in-depth

study of a well delimited, specific subject. In order to gain knowledge about non-deterministic

competition in a structured way, one could start off with a simple system, and add complexity

gradually. At first, a one-dimensional system without reproduction (Section 2.4.2) could be

considered, or even without mobility, after which complexity could be added in order to end

up with the two-dimensional one considered in our IBM simulations (Section 2.2).

Instead, a more superficial overview of the dynamics of the IBM and PDEs is presented in this

thesis. By doing so, there was time to investigate specific topics which seemed particularly

interesting. Although results were often not optimal, the search was always interesting and

enriching.

5.3 Extensions

As stated in the previous section, an in-depth investigation of the three transients using

numerical solutions of PDEs and IBM simulations is necessary. In this way, the behaviour

of these transients could be aptly described as a function of the winning probabilities. The

insights obtained in this way might open up possibilities for analytical approaches, to obtain

a thorough understanding of the in silico ecosystem’s dynamics.

In literature, investigating the dynamics of an IBM usually involves the construction of a PDE

mimicking its behaviour. Similar to what was described in this thesis, the dynamics of the

PDE is then investigated and related to the behaviour of the IBM. Although this approach

can be very powerful, its frequent use could be due to the absence of a well-established theory

on IBM’s dynamics. However, it must be possible to properly explain why spatial patterns

emerge from an IBM using only the game rules by which the individuals play. By doing so,

one could quantify the relative stability (or instability) of the states and patterns emerging

from an IBM. Comparing the stability of the states could provide valuable information on

how they are formed and destroyed, or for how long they can exist, without having to resort

to PDEs. Possibly, this theory could result from combining the theory of dynamical systems

with statistical mechanics.



Finally, although it is likely that non-deterministic competition occurs in real life, this should

be confirmed by conducting tests with real-world ecosystems. Moreover, a realistic range

of winning probabilities should be established, to see whether they will strongly influence

coexistence, or rather will be positioned in the region of coexistence.

66



Bibliography

Allesina, S. and Levine, J. M. (2011). A competitive network theory of species diversity.

Proceedings of the National Academy of Sciences, 108:5638–5642.

Atmanspacher, H., Filk, T., and Scheingraber, H. (2005). Stability analysis of coupled map

lattices at locally unstable fixed points. The European Physical Journal B, 44:229–240.

Bondy, A. and Murty, U. S. R. (2008). Graph Theory. Graduate Texts in Mathematics.

Springer, New York, United States of America.
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APPENDIX A
End-state parameter space at critical

mobility
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(a) P3 = 0 (b) P3 = 0.05 (c) P3 = 0.10

(d) P3 = 0.15 (e) P3 = 0.20 (f) P3 = 0.25

(g) P3 = 0.30 (h) P3 = 0.35 (i) P3 = 0.40

(j) P3 = 0.45 (k) P3 = 0.50 (l) P3 = 0.55
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(m) P3 = 0.60 (n) P3 = 0.65 (o) P3 = 0.70

(p) P3 = 0.75 (q) P3 = 0.80 (r) P3 = 0.85

(s) P3 = 0.90 (t) P3 = 0.95 (u) P3 = 1.00

Figure A.1: The end-state parameter space resulting from the IBM simulations

with ε = 2.25, and thus at critical mobility. Black represents the region of coex-

istence, red represents survival of species A, blue survival of species B and yellow

survival of species C, and this state was determined after 10 000 generations. P3

increases in increments of 0.05 for every new image. P1 and P2 vary between zero

and one on the x- and y-axis, respectively.
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APPENDIX B
Coefficients in Section 4.2.4

J(P1) = 0,

K(P1) =
(P1 + 1)2

(
2P 5

1 − 8P 4
1 + 7P 3

1 + 5P 2
1 − 5P1 − 2

)(
2P 2

1 − 2P1 + 5
)2 (

3P 2
1 − 3P1 − 1

) ,

L(P1) =
2(1 + P1)

3(−1− 3P1 + P 2
1 + 4P 3

1 − 2P 4
1 )2(2− 19P1 + 51P 2

1 − 49P 3
1 + 14P 4

1 )

(1 + 3P1 − 3P 2
1 )2(5− 2P1 + 2P 2

1 )4(−1− 4P1 + 4P 2
1 )

,

c0(P1) =
(P1 − 1)P1

P 2
1 − P1 − 1

,

c1(P1) = −5 + 4P1 − 36P 2
1 + 15P 3

1 + 10P 4
1 − 24P 5

1 + 16P 6
1

(5− 2P1 + 2P 2
1 )2(−1− 3P1 + 3P 2

1 ))
,

c2(P1) = −w0

w1
,

with

w0 = (1 + P1)
3(−1− P1 + P 2

1 )

(50 + 237P1 + 63P 2
1 − 1017P 3

1 + 396P 4
1 + 2184P 5

1 − 4332P 6
1 + 3804P 7

1 − 1632P 8
1 + 272P 9

1 ),

w1 = (1 + 3P1 − 3P 2
1 )2(5− 2P1 + 2P 2

1 )4(−1− 4P1 + 4P 2
1 ),

Y1(P1) =
z0
z3

(z1 +
√
z2),

Y3(P1) =
z0
z3

(z1 −
√
z2),

with

z0 = −
(
2P 2

1 − 2P1 + 5
)2 (

3P 2
1 − 3P1 − 1

)
,

z1 = 64P 7
1 − 224P 6

1 + 344P 5
1 − 300P 4

1 + 86P 3
1 + 59P 2

1 − 19P1,

z2 = 8448P 14
1 − 59136P 13

1 + 175744P 12
1 − 285696P 11

1 + 266896P 10
1 − 125008P 9

1

− 80P 8
1 + 23840P 7

1 − 640P 6
1 − 832P 5

1 − 5387P 4
1 − 58P 3

1 + 1519P 2
1 + 390P1 + 25,

z3 = 2(P1 + 1)2
(
P 2
1 − P1 − 1

)(
272P 9

1 − 1632P 8
1 + 3804P 7

1 − 4332P 6
1 + 2184P 5

1 + 396P 4
1 − 1017P 3

1 + 63P 2
1 + 237P1 + 50

)
.
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