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1 Summary

The healthy human body is inhabited by billions of bacteria, viruses and fungi on all of

its outer and inner surfaces, such as oral cavity, skin and gut. Thereby each body site has

its own unique community of micro-organisms adapted to its environmental conditions.

The ensemble of these communities of non-human beings living on our bodies is called

the human microbiome. Under normal circumstances these organisms are inoffensive and

even useful since they contribute to food digestion and maturation of the immune sys-

tem, among other things. On the other hand, perturbations of the normal composition of

the microbiome are often observed together with diseases such as gut inflammation and

diabetes. Moreover, transplantation of gut micro-organisms from healthy individuals has

been shown to cure cases of accute diarrhea. Together with the fact that each person has

a unique microbiome composition, these examples show us the potential of microbiome

science for the future of (personalized) medicine.

To investigate the composition of the microbiome one needs to count its micro-organisms

in some way. This can be accomplished by counting the number of times a marker

molecule, unique for each species, is present in a sample. DNA is a molecule that stores

the genetic information of a cell, and its sequence is a unique fingerprint of an organism.

Reading off the sequence of a small part of a cell’s DNA is sufficient to know from which

species it has originated. By reading the same part of all DNA molecules from all micro-

organisms in a sample and counting the number of reads, researchers can get an estimate

of the abundance of the different species in the microbiome.

Microbiologists often want to monitor changes in the composition of the microbiome as

a result of e.g. disease development or drug treatment. To be able to recognize these

changes, it is important to know how the microbiome normally varies under undisturbed

conditions. At this point microbiome statistics come into play to distinguish system-

atic changes in the composition of the microbiome from random fluctuations. In this

thesis we focus on two main steps in this process: normalization and analysis of abun-

dance. Normalization is a pre-processing step that aims to eliminate technical effects of

different samples of the microbiome in order to render them comparable. After all the

scientist is interested in biological differences between samples, and not in artefacts due

to technical differences. Subsequently, analysis methods are needed to determine which

micro-organisms are present in lesser or greater numbers in one sample versus another,

e.g. as a result of a drug treatment.

Several normalization and analysis methods have been proposed but it is still under de-

bate which are the best ones. One of the main ways to compare the performance of

these methods is through simulation. Simulation means the creation of artificial datasets

with some degree of randomness, but still based on known parameters. The structure

of these created datasets must resemble as closely as possible that from real microbiome
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data. The researcher then changes the abundance of some species of micro-organisms

in a subset of the generated samples. The normalization and analysis methods are then

applied to these datasets and compared based on how well they manage to detect these

changes. The advantage in comparison with real dataset is that for simulated datasets

the researcher knows which species’ counts have been changed, which allows a detailed

evaluation of the methods used.

In this thesis a dataset with DNA-counts of the microbiome of 16-19 body sites of 242

healthy individuals is described. Next, simulations are performed based on this dataset

to evaluate a number of normalization and analysis methods. Finally the methods that

performed best in the simulation were applied to two body sites from the original dataset.
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2 Introduction

2.1 The human microbiome as forgotten organ

We, human beings, are not living on our own. Although sterile during gestation, the

human body gets colonized by a wide variety of bacteria, archaea, fungi and viruses after

birth. They live, grow and reproduce on inner and outer surfaces of the human body

such as skin, oral cavity, airways, gut and vagina. This community is called the human

microbiome and contains about a ten-fold as many cells as the human body has of its own,

eukaryotic cells, and several orders of magnitude more genes [1]. Each colonized body site

has its own typical community composition that is preserved between individuals. Any

community from one of those body sites is usually dominated by a few signature taxa well

adapted to this niche, with a large number of other taxa present at much lower frequencies

(we say that the communities are skewed to rare taxa) [2, 3]. Still, the interpersonal

diversity in microbiomes is huge, even between healthy individuals, and remains largely

unexplained [1]. Under normal circumstances, these communities are inoffensive and

even useful for digesting food [2], providing resistance to infection [4] and stimulating

the maturation of the immune system [5, 6] and anatomic development [4]. Because of

these crucial functions, the microbiome has been coined the “forgotten organ” [7]. On

the other hand, (locally) disturbed microbiome composition and structure are known

to be associated with a broad range of disease statuses such as gut inflammation [4],

vaginosis [8], diabetes [9] and periodontal disease [10]. Even when the causal relationship

remains unclear, this reveals a tremendous potential to use the taxonomic composition of

the microbiome as prognostic or diagnostic biomarker [1]. Disturbances of the microbiome

can occur very quickly, within a few hours, revealing that the microbiome is a plastic and

adaptive entity [11]. This observation opens opportunities for active interventions in the

microbiome that may cause drastic changes in health status. Inoculation of germ-free

mice with gut microflora from obese humans causes a greater increase in total body fat

than inoculation with flora from lean humans, suggesting that the gut microbiome may

be a key to fighting obesity [12]. Patients suffering from chronic diarrhea caused by

Clostridium difficile can very often be cured by a fecal transplant from a healthy person

which reestablishes the normal gut flora [13]. These examples, together with the great

interpersonal variability of microbiomes, illustrate how the science of microbiomics may

contribute largely to the advancement of personal medicine [1].

2.1.1 Characterization of the microbiome

Historically, members of microbial communities were identified by physiological charac-

teristics and hence identification depended on culturing of whole colonies of microbes.

This severely limited the scope of microbial ecology studies since only a small minority

of micro-organisms can be grown under lab conditions. In the 1980s methods based on
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nucleic acids emerged that allowed assesment of both taxonomic and metabolic diversity

of communities without the need for prior culturing. Fluorsecent in situ hybridization

(FISH) allowed studying uncultured communities without prior DNA extraction, by hy-

bridizing a fluorescent probe to DNA present in the community [1]. From the 1990s,

hybridization of extracted DNA or cDNA (DNA derived from extracted RNA) on mi-

croarrays has enjoyed widespread popularity. This technique consists of bringing the

DNA or cDNA of a whole community into contact with an array onto which probes of

complementary DNA have been spotted on a known location. After some hybridization

period, the remaining, unbound DNA is washed away and the hybridization is visualized,

usually through fluorescence. This yields a continuous signal for every spot, proportional

to the amount of DNA each particular sequence present in the sample [14]. The mi-

croarray technology suffers from unspecific hybridization and is limited to interrogating

presence of known DNA fragments for which complementary probes are available, ex-

cluding the discovery of new elements [15]. Thanks to the emergence of high-throughput

DNA-sequencing technology, quantification of DNA composition of a population (or the

RNA content of a cell) is nowadays done by direct sequencing. If the research goal is to

gain insight in the different metabolic functions a bacterial community as a whole can

perform, the entire pool of present DNA is sequenced. This branch of microbiomics is

called functional metagenomics. Contrarily, if the research goal is just to quantify the

composition of the community in terms of taxa, amplifying and sequencing a highly dis-

criminative single marker gene can be sufficient. The most popular marker is by far the

16S rRNA gene [1], as discussed in the next section.

2.1.2 The 16S rRNA molecule records evolutionary distances as a molecular

clock

The 16S rRNA gene is present among almost all bacteria and has a conserved function

among them. It consists both of regions conserved among species as well as highly vari-

able regions, making it an excellent marker gene for species determination. The conserved

regions assure correct folding and thus functioning of the RNA molecule and are under

strong negative selective pressure as a result. These regions can be used as primer an-

nealing sites for PCR-amplification of part of the gene. The 16S rRNA gene also contains

9 variable regions, in which random mutations can occur without being eliminated by se-

lective pressure. These regions serve as a molecular clock, since these random mutations

are assumed to appear at a constant pace over time. This way these mutations keep track

of evolutionary distances between taxa. Few differences between two 16S rRNA genes in-

dicate that the two bacteria diverged comparatively recently, since little time has passed

to acquire different mutations. Based on accordance of the variable regions, bacteria can

be grouped into species and other taxonomic levels. In practice, the term operational

taxonomic unit (OTU) is used for bacteria instead of species, since no clear-cut definition

of a bacterial species is available. By convention, sequencing data of the variable regions
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that show at least 97% identity are grouped into the same OTU [1,16]. These OTUs can

then be mapped to a reference genome database to see from which bacterial taxon the

reads originate. Off course, some OTUs will not be found in these databases since most

microbiome samples contain previously unknown species. In this case they are assigned to

the lowest taxonomic division as possible. Counting the number of reads per taxon yields

a measure of abundance of this taxon. These counts are represented in count matrices as

discussed in the next section.

Before starting the discussion of microbiome marker gene count data and its analysis,

it is important to note that most of these methods have been derived from techniques

developed for RNA-Seq or (to a lesser extent) microarray. In RNA-Seq, the aim is to

quantify the gene expression levels of a cell by sequencing cDNA, which is DNA derived

from present RNA. It is obvious that, despite its different scientific aim, the statistical

techniques applied to both types of data are analogous, since both are in essence read

count data mapped to a known database. Often even the same sequencing machines are

used for both ends. Important differences with RNA-Seq are the sparsity of the data ma-

trix and the fact that all reads have the same length and GC-composition. Marker gene

count data matrices are sparse because most OTUs are found only in a minority of the

samples, resulting in zero counts for the other samples. On the contrary, most genes have

some degree of basic expression so that their read counts are less often zero. For marker

gene assays it is always the same gene that is sequenced, with only minor differences be-

tween the different OTUs. However, the genes sequenced in RNA-Seq represent the whole

genome and may differ in read length and GC-content, which may cause amplification

bias [1, 17].

2.2 Microbiome marker gene count data and analysis

2.2.1 Data structure

To facilitate overview and inference on read count data, they are usually tabulated as

follows. For each sample, a vector of read counts is constructed with length n, equal to

the total number of different OTUs found in all samples combined. For sample j, this

vector Cj = (c1j, c2j, ..., cnj) has as elements cij representing the raw read count for taxon

i in sample j with as total sum (called sequencing depth or library size) Nj =
∑n

i=1 cij.

This is done for all of the m samples and all these vectors are then combined into an n by

m contingency table where the rows represent the taxa and the columns the samples. An

example of such a microbiome contingency table is shown in Table 1. Since samples often

only contain a fraction of the complete diversity of the group of samples, the matrix is

sparse, i.e. most cells are zero [18,19]. One of the main goals of microbiome statistics is to

decide which taxa show different (relative) abundances between groups of samples. These

groups are known to the investigator, e.g. diseased vs. healthy persons or treatment vs.

control groups. Many normalization and analysis methods have been devised for this goal,
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Sample
Taxon 1 2 ... j ... m Total

1 c11 c12 ... c1j ... c1m c1.
2 c21 c22 ... c2j ... c2m c2.

... ... ...
. . . ...

. . . ... ...
i ci1 ci2 ... cij ... cim ci.

... ... ...
. . . ...

. . . ... ...
n cn1 cn2 ... cnj ... cnm cn.

Total N1 N2 ... Nj ... Nm N.

Table 1: An example of a contingency table for microbiome data of n taxa and m
samples. cij represents the read count for taxon i in sample j, ci. the total count of
taxon i over all samples and Nj the library size of sample j.

which will be discussed in the next two sextions.

2.2.2 Normalization renders read counts of different samples comparable

Read counts from different samples in sequencing assays are mostly not directly com-

parable due to technical noise. A larger sequencing depth (library size) of one sample

may result in a higher read count over all taxa. Directly comparing counts from two

samples with different sequencing depth may lead to the conclusion that most taxa are

differentially expressed, even when the composition of both samples is the same [20, 21].

In addition, larger samples carry more information and parameters estimated from them

have thus lower variances [22]. To account for this, normalization is needed to render the

read counts comparable and to eliminate this heteroscedasticity [22–24]. Over the years,

many normalization methods have been proposed, and some attempts have been made

to compare them [17, 20, 22, 25], but no consensus exists about the optimal method [20].

A normalization procedure which has enjoyed wide popularity but which is unadvisable,

is rarefying. This method consists of random subsampling of taxa counts from a sample

without replacement to the size of the smallest sample to equalize the library sizes. Apart

from introducing additional variability through the random sampling step, it inflates the

uncertainty associated with the read counts by throwing away data of the larger samples.

Rarefying eliminates heteroscedasticity, but only by reducing the information of all sam-

ples to the level of the lowest one. As a result McMurdie and Holmes consider rarefying as

normalization technique prior to differential abundance analysis “statistically inadmiss-

able” [22]. In most other normalization methods, a distinct scaling, size or normalization

factor fj, reflectinthe true sequencing depth of this sample j, is estimated [20,22]. Using

the library sizes Nj as scaling factors fj appears an intuitive and logical way to normalize

count data. This procedure (also called Total Sum Scaling, TSS) does not suffer from the

additional uncertainty of the random subsampling used in rarefying. However, scaling by

library sizes still has the drawback of reducing all counts to proportions and thus discard-

ing all information on sample size and related variance of the proportions’ estimators [22].
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In addition, the library size is very sensitive to changes in the frequencies of abundant

taxa. In fact, the estimated proportions will not only depend on the frequency of the taxon

itself but on the abundance of the other taxa as well. An increase (true or coincidental)

in read counts for a few numerous taxa causes the proportions of the other taxa to shift

downward. When comparing these decreased proportions with those of other samples, the

difference may seem statistically significant. This leads to a high number of false postives

when testing for different abundance of taxa as well as to a loss of power to detect true

differences [20, 23–25]. Several more robust normalization methods have been proposed

that restrict the influence of those very abundant taxa, founded on different assumptions.

A first strategy relies on the assumption that some quantile(s) of the read counts distri-

bution coincide between all the samples, even though the overall distribution of the read

counts differs, especially at the highest read counts [20]. A simple choice is to use the

upper-quartile (75th percentile) of the read counts of each sample after removing taxa

with zero counts in all rows as its scaling factor fj . This quantile was chosen because it

was considered to be high enough to fall outside the range of the zero and low-counts that

are uninformative on the sequencing depth. On the other hand it is still low enough not

to be affected by the high and extremely high counts, as is the problem with proportion

normalization (TSS) [25]. An adapted form of this idea utilizes a data-driven selection of

the appropriate quantile and then sums all the read counts smaller than or equal to this

quantile for each sample to calculate the scaling factor. This approach thus assumes a

common count distribution across samples up to a certain quantile. The quantile used is

the point where the distribution of a sample begins to deviate strongly from the reference

distribution of all other samples. This method is called cumulative sum scaling (CSS)

normalization [17]. A second approach is to assume that most taxa are equally abundant

across samples and differentially abundant samples constitute only a minority [20]. The

trimmed mean of M-values (TMM) method is an instance of this way of thought. From

all samples m, a reference sample r is chosen. Next for each taxon i of the remaining

m-1 samples the Mij-value is calculated as follows (taxa for which Nj or Nr are zero are

discarded):

Mij = log2

cij/Nj

cir/Nr

(1)

These Mij values of a sample j are trimmed (authors propose by 30%) and a weighted

mean of the remaining M-values is calculated. The weights are inversely proportional

to the asymptotic variance of the Mijs. This weighted mean is then used as the scaling

factor fj. Because of the trimming, this scaling factor is robust with respect to taxa that

are very abundant or very rare compared to the reference sample [24]. A very comparable

procedure is termed the relative log expression (RLE) method. First the ratios of observed
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non-zero cell counts are calculated for every taxon i as follows:

cij
(
∏m

j=1 cij)
1/m

(2)

The denominator, a geometric mean across samples, can be seen as a pseudo-reference

sample. Subsequently the median of this measure over all taxa n is used as scaling

factor fj of the sample. In this case the median, which is supposed to lie within the

range of the non-differentially abundant taxa, renders the method robust with respect to

extreme abundances [23]. It should be noted that TMM and RLE normalization were

not intended to transform the data, but rather to calculate the size factors to be used in

statistical models [23, 24]. Methodologically different approaches to normalization exist,

such as entail spiking-in of known quantities of DNA for comparison [26], but this method

will not be discussed here since they require information not present in the count data

matrix.

2.2.3 Testing for differential abundance

Once the normalization factors are estimated, one can set out to analyse the read count

data. There exist two main methods for comparison of taxa vectors from different sam-

ples, one looking at the structure of the population , the other at its distribution. The

method that focuses on community structure investigates the species abundance distri-

bution (SAD). This kind of analysis drops all taxon labels and taxa with zero counts,

and orders the remaining taxa according to descending abundance for each sample. This

represents the SAD that is only depending on the structure of the community and not on

its composition. The structure of a community may predict its response to perturbation

and its flexibility [3]. The SAD theory was initially developped in the field of ecology and

will not be further discussed in this thesis, partly since contemporary microbiologists are

really interested in community composition rather than just structure.

The second main method keeps the taxon labels and zero counts and compares their

composition through the relative abundance of taxa. These methods are said to test

differential abundance of taxa and are the methods of interest of in this thesis. A very

simple way to compare the composition two microbiomes is to calculate some measure of

population diversity and then compare both measures and test for siginificant differences.

Several measures of this so-called alpha-diversity exist, some of them even accounting

for taxa that were not observed but may also be present in the population based on the

sampling distribution. On the other hand, measures of beta-diversity attempt to sum-

marize differences between samples over many taxa into pairwise distances [1], such as

Bray-Curtis [27] or Unifrac [28]. Despite being easy to calculate and convenient to com-

pare, these measures entail a large reduction in information, and exclude comparisons

on the taxa level. However, a main goal of microbiome research is to determine more

precisely which taxa are present to a greater or lesser extent (i.e. differentially abundant)
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in some sample compared to another [29]. For this end, parametric methods are preferred

since their results are easier to interpret. Parametric methods have the advantage that

they can quantify the size of the difference in abundance. Moreover parametric tests

were found to have higher power and do not rely on the assumptions of equal variablility

between groups [19]. To distinguish systematic differences from random noise in the data

by parametric tests, assumptions on sampling distributions of the read counts are needed.

One approach is to model the variations in read counts taxon by taxon over the different

samples, another to model the composition of the whole community at once. We will

discuss both approaches in the following paragraphs.

Taxon-by-taxon modelling It has been shown that the variations in read counts of a

taxon between technical replicates (i.e. the same sample analyzed repeatedly) follow a

Poisson distribution [15]. The Poisson distribution has only one parameter, its mean is

equal to its variance with probability mass function

f(c; γ) =
exp(−γ)γc

c!
(3)

where E(cij) = γij can be factorized as fjqi with fj the size factor of sample j and qi the

mean proportion for taxon i in this sample [22]. However, for biological replicates (i.e.

different samples originating from the same or a comparable source, e.g. same body site

or environmental condition, further referred to as experimental condition ρ(j) of sample

j) this distribution no longer holds, because the observed variance is larger than the

mean, a phenomenon called overdispersion. The Negative Binomial (NB) distribution is

an extension of the Poisson that provides a better fit for biological replicates of sequence

count data by allowing for overdispersion [30, 31]. It has two free parameters instead of

one which allows its variance to deviate from the mean to accomodate for additional,

biological variation. The NB has as probability mass function

f(c; γ, φ) =
Γ(c+ 1

φ
)

c!Γ( 1
φ
)

( 1

1 + φγ

) 1
φ
( γ

1
φ

+ γ

)c
(4)

with Γ the gamma-function, E(cij) = γij = fjqi,ρ(j) and Var(cij)=γij+φiγ
2
ij where φi is

called the overdispersion parameter of taxon i. In case φi=0 this taxon again follows the

Poisson distribution. γ and φ uniquely define the NB distribution. The NB also arises as

the marginal distribution from hierarchical model whereby the Poisson rate parameters

γ are Gamma distributed. This is biologically meaningful since the taxon counts from

biological replicates are derived from subcommunities with their own Poisson distributions

with different means [22].

A completely different approach to marker gene count modelling was inspired by the fact

that count matrices from marker gene surveys contain a high fraction of zeroes [17, 32].

Methods interpreting these zeroes solely as absence of the taxon may suffer from bias
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since those zeroes may as well be a result of undersampling (i.e. the taxon is present but

does not get detected because of the shallow sequencing depth). To tackle this issue, it

was proposed to model the continuity corrected log2 of the raw count data

yij = log2(cij + 1) (5)

via a Zero-inflated Gaussian (ZIG) distribution, i.e. a mixture of a point mass at zero

and a Gaussian distribution. A ZIG has as probability density function

f(yij;Nj, β0, β1, µi, σ
2
i ) = πj(Nj)I0(yij) + (1− πj(Nj))g(yij;µi, σ

2
i ) (6)

where πj is the fraction of counts fixed at zero, 1-πj the fraction following the normal

distribution and g the Gaussian density function. This partition is modelled as

log
( πj(Nj)

1− πj(Nj)

)
= β0 + β1 log(Nj). (7)

The mean model given the experimental condition ρ(j) is

E
(
yij|ρ(j)

)
= (1− πj)

(
bi0 + log2(fj + 1) + bi1k(j)

)
(8)

with k(j) a dummy variable referring to the biological condition ρ(j). Parameters to be

estimated for this model are the mean µi, the variance σ2
i , the probability function of the

mixture membership per sample πj(Nj) (determined by β0 and β1), the offsets of each

taxon bi0 and the log-fold change per taxon bi1. This ZIG model and matching tests are

implemented in the R-package metagenomeSeq [17].

Parameter estimationFor the NB, the mean counts per taxon and condition E(ci,ρ(j)) =

µi,ρ(j) = qi,ρ(j)fj are a product of the scaling factor fj and a condition dependent factor

qi,ρ(j). This condition dependent factor is estimated by the average of the normalized

taxon counts cij/fj over the experimental condition ρ. The variances can be estimated

taxon per taxon [30], but it has been shown to be more efficient to share information on

the variance (and hence on the dispersion) over the different taxa [33]. The estimation

procedure implemented in the R-package edgeR first estimates a common overdispersion

parameter φ for all taxa, with a mean-variance relationship given by:

σ2
ij = µij + φµ2

ij (9)

It is clear that for φ = 0 we are back at the Poisson model. The φ is estimated using con-

ditional Maximum Likelihood from a derived set of pseudo-data, obtained by normalizing

the raw data by quantile normalization [24, 33]. The taxon-wise overdispersion param-

eters are estimated through Maximum Likelihood estimation [31]. A weighted mean of
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these two estimates is calculated for each taxon using Weighted Likelihood. The more

dissimilar the taxon-wise dispersion estimates, the heavier the weight of each taxon-wise

estimate in the calculation [33]. R-packages DESeq and its successor DESeq2 rely on a

more data-driven model using Empirical Bayes, that also allows the overdispersion to vary

across experimental conditions [23]. They modelled the variance as follows:

σ2
ij = µij + f 2

j vi,ρ(j) (10)

with vi,ρ(j) a smooth function of qi,ρ(j). This smooth function is then estimated using local

regression [23]. For small size factors fj (e.g. due to small library sizes), the Poisson model

holds again. This variance estimation method is based on the assumption that equally

abundant taxa have equal variance and is implemented in the R-package DESeq [23]. This

method was refined by the same authors as follows: first the taxon-wise dispersions are

estimated by Maximum Likelihood(ML) estimation. Next, a smooth curve is fitted to

represent the average dispersion and finally the ML estimates are shrunk towards this

fitted line based on an empirical Bayes procedure. This dispersion estimation technique

is implemented in the R-package DESeq2 [34]. Estimation of the parameters of the ZIG

happens through an Expectation-Maximization(EM)-algorithm [17].

Statistical testingFormal testing for differential taxa abundance between two groups of

samples has been done by simple t-test by relying on asymptotic normality of the sample

means of normalized read counts [30,33], but more advanced tests exist based on the NB

and ZIG distributions described above. In edgeR, an exact test based on the NB distribu-

tion is implemented. For each taxon i, this test considers the total count of taxon i over

all samples ci. =
∑m

j=1 cij as fixed. Under the null hypothesis of no differential abundance,

the sum of NB-distributed counts in either group also follows a NB distribution with ex-

pectation half the total count. The P-value of the observed proportions is then calculated

using a two-tailed test as the chance to find the observed or a more extreme number of

taxon counts in one group [33]. In DESeq, the same testing procedure is used [23]. In

the successor package, DESeq2, a Wald test on the estimated shrunken coefficients of a

Negative binomial GLM is implemented to test for differential abundance [34]. Both DE-

Seq and DESeq2 contain functionalities to pre-select potentially differentially abundant

taxa using Independent filtering to reduce power loss due to multiple testing adjustment.

Only taxa with an average abundance over all samples exceeding a certain threshold pass

the filter [23, 34]. For the ZIG, the significance of the log-fold parameter bi1 is tested

using a moderated t-test to assess whether group membership is predictive on the taxon

counts [17]. Since all above methods rely on separate tests for each taxon, comparing

two groups of samples implies a lot of statistical tests. This calls for multiple testing

correction to control the rate of false positives, which is usually done by controlling the

False discovery rate according to the method of Benjamini and Hochberg [35].
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Whole-community modellingThe previous methods try to model the sampling distri-

bution of a single taxon over different technical or biological replicates. Hence, parameter

estimation and testing occur for each taxon separately. This ignores possible dependencies

between taxa counts, e.g. in case of symbiotic bacteria where one would expect positive

correlations between their counts. Also, since we are interested in relative taxon abun-

dances, an increased presence of one taxon is bound to reduce the relative abundances

of the others. Moreover, the taxon-per-taxon comparisons involve a lot of separate tests,

necessitating multiple testing corrections that reduce power. Multivariate methods are

thus indicated to model the sampling distribution of the whole community of taxa over

the different samples [36]. A natural attempt would be to model the composition of a

sample by a vector of proportions following a multinomial distribution [36], which has the

following probability mass function

f(c1j, c2j, ..., cnj;φj|Nj) =

(
Nj

cj

) n∏
i=1

φ
cij
ij (11)

with φj = (φ1, φ2, ..., φn) the vector of underlying taxon proportions of the sample j

and cj = (c1j, c2j, ..., cnj) the taxon count vector. The library size Nj is considered fixed

here and not a random variable, i.e. the distribution of the cij is conditional on the

library size Nj. The expectation of this distribution is E(cij) = Njφij and the vari-

ance is Var(cij)=Njφij(1 − φij) [37]. Modelling microbiome data using the multinomial

assumes that the underlying distributions are fixed and thus only applies to technical repli-

cates. However, separate samples from the same or comparable biological origin(biological

replicates) exhibit heterogeneity in true composition because of spatial, temporal and

individual-to-individual variation of the microbiome. As a result their taxa counts exhibit

much larger variation than predicted by the multinomial distribution [37]. To account

for this, also the taxa probability vector is considered as a random variable, being sam-

pled from the slightly different subcommunities present in the same biological condition.

These probability vectors are assumed to follow a Dirichlet distribution. The Dirichlet

multinomial(DM) is the resulting marginal distribution function of the taxa count vectors

for this hierarchical model [18], with as probability mass function

f(c1j, c2j, ..., cnj;φj, θ|Nj) =

(
Nj

cj

)∏n
i=1

∏cij
k=1

(
φij(1− θ) + (k − 1)θ

)
∏

k=1Nj

(
1− θ + (k − 1)θ

) (12)

The expectation is the same as for the multinomial (E(cij) = Njφij), but the variance is

Var(cij) = Njφij(1−φij)(θ(Nj−1)+1). The library size Nj is again considered fixed. θ is

the overdispersion parameter, for θ = 0 we are back at the multinomial distribution [37].

Overdispersion not only means that the variance is larger, it also has implications on the

convergence towards true population values as the number of samples increases. If the
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sample proportions follow a multinomial distribution, then the mean of the proportions

of each taxon is less variable for larger collections of samples. Asymptotically, for an

infinitely large number of samples, this variance becomes zero and the mean proportions

converge to the true population proportion vector φ. When the counts are overdispersed,

the taxa frequencies in different samples do not converge to φ as more samples are gath-

ered, and the asymptotic variance is larger than zero. This can again be explained by the

fact that biological samples are samples from different subcommunities, whose underlying

taxa distribution vectors φj differ slightly [19, 38]. A goodness-of-fit test to compare a

multinomial with a DM fit has been developped recently, as well as methods to test for

equality of taxa composition vectors [19]. However, since the DM-approach to micro-

biome data is still relatively unexplored, no test for differential abundance of single taxa

exists to our knowledge. Both the multinomial and the DM have received criticism for

imposing negative correlations among taxa and for their failure to address model positive

correlations [39].

2.3 Comparison of statistical methods for microbiome research

In the previous section, several normalization and analysis methods were discussed, where

evidently dozens of others exist, such as quantile normalization and baySeq, PoissonSeq,

MetaStats and DEGseq for differential expression analysis [40]. The methods discussed

and compared in this thesis were chosen because of their frequent use in the field of

microbiome research (Total count normalization, rarefying, t-test) [20, 22, 25, 29, 41, 42],

positive evaluation in comparative studies (UQ, RLE, TMM, DESeq, edgeR) [20, 22] or

novelty (CSS, ZIG) [17]. Comparison of normalization and analysis methods can occur

through either simulation [20,22,40] or by application to real calibration data [20].

2.3.1 Simulation as a tool to evaluate microbiome methods

Simulation is a very useful tool to assess the performance of different analysis methods

because the true underlying parameters that generated the data are known. A drawback

of this approach is that it is based on some distributional assumptions that may not be

generally true for all microbiome count data. In addition, generating samples with the

same distribution as used in the analysis methodology can of course lead to an overly

optimistic evaluation this method [29]. Simulation studies in the past have been done

using a taxon-by-taxon approach based on the Poisson [20,40,43], the Negative binomial

[30,43], the beta-binomial(an over-dispersed binomial) [29,30] or the normal distributions

[17, 21] and by whole-community modelling through the multinomial distribution [22].

After making a distributional assumption, the necessary parameters are usually estimated

based on an existing dataset. Library sizes may be fixed [17,20], randomly sampled from

a distribution [29,30] or randomly sampled from library sizes from the dataset [22]. After

the data generation, the read counts for some taxa are multiplied with some factor to

create true positives of differentially abundant taxa [17,20,22,29,30].
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2.3.2 Evaluation of microbiome methods through real data

It may appear impossible to evaluate normalization analysis methods by applying them

to real data, since in this case the true underlying abundances are unknown. In practice,

another, more precise method (e.g. microarray [44] or qRT-PCR [25]) may be used as

gold-standard to determine the ‘true’ abundances. However, even when true abundances

are unknown, normalization methods can be compared. One way is to assess how well the

normalization methods equalize within-condition variablility of biological replicates [20].

Another is to apply a multidimensional visualization technique such as multi-dimensional

scaling or correspondence analysis to normalized data and evaluate how well samples from

different biological sources are separated [17]. In RNA-Seq, housekeeping genes are often

used as control since they are assumed to be non-differentially expressed [20, 24], but no

equivalent to this is used for microbiome data to our knowledge.

2.3.3 RLE and TMM normalization have been positively evaluated

The use of TSS and rarefying as normalization methods has been dissuaded by compar-

ative studies [20,22]. On the contrary, RLE and TMM have a very good record, in terms

of minimizing the variance of non-differentially expressed genes in RNA-Seq [20] as well

as for differential abundance analysis [20, 22]. edgeR is known to report more differen-

tially abundant taxa than other methods [44], but also to have an inflated false positive

rate [22, 44] and a false discovery rate not controlled at the nominal level [21]. DESeq

was found to be a rather conservative method with low rate of false positives [44] and a

well controlled false discovery rate [21]. It has also been observed by others that neither

DESeq nor edgeR managed to control the false discovery rate at the nominal level [43].

metagenomeSeq testing based on the ZIG was found to perform poorly when the num-

ber of replicates is low, and has an inflated false positive rate when this number is high.

Overall it performs worse than the methods based on the negative binomial (DESeq2 and

edgeR) [22]. A large scale comparison of differential expression methods yielded a vari-

ance stabilizing transformation combined with a moderated t-test (implemented in the

limma package) as the top performing method, together with the non-paramteric SAMseq

method based on resampling and the Wilcoxon rank sum test [21].

3 Materials and methods

3.1 Materials

3.1.1 HMP Dataset

The Human Microbiome project (HMP) was undertaken in 2005 and aimed to exploit

high-throughput sequencing technologies to characterize the healthy human microbiome

[45]. In total, microbiomes of 16-19 body sites of a population of 242 healthy adults were

sampled up to three times. From the oral cavity, samples were taken from the throat,

hard palate, keratinized gingiva, saliva, subgingival plaque, supragingival plaque, palatine
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tonsils, tongue dorsum and buccal mucosa. For the skin, samples were taken from the

left and right retroauricular crease (ear) and left and right antecubital fossa (elbow). A

stool sample was taken to represent the gut microbiota, a sample from the anterior nares

to represent the airways and finally also a blood sample was taken in some cases. For

female subjects, additional samples were taken from the vaginal introitus, the mid vagina

and posterior fornix as representatives of the vaginal region. These sites were chosen

because sampling there minimally disturbed the existing microbiota and sampling held

minimal risk for the participants. DNA was extracted from the whole community present

at the body site, yielding the metagenome of the bodysite: genetic material of all cells

and viruses present. This metagenome was subjected to both shotgun sequencing and 16S

rRNA survey [46]. Up to five variable regions of the 16S rRNA gene of the metagenome

were sequenced and the reads assigned to OTUs from kingdom up to genus level using the

Greengenes database. Because of the choice of marker gene, only the kingdoms of bacteria

and archaea were detected, excluding eukaryots and viruses. The resulting dataset is a

contingency table that contains 5232 samples from 19 different body sites in the columns

and a total of 725 taxa identified up to some taxonomic level. The cells of the table

contain integers denoting the number of times a read was assigned to a certain taxon in

each sample [46]. The numbers of samples per body site are shown in Table 2a. Because

of the scarcity of the blood samples (6) we drop them from the analysis altogether. We

use the general notation introduced in Section 2.2.1 to describe the dataset. We have then

n=725 taxa and m=5226 remaining samples. A histogram of the library sizes Nj on the

log10-scale is shown in Figure 1a. Even though most library sizes are around 104 reads,

some libraries are up to 10 times smaller or larger. The dataset is very sparse: per sample

the majority of read counts are zero (see Figure 1b). This could indicate either absence of

the taxon in the sample or undetected presence, e.g. due to insufficient sequencing depth.

The high number of zeroes is referred to as the sparsity of the count matrix, and is due to

the low prevalence of taxa over the samples. Even though a majority of the taxa is found

at several sites (see Figure 1c), they’re found in very little samples overall (see Figure 1d).

The fractions of missclassification on the different taxonomic levels are shown in Table

2b. It is clear that most unclassified OTUs are only unclassified on the genus level.

3.2 Methods

All analyses and simulations were performed with the statistical software R, version 3.2.0

[47], using the packages phyloseq [48], edgeR [49], DESeq [23], DESeq2 [34], metagenome-

Seq [17], foreach [50], plyr [51], ROCR [52], reshape2 [53] and HMP [54]. Plotting was

done with the ggplot2 [55] and VennDiagram [56] packages.

3.2.1 Correspondence analysis

Correspondence analysis (CA) is a visualization technique for contingency tables, designed

to explore relationships between categorical variables. It can be seen as the analog of
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(a) log10-library sizes
(b) Fraction of OTUs with zero counts
per sample

(c) Prevalence of taxa over body sites,
i.e. number of body sites in which the
individual taxa were found

(d) Prevalence of taxa over samples, i.e.
fraction of samples of the whole dataset
in which individual taxa were found

Figure 1: Exploratory graphs of the HMP dataset

principal component analysis for discrete data. In a contingency table, the differences or

distances over rows or columns can be quantified using some distance measure. The aim

of CA is to summarize these distances in a number of independent dimensions. The rows

and columns can then be represented as points in a two dimensional space spanned by

the dimensions in which the samples exhibit the strongest deviation from independence

between rows and columns. The result is called an ordination plot and allows a graphical

summary of a large dataset [57]. Here we summarized the distances between the samples in

terms of taxa read counts through CA, without prior normalization and after application

of rarefying, TSS, RLE, TMM, UQ and CSS normalization. As distance measure we use

the Bray-Curtis distance [27].

3.2.2 Testing and estimating overdispersion

All sites of the HMP dataset were tested for overdispersion using the method by Kim and

Margison [58], which determines if the Dirichlet multinomial (DM) provides a better fit to

the data than a regular multinomial. For significant sites, the parameters of the DM and
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Body site Samples
Mid vagina 150
Posterior fornix 149
Vaginal introitus 151
Hard palate 342
Keratinized gingiva 345
Saliva 327
Subgingival plaque 346
Supragingival plaque 353
Palatine Tonsils 351
Tongue dorsum 357
Throat 339
Buccal mucosa 348
L Retroauricular crease 318
R Retroauricular crease 310
L Antecubital fossa 190
R Antecubital fossa 194
Anterior nares 302
Blood 6
Stool 354

(a)

Taxonomic Fraction of
level unclassified entries
Kingdom 0
Phylum 0.0014
Class 0.0069
Order 0.026
Family 0.041
Genus 0.16
Total 0.232

(b)

Table 2: Number of samples per body site. R=right, L=left (a) and fraction of
OTUs that could not be matched with the Greengenes database on this taxonomic
level (b) of the HMP dataset

their standard deviations were then estimated using the method of moments implemented

in the dirmult package [38,59].

3.2.3 Simulation

The R-code for running the simulations and analysing the results was largely based on

the simulations for differential abundance detection by McMurdie and Holmes, 2014 [22].

In order to generate fake communities that resemble true data as much as possible, the

DM was used with the parameters estimated from the different bodysites and library sizes

sampled randomly from the same bodysite. Resulting communities with less than 2 taxa

were discarded and simulation was repeated until the community contained at least 2

taxa. Data from the Posterior fornix were not used since it was too difficult to gener-

ate the desired communities from them. Each generated community was divided into 2

classes and a number of taxon counts was multiplied by an effect size in one of the classes.

Parameters that were varied across simulations to generate communitites were number

of communities per class or number of replicates (3,5,10 and 20) and effect size (3,5 and

10). The fraction of differentially abundant taxa was kept fixed at 10% of the library

size. This number of differentially abundant taxa was rounded upwards to have at least

one differentially abundant taxon per community. Simulations were repeated 60 times for

each body site and every combination of simulation parameters (number of replicates and
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effect size) to increase reliability of the estimate. So in total 1020 datasets were generated

per combination of effect size and number of replicates.

Analysis parameters that were varied were type of normalization used (none, rarefying,

TSS or proportion normalization, CSS, RLE, TMM and UQ) and the subsequent analysis

method (t-test, Wilcoxon rank sum test, DESeq, DESeq2, edgeR and metagenomeSeq),

with which differential abundance was tested between the two predefined classes. All these

combinations of normalization and analysis methods were applied to each of the 12240

generated datasets (3 different numbers of replicates x 4 effect sizes x 17 body sites x 60

repeats=12240). The EM-algorithm for fitting the zero-inflated Gaussian of metagenome-

Seq does work when all normalization factors are 1, so the normalization methods for

which this is the case, rarefying and no normalization, could not be combined with the

metagenomeSeq analysis method. Both metagenomeSeq and DESeq2 sometimes fail to

fit their model onto the simulated datasets. In this case the analysis was stopped and

the result discarded. This happened in around 7% of the cases for metagenomeSeq for

all normalization methods and in 27% of the cases for DESeq2 with TSS normalization.

The results for these methods are a summary of the cases were the model could be fit.

Correction for multiple testing was done by the method by Benjamini and Hochberg to

control the False Discovery Rate at a the nominal level of 5% [35]. Independent filtering

was applied only for DESeq2 since it is part of its default algorithm. Estimates of interest

were averaged over the body sites and the 60 replicates.

The performance of a classification method can be characterized by its sensitivity (fraction

of differentially abundant taxa detected), specificity(fraction of non-differentially abun-

dant taxa reported as such) and false discovery rate. The specificity is equal to 1-FPR

with FPR the false positive rate (fraction of non-differentially abundant taxa reported

as differentially abundant). Usually, the settings of a method such as significance level

can be changed to improve on of these criteria (sensitivity or specificity), but this comes

at the cost of reducing the other one. To visualize this trade-off, the sensitivity is often

plotted versus the FPR in a receiver operating characteristic (ROC) curve, constructed

by varying some cut-off parameter such as the nominal false discovery rate and plotting

the resulting sensitivity-FPR combinations. An example of such a ROC curve is shown

in Figure 2. To summarize an ROC in one number, one can use the area under the ROC

curve (area-under-the-curve or AUC), which will be 1 for a perfect classifier and 0.5 for a

random classifier. The AUC value thus summarizes the performance of the method over

all sensitivity-FPR combinations and is independent of the cut-off value used to construct

the ROC curve [52, 61]. Another measure for method performance is the false discovery

rate (FDR). It is calculated as the fraction of false positives among the taxa reported as

differentially abundant (the discoveries) and reflects the reliability of the reported discov-

eries [35].
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Figure 2: Example of an ROC curve, showing the trade-off between sensitivity and
specificity. Diagonal dashed line shows performance of a random classifier. It is clear
that the area below the curves (AUC) comes closer to 1 for better methods [60].

3.2.4 Differential abundance detection

The methods that performed best in the simulation study were applied to two sites from

the HMP dataset, the tongue dorsum and the palatine tonsils, to test for differential

abundance. These sites were chosen because we assume they differ little in bacterial

community composition because of their proximity.

4 Results

4.1 Correspondence analysis

A plot of the correspondence analysis prior to normalization for the first two dimensions

is shown in Figure 3. We see that the vaginal samples are very different from all other

samples, whereas skin and airways on the one hand and oral cavity and gut on the other

hand resemble each other more. The third dimension separates the gut samples from

the others (plot not shown). From this exploratory analysis it is clear that the vaginal

microbiome is most unique, and that there is a large degree of homogeneity between

communities found at different sites from the same body region(gut, skin, oral cavity,

airways and vagina). Most normalization methods do not have a big impact on the

outcome of the correspondence analysis, only CSS normalization slightly improves the

separation of the different regions (results not shown).
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Figure 3: Ordination plot of the first two independent dimensions of the corre-
spondence analysis of unnormalized data. Percentages indicate the fraction of the
Pearson Chi-squared statistic explained by this dimension. The Bray-Curtis method
was used for distance calculation

4.2 All body sites of the HMP exhibit overdispersion of thier

read counts

All 18 communities of the HMP dataset were significantly better fit by the Dirichlet

multinomial than by the multinomial on the 5% significance level (all P< 0.0001). The

estimated overdispersion parameters are shown in Figure 4. We see that oral cavity and

stool communities have a lower overdispersion than samples from the vagina and skin.

This can be caused either by the differences in sampling procedure or by true differences

in heterogeneity of the communities.

4.3 Simulation study results were summarized through AUC

curves and FDR

The AUC-values are shown for all combinations of effect size, number of samples per

group (replicates), normalization method and analysis method in Figure 5. Analogous

curves were constructed for sensitivity (Figure 6) specificity (Figure 7) and FDR (Figure

8). In what follows we refer with DESeq, DESeq2, edgeR and metagenomeSeq to the model

fitting and differential abundance testing methods implemented in those R-packages and

discussed in Section 2.2.3, but NOT to the normalization methods implemented in these

packages.
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Figure 4: Overdispersion parameters θ of the Dirichlet multinomial distribution for
every sampled body site of the HMP dataset, estimated by the method of moments.
Error bars represent ± one standard deviation

4.3.1 Optimal normalization method depends on subsequent analysis method

Rarefying and proportion(TSS) normalization are widely used but have been criticised for

increasing false positive and false negative rates [22]. Our simulation results confirm that

TSS performs worse in terms of AUC values than the other investigated normalization

methods for edgeR, DESeq2 and metagenomeSeq over all tested effect sizes and number

of samples per group. For Welch t-test and Wilcoxon rank sum test it performs well for

effect size 3 and very badly for effect size 20. It also has an increased FDR for Welch

t-test, Wilcoxon rank sum test and edgeR. Notably, it also performs much worse than

when no normalization is applied at all in most cases. The differences with other methods

grow more pronounced as the effect sizes increases and are mainly due to lower specificity

when TSS is used. This corresponds well with the hypothesis that larger differences in

abundance of other taxa (due to the larger effect size) affect the library size and thus the

proportions of other, non-differentially abundant taxa so much that they are also marked

to be differentially abundant [20,23–25].

Rarefying works rather well on the simulated datasets for DESeq, but in combination with

edgeR and DESeq2 it shows a mediocre performance. For Welch t-test and Wilcoxon rank

sum tests rarefying has a slightly increased false positive rate and a strongly increased

FDR. Skipping the normalization step leads to surprisingly good results for DESeq, DE-

Seq2, Welch t-test and Wilcoxon rank sum test, espcially for larger effect sizes. In combina-

tion with edgeR it performs intermediately, but worse than rarefying. UQ-normalization is
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Figure 5: Results of simulation study for AUC values for all combinations of num-
ber of samples per group (x axis), normalization method(plotting colour), analysis
method (top facets) and effect size (facets on the right). Error bars represent ± 1
standard error of the mean. metagenomeSeq results could not be obtained with no
normalization or rarefying.

performant in combination with edgeR and metagenomeSeq, but not at all with the other

methods. In combination with DESeq, UQ-normalization leads to a much higher FDR,

with metagenomeSeq it renders this method more specific. CSS normalization works well

for metagenomeSeq, DESeq and DESeq2, but not for Welch t-test and Wilcoxon rank sum

test and for edgeR it is outright bad. The CSS normalization method renders DESeq2

and edgeR very specific, but it reduces edgeR’s power drastically. On the other hand it

renders metagenomeSeq more powerful. RLE and TMM normalization are clearly the best

normalization methods for edgeR in terms of AUC values, but only because they make

a very sensitive method. With these normalization methods edgeR is also least specific.

TMM also combines well with metagenomeSeq, but not with DESeq and DESeq2. On the

other hand, RLE goes well together with DESeq2. Summarizing, for a true positive frac-

tion of 10%, edgeR performs best with RLE or TMM normalization, DESeq2 with CSS,

RLE or no normalization and metagenomeSeq with CSS, UQ and TMM normalization.

These simulation results suggest that optimality of normalization methods for differen-

tial abundance analysis depends on the subsequent analysis method, and that combining

normalization and analysis methods from the same authors does not necessarily lead to
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the best result.

Figure 6: Results of simulation study for sensitivity for all combinations of number
of samples per group (x axis), normalization method (plotting colour), analysis
method (top facets) and effect size (facets on the right). Error bars represent ±
standard error of the mean. metagenomeSeq results could not be obtained with no
normalization or rarefying.

4.3.2 edgeR performs best in terms of AUC values but suffers from low

specificity and elevated FDR

DESeq, the Welch t-test and Wilcoxon rank sum test are no match for the other in-

vestigated methods in terms of AUC values, especially when the number of replicates

is low. Their performance varies very little with normalization methods, but they are

almost powerless to detect differential abundance, especially for small effect sizes and

number of replicates. A possible partial explanation for this is that the Welch t-test

and Wilcoxon rank sum test do not share information on the variance over the different

taxa as DESeq, DESeq2 and edgeR do, which may make them less efficient. When there

are only 3 samples per group, only DESeq2 has any power at all to detect differential

abundance. However, once there are 5 replicates per group, edgeR in combination with

RLE or TMM normalization (and UQ to a lesser extent) gains enormously in sensitivity

and continues to do so for more replicates. Perhaps the variance estimation algorithm

of edgeR overestimates the variance when the number of replicates is small because the

taxon-wise correction of the variance estimates through empirical Bayes does not work
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well, as has been suggested previously [23]. On the contrary, DESeq2 ’s power hardly de-

pends on the number of replicates and is hence lower than edgeR’s power for 5 replicates

or more. metagenomeSeq ’s power is less than 0.1 for 3 or 5 replicates, but surpasses 0.3

for 10 or 20 replicates. DESeq2 becomes more specific when there are more replicates,

Figure 7: Results of simulation study for specificity of all combinations of num-
ber of samples per group (x axis), normalization method(plotting colour), analysis
method (top facets) and effect size (facets on the right). Error bars represent ±
standard error of the mean. metagenomeSeq results could not be obtained with no
normalization or rarefying.

and in particular with CSS, RLE and no normalization its FDR decreases quickly with

the number of replicates. For these normalization methods the FDR also decreases with

effect size, but for an effect size of 3 it is TSS that has the lowest FDR. On the contrary,

starting from 5 and 10 replicates respectively, edgeR and metagenomeSeq become much

less specific, and for 5 replicates and more their FDR hovers around 0.75, independent of

effect size. For DESeq2 and metagenomeSeq the sensitivity and specificity depend little

on the normalization method, but for edgeR the RLE and TMM methods make it less

specific but more sensitive, whereas the UQ and CSS methods render it more specific and

less sensitive. In terms of AUC values the edgeR analysis method slightly outperforms

metagenomeSeq when there are many replicates and by a great margin when the numer

of replicates is low. DESeq2 only has higher AUC values when there are only 3 samples

per group.
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The number of replicates is thus a crucial for the evaluation of analysis methods, espe-

cially when this number is low. Larger effect sizes improve the sensitivity of all methods,

but result in a slightly lower specificity for the edgeR method.

Figure 8: Results of simulation study for False discovery rate (FDR) of all com-
binations of number of samples per group (x axis), normalization method(plotting
colour), analysis method (top facets) and effect size (facets on the right). Nominal
FDR was ≤0.05. Error bars represent ± standard error of the mean. metagenome-
Seq results could not be obtained with no normalization or rarefying. Empty spaces
indicated no taxa were reported differentially abundant, so FDR could not be cal-
culated

4.4 edgeR reports more differentially abundant taxa than DE-

Seq2 on real data

The communities at the tongue dorsum and palatine tonsils were analysed withedgeR

combined with RLE and TMM normalization and DESeq2 combined with CSS, RLE and

no normalization. In the tongue dorsum 250 different taxa were found, in the palatine

tonsils 307. The number of taxa reported as differentially abundant is shown in Figure

9. edgeR reported exactly the same 89 taxa to be differentially abundant with TMM

and RLE normalization, with 64 taxa more abundant in the palatine tonsils and 25 more

abundant on the tongue dorsum. 21 differentially abundant taxa were detected by all 5

analysis combinations. An additional 24 taxa were found siginificant by all combinations

except for CSS normalization with DESeq2. 2 taxa were only marked to be differentially

abundant by DESeq2 with all normalization methods and another 2 only by DESeq2 and
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RLE and no normalization. The biological significance of these differential abundances

fall beyond the scope of this thesis, but these results confirm that edgeR reports more

differentially abundant taxa than DESeq2. The apparent conservativeness of DESeq2 in

combination with CSS normalization was however not seen in the simulation study.

Figure 9: Venn diagram of number of taxa found to be differentially abundant
between tongue dorsum and palatine tonsils according to different analysis methods.
Red circles indicate analysis by edgeR, green circles by DESeq2. Normalization
methods are indicated on the circles

5 Discussion

Simulation studies to evaluate performance of normalization or analysis methods for

sequence read count data most often generate data based on some distribution that

real sequence data are supposed to follow. Past simulation studies have used a broad

range of distributions to model the counts taxon-by-taxon between the different sam-

ples [17, 20, 21, 29, 30, 40, 43]. However, whole-community modelling (e.g. through the

multinomial distribution [22]) requires less parameters to be estimated and might rep-

resent a more efficient approach to simulation. We found that all communities sampled

in the HMP project exhibit overdispersion compared to the multinomial, although this

phenomenon is less pronounced in the samples from the oral cavity. Hence we simulated

microbiome datasets based on the Dirichlet multinomial distribution, whereby taxon pro-

portions and overdispersion were estimated per environmental condition.

Over the years, dozens of normalization and analysis methods for differential abundance

have been devised, and some attempts have been made to compare both the normaliza-
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tion [20,22] and analysis methods [21,22]. In this thesis a simulation study was performed

to assess the performance of combinations of some of the most popular normalization and

analysis methods over a number of effect sizes and number of replicates per sample,

whereby the fraction of differentially abundant taxa was kept fixed at 10%. Of course

the results of such a study should be interpreted carefully, since they rely on assumptions

about count distribution, number of differentially abundant taxa and scope of effect sizes

that may not be representative of all microbiome data.

The testing algorithm implemented in the edgeR package in combination with the TMM

and RLE normalization methods performed best in our simulation study in terms of AUC

values. It is a very sensitive method (except when there are only 3 replicates), but espe-

cially for high number of replicates its specificty drops to 80%. Also its false discovery

rate (FDR) is very high (75%, where the nominal level was 5%), which means that 3 out

of 4 taxa reported as differentially abundant are not. The analysis method of DESeq2

combines well with the RLE and CSS normalization methods and with no normalization

at all. It is more specific than edgeR and its FDR is lower than for edgeR when there are

10 or more replicates, but also has a much lower power. Even though devised especially

for microbiome read count data, metagenomeSeq is slightly outperformed by edgeR, devel-

opped for RNA-Seq. It lacks power when the number of replicates is low, is little specific

when this number is large and also has a FDR of around 75%. The CSS normalization

method from the metagenomeSeq package works well in combination with its analysis

method, but our results show that also the TMM and UQ normalization methods collab-

orate well with it. The Welch t-test, Wilcoxon rank sum test and DESeq lack power to

detect differential abundance of taxa, even at high effect sizes and number of replicates.

On the other hand these methods do have a much lower FDR of around 10%l. These

results correspond relatively well with findings from previous research [20–22,44].

For differential abundance analysis, our simulation results suggest to use edgeR with TMM

or RLE normalization when there are 5 replicates or more per group and the researcher

definitly wants to avoid missing differentially abundant taxa, even when this comes at

the cost of a high false positive rate and a high FDR. Normalizing with the UQ method

instead renders the method a bit more specific,less sensitive and lowers its FDR, but still

preserves its overal good performance. DESeq2 together with CSS, RLE or no normal-

ization seems indicated when the number of replicates is less than 5 or when one wants

to restrict the false positive rate and FDR, even at the cost of a lower power.

Since most authors of analysis methods for RNA-seq or microbiome abundances also

compose a new normalization method and implement them in the same package, they are

sometimes seen as an undivisible unit. We have tried to combine different normalization

and analysis methods as far as possible to assess their compatibility. Strikingly, very

often combinations of normalization methods and analysis methods devised by different

people performed as well or better than in the original combinations in our simulation
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study. On the other hand we did not establish an “optimal” normalization method for

all analysis methods, which suggests that one should not regard normalization and sub-

sequent analysis separately. It might be more useful to look for an optimal combination

of normalization and analysis method for differential abundance. Therefor it might be a

good idea to implement more than one normalization method in released R-packages for

microbiome count data analysis, or to facilitate their implementation by the user. These

results also confirm the merits of the Negative Binomial distribution in testing for differ-

ential taxon abundance, although the Zero-inflated Gaussian that was proposed recently

also performs almost as well [17]. In our simulation study, another interesting parameter

to vary is the fraction of differentially abundant taxa. Also one might think of a way to

include correlations between taxa counts in the simulated datasets.

Control of false discovery rate fails completely for the most performant methods in our

simulation study (edgeR, DESeq2 and metagenomeSeq). Welch t-test, Wilcoxon rank sum

test and DESeq only manage to control FDR at the nominal level for the largest effect

sizes and number of replicates with the appropriate normalization method. This problem

has been noted before [21,40] and calls for a revision of the current FDR control method-

ology. Further research into normalization and analysis methods is definitely indicated,

preferably also by other methods than simulation only.
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