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Summary

The object of this dissertation is to determine and to implement a valid framework for a model

that accurately describes filter cake formation in membrane bioreactors on a microscopic level,

including the heterogeneous structure observed in reality.

First an introduction is given, in order to emphasize the importance of this research line

of modeling, and the choice for the chosen Euler-Lagrangian framework is motivated in the

literature study. This is followed by a detailed description of the theoretical basis of the

model: a force balance that accounts for all the forces exerted on a particle by its surrounding

fluid, with the profile of the latter being simulated by solving the Navier-Stokes equations.

Subsequently, the implementation of this basis is described, wherein it was accounted for

stability issues and flow regime-related correction factors. Also, a collision detection algorithm

was constructed in order to model attachment to the membrane or an already formed filter

cake. For this, a parameter was introduced that accounts for the influence of a particle’s

momentum regarding its probability of actually adhering to the cake layer.

Next, a study on a benchmark and a set of derived scenarios is performed in order to assess the

influence on the simulated filter cake output of the model. The comparison of the simulated

filter cakes was based on statistics such as their average thickness, standard deviation and

accumulated number of particles. It is concluded from this results that the aforementioned

parameter has a large influence on the nature of the filter cakes generated by the model,

contrary to the flux, which, within the range of fluxes found in MBR, has only a small

influence on the fouling regime. The results also emphasized that the model is still far from

complete and needs some adjustments and extensions in order to fully serve its purpose.

These are elaborately documented in the last chapter.
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Samenvatting

Het doel van deze uiteenzetting is het bepalen en implementeren van een deuglijk kader voor

een model dat een beschrijving zal geven van filterkoekvorming in membraanbioreactoren,

die accuraat is tot op microscopisch niveau zodat de spatiaal heterogene structuur kan geob-

serveerd worden.

In het inleidend hoofdstuk in deze thesis wordt uitgelegd waarom deze manier om mem-

braanvervuiling te modelleren een substantiële bijdrage kan leveren tot het begrip van de

onderliggende processen van dit fenomeen. Vervolgens wordt de uiteindelijke keuze voor het

Euler-Langrange-raamwerk gemotiveerd in de literatuurstudie. Dit wordt opgevolgd door

een gedetaileerde beschrijving van de theoretische basis van het model: een krachtenbalans

over het partikel waarin alle krachten die op een partikel, ondergedompeld in een vloeistof,

inwerken. De vloeistofstroming wordt gesimuleerd door het oplossen van de Navier-Stokes-

vergelijkingen. Vervolgens wordt de implementatie van deze theorie uit de doeken gedaan,

waarbij gecorrigeerd moest worden voor het stromingsregime en voor het bewaren van de

modelstabiliteit. Daarnaast werd ook nog een collisiedetectie-algoritme opgesteld dat de de-

positie van partikels op het membraan (of de reeds aanwezige filterkoek) moet modelleren.

Hiervoor werd een parameter ingevoerd om de invloed van het moment van een partikel op

zijn aanhechtingskans in rekenschap te brengen.

In het volgende deel worden een benchmark en een aantal gerelateerde scenario’s bestudeerd,

met als doel de invloed van de verschillende parameters op de modeloutput in kaart te bren-

gen. Het vergelijken van deze gevalstudies gebeurde op basis van filterkoekstatistieken zoals

de gemiddelde dikte, de standaardafwijking van de koekdikte en het aantal partikels dat in

de koek vervat is. Uit de resultaten kon besloten worden dat de voorgenoemde aanhecht-

ingsparameter en grote invloed heeft, en dat de flux over het membraan daarentegen slechts

een kleine invloed toont op het vervuilingsregime. Ze benadrukten echter ook dat het model

nog een lange weg te gaan heeft, om aan het doel van een fysisch accurate beschrijving van

filterkoekvorming tegemoet te komen. De modelextensies en aanpassingen die het daarvoor

nodig heeft worden uitgewerkt in het laatste hoofdstuk.
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CHAPTER 1
Problem statement, research objectives

and outline

1.1 Introduction

Activated sludge systems have been around for a while, rendering good service in wastewater

treatment, improving water quality at a low chemical cost. The application of a biological

process to remove polluting substances, however, also requires that the biological agent, i.e.

the sludge itself, still needs to be separated from the clean water. For this, several technolo-

gies are available, of which the traditional sedimentation tank and the membrane bioreactor

(MBR) are the most widespread. The first is based on the gravitational settling of solids,

whereas the second employs a permselective membrane to retain the biomass from the effluent.

And while the configuration with a final settler remains the most commonly found practice,

as it is even termed the conventional activated sludge system (CAS), the MBR’s popularity

has been ever increasing, with the MBR market showing a compound annual growth rate of

10.5 % (Kraume and Drews, 2010).

The core principle of this promising system is that the mixed liquor is sucked through the

membrane, where anything too large to fit through its pores is retained. Pore sizes are usually

situated between 0.01 and 0.4µm, which fits the membranes into the ultra- and microfiltration

classes, so that the produced permeate consistently achieves a high quality. Next to its

robustness, the most prominent feature of MBRs is their compactness; dependent on the

configuration, submerged or sidestream, the membrane is placed either inside or outside the

biological reactor itself. Yet even if it is found in an adjacent tank, the membrane module

takes up much less space than a sedimentation tank. Another trait is that the settleability

of the mixed liquor is no longer a concern. This also opposes the constraint of the relatively

low concentrations of sludge that are allowed and limiting in the conventional system. Due

to hindered settling, meaning that the settling suffers from interactions among the sinking

particles and from compression, sludge concentrations exceeding 6 g TSS/L are rarely found
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in CAS-systems. In MBRs this limit only depends on filtration characteristics, making that

these systems can involve concentrations between 8 and 15 g TSS/L for municipal and up

to 40 g TSS/L for industrial wastewater treatment (Rosenberger and Kraume, 2003). TSS

represents the total suspended solids, it represents the suspension or solids concentration

within the mixed liquor. Therefore, in retrofitting cases, i.e. in plants where the sedimentation

tank setup has been replaced by a membrane module, the capacity of the treatment plant is

substantially increased because of the higher wastewater loadings that it is able to process.

Other advantages of an MBR system in comparison to a CAS plant relate to its sludge

retention time (SRT), which is not coupled to the hydraulic retention time (HRT). The latter

is determined by the fact that a certain COD removal efficiency must be reached and that

the wastewater needs to be processed adequately fast. The presence of difficult biodegradable

COD or the use of slow-growing microorganisms could therefore impose some extra design

and operating criteria. In MBR, however, removal efficiencies are governed by the membrane

type and persistent COD is retained and broken down at the pace it requires. And since the

HRT is disconnected from the SRT here, the sludge age can be regulated without HRT-related

concerns. Among the perks following from this degree of freedom is the possibility to adjust

the sludge age to benefit the slow-growing autotrophs, which in turn enhances the nitrogen

removal rate.

Yet all of these features are coupled to a higher operational cost, a cost that just about comes

down to the price tag of fouling abatement. Because even if the MBR is perceived as a reliable

system, with the capability of handling varying influent loads without showing any sign of

that in its consistent and high quality output characteristics, a look behind the scenes reveals

an enduring and energy-consuming toil to maintain its steady outflow. Besides the liquid-

solid separation being driven by pressure instead of gravitation, an MBR also needs frequent

cleaning efforts of the membrane surface to ensure a sustainable operation. Indeed, the flux

decline or pressure increase, dependent on the operational regime that is in effect, constant-

pressure or constant-flux operation, would become unacceptable in a matter of minutes since

the pressure acts on all suspended material as a driving force towards the membrane, giving

rise to layers of organic material on the membrane surface, referred to as fouling. For its

nature of hindering the filtration process, fouling needs to be kept under control, a process

that requires continuous efforts; next to backwashing with clean permeate also aeration of

the membrane and timely chemical cleaning are brought into play to keep the membrane in

good shape. But, evidently, all these measures also give rise to a high energy demand. This

manifests itself as a substantial share of the treatment cost per m3 of wastewater treated, as

more than 80 % of the operational expenses is energy-related (Judd, 2010). With an average

energy consumption between 0.8 and 1.2 kWh m−3, this seems only natural, and certainly so

when compared to the CAS (≈ 0.5 kWh m−3) (Fenu et al., 2010).

Still, even with these fouling remediation actions in place, the membrane will deteriorate by

irrecoverable fouling, necessitating membrane replacement after a certain amount of time;
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some plants hold out for more than 10 years without this measure, but there are also a lot of

them that do not even make it until 4 years (Wozniak, 2010). Considering that the cost of the

membrane makes up about half of the total capital cost of the whole installation (Verrecht

et al., 2010), the statement that fouling is the Achilles’ heel of the MBR gains even more

strength.

1.2 Problem Statement: insight in fouling is turbid

Commercial MBRs have been around since the late 1960s, yet to this day the dynamics of the

most crucial process of the plant, i.e. filtration and the accompanying inevitable fouling build-

up, are still not fully understood. The design of these installations has always been based

on empirical knowledge rather than in-depth understanding of the underlying processes. In

addition, also operational strategies are still not cost effective, since dynamics of sludge and

influent are not considered in practice and operational guidelines of membrane suppliers are

extremely conservative. More insight in the fouling process details would contribute to a

less conservative and more dynamic operation, ultimately leading to cost savings and further

market breakthrough.

Not that there has not been any attention given to the fouling problem though. Approximately

30 % of all MBR literature deals with the subject(Yang et al., 2006), containing a slew of pilot-

, bench- and lab-scale studies, but, unfortunately, less full-scale assessments. A lot of effort

has also been put into the search for models that accurately simulate the fouling phenomenon,

but none have truly passed the test of being practically applicable, i.e. validation. At least

not in a way that fouling rates and optimal backflush frequencies can be predicted, let alone

for forecasting of the cake architecture. As particles deposit, it is expected that they influence

the flow regime over and through the membrane. On top of that, the matter that is being

withheld on the filter is largely of biological nature, with the ability to produce chemical

components that facilitate adhesion to substrates and biofilm growth. This brings forth a lot

of factors to bear in mind with filter cake formation modeling in MBR, which is spatially very

heterogeneous in nature. Hence, the puzzle that is MBR-fouling remediation is a complex

one with many small pieces, rooted in different scientific disciplines. A lot of work has been

done though, to define theoretical mechanisms upon which predictions about MBR operation

could be made. Numerous models have been composed to relate different operational MBR

parameters to each other, but so far no universally valid framework has come out of that

abundance. These models, which will be reviewed in section 2.2.1, describe the influence of the

filter cake on the flux as a Resistance-In-Series problem. They are thus built upon simplified

representations of microscale phenomena, trying to find relations between the high-level MBR

operational parameters. As they attempt to accurately describe the MBR operation and cake

formation without complete knowledge of the exact process, these models do not carry the

burden of being too complex, though they need to be calibrated with lots of data from



4 1.3 OBJECTIVES OF THIS RESEARCH

different sites. This makes it hard to come up with a universal model, since a lot of variation

in MBR function properties and conditions has to be accounted for. Moreover, only large-

scale information can result from these models, as they lump the process into equations

that ignore any spatio-temporal variability within the MBR. There is a high risk associated

with lumping complex phenomena in easy-to-digest equations, being that the model will be

calibrated for one dataset, but will need recalibration for another, while truly, a different

mechanism might have become active. Therefore, it is up to microscale models to investigate

these local spatio-temporal phenomena.

Aside from the RIS-approach there are other kinds of models (section 2.2.2) that resort even

more to the analysis of large amounts of data, gathered over many different MBR-plants.

In these cases, Artificial Neural Networks (ANN) and Principal Component Analysis (PCA)

are used. Research in this domain is developing quickly, but has not yet evolved to mature

models for practical applications.

In short, R&D of MBR fouling up to now has been largely restricted to large-scale modeling,

neglecting smaller-scale spatio-temporal distributions, supplying models for operational and

design purposes, while the pursuit for more knowledge about the underlying process has been

endeavored far less frequently.

1.3 Objectives of this research

In this master dissertation, an attempt is made to fill the gap in the filter cake modeling

landscape and to contribute to a framework that allows a precise simulation of fouling layer

build-up in MBRs. This model will incorporate the process at the basis of the cake formation

phenomenon - i.e. the deposition of particles on the membrane - in a physically accurate way,

as the trajectories of the particles themselves will be modeled. The model output will comprise

a simulation of a cake architecture under a set of MBR operational conditions, which can be

chosen so that they represent the environment outside of the frame that is being modeled.

Sludge concentrations, flow properties, imposed fluxes, ... will all be defined by the user. This

allows to incorporate the cake filtration model into a simulation of the fluid dynamics of a

whole MBR, which is the long term goal of this research line of fouling modeling.

Ideally, these results will shed more light upon the processes that are of major importance

in the genesis of an MBR filtration layer, and might lead to paths of more effective fouling

fighting. An ambitious target, but nonetheless one very much worth taking a shot at.

1.4 Outline : the roadmap through this dissertation

The following chapter consists of the literature study, which documents the current knowledge

about the fouling process and assesses the inspirations for the chosen model framework.
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Chapter 3 elaborates on this framework and bundles the theoretical knowledge base for the

model, which is then applied in Chapter 4, as the model implementation is disclosed. The

conceived filter cake model is applied to a case study in Chapter 5 and the results are discussed.

Finally, the discussion of the model performance is presented in Chapter 6.





CHAPTER 2
Literature Review

In order to create a reliable model that neatly portrays the development of a fouling layer on

the surface of an MBR membrane, a thorough and profound knowledge base of the involved

processes needs to be incorporated, encompassing a lot of different, interacting parameters, of

biological and physical nature. The first part of this chapter is dedicated to this, by assessing

what is already known about membrane fouling mechanisms. Next, an overview of the current

filter cake modeling landscape is given in order to illustrate the conceived model’s place in it.

Finally, the inspirations for the model structure are delineated.

2.1 The fouling process

Before elaborating on the fouling process, first, a lexiconical introduction is given of the terms

that are used to characterize membrane operation. Most important is the permeate flux J ,

which is a measure for the flow of treated water that is produced per unit of membrane surface

[ LMH], and also represents the flow velocity orthogonally through the membrane [ m s−1].

This flux is determined by the transmembrane pressure (TMP or ∆p, in Pa), which stands

for the pressure difference over the membrane, i.e. between the feed and the permeate. The

relation between the aforementioned parameters is described by Darcy’s law (see Eq. (2.1)),

a correlation that also includes the viscosity of the fluid that is filtered (µf , in kg m−1s−1)

and the resistance of the membrane (Rm, in m−1). The latter also represents the inverse of

the membrane permeability, which is a measure of how well the permeate flow is conducted

through the membrane. Darcy’s law basically dictates that, in order to attain a certain flux

over a membrane with an inherent resistance, sufficient pressure needs to be applied on the

feed side.

∆p = JRmµf . (2.1)
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But this equation only holds until fouling emerges. Fouling of membranes can be described

as the covering of the membrane surface - external and internal - by deposits that adhere

and accumulate during its operation. This phenomenon results in a loss of permeability,

meaning that the resistance term in Eq. (2.1) does not solely depend on the resistance of

the membrane itself but is now raised with additional resistances put up by fouling. Ergo,

when a constant flux is desired during exploitation, the imposed pressure also needs to be

increased in proportion to the fouling rate. If not, a dwindling flux will be observed due to

the extra hindrance opposed by fouling. In an MBR, this decline is not entirely linear, but

can be subdivided into different fouling regimes. When shown from a constant-flux point of

view, plotting the TMP that needs to be applied to achieve this operational mode yields the

most known profile within the field of MBR (Figure 2.1).

Along this profile, three different stages can be distinguished, the first of which is a condition-

ing stage characterized by the initial adsorption of macromolecules. These compounds have

been of large interest in the search for major fouling causes, so their nature and influence on

the TMP profile will be dealt with in the remainder (Section 2.1.1). In this initial fouling

stage however, their role consists of pore blocking and facilitating the adhesion of biomass

due to their adsorption on the membrane. This process starts as soon as the membrane is

put into contact with the mixed liquor from the reactor and even takes place at zero flux,

as it is mainly driven by chemical and physical interactions between the components and the

membrane. The result is a short yet precipitous decrease of permeability. After that, a less

steep fouling regime is witnessed, consisting of a gradual deposition and cake layer buildup.

In this stage, the TMP increases roughly linearly, though in the end it suddenly increases

exponentially, a phenomenon termed the TMP-jump.

The latter is referred to as an abrupt escalation of the filtration resistance. The process

behind this event has not yet been fully determined, although a few explanations have been

proposed. A main suspect is cake layer compaction, which is induced by the pressure forces

on the cake. Namely, by acting as an additional filtration barrier, the filter cake increases the

TMP necessary to achieve a constant flux. Calculating this pressure drop (∆p) over the cake

layer can be done with the Carman-Kozeny equation (Eq. (2.2)).

∆p =
5µfS

2(1− ε)2J
ε3

∆` (2.2)

This relation indicates that the pressure drop ∆p over a cake layer with depth ∆` [ m] rises

with increasing specific surface area (S, equals the ratio of the surface over the volume of

a particle [ m−1]), increasing flux (J) and decreasing cake porosity (ε, [−]). By applying

this pressure difference, one also exerts a force over the cake layer, which squeezes the cake,

possibly causing a further decline in porosity. This, in turn, elevates the force on the cake,

which intensifies cake compaction and so on. This process is self-supporting and drives the

membrane towards breakage. Another aspect of compaction is that it will first occur in

the part of the cake adjacent to the membrane. The mechanism is visualized in Figure 2.2
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(a) Initial stage. (b) Linear stage and TMP-jump.

(c) Schematic TMP-profile.

Figure 2.1: Examples of the TMP rising pattern. 2.1(a) and 2.1(b) depict TMP-

curves at different constant fluxes, respectively of the first 24 h and the whole

duration of the experiments in Zhang et al. (2006). 2.1(c) gives a schematic

representation of the TMP-profile (Meng et al., 2009)
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and explains that the force that is applied on one layer is passed onto the underlying layer

(following the direction of the permeate flow), augmented with the pressure force that is

needed to obtain the permeate flux through this layer. As such, the pressure on a cake layer

equals the sum of the pressure drops of all layers above it, making the bottom or membrane-

neighboring layer the one that endures the largest pressure force. As a consequence, this layer

will be the first to collapse.

Figure 2.2: Cumulative buildup of pressure in a cake layer along the direction of

the flux. Source: onlinembrsite

Due to the self-accelerating nature of the process, cake compaction is currently the best fitting

hypothesis to the TMP-jump phenomenon, but there are a few other theories. One of them

indicates pore loss as a main cause for the sudden TMP-rise, pointing at the fact that as

the pores of the membrane get blocked by foulants, the remaining pores need to deal with a

higher local permeate load since a constant flux is being maintained through a smaller number

of pores (Ognier et al., 2004). Along with this increased water flow through the remaining

unblocked pores comes an elevated fouling rate and blocking probability, which speeds up the

loss of functioning pores - a vicious circle ensues. The pore loss model has its equivalent in the

area loss model, where the local loss of permeability is attributed macroscopically by fouled

membrane area instead of microscopically by blocked pores (Cho and Fane, 2002). Another

rationale attributes the TMP-ramp to quorum sensing (Yeon et al., 2009), but this is out of

scope for this dissertation.
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2.1.1 Concepts within the field of MBR

Critical flux

Since fouling is flux-related, a theory has arisen that, in an MBR, there exists a ‘critical flux’

below which permeability does not decline over time. This idea has a mathematical ground in

the force balance of a particle, with deposition not occurring when drag forces do not exceed

dispersive forces. As the case of a constant, effortless flux has never been observed in an MBR

in reality, the original austere condition of ’no fouling’ has been softened, so that the critical

flux is defined as the highest flux at which either (a) the TMP-curve (see Figure 2.1) remains

horizontal (within experimental accuracy, that is), (b) the slope of the TMP-curve is smaller

than an arbitrary value, (c) the average TMP and the flux are linearly correlated or (d) a

reversible deposit is created or detected, by e.g. direct observation through the membrane

(DOTM). Besides, the value for this flux differs within each MBR configuration. In recent

years, a similar and more rightly-termed concept has been circulating in MBR-literature,

namely the sustainable flux, to indicate the - experimentally determined - highest flux at

which fouling is kept below an economically acceptable value for an extended amount of time.

It is still a vague term though, since there is no convention about the acceptable amount of

fouling or the duration of this regime.

Extracellular polymeric substances

In MBR literature, fouling is often correlated with the concentration of extracellular poly-

meric substances (EPS) in the mixed liquor. This is a general term to refer to any endemic

macromolecule, regardless of its chemical class, that is found at or outside the microbial cell

surface. After their secretion by the biomass, these compounds can end up in the extracellular

space either by being shed by their manufacturers or by their release during cell lysis. EPS

are pivotal in the aggregation of bacterial cells into flocs and biofilms, as well as adhesion to

other surfaces, such as a membrane. Moreover, EPS also form a protective barrier around

the bacteria and retain water, making that these polymeric biomolecules can form a highly

hydrated gel matrix in which the microbial cells are embedded. Finally, biofilm growth on the

membrane is again stimulated as the attachment of bioflocs locally provides a major nutrient

source for this process. EPS are typically differentiated into compounds residing in or at the

cell wall and those that float solubilized in the mixed liquor. The cell wall-adhering fraction

is actually commonly referred to as ‘EPS’ in literature, though a more suitable term would be

’extracted EPS’ or eEPS, referring to the lab methodology. Yet it is the fluid-borne fraction

that is thought to impact fouling in MBR most substantially. These compounds are called

soluble microbial products, or SMP, and refer to EPS that end up in the supernatant after

centrifugation of the MBR sludge, as the term is meant to refer to the free soluble fraction

of EPS. The comparison of different EPS solutions is often done by a characterization on
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the basis of relative protein (ESPp) and carbohydrate content (ESPc). The latter fraction

is believed to be more critical in fouling because of the hydrophility of the carbohydrates, in

contrast to the generally hydrophobical behavior of proteins. Concentration ranges are found

to be 11− 120 mg/L for ESPp and 7− 40 mg/L for ESPc (Judd, 2010).

The deposition of EPS on the membrane surface leads to the buildup of a covering gel layer

that facilitates attachment of bacterial cells. In the beginning stage of this development, the

first EPS tie to the membrane material due to interaction by forces of physical (adsorption),

chemical (covalent bonds) or electrostatic nature (Van der Waals-forces), of which the mag-

nitudes depend on the roughness characteristics of the membrane surface. As illustrated in

Figure 2.3, local accumulation of EPS brings along the formation of a stronger matrix by

cross-linking of the compounds, becoming a gel layer rich in nutrients with active groups,

creating an optimal environment for bacteria to anchor themselves in (Tansel et al., 2006).

Figure 2.3: Progression of EPS deposition on a membrane. (Tansel et al., 2006)

Whether the EPS-concentration determines the fouling propensity, and to which degree it

does, has not yet been determined solidly, but many researchers have reported positive cor-

relations between the two variables (Judd, 2010). These are, however, based on lab trails, in

which higher EPS concentrations appear than in a full-scale MBR. The statement that EPS

do not significantly influence fouling in fully operational MBR installations has among others

been backed by Drews et al. (2008).

Regarding the production of EPS, modeling has also caught up, providing a line of three

approaches, each one adding more complexity to their precursor (Menniti and Morgenroth,

2010).
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2.2 Fouling modeling up until now

2.2.1 Mechanistic models

The most prominent approach to fouling modeling fits a Resistance-In-Series problem

(RIS) into Darcy’s law (see Eq. (2.1)). The clean membrane resistance Rm, which is provided

by the membrane manufacturer, but can also be determined by applying the aforementioned

law in an ultrapure water filtration trial, is combined with other resistance terms that arise

from membrane fouling in order to form a total filtration resistance.

The additional impedances are conventionally attributed to the resistance of the cake layer

(Rc) and pore blocking (Rp), all in [ m−1]. For these supplementary resistance components,

separate models have been developed that are either based on the exact mechanism of the

respective processes or involve a semi-empirical relation. Variations within this genre of

filtration modeling mostly decompose one of the two fouling-related resistances according to

different mechanisms on a smaller scale, such as in Naessens et al. (2012a). One important

observation is also that, generally, these models do not incorporate resistances that might be

caused by scaling or concentration polarization, as these are considered negligible.

Although there already exists an abundance of RIS models and their development is still

prevalent in MBR research, they arise a few practical issues. First of all, because every

resistance term is mimicked by a separate model, each of which involving a few parameters,

overfitting might become an issue. Incorporating too many parameters namely requires a

larger calibration effort. On the other hand, certain processes that have been neglected by a

RIS model can also thwart calibration.

Furthermore, overcoming the step between calibration and validation is one of the hardest

parts for fouling models, as the operational conditions can differ substantially between full-

and lab-scale MBRs. Therefore, these models need to be validated with data from a number

of different full scale MBR plants, but, apart from an extensive data-gathering, most of the

RIS models don’t even undergo this final evaluation, which severely limits their applicability

in cases different from the one in which they were calibrated.

2.2.2 Data-driven models

In comparison to the mechanistic models, data-driven approaches only make up a small

segment of the filtration modeling landscape, though different techniques are being researched

side-by-side here. One of these is inspired by biological principles, finding its origin in the

mathematical representation of the brain, namely Artificial Neural Networks (ANN).

Other methods can be classified as advanced regression techniques, of which the most notable

one is Principle Component Analysis (PCA). It is principally a way of dealing with large data

sets - a great feature in MBR research - as it applies a data transformation, so that new
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variables are created according to the directions of largest variance in the output variables

(e.g. the flux). These variables are linear combinations of the initial variables and form the

principle components, which are thus also carrying information about the greatest fouling

causes. These techniques are very promising in fouling control in MBRs and may contribute

substantially to future advances in this field (Naessens et al., 2012a).

2.3 Modeling inspirations

In this section, the model paradigms that served as inspirations for the filter cake model are

listed and discussed. The first part considers the framework that will actually be used, and

in the second, the recent history of biofilm modeling is given, which shows many similarities

with the discrete approach that is aimed for.

2.3.1 Multiphase flow modeling

The numerical modeling of multiphase flows is based on the discretisation of the space under

consideration in a lattice of cells, where the Navier-Stokes (NS) equations are applied to

describe the motion of the fluid. According to whether or not all of the phases are modeled

this way, two different paradigms can be distinguished, namely the Euler-Euler and Euler-

Lagrange approach (Naessens et al., 2012b). Recalling that the Euler way describes the fluid

flow through a fixed location, like a cell in the grid, the Euler-Euler approach comes down

to treating all the phases as interpenetrating continua, with volume fractions summing to 1

in each cell. The Lagrange method, on the other hand, involves tracking individual particles

through space and time, so the Euler-Lagrange technique follows the freely moving particles

the Lagrangian way in a fluid that is modeled as an Eulerian continuum. The force balance

on a particle is then also determined by the fluid motion in the grid cell corresponding to its

position. With a simpler implementation and results that give a more realistic representation

of the dispersed phase, this last method is preferential to the Euler-Euler approach, although

high numbers of particles modeled this way can easily result in a model that is too intensive

from a computational point of view.

2.3.2 Biofilm models

A biofilm can be described as an assemblage of biological cells that occupies an interface.

Supposing that this interface consists of the surface of the membrane of an MBR, it is not

hard to acknowledge the fundamental similarities between a biofilm and an MBR filter cake, as

also the essential building block of both is embodied by a microbial cell. The main difference

though, is that the largest contributor to biofilm growth is cell division, while on the time

scale of filter cake buildup in MBRs, which is mainly controlled by the backwash frequency,
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this may be neglected. Instead, particle deposition from the bulk dictates the volume and

architecture of the filtration cake.

Virtual biofilms were also simulated as mechanistic models, with early models that were com-

posed to predict substrate utilization, initially even without accounting for effects of mass

transfer within the film (Atkinson et al., 1963; Atkinson and Daoud, 1970). These efforts

resulted in the conceptualization of biofilms attached to a flat plate with infinite length and

width (Williamson and McCarty, 1976). Such in silico biofilms are composed of layers of

active and inactive mass - their border was marked by a certain biofilm depth - and also the

effects of incomplete mixing on substrate transfer is mimicked. Yet, these models lack any

expression of the interdependence between substrate consumption and biofilm mass. This is-

sue is resolved with the subsequent development of models that also simulate biofilm growth

(Kissel et al., 1984; Wanner and Gujer, 1985, 1986). With these developments, biofilm mod-

eling reached somewhat of a turning point, still accurately predicting phenomena of interest

to industrial systems (e.g. substrate utilization rate) but additionally providing insight into

biofilm accumulation. In fact, the latter models have effectively been used as research tools,

in order to assess the effects of different processes like poor antibiotic penetration and quorum

sensing (Roberts and Stewart, 2004; Nilsson et al., 2001).

The approach that enabled this added value, along with the advances in computational re-

sources, was pseudo-steady-state modeling, the concept of separating fast from slow processes.

As microbial growth and decay occur at a much slower pace than substrate uptake and diffu-

sion within the biofilm, pseudo-steady-state allowed for modeling the first two processes using

steady-state substrate concentration profiles. The work of Kissel et al. (1984), the first to

implement this idea, therefore provides the conceptual basis of all biofilm models that were

formulated beyond that era.

Use of cellular automata

Since nearly two decades, the modeling of biofilms has advanced even more by paying attention

to its spatial heterogeneity rather than representing it as a slab of uniform thickness, as is

the case in RIS-models (Section 2.2.1). The groundwork for this new movement was laid

in Picioreanu (1996) and consists of a cellular automaton (CA) model for both substrate

and biomass layers. This paradigm involves updating every cell within a given tesselation at

discrete time steps on the basis of the discrete states of its neighboring cells (Figure 2.4). In

the biomass component of the model of Picioreanu (1996), a cell can only take two states,

being one if biomass is present and zero otherwise, as an occupied cell in the grid resembles

a microbial cell.

In what follows, a brief overview will be given of the biofilm growth model of Picioreanu

(1996). As already mentioned in the previous paragraph, there are two model layers present,

which are interlinked. The first one is to account for the substrate concentration throughout

the modeled space and the second layer simulates the spreading and growth of the biomass,
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Figure 2.4: Examples of a neighborhood in CAs: von Neumann (left) and Moore

(right).

the latter being modeled using a cellular automaton. Globally, this method concerns finding

‘donor cells’ that dissipate substance to a neighboring acceptor cell. The acceptor is selected

from the neighborhood of the donor cell, according to a chosen set of rules, for example

according to the largest concentration difference.

Modeling of microbial growth by means of a CA involves tackling similar questions as in the

case of substance diffusion, namely which cell will divide at a certain moment and in which

grid cell its daughter cell will emerge. The former is typically tackled by considering the cell’s

access to substrate. For the latter though, it can be tricky to find a place for the daughter

cell, as it may happen that there is no free cell in the neighborhood of the mother cell. But

this isn’t a major issue in the case of filtration cakes and won’t be discussed here any further.

When a suitable spot is available and a daughter cell emerges, the substrate layer is also

affected, as substrate consumption happens simultaneously.

Finally, two other processes are of importance in the establishment of a biofilm: attachment

and detachment of individual cells. For the simulation of microbial cells drifting in from the

bulk, random walkers are generated in the free space of the lattice (2.5). When they occupy

a place adjacent to the biofilm, the walkers can join the cluster by a certain probability in

function of different factors, such as the walker density. Detachment, on the other hand, is

also mimicked by random walkers in Picioreanu (1996), as only erosion is modeled. Therefore,

a flux of random walkers is generated from a point of the square lattice, and when such a

drifter reaches the surface of the biofilm, the touched cell is removed from the aggregate with

a certain probability.

Figure 2.5: Attachment procedure in Picioreanu (1996)
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Individual-based modeling

A few years after the emergence of CA-based models, IbMs were proposed to simulate biofilm

dynamics , which is short for individual-based (or agent-based) modeling, while by that time

Picioreanu’s approach had been termed biomass-based modeling (BbM). While the substrate

and biomass component of the latter are still present in IbM, the difference lies in the fact

that the biomass is not distributed in a discrete grid but bacteria are now represented by

(spherical) cells in a continuous space. Also, for modeling the movements of the microbes,

the CA-approach is abandoned, so in IbM, these cells shove each other in order to avoid

overlap. This goes as follows: for each cell the vector sum of all positive overlap radii is

checked, after which the cell is shifted in the opposite direction of that vector. This way, the

spreading of the microbes is directionally unconstrained, and this is probably the main reason

why IbM are able to produce more rounded and confluent biofilm structures than BbM. The

modeling of substrate diffusion, on the other hand, still happens through a discretized grid,

but also jettisoned CA rules, this time in favor of mass balances. In Kreft et al. (2001) for

example, these are applied as diffusion-reaction equations - partial differential equations that

only consider diffusional transport and conversion of the substance - in an implicit difference

scheme.

IbM are frequently used to model multispecies biofilms, an objective for which it lends itself

perfectly. Namely, IbM allows individual variability of the organisms to be incorporated.

When an entity changes its position, also its fixed and variable properties, like genome or state

of differentiation, travel along. In order to pour this into an accessible model, the cells along

with their characteristics are typically implemented as objects (Kreft et al., 2001). Another

interesting feature, one that eases the computational burden, is the sorting of bacteria by

location with the help of a tree data structure, wherein each leaf is occupied by one bacterium.

As a synthesis of this paragraph, results of Kreft et al. (2001) are shown in Fig.2.6 of a

simulated biofilm with the use of BbM and IbM.
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(a) (b)

Figure 2.6: Images of BbM 2.6(a) and IbM 2.6(b) biofilms (with contours of

oxygen concentration) containing ammonia (light grey) and nitrite oxidizers (dark

grey). (Kreft et al., 2001)



CHAPTER 3
Model development

The general framework of the filter cake model can, as mentioned before, be divided into

to two model layers: the Eulerian modeling of the liquid in the system and the Lagrangian

modeling of the solid particles in it - referred to as the disperse phase (Figure 3.1).

Figure 3.1: Schematic representation of the model layer structure.

The generation of the flow profile is performed only once at the beginning of the simulation.

It then serves as a static basis for modeling the disperse phase, which is modeled in discrete

time.

In this chapter, first the assumptions of the model are laid out, as such providing the con-

ceptual framework of the model. In the remainder, a section is dedicated to each of the two

model layers.

3.1 Assumptions

The aim of the filter cake model is to represent the fouling process in MBRs as realistic as

possible, yet for achieving a certain computational efficiency, and for not making the model

overly complex, a few assumptions have been made. These assumptions revolve around the
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nature of the particles, the system in which they are modeled, etc. In this section, all the

assumptions for the model, as it is conceived within the scope of this work, are listed, in order

to lay out the conceptual basis of the model. A detailed discussion of the assumptions can

be found in Section ??.

The assumption that the filter cake model is practically based upon is that all sludge parti-

cles are rigid, perfect spheres. This is necessary since the formulas of the force components

have all been derived for spheres in a flow field. Also, all sludge particles are of the same

size and the particle diameter dp is a constant. Particle size distributions for MBR sludge are

available in literature (Wisniewski and Grasmick, 1998), and can normally be implemented

with little effort, but this would also require a revision of the way the build-up of the filter

cake itself is simulated. Free moving particles do not collide with each other in the

filter cake model. The only collision detection in the model is the one for adhesion to the

membrane or the filter cake. Also these collisions are, in case the particle does not stick to

the filter cake, completely elastic, since all particles are considered as rigid spheres.

The system is basically modeled in two dimensions. The modeled space does comprise

a certain volume, but the depth of the volume is always taken as the particle diameter dp.

Roughly stated, the framework is a slice of any chosen three-dimensional system, with depth

dp. Only the particle movements and fluid velocities in the x- and y-direction are modeled,

and it is assumed that those in the z-direction do not have an influence on the simulation

results as they cancel one another out. Formation of filter cake on the membrane does not

alter the local flux or the flow profile.

The flow profile of the continuous phase is only computed once at the beginning of the

simulation. It serves as a static basis for modeling the particle movements. The continuous

phase has the properties of water at p =1 atm and T =20 ◦C, so the influence of the sludge

on the fluid viscosity is neglected.

In relation to the cake build-up, the assumption is made that particles adhere with a proba-

bility that is inversely proportional to their velocity (see Section 4.1.3). Particles that have

adhered are immobilized in the filter cake model. They remain at their collision position

on the filter cake, regardless of the local fluid velocity. They cannot detach from the filter

cake either. This imperfection can partly be compensated by the aforementioned adhesion

probability.

3.2 Mathematization of filtration cake formation

For an accurate description of a particle trajectory in a fluid, the particle’s velocity needs

to be determined at every time step. As the position vector of the particle, Xp(t) [ m], is

determined by its center-of-mass, the translational velocity of the particle Up(t) [ m s−1] is
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given by :

Up(t) =
dXp(t)

dt
. (3.1)

In force balance equations though, the particle’s velocity is expressed relatively with respect to

the fluid velocity, i.e. Ur = Up−Uc, with Ur [ m s−1] the relative velocity of the particle and

Uc [ m s−1] the characteristic velocity of the continuous phase, for example of the surrounding

liquid.

The particle’s velocity is governed by Newton’s second law (Wörner, 2003):

mp
d

dt
Up(t) = Fsurf + Fbody, (3.2)

where it is assumed that the particle mass mp [ kg] remains constant. In this equation,

Fbody embodies the forces that act throughout the volume of a body, such as gravity and

electromagnetic forces, while the resulting component of the contact forces that are exerted

on the particle’s surface, is represented by Fsurf . For a particle immersed in a liquid, Fsurf

consists of the following components (see Eq. (3.3)) (Wörner, 2003):

� FArch : the Archimedes force, which is the upward force exerted on a body submerged

in a fluid, equaling the weight of the volume of fluid that is displaced by the submerged

body.

� Fp : the force resulting from the pressure gradient ∇p,

� Fhydr : the hydrodynamic force, which can in turn be split into :

– Fdrag : the drag force, the most important hydrodynamic component, with a

direction opposite to the particle’s motion vector, as it represents a resistance

experienced by the particle due to the presence of the liquid (Stokes, 1851),

– Fam : the added mass force, a force required to accelerate the fluid surrounding

the particle (Parmar et al., 2011),

– Fhist : the history force or Basset force, which describes the force due to the lagging

boundary layer formation with changing velocity (Vojir and Michaelides, 1994). It

depends on the acceleration history of the particle, hence its common name,

– Flift : the lift force, which distinguishes itself as it has a direction perpendicular

to the one of the velocity vector of the particle, whereas the other hydrodynamic

forces are directionally opposite to it (Saffman, 1965). This force encompasses

phenomena like shear lift, as it comprises the inertia effects in the viscous flow

around the particle.

All together, Fsurf can be written as :

Fsurf = FArch + Fp + Fhydr

= FArch + Fp + Fdrag + Fam + Fhist + Flift

(3.3)
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The direction of the latter four force components in Eq. (3.3) is determined by the direction

of Ur (and for Flift also by the fluid velocity gradient perpendicular to Ur). In Figure 3.2

all of the force vectors that work on a particle immersed in a fluid are set out for the case of

a negative relative velocity Ur.

Figure 3.2: Schematic representation of forces that act on a particle immersed in

a fluid. The particle has a negative relative velocity Ur and is being accelerated

in the positive x-direction (dUr

dt > 0).

The formulas for calculating the different forces are summarized in Table 3.1 and the param-

eter descriptions can be found in Table 3.2. Any peculiarities to these equations are discussed

here, such as the calculation of the fluid velocity gradient κ, which is formulated as

κi =
dUc,j

di

for direction i and j in a Cartesian coordinate system.

The value of the drag coefficient CD [-] is a function of the particle Reynolds number Rep [-],

which varies depending on the flow regime around the particle. Rep is calculated by (Wörner,

2003)

Rep =
ρfdeqUr
µf

, (3.4)
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Table 3.1: Summary of particle forces and their formulae.

Force component Formula

Fg mpg

FArch −ρfVpg

Fp −Vp∇p

Fdrag −1

2
ρfApcsCDUr|Ur|

Fam −1

2
ρfVp

dUr

dt

Fhist −3

2

√
πηfρfd

2
p

∫ t

0

dUr(τ)/dτ√
t− τ

dτ

Flift −1.615ρfd
2
pUr

√
µf |κ| sgn (κ)

with deq [ m] the volume-equivalent diameter of the particle, Ur [ m s−1] the magnitude of the

relative velocity and µf [ Pa s] the kinematic viscosity of the fluid. For the case of a rigid

spherical particle, its influence on the calculation of CD can be formalized as (Wörner, 2003):

CD =


24/Rep if Rep < 1,
24

Rep
(1 + 0.15Re0.687p ) if 1 < Rep < 1000,

0.44 if 1000 < Rep < 3× 105.

(3.5)

Table 3.2: Lexicon of the parameters in Table 3.1.

Parameter Description Unit

Apcs projected cross-sectional area of the particle m2

normal to the direction of Ur

CD drag coefficient -

dp particle diameter m

g gravitational acceleration vector m s−2

∇p external pressure gradient Pa m−1

Vp particle volume m3

ηf fluid dynamic viscosity Pa s

κ fluid velocity gradient s−1

µf fluid kinematic viscosity m2 s−1

ρf density of the fluid kg m−3
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When Rep exceeds the critical value of 3 × 105, CD suddenly decreases because the bound-

ary layer becomes turbulent. The drag force calculation in the Stokes region (Rep < 1) is

equivalent to Stokes’ Law (Stokes, 1851):

Fdrag = −3πηdpUr. (3.6)

This equation can be applied when the following conditions are met :

� the fluid is incompressible,

� the flow pattern around the particle is laminar, i.e. Rep < 1,

� there are no other particles in the neighborhood that could alter the flow pattern,

� the particle is rigid and perfectly spherical with a smooth surface.

The formula for the lift force Flift, as shown in Table 3.1, was determined by Saffman (1965).

This formula is also only applicable in case Rep < 1. More turbulence means that the

magnitude of the lift force needs to be multiplied with the Saffman-Mei correction factors

(Mei, 1992), so that the correct lift force component F′lift is given by :

Flift

F′lift
=


(
1− 0.3314

√
β
)
· e−0.1Rep + 0.3314

√
β if Rep < 40,

0.0524 ·
√
βRep if 40 ≤ Rep < 1000,

(3.7)

with

β =
Reω
2Rep

, (3.8)

Reω =
ρfωfd

2
p

η
, (3.9)

ωf = |∇ ×Uc| , (3.10)

where ωf stands for the curl of the velocity field of the surrounding fluid.

The acceleration of the particle can be derived from Newton’s second law Eq. (3.2), using the

overall force balance. However, in order to describe particle motion through a fluid accurately,

it must also be corrected for the presence of the nearby boundaries of the fluid, such as a wall.

This is exactly what Faxéns correction comes down to. It brings into account the reduction in

particle velocity due to the effect of the fluid being constrained between the particle and the

nearby boundary (Faxén, 1922). With the Faxén correction factor in place, the Maxey-Riley

equation for the overall force balance on a particle in a fluid is given as (Maxey and Riley,
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1983):

mp
d

dt
Up(t) = −3πηdp

(
Ur −

1

24
d2p∇2Uc

)
+ (mp − Vpρf ) g

− 1

2
Vpρf

(
dUr

dt
− 1

40
d2p
d

dt

(
∇2Uc

))
− Vp∇p−

3

2

√
πηρfd

2
p

∫ t

0

du(τ)/dτ√
t− τ

dτ

− 1.615ρfd
2
p

(
Ur −

1

24
d2p∇2Uc

)√
µf |κ| sgn (κ) .

(3.11)

in which u = Ur − 1
24d

2
p∇2Uc in the history term.

3.3 Continuous phase

One of the two model layers describes the flow profile of the mixed liquor within the system.

This velocity field forms the basis of the motion of the sludge particles as their acceleration

is almost completely governed by the forces that are exerted by the surrounding fluid on the

particles’ surfaces. Within the framework of this dissertation, the flow profile is generated

only once at the beginning of a filter cake simulation, to serve as a static basis for the particle

motion throughout the whole simulation. Otherwise, the coupling between the two layers

should be made explicit and this is considered beyond the scope of this work. Consequently,

it is assumed that the filter cake build-up on the membrane does not alter the motion of the

continuous phase, which is plausible if the cake volume is negligible compared to the volume

of the entire system.

Essentially the continuous phase is modeled the Eulerian way. In contrast to the Lagrangian

way, a fixed set of points in space is considered which are connected to a static reference

grid. The Eulerian method then consists of describing the movement status (velocity) and

acceleration of the fluid parcels that pass through the fixed points, a fluid parcel being an

elementary amount of fluid with a constant mass. This requires solving the momentum, mass

and energy conservation equations for each fluid parcel, which is a set of partial differential

equations (PDE) that is better known as the Navier-Stokes equations.

3.3.1 Components of the Navier-Stokes equations

The first equation that is incorporated in the Navier-Stokes theorem is the continuity equation,

which describes the conservation of mass of the fluid with density ρ [ kg m−3] in a given static

volume Ω [ m3].

∂ρ

∂t
+∇(ρU) = 0 (3.12)
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U [ m s−1] depicts the fluid velocity vector in the volume. Since no mass can be created,

Eq. (3.12) simply dictates that the accumulation within the volume Ω equals the difference

between the mass entering and leaving it through its surfaces. When applied to incompressible

fluids (i.e. fluids of which the compressibility of the fluid parcels is negligible), Eq. (3.12) is

simplified since ρ is then a constant (∂ρ∂t = 0 and ∇(ρU) simplifies to ρ∇U), so that

∇U = 0 (3.13)

Next we have the Euler equation, which is represented in vector form in Eq. (3.14),

1

ρ
∇p = S− dU

dt
(3.14)

where ∇p [ Pam−1] is the pressure gradient, S [ m s−2] the acceleration vector of the external

forces and dU
dt [ m s−2] the resulting acceleration vector. These equations are based upon

the conservation of mass, momentum and energy, but are only valid for inviscid fluids. For

viscous flow the Euler equations need to be expanded with a term that brings into account

shear stress and non-elastic pressure. The resulting PDE is the Cauchy momentum equation

Eq. (3.15), in which this term is represented by Φ [ m s−2] :

1

ρ
∇p = S− dU

dt
− Φ. (3.15)

In the case of Newtonian fluids, Φ can be written in terms of the dynamic viscosity η [ Pa s]

and the fluid velocity U, for Newton showed that for many fluids, such as water, stress and

the rate of strain are almost linearly related (Batchelor, 2000). Newtonian fluids can therefore

be modeled by a coefficient peculiar to each fluid, namely the viscosity. Replacing Φ for these

Newtonian fluids accordingly leads to the Navier-Stokes equations Eq. (3.16) :

1

ρ
∇p = S− dU

dt
+ µf∇2U. (3.16)

This equation, in which the kinematic viscosity µf = η
ρ is used, applies to three-dimensional

flow of incompressible Newtonian fluids.

3.3.2 Computational fluid dynamics

For obtaining the flow profile in a certain space in three dimensions, we relied on computa-

tional fluid dynamics or CFD, a fluid flow simulation approach that solves PDEs numerically,

typically by means of finite element or finite volume methods. In what follows, the procedure

of a CFD simulation is outlined.

In the first step, a geometry that represents the modeled space is defined, which is discretized

subsequently into three-dimensional cells. In other words, a mesh is created for the space in

which the fluid is modeled.
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Next, all the equations that are required to describe the involved processes are specified - in

this case, the Navier-Stokes equations. Finally, the boundary conditions along the surfaces

of the fluid volume are defined. The two types of boundary conditions that are used most

frequently, are Dirichlet and Neumann boundary conditions. The Dirichlet type indicates that

the value of the dependent variable on the boundary is given, whereas a Neumann boundary

condition prescribes the gradient of the dependent variable normal to the boundary. Then

the fluid flow is simulated by iteratively solving the specified equations as a steady state or

transient. A Steady state solution is obtained by neglecting the cross-terms and higher order

terms that are related to time are largely ignored, while a transient solution also takes these

into account. Roughly speaking, marching a transient solution further in time will, if the

boundary conditions do not change, converge to the steady state solution.

The most common discretization approach in CFD is the Finite Volume Method (FVM), as

it has an advantage in memory usage and solution speed (Patankar, 1980). In this method,

the values of the variables are calculated at discrete points (called nodes) that are surrounded

by a small volume. In other words, these values are determined in the center points of the

cells of the mesh, and they represent the volume averaged values in these cells. Next, the

PDEs are discretized according to the FVM-scheme, in which the equations are first recast in

a conservative form, yielding volume integrals for the conservation components and surface

integrals for the divergence terms, i.e.

∂

∂t

∫ ∫ ∫
QdV +

∫ ∫
FdA = 0 (3.17)

in which Q is the vector of conserved variables, F the vector of fluxes, V the volume of the

finite volume element (i.e. the mesh cell) and A the surface area of the finite volume element.

The conservative aspect lies in the fact that the flux entering a grid cell is equal to the one

leaving the adjacent cell. So, in short, the PDEs are discretized so that they can be solved

for the discrete volumes in the mesh, and the retrieved values actually represent the volume

averaged outcomes of the calculations.
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CHAPTER 4
Model implementation

4.1 Disperse phase

The overall model for mimicking filter cake formation, will give a representation of the motion

of sludge particles that is physically accurate up to some level, since a few assumptions had to

be made, which were required either for restricting the computing time or the total complexity

of the model (see Section 3.1) . The following section details the Lagrangian side of the filter

cake model, which tracks the position of each particle pi at every consecutive time step as well

as the adhesion of particles on a membrane and those leaving the area under consideration.

4.1.1 Overview

The filter cake model is simulated in MATLAB (MathWorks, Natick, MA, USA). The model

makes use of five different scripts (m-files), of which one is the main script (Model.m) that

calls the other scripts, directly or indirectly. The overall scheme is given in Figure 4.1 and

the function names and descriptions are, in order of appearance :

� readFoamFiles : this function searches the files in ASCII-coding that contain the in-

formation about the pressure and velocity fields, imports those into MATLAB matrices

and saves them into the MATLAB workspace.

� newPosition : within this function the new positions of the particles pi(t) are calculated

on the basis of the ones at the previous time step pi(t−∆t), the particles’ velocity vectors

vi(t) and the pressure and velocity fields.

� adhesion : this is the function that performs the adhesion check, i.e. whether the

particles have trajectories intersecting with the border of the filtration cake, by adjusting

the adhering particles’ new position pi(t), their status, and the thickness of the filter

cake.
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� addNewParticles : stands for the addition of incoming particles at the inlet(s) of the

grid.

Figure 4.1: Model scheme.

In the main script of the particle model, first all parameters related to the particle character-

istics and simulation properties are saved under their respective structure variables and the

pressure and velocity profiles are read into matrices with readFoamFiles. Also the array in

which the (current) positions of the particles (under the form of x- and y-coordinates) will be

registered, is initialized and is of sufficiently large size to contain every particle that will pass

through the modeled space during part of the simulation. In addition to the coordinates, also

the status of each particle is kept track of in this array. There are four different states which

are denoted by an integer :

� 0 : the particle has not yet been initialized

� 1 : the particle is freely moving within the system

� 2 : indicates an adhered particle

� 3 : the particle has left the system

The array that is created to contain the particle velocities (also in the x- and y-direction) has

an extra time dimension, since for each time step both the previous as well as the current

velocities need to be known as input for the force balance Eq. (3.11). The same holds for

the relative particle velocities and the computation of the history force even requires that

the values of the relative velocities are withheld for a certain time window (cfr. Eq. (3.11)).

The next step is that the initial number of particles present in the system is calculated out

of the TSS concentration and the volume under consideration. Their initial positions within
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the space are random, and their initial velocity values are set equal to the local values of the

governing velocity.

Then a loop is entered that calculates the new positions - with inherent adhesion check -

of the particles, and ads the new particles that have entered the modeled space, for every

consecutive time step. The first is done by calling newPosition, only for those that are

still moving freely within the modeled space. Subsequently, the function addNewParticles

is called to mimic the introduction of the particles that enter the system. It encompasses

the addition of new particle entries with a status that indicates that they are freely moving

(i.e. a status set as 1). It overwrites the first number of particle entries with a status 0.

Analogously to the particles that are initially present, their velocity components are set equal

to the velocities of the governing continuous phase. Their number might not be discrete, so

this is floored or ceiled with a probability that is equal to the decimals of the real amount.

Removal of off-grid particles is also done within the loop, though only every 1,000 time steps,

in order to decrease the computational burden.

4.1.2 Notes on calculating the force balance

At the heart of the computation of the new positions is the calculation of the resulting force

on each particle, which is separately done for the x- and y-direction. The force balance has

been implemented semi-implicitly for stabilization purposes, since instability was introduced

by the drag force, the added mass force and the history force in their explicit form. This

means that a few terms of the right hand side of the force balance equation are transferred

to the left hand side. The actual mechanism is elucidated in the history force subsection (see

further).

Drag force

The drag force Fdrag, calculated using either Stokes’ or Newton’s law, has a direction opposed

to the relative velocity. It represents the force exerted by the surrounding fluid on the particle

as a consequence of the difference in velocities between these two phases. When no other

forces would be in play on a particle immersed in a fluid, the drag force would minimize the

difference between the fluid and the particle velocity, correcting its motion to the streamlines

of the continuous phase.

Keeping this principle in mind, it is easy to explain the stability issues with this force com-

ponent when it is applied with discrete time. Namely, when its correcting action during a

time step is an overshoot, this influences the calculation of the drag force in the next time

step, which leads to an oscillating particle trajectory. Whether this profile is converging or

not does not matter, since each calculated particle velocity is translated into a particle move-

ment. These movements are not physically accurate and would bring distortion into the filter

cake model. Therefore, the influence of the drag force on the particle velocity should nicely
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converge without showing oscillations. In other words, it should not be overly correcting

during one time step.

What has been explained above basically comes down to the following. A change in particle

velocity, resulting from the drag force, may not exceed the current difference between the

local velocity and the particle velocity itself (i.e. the relative velocity of the particle). This

way, the particle velocity will gradually align with the local velocity of the surrounding fluid.

Mathematically, it thus boils down to the following :

|Udrag| ≤ |Ur| or∣∣∣∣Fdrag

mp
∆t

∣∣∣∣ ≤ |Ur| (4.1)

This equation represents stability the criterion for the calculation of the drag force with

discrete time steps of length ∆t. It imposes a maximum value for ∆t [s] for a given particle

diameter dp and mass density ρp, which becomes clear after rewriting Eq. (4.1) for the Stokes

regime :

3πηdp |Ur|
∆t

mp
≤ |Ur| ,

such that :

∆t ≤
ρpd

2
p

18ηf
. (4.2)

The equation above indicates that the maximum time step size will principally be constrained

by the smallest encountered particle diameter, as ∆tmax ∼ d2p. In Figure 4.2, this is visualized

for ρp = 1003 kg m−3.

Figure 4.2: Maximum time step size for Stokes drag stability in function of dp

with ρp = 1003 kg m−3.

Here, it may be concluded that, the drag force puts a constraint on the maximum time step

that can be taken in the filter cake model. In the model, the drag force is calculated with the

Faxén correction Eq. (3.11).
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Lift force

The direction of the lift force is always perpendicular to the particle velocity vector Up. In

which direction it points, depends on both the velocity gradient of the surrounding fluid κ,

as well as the particle’s relative velocity Ur. This force results from the pressure difference

in the fluid that is generated by the particle’s influence on its surrounding streamlines in the

fluid.

The discrete calculation of κ in the lift force formula (as found in Table 3.1) is accomplished

through the central difference scheme. Within a given grid cell c(j, k), the value for κ in, for

example, the y-direction gives :

d

dy
U j,kc,x ≈

U j,k+1
c,x − U j,k−1c,x

2∆y

Loosely speaking, this means that the gradient in the y-direction of the fluid velocity in the

x-direction will result in a force in the y-direction, and vice versa. Whether the particle will

then actually experience a lift force towards the region with the greatest velocity depends on

its relative velocity, since the lift force becomes negative if the latter is negative. Finally, the

lift force also needs to be corrected for the flow profile around it, as described in Eq. (3.7).

Added mass force

The added or virtual mass force Fam accounts for the displacement of the fluid due to the

moving particle, which is simply accounted for by describing it as the motion of half a particle

volume of fluid (see its formula in Table 3.1). Also, the Faxén correction is different than for

the other force components, and the time derivative is needed. This means that the model

needs to keep track of the Faxén corrected added mass velocities at t and t−∆t.

Finally, calculation of the added mass force in discrete time also brings along stability issues.

These are dealt with by making its calculation partially implicit, which is explained in the

remainder of this section since the history force is treated in a similar way.

History force

The history force accounts for the lagging of the boundary layer formation in the force bal-

ance. As a consequence of the definite integral in its formula, it is computationally the most

demanding force component (Van Hinsberg et al., 2011), as it requires that the relative ve-

locities at the previous time steps are known. Another difficulty is that the history term

cannot be approximated analytically, since its integrand is space-dependent and cannot be

described by a linear function (Michaelides, 1992). A numerical approach should be followed

to compute the integral, one that reduces the history of the particle velocities to a certain

time window twin (Dorgan and Loth, 2007). This can be illustrated by rewriting form of the
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Basset history force:

Fhist = −3

2

√
πηρfd

2
p

∫ t

0
KB(t− τ)h(τ)dτ, (4.3)

in which

h(t) =
du(t)

dt
, u(t) = Ur −

1

24
d2p∇2Uc and KB(t) =

1√
t
.

with KB(t) referred to as the Basset kernel. In the approach of Dorgan and Loth (2007)

this kernel is replaced by a window kernel Kwin(t), evaluating the integral over a finite time

window from t− twin up to t. This kernel is thus defined as

Kwin(t) =

KB(t) for t ≥ twin,

0 for t < twin.

In our the particle model, the numerical approximation in Van Hinsberg et al. (2011) is used,

in which the time interval [t − twin, t] is discretized into N + 1 equidistant points according

to τn = t − n∆t, for n = 0, 1, 2, ..., N with ∆t = twin/N . The window-approximated history

force Fhist,win can then be written as :

Fhist,win ≈ −
4

3
cBh0

√
∆t− cBhN

√
∆t
(
N − 4

3

)
(N − 1)

√
N − 1−

(
N − 3

2

)√
N

− cB
√

∆t
N−1∑
n=1

hn

( (
n− 4

3

)
(n+ 1)

√
n+ 1 +

(
n+ 3

2

)√
n

+

(
n− 4

3

)
(n− 1)

√
n− 1 +

(
n− 3

2

)√
n

)
,

(4.4)

with

cB =
3

2
d2p
√
πηρf .

Here, we set N = 8 and ∆t = 0.0001 s such that the window spans 0.0008 s. This is relatively

short, but still it is the most CPU-time consuming component of the force balance (Figure 4.3).

Thus, N + 1 or 9 Faxén-corrected relative velocities need to be saved in the workspace for

calculating the N derivatives in time. The latter is achieved by using a backwards difference

scheme. The coefficients from Eq. (4.4) are constant, so these are calculated only once. Note

that this behavior originates from the fact that all the particles have the same diameter dp.

In Van Hinsberg et al. (2011) it also mentioned that explicit solution of the history force shows

poor stability and that it requires extremely small time steps to reach a stable solution. The

paper therefore offers an alternative method for circumventing these stability issues, making

the calculation partially implicit. which consists of bringing part of the history force term

(namely
dUp

dt (t)) to the left hand side of Eq. (3.11). The added mass term is treated similarly,

which results in the following equation for the motion of particles :(
mp + ρfVp +

4

3
cB
√

∆t

)
dUp

dt
(t) = Fg + FArch + Fp + Fdrag + F′am + F′hist + Flift, (4.5)
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with

F′am =
1

2
ρfVp

(
dUc

dt
+

1

40
d2p
d

dt

(
∇2Uc

))
and

F′hist = Fhist −
4

3
cB
√

∆t
dUp

dt
(t).

Other forces and the Faxén correction

The contributions of Fg and FArch are combined in the implementation, as (mp − ρfVp) g.

Naturally, these terms only have an influence in the force balance in the y-direction. If the

particles all have the same size, these terms are constants.

Calculating the contribution of the pressure force Fp requires knowledge of the pressure

gradient ∇p:
∇p(x, y) =

∂p

∂x
+
∂p

∂y
,

which is discretized according to the central difference scheme :

∇pj,k =
pj+1,k − pj−1,k

2∆x
+
pj,k+1 − pj,k−1

2∆y
.

Herein, ∆x and ∆y represent the discretization step in the x- and y-direction respectively.

This gradient, multiplied with the particle volume brings into account the force on the particle

due to the pressure gradient in the fluid.

Taking into account the Faxén correction requires calculating the Laplacian of the fluid ve-

locity ∇2Uc, which is performed discretely with a central difference scheme. The value for

the Laplacian in grid cell c(j, k) is thus given by :

∇2Uj,k
c ≈

Uj−1,k
c + Uj,k−1

c + Uj+1,k
c + Uj,k+1

c −Uj,k
c

∆x∆y
.

For both Fam as Fhist the time derivatives of the Faxén corrected relative velocities (in a

different form for each of these forces, see Eq. (3.11)) are required. For this, the values of

these velocities in the previous time step are also withheld in the workspace.

To conclude, the CPU times of the force components are given in terms of percentage in

Figure 4.3.

4.1.3 Adhesion to the cake layer

Checking whether particles adhere to the membrane, or to already formed filter cake, is

also done by the function newPosition. This check is only performed for those particles

that are found in the proximity of the filter cake. How large this proximity is defined, is

in relation to the maximum distance that a particle can travel between two time steps (in

other words: during ∆t). As a next step, the old and newly calculated positions, pi(t−∆t)

and pi(t), of the particles near the cake layer, as well as their velocities vi(t), are given to
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Figure 4.3: CPU time in terms of percentage of the overall force balance calcula-

tion.

the adhesion function. This function contains several logical arrays to check whether the

particle’s trajectory path intersects with the boundary of the filter cake. It also determines

whether particles stick to the cake or bounce off.

Implementation of filter cake formation

Let us first of all take a look at how the boundary of the filtration cake is kept track of. For

starters, it is represented in a discrete form, by an array that contains the local cake thickness,

referred to as wall. This is done with a specified resolution that should be sufficiently low to

give a realistic representation and build-up mechanism of the cake. The local cake thickness

across a clean membrane is initially the same over the entire membrane, but it is not initialized

as zero. Instead, the initial values in the wall array are set to the particle radius, which makes

it compatible with the fact that the particle trajectory vectors (pi(t−∆t)− pi(t)) represent

the movements by the particles’ centers-of-mass. If such a trajectory would intersect with the

actual cake boundary, it would already be halfway in the cake.

Analogously, when a particle settles, it creates an augmentation of the cake thickness at its

settling position. The adjustment of the wall thickness is done within a few steps (Figure

4.4). This will be explained in this paragraph, but might be a greater help understanding

the principle. Firstly, the augmentation consists of the upper half of a circle with the particle

diameter dp as radius. This is similar to the principle of initializing the cake thickness as

the particle radius, in order to achieve accurate collisions. The cake elevation caused by a

settling particle is then set to the value in wall at its settling position, augmented with the

semicircle. This is then compared to the current values in wall at which the augmentation

would take place, and for each position in wall that is under consideration, the maximum of

the original wall and the elevation is withheld.
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(a) (b)

Figure 4.4: Newly settled particles (red) and their augmentation 4.4(a), the final

wall adjustments 4.4(b).

Figure 4.5: Adhesion procedure for different particles.

The adhesion check is illustrated in Figure 4.5. Particle 1’s position vector intersects with the

cake boundary, but due to its larger velocity it has a smaller probability of settling. Particle

2 has a lower velocity and therefore a higher probability of settling, which it does at the

intersection point of its position vector and the cake boundary. Particle 3 is on its way of

touching the filter cake, but does not in the current time step. Particle 4’s position vector

intersects twice with the cake boundary, but it can only touch at the first intersection point.

The movement path of particle 5 is not affected by the cake boundary.
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For the adhesion check of a moving particle, its position vector is also discretized, with the

same resolution as the one in the wall array. Then for every element in the position vector it

is checked whether its value (perpendicular to the membrane, for example the y-coordinates

if the membrane is positioned horizontally) is still above the corresponding value in wall.

The first point where the value in the discrete position vector is below or equal to the discrete

local cake thickness is taken as the particle’s adhesion point.

Adhesion probability

It would be very unrealistic if every particle that comes into contact with the filter cake,

also settles on it. Essentially, it may be assumed that it becomes more likely that a particle

attaches to the cake as its momentum decreases. To incorporate this feature into the adhesion

check, the adhesion function also accounts for the fact that a particle pi will only settle with

a probability P (vi). For determining this probability, an exponential function of the particle

velocity vi is assumed:

P (vi) = e−kvi , (4.6)

in which k [ s m−1] is a parameter that needs to be determined experimentally. The values of

P (vi) for different values of k are shown in Figure 4.6 for a particle velocity range deemed

relevant in MBR systems.

Figure 4.6: Adhesion probability P for different values of k, for particle velocities

v between 0 and 2 m s−1.

4.2 Continuous phase

The CFD simulations were performed in OpenFOAM ®(Open Field Operation and Manip-

ulation, OpenCFD Ltd. (ESI Group), Bracknell, UK), an open source CFD package, directly

written in C++ for the Unix/Linux operating system, containing numerous solvers and other
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CFD utilities such as mesh generators and data visualization tools. The placement of nodes

in the mesh and the incorporation of boundary conditions is done according to a collocated

grid, meaning that all calculated variables are located at the centers of the grid cells.

The used solver module is the icoFoam package, which solves the Navier-Stokes equations for

laminar flow of incompressible, Newtonian fluids - in such a way that it is befit for simulating

the water flow inside a chosen configuration. For turbulent flow, the simpleFoam solver can

be used. The discretization method is by default the Euler method. These solvers arrive at a

steady state solution by generating solutions until a certain stability criterion is satisfied. The

latter is defined as the difference between the solution of the last time step with the previous

one. When this difference is below the threshold specified by the user, it is presumed that a

steady state solution is reached.

In addition to the specification of the solver, a mesh along with the boundary conditions for

every variable, as well as their initial values should be specified. A mesh is generated with

blockMesh, a function in OpenFOAM that requires an input file that specifies, among other

things, the dimensions, the number of cells and the faces of the geometric grid.

The initial values of the variables along with their boundary conditions are specified in a

separate file for every variable. In the case of a fixed value at the boundary ϕb, a face

gradient (∇ϕ)f over the boundary face is calculated using the boundary value and the cell

center value in the adjacent cell, according to :

Af · (∇ϕ)f = |Af |
ϕb − ϕC
|d|

,

with Af [ m2] the face area vector, |Af | [ m2] the face area magnitude, ϕC the cell center

value for the considered variable and d [ m] the length vector between the center of the cell of

interest C and the position of the boundary node ϕb. Similarly, the fixed gradient boundary

condition gb represents the inner product of the gradient and unit normal to the boundary,

or :

gb =

(
A

|A|
·∇ϕ

)
f

When the value on a boundary face ϕf is required, it can be retrieved by interpolation :

ϕf = ϕC + |d| gb





CHAPTER 5
Case studies

Although the model is not yet completely realistic, it is useful to already investigate the

results. The model is still a rough approximation of a real filter cake build-up, so any pattern

in the output might have some significance, or it might point out certain flaws in the current

version of the model. All in all, it will provide insight in whether the basis of the filter cake

model, as conceived in this master thesis, is a valid one.

In this chapter, the first section features a description of the chosen system as well as its

modeling specifications (time step, boundary conditions, etc.). In the next step, a benchmark

situation is defined with a fixed set of (realistic) parameters. Finally, the environmental

conditions, i.e. model parameters, will be varied and the response of the model will be

assessed through the macroscopic properties of the simulated filter cakes.

5.1 Setup

The membrane configuration for which the filter cake model is applied, is the tubular mem-

brane. This is a tube that is constructed of a sturdy micro-porous material, where the mixed

liquor is fed through the inside and the permeate is obtained at the outside (Figure 5.1(b)).

These tubes are mostly installed in parallel in a tubular membrane module (Figure 5.1(a)).

Tubular membranes have a reputation of being very robust in such a way that they can handle

high fluxes and cross-flow velocities.

The dimensions of the tubular membrane in which filter cake formation is simulated, are an

inner diameter D of 8 mm and a length L of 30 cm. Tubular membranes are usually longer,

in the order of magnitude of a couple of meters, but for restricting the computational burden,

only the first 30 cm is considered here. The flux over the membranes is set to 36 LMH or

1× 10−5 m s−1 and the cross-flow velocity to 1 m s−1. As the filter cake model is still restricted

to two dimensions, a two dimensional representation of the tube is found by taking a slice of

the tube, as shown in Figure 5.2. This slice cuts through the center of the tube and has a

thickness of dp, so that just one particle fits in the depth of the grid.
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(a) (b)

Figure 5.1: A tubular membrane module 5.1(a) and a schematic of a tubular

membrane 5.1(b).

Figure 5.2: Schematic representation of the modeled system.

As particle diameter dp, a value of 50µm is chosen, a value which is in compliance with

the granulometric distributions found in (Wisniewski and Grasmick, 1998). According to

the stability criterion in Eq. (4.2), the time step ∆t may at most be 1.3931× 10−4 s, but

for convenience a ∆t of 0.0001 s is chosen. A sludge concentration of 10 g TSS/L is taken

for the simulation, which is within the range of MBRs in municipal wastewater treatment

(Rosenberger and Kraume, 2003).

5.2 Benchmark

In this section, the setup from the previous section is simulated. The results of both modeling

layers are discussed, as the patterns in the resulting filter cakes are determined by the pressure

and velocity profile of the continuous phase. Therefore, the latter will be discussed first, and

thereafter the results of the filter cake model.
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5.2.1 Continuous phase

The first step in the simulation is the generation of the flow profile in the system in Open-

FOAM. For this, a mesh is defined with a resolution of 0.2 mm in all directions, generating

a grid of 1500 × 40 = 60, 000 cells. All the boundary faces normal to the x- and y-direction

are denoted the patch-type, indicating that there is a certain flux through every face. The

surfaces normal to the z-direction are set as empty; no calculations need to be performed in

this dimension. The boundary conditions of the inlet and the upper and lower membrane

consist of the Dirichlet-type, and equal 1 m s−1 (the cross-flow velocity), 1× 10−5 m s−1 and

−1× 10−5 m s−1 (the upward and downward flux over the respective membranes).

The type of flow regime that will be observed in the tube is determined by the Reynolds

number Re :

Re =
ρvD

η
. (5.1)

It is the Reynolds number for the flow in a pipe, so the influence of the flux over the walls

of the pipe on the flow regime is considered negligible. For this simulation the values in the

equation above are ρ = 1000 kg m−3 and η = 1× 10−3 Pa s (properties of water at p = 1 atm

and T =20 ◦C), cross-flow velocity v = 1 m s−1 and tube inner diameter D = 8 mm. This

results in Re = 8000, which indicates a turbulent flow regime in the tube (Massey and Ward-

Smith, 1989), implying that the OpenFOAM solver for turbulent, incompressible Newtonian

fluid flows needs to be used, i.e. simpleFoam. It searches a steady-state solution for the given

situation.

The results of this steady-state simulation, expressed in terms of the simulated pressure and

velocity fields, are shown in Figures 5.3 to 5.5. Keep in mind that pressure is given as

kinematic pressure ψ (in m2 s−2), which relates to the absolute pressure p as follows :

ψ =
p

ρf
.

Figure 5.3: Kinematic pressure field in the tubular membrane (in m2 s−2).

Although the flow regime is turbulent, the pressure profile in the tube is very smooth. Along

the center of the tube the pressure shows a linear drop from 353, 047 Pa at the entrance to

0 Pa at the outlet as prescribed by the boundary condition. Note that the inlet pressure would
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Figure 5.4: x-component of the fluid velocity in the tubular membrane (in m s−1).

Figure 5.5: y-component of the fluid velocity in the tubular membrane (in m s−1).

be higher if a tube of 1 m length would have been simulated. Besides, there is practically no

variation in pressure in the y-direction, so the only influence of the pressure force Fp will be

that it pushes the particles towards the exit of the tube.

When reviewing the velocity profile, it is obvious that the simulated flow field is actually not

turbulent, but instead displays a parabolic, laminar profile. This is a consequence of using the

steady-state solver, which outputs an average value of the flow profile, so that it may seem

laminar. But since in this trial no statements are made about the difference between filter

cakes in laminar and turbulent flow regimes, this profile is nonetheless used. As it remains

static and different properties in the particle motion model are simulated on the same flow

field, and as it is not attempted to calibrate the model, the incorrectness of the continuous

phase has no influence on the conclusions with relation to the discrete model. It only serves

as a basis for the particle motion and to verify whether phenomena occurring in this flow field

also translate to the resulting cake formation.

The phenomena that will be observed in relation to the velocity profile in the x-direction will

depend on adhesion parameter k. Since the x-component of the fluid velocity is generally much

larger than the y-component, and as the particle velocities depend on the fluid velocity, the

absolute particle velocities |Up| will be almost entirely determined by the former component.

The absolute velocity of particle i,
∣∣Ui

p

∣∣, determines the probability of it sticking to the filter

cake once it collides with it. This means that in the region near the membranes, where Uc,x

approaches zero, the particles will have a greater probability of adhering to the filter cake.

This effect, however, can be neutralized and even overcome if parameter k is badly chosen.

Because, even if the probability of settling is lower towards the center of the tube, also more
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(a) (b)

(c) (d)

Figure 5.6: y-component of the fluid velocity in the first 15 cm of the tube, for

scales on a different magnitude.

collisions will occur in this region, which, if k is too high, will lead to an exponential growth

of the filter cake in this simulation. The better the determination of k, the more linear this

cake growth will be. This phenomenon would also be visible in the architecture of the cake,

as a lower k would cause the higher peaks to grow too rapidly and consequently block part

of the incoming particles. A better choice of k will result in a more evenly distributed cake

thickness.

For Uc,y two different figures are shown (Figure 5.5 and 5.6) due to the different magnitudes

that occur. Clearly visible are the entry effects due to the uniform boundary condition at the

inlet, which disappear 9 cm into the tube. It is expected that especially the stronger effects

at the beginning of the tube will affect the particle motion and thereby the geography of the

cake. After the inlet phenomena a stable profile develops, with a linear gradient for Uc,y

in the y-direction, ranging from 1× 10−5 to −1× 10−5 m s−1 (Figure 5.6(d)), the boundary

conditions that indicate the membrane fluxes. It is presumed that this gradient will not

have a major effect on the particle motion, since the mean velocity the tube (1 m s−1) is five

magnitudes higher.

5.2.2 Disperse phase

The velocity and pressure profiles are now used as a basis for the filter cake model. Initially,

there are no particles present in the tube and incoming particles enter at the tube inlet (x = 0).

The first simulations are applied to find an appropriate benchmark, i.e. to choose a value for

the adhesion parameter k. Comparing the results from different outputs will be based on a

few macroscopic characteristics of the filter cakes, which will be studied as a function of the

simulated time. These include - along the axial direction - the maximum cake thickness, the
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average cake thickness, the number of adhered particles and the standard deviation of the

cake thickness. Simulation times are set within a range of 15 to 20 s.

In order to compare the results across different sets of model parameters, a benchmark value

for the adhesion parameter k is chosen. Its influence can be assessed by studying the simulated

filter cake characteristics over time in Figures 5.7 and 5.8, respectively for the bottom and

top membrane in the system. These represent the average and standard deviation for four

runs per k-value.

(a) (b)

(c)

Figure 5.7: Average characteristics and standard deviation of the filter cake

formed on the lower membrane versus time, for different adhesion parameters

k.

The most prominent observation in the filter cake growth pattern on the lower membrane,

is the steep ascent at the start of the simulation. Irrespective of k, as for every profile, the

subsequent more gradual slope sets in after about 0.3 s. This is probably due to the inlet

phenomena, which force a portion of the incoming particles into certain regions. If these

particles slowed down sufficiently, they can deposit. When the cake grows in this region,
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(a) (b)

(c)

Figure 5.8: Average characteristics and standard deviation of the filter cake

formed on the upper membrane versus time, for different adhesion parameters

k.

collisions with the cake will occur at higher particle velocities, and deposition will occur less

frequently, so that the steep cake growth is slowed down. This theory is corroborated by

the curve of the maximum cake thickness, which rapidly ascends to values that are higher

than the particle diameter (so this can not be explained by the attachment of one particle).

At a certain height, which depends on k, the curve becomes less steep, indicating that the

odds of adhering become much smaller. The attachment of many particles at the beginning

of the simulation must be confined to a specific region on the membrane since the number

of deposited particles is too small to cover a large part of the membrane and block other

particles from adhering (Figure 5.7(b)). After this initial stage, the cake growth is almost

linear and presumably occurs nearly homogeneously across the entire membrane, with a slight

increase towards the end of the tube. This is further confirmed by the resulting filter cakes in

Figure 5.9. These are presumably the particles that have already collided with the filter cake
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in the first part of the tube but did not adhere. After that these particles remained near the

membrane and settled in the rear of the tube.

The profiles for different k-values are similar though quantitatively different, which is in line

with the expectations. These discrepancies between two consecutive k values are the most

pronounced between k = 2 and k = 5. Keeping Figure 4.2 in mind, this is natural, since the

range of particle velocities in this case will be more affected by a change from k = 2 to k = 5

than from for example k = 1 to k = 2.

One final trend that can be discerned in Figure 5.7 is that the standard deviation among the

runs generally increases as time progresses. This is explained by the fact that the cake catches

more particles, which in turn increases the cake height and its influence field. The cake growth

actually displays an ever increasing slope (as we will see further on, in Figure 5.11), since the

diminished adhesion chance towards the middle of the tube (due to larger particle velocities)

is overcompensated by the increased collision frequency. This illustrates the importance of

the right choice for k, but also the need for including a detachment module in the model.

By comparing Figure 5.7 and 5.8 it can be further inferred that the upper membrane suffers

to a much lesser extent from fouling in this simulation. Therefore the results in Figure 5.8

will be biased by the stochasticity of the model (which resides in the random y-coordinate of

the incoming particles), so concluding anything from this figure should be approached with

cause. The reason of this disproportion between the upper and lower membrane should not

be sought within the balance of FArch − Fg, as this only results in an acceleration which is

generally three magnitudes lower than the drag force. Since the flow profile is axisymmetric,

the discrepancy can only have arisen from a bug in the model.

That the curves for k = 1 and k = 2 stay within the same range is once again illustrative

for the fact that the particle velocity range in this tube is not significantly affected by a

choice between these two values. At the other side of the spectrum, where the k values vary

between k = 5 and k = 10, there is not much that can be concluded from the curves. There

is a difference, which could be described as the filter cake developing the same way for both

scenarios, but only slower for k = 10. But due to the lack of a large number of simulation

data, which was not possible within the time frame of this thesis, these conclusions cannot

be more firmly backed here.

Finally, a look at the final cake geographies (on the lower membrane) depicted in Figure 5.9

indicates that the deposition of particles occurs more frequently towards the rear of the tube.

Probably this may again be attributed to the inlet effects, as these result in the particles being

launched towards the membranes. As a consequence of the larger velocities in the x-direction,

most particles will have traveled further in the tube before their adhesion.

In the remainder of this chapter, different scenarios will be studied for k = 2. Not because it

seems the most realistic value, on the contrary, it shows too high peaks (Figure 5.7(a)) for a

20 s-old filter cake. But in order to perceive some of the model trends within the simulated

time frame, k = 2 is best chosen since a sufficient number of particles can deposit in order to
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(a)

(b)

(c)

(d)

Figure 5.9: Filter cake outputs on the lower membrane after a simulation time of

20 s for k = 1 5.9(a), k = 2 5.9(b), k = 5 5.9(c) and k = 10 5.9(d).

derive these trends. For the same reason, it is opted to restrict the discussion to the results

of cake on the lower membrane. Also, its variance is smaller than that of the k = 1-curves,

making it preferable to the latter parameter setting. The parameter values of the benchmark

are summarized in Table 5.1.



50 5.3 SCENARIO ANALYSIS

Table 5.1: Benchmark values.

Parameter Value

D tube inner diameter 0.008 m

L tube length 0.3 m

Uc cross-flow velocity 1 m s−1

J membrane flux 1× 10−5 m s−1

TSS total suspended solids concentration 10 kg m−3

dp particle diameter 50µm

ρp particle mass density 1, 003 kg m−3

k adhesion parameter 2 s m−1

5.3 Scenario analysis

TSS

In literature, the correlation between TSS and the fouling propensity is described as complex,

with reports of an increasing TSS having both a negative as well as an insignificant impact on

the membrane filterability (Judd, 2010). Here, the effect is merely straightforward, as a higher

TSS-concentration implies more particles in the system, and therefore a more pronounced

filter cake formation (Figure 5.10).

More precisely, the rate of fouling increased upon augmenting the TSS-concentration, as can

be derived from the slopes of the curve in Figure 5.10(b). This conclusion is confirmed by

the next case, where this trend is very visible.

Particle diameter

In this section, the benchmark simulations are compared to the cases for which dp =45µm

and dp =55µm (Figure 5.11). Given a constant sludge concentration of 10 g TSS/L, this

implies that the number of particles present in the system (excluding the deposited ones) is

larger if dp =45µm (22,568 particles vs. 15,108 in the case of dp =55µm).

This case actually serves as an example of the influence of a badly chosen value for k, as

well as the need for a force balance on the deposited particles. Firstly, in this case it is

perceived that, due to the flow profile, the upper membrane actually experiences a fouling

regime with a steeper slope than the lower membrane (Figure 5.12). When too many particles

are allowed to attach, such as in this case, this increases the height of the highest peaks to

beyond the tube radius (Figure 5.12(a)). Moreover, these peaks are not very wide, as can be

derived from the large standard deviation (Figure 5.12(c)). Therefore, this phenomenon is

unrealistic, and this depicts exactly the consequence of a bad k-value. The statement that an

increased collision frequency on the long term overcompensates for the effect of the adhesion
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(a) (b)

(c)

Figure 5.10: Average characteristics and standard deviation of the filter cake

formed on the lower membrane versus time, for k = 2 and for varying TSS-

concentrations.

probability is demonstrated by this figure (Figure 5.12(c)). This again emphasizes that the

adhesion probability P alone cannot correct for detachment of particles.

One important note here is that the effect of a too large value for k, is actually aggravated

by a flaw in the used adhesion mechanism. This is due to the fact that deposited particles

can create a vertical wall in the filter cake boundary. This in turn means that a number of

particles will be placed much higher than their actual deposition point. This again propagates

this vertical border and gives a bias in the resulting filter cakes. This disproportion with the

reality has an increasing influence during a simulation, fortunately it can be overcome with

the extension of two mechanisms, namely detection of the upper and lower boundary of the

filter cake and, most of all, calculating the force balance over the attached particles (see

Chapter 6).
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(a) (b)

(c)

Figure 5.11: Average characteristics and standard deviation of the filter cake

formed on the lower membrane versus time, for k = 2 and for varying particle

diameters dp.

It can also be discerned from Figure 5.12 that the clearly exaggerated cake growth in the case

of dp = 45µm shows different regimes: it starts off with a gradual cake growth until about 3.5 s,

then both the maximum (Figure 5.12(a)) as well as the standard deviation (Figure 5.12(c)) of

the cake layer increase steeply until after about 6.5 s, this phenomenon ebbs and cake growth

again shows a gradually increasing slope. The steep increase, however, did not manifest itself

in the curves of the other cake characteristics, as these simply exhibit an ever increasing

fouling rate. The course of cake formation behind these patterns then goes as follows: in the

first stage, fouling is spread evenly over the membrane, though after 3.5 s a few peaks are

catching a lot of particles, and they shoot up. Their excessive heightening is blocked after

6.5 s, where the fluid velocities are too high to permit a continuation of this particle deposition

rate. Meanwhile, however, these high peaks block a large part of the particles in the stream,

which also aggravates the fouling regime and explains the curve in Figure 5.12(b).
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(a) (b)

(c)

Figure 5.12: Average characteristics and standard deviation of the filter cake

formed on the upper membrane versus time, for k = 2 and for varying particle

diameters dp.

Flux

Next, the influence of a different membrane flux J is assessed. Note that the chosen fluxes,

J = 1× 10−4 and J = 1× 10−6, rarely occur in MBRs. The conclusion within this paragraph

is also that the flux does not have a significant influence on the movement pattern of the

particles. Increasing the flux tenfold only shows a minor or almost no increase in fouling

rate (Figure 5.13). This indicates the small impact of the flux on the velocity profile. This

assumption, however, might also be emblematic for the inaccurate way in which the flow

profile is simulated. For a discussion on this, we refer to Chapter 6.
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(a) (b)

(c)

Figure 5.13: Average characteristics and standard deviation of the filter cake

formed on the lower membrane versus time, for k = 2 and for varying membrane

flux J .



CHAPTER 6
Discussion and future work

The cake is a lie.

— writing on the wall in Portal, Valve Corporation

In the previous chapter it was already emphasized that from the generated results, conclusions

could only be made regarding the model performance. This was due to the low number of

data from simulations, since a larger number was not possible within the time frame of this

master thesis, and also to a bug in the code resulting in a discrepancy between adhesion

on the upper and lower membrane in an axisymmetrical flow profile. Yet, we were able to

establish the influence of adhesion parameter k and, to a lesser extent, of the flux and the

TSS-concentration.

It must also be said that, with the current framework in place, a foundation is in place for

an important research line of fouling modeling, which can substantially contribute to a more

thorough understanding of the process involved in filter cake formation. In order to serve

that purpose, the model still needs to be expanded and some of the assumptions need to be

questioned. This is done in this chapter, as the current assumptions and implementations

are discussed and an outline of the future improvements is given. Then, to conclude, some

guidelines regarding the calibration of the model are given.

6.1 Regarding filter cake representation

The most prominent imperfection of the current filter cake model is the complete immobi-

lization of the adhered particles. An adamant resistance against any form of shear is, first

of all, very unrealistic, but it also has a great influence on the simulation output. Since the

particles are not able to roll over each other or push each other away, or sweep each other back

into the bulk, the maximum cake thickness will always be an overestimation of any realistic

filter cake. This flaw is only partly compensated by the adhesion probability feature. It does

correct for the number of particles that settles in regions with a higher fluid velocity, but as
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the filter cake peaks get higher they also catch more collisions, which might just compensate

the adhesion probability. This also emphasizes the importance of making the right choice for

parameter k in the adhesion probability.

So the first improvement of the current filter cake model should be the implementation of a

force balance over the deposited particles. It is analogous to the one that is now in place for

the free particles, in the way that forces also arise from the velocity profile of the surrounding

fluid, only in this case, also normal forces need to be determined. This extension of the model

is necessary for a realistic cake architecture in which particles are accurately positioned after

their attachment, and for modeling detachment. The latter should be done similarly to

the adhesion check, with an exponential function describing the probability of detachment,

which would be in function of the resulting force on the adhered particle. This probability

is introduced in order to account for the fact the filter cake is actually a biofilm, with a

extracellular matrix of EPS keeping the bacterial cells together.

Also, the influence of the artifact in the cake layer formation that was mentioned in Section 5.3

would be much less in case a force balance would move the deposited particles into their

appropriate positions. Yet, also an adjustment to the current collision detection algorithm

could provide a significant improvement. This would consist of a collision detection with the

lower boundary of the cake, a boundary that is drawn by the particles that are the closest

to the membrane, just as the upper cake boundary is now determined by the particles at

the top of the filter cake. Of course, this implies that a number of these boundary detecting

arrays should be implemented for a truly accurate representation of the cake’s 2D-architecture,

especially if complex structures occur. However, it is assumed that, due to the shear rate and

pressure regime in an MBR, any complex cake formations, such as the branches formed in

biofilms, will not occur very often, so that the proposed cake boundary detection algorithm,

combined with a force balance calculation of the adhered particles, suffices.

6.1.1 Particle size distribution

The assumption that all particles in the mixed liquor are spherical and of the same size does

not apply to a real MBR, as the biological aggregates grow or break apart according to the

shear regime. Particle size distributions (PSD) have been derived for MBR sludge in Wis-

niewski and Grasmick (1998) and Jiang et al. (2007), in which the mean particle diameter

showed great dependency on the flow regime within the reactor. A different PSD will also

impact the formation of the filter cake, as the particles will be found differently stacked. A

different structure of the filter cake will show itself mainly in its porosity, which is of impor-

tance in processes such as filter cake compaction and the permeability decline. Moreover,

the denser and more compact cake structure is bound to affect the attachment/detachment

equilibrium, as well as the filtration resistance.
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It would not be too much trouble to implement a PSD into the filter cake model, but it would

require that the maximum time step would be determined by the smallest occurring particle

diameter dp (Eq. (4.2)). Next to that though, the adhesion check needs to be adapted to

the fact that different particle diameters occur. This means that either an actual collision

detection algorithm for spheres needs to be implemented, or that the adhesion algorithm

needs to be tweaked again. Due to the large number of particles present in the simulation

(a number that increases with increasing TSS and decreasing mean particle diameter) this

method might be computationally intensive, so the modeler would have to search for efficient

algorithms for fast collision detection between spheres (Kim et al., 1998).

Yet, simply a revision of the adhesion algorithm could also offer a solution. Instead of detecting

the intersection of a particle trajectory with a contour around the filter cake, now the actual

cake boundary should be used, and for the collision check the smallest distance between the

particle trajectory and this boundary could be checked. If this distance is smaller than the

particle radius, then the particle has touched the filter cake.

On a more advanced level, even the effect of different particle geometries could be assessed.

Namely, it has been reported that biological cells with rod-like shapes can significantly affect

the porosity and the compressibility of the cake, and that this property is thus of importance

to cake compaction (Mota et al., 2002). These shapes could then be modeled as aggregates

of spheres (Hubbard, 1996).

6.1.2 Adhesion probability

With the adhesion probability, a parameter is brought into the model that requires calibration,

namely k. This parameter incorporates the assumption that particles with a lower momentum

have a smaller chance of adhering. But, strictly speaking, it has only brought into account

the particle velocity. In a system where all particles have the same mass, this is applicable,

but, as previously mentioned, when a PSD is used, this property should be adjusted. Indeed,

the momentum P of a particle is given by P = mpv, so the velocity term v in Eq. (4.6) should

be replaced with P .

This feature of the model comes in very handy, as it incorporates various different system

properties, such as the EPS-concentration, the particle charge and the roughness and hy-

drophobicity of the membrane. The latter though, also implies that different k-values need to

be determined for collision with the membrane and with the filter cake separately, and that

two parameters have to be calibrated. As for the influence of the EPS-concentration: studies

have shown that EPS influence the fouling regime, and Yun et al. (2006) even concludes that

the spatial distribution of EPS over the membrane has a significant impact on the membrane

filterability. This could be included in the model, and simulated by implementing diffusion

equations into OpenFOAM. Yet, this is another extension that would contribute to the com-

plexity of the model (see further), and since the influence of EPS has already been questioned
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in literature (Drews, 2010), this should not be placed high on the priority list of necessary

features in the cake model.

Finally, collisions (with the cake/membrane) are assumed to be totally elastic. This does not

hold in reality, as the particles in an MBR largely consist of biological cells - which are no

rigid spheres - and as the presence of the fluid will also have an influence. However, the bias

resulting from this assumption is considered small, certainly if the time step is taken small

enough for the particle motion to be corrected by the fluid velocity profile.

6.2 Regarding the continuous phase

The first assumption that can be challenged is the one of the simulation of the continuous

phase being based on the properties of clean water. Next to the components already present

in the wastewater that is fed to the MBR, also the presence of EPS in the fluid will determine

the actual viscosity of the continuous phase. Empirical correlations have been composed

between the TSS and the viscosity of the mixed liquor in Xing et al. (2001). Also, it has

been found that the mixed liquor in an MBR does not behave as a Newtonian fluid (Defrance

et al., 2000). Implementing the adjusted viscosity was not relevant in this master thesis, as

the results could not be compared to experimental filter cakes. But when a calibration is

carried out, for example for adhesion parameter k, this needs to be taken into account in the

CFD-simulation and the force balance, especially since the high TSS present in MBR can

alter this parameter significantly (Xing et al., 2001). So it is recommended that the viscosity

of the sludge is measured and applied in the filter cake model.

It must also be said that the boundary conditions in Chapter 5 are too simple to reflect a real

tubular membrane, for in reality, not the cross-flow velocity is set but rather the pumping

pressure. The boundary conditions at the inlet should therefore be of the Neumann-type for

the (x-component of the) velocity and a Dirichlet for the pressure, which then represents this

pumping pressure. The boundary conditions for the membranes are also not accurate, as was

visible in the pressure profile in Figure 5.3, which should in reality show some difference in

the y-direction. It should have been set to the TMP, instead of p = 0.

However, this holds only for as long as fouling has no considerable influence on the flux. To

correct for filter cake formation on the membrane, the Carman-Kozeny equation (Eq. (2.2))

should be used to calculate the pressure drop over the filter cake. This implies though, that

data from the modeling of the disperse phase is transferred to the simulation of the continuous

phase, i.e. from MATLAB to OpenFOAM, which will take some programming effort. With

this connection in place, data from the MATLAB output, containing the local pressure drop

due to the cake, should be transferred to the boundary condition over the membrane in

OpenFOAM. This pressure drop can be calculated provided that the local porosity ε and

thickness ∆` of the filter cake are known; the latter is already retained for the collision
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detection, and the former can be calculated as :

ε = 1− npVp
∆`∆x∆z

, (6.1)

with np the local number of particles, Vp the particle volume and ∆x and ∆z the respective

resolutions along the x- and z-coordinate axes, given that ∆` is taken in the y-direction.

As a final note here, it needs to be mentioned that tubular membranes, when they are

applied in an MBR configuration, are usually positioned vertically, instead of horizontally

as in the case studies in Chapter 5. This configuration is namely much more facilitating to

the application of air scouring as a cleaning mechanism. This has an influence on the pressure

boundary condition, which will be higher at the inlet to compensate for the pressure of the

water column in the tube. Evidently, this makes only a small difference. Next to that, also

the gravity field needs to be accounted for when simulating the flow profile.

Regarding the particle motion

Only if an adequately fast collision detection algorithm would be found, the detection of the

impaction of the freely moving spheres in the simulation could be performed. Else the collision

detection would severely elevate the computational time due to the vast number of particles

present in the bulk of an MBR sludge. It is a different case than the filter cake collision

detection, since now all spheres are moving. If not implemented, one not only misses out on

the effect of elastic collisions between the particles, but then there is also no way of modeling

the formation of aggregates. One way in which this contact detection could be implemented

is to only apply it on particles that are found in the same grid cell, which needs to be of an

appropriate size in order to not perform the detection excessively. This could be realized by

the application of the unique function in MATLAB, which selects the unique entries in an

array. This function, however, is already being used in the current filter cake model, more

specifically in the adhesion detection, where it has shown to be a large contributor to CPU

time.

The conclusion is that the assumption of no collisions occurring between particles in the bulk

fluid will likely remain in place in the further development of the filter cake model. Yet it

can be compensated by, on one side, implementing PSDs that already account for aggregate

formation (such as those in Jiang et al. (2007)). This is preferable to adding another degree

of complexity to the model and aggravating the ratio of CPU time to real time.

6.3 Advanced extensions

Essentially, the filter cake model can easily be expanded to three dimensions, the only thing

to do is to apply the same force balance as in the other Cartesian coordinate axes to the z-

direction and expand the gradients and Laplacians to take into account the third dimension.
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The continuous phase needs to be simulated in 3D, which is exactly what CFD is all about.

The only concern is the number of particles that would be under consideration. Within the

case, a slice of the tubular membrane was taken as representative for the whole tube, which

allowed for the number of particles that was present in the system (excluding the deposited

ones) to be as low as 18,280 (this depends on the TSS-concentration, the particle diameter

dp and its density ρp). If the whole tube was considered, it would mean that, for every time

step, the force balance would need to be calculated for 2,297,109 particles, and this for the

first 30 cm of a tube.

Another feature of the advanced model is the modeling of the aeration of the membrane,

although, this would be a great addition to the computational burden of the entire model,

as well as it would require some programming effort. So, to conclude, the inclusion of the

aforementioned measures depends on the purpose to which the model serves.

6.4 Calibration guidelines

The calibration of the adhesion parameter k - as well as extra parameters that follow from the

inclusion of any of the model extensions mentioned in this chapter - requires that experimental

filter cakes are compared to the simulated ones. This can be done according to filter cake

characteristics: the average cake thickness, the standard deviation of the cake thickness, the

coverage of the membrane and macroscopical characteristics of the fouling layer. Measuring

these characteristics in an experimentally generated filter cake can be done with various tools,

but one seems particularly interesting, namely a stylus profiler.
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Conclusion

The purpose of this master thesis was to construct the foundations of a model that simulates

filter cake formation in membrane bioreactors with an accuracy that goes down to a micro-

scopic level. The resulting Euler-Lagrangian framework is considered as a valid one, as it

allows for an accurate representation of particle motion, based on a fluid velocity profile that

is generated in a flexible software package.

The results in this dissertation have proven that the conceived model yields interesting results,

despite the underlying assumptions. The conclusions from those results are summarized as

follows:

� the force balance on a particle in a fluid has been implemented correctly. The stability

issues were resolved, although this resulted in some restrictions.

� the adhesion parameter k has a large share in the resulting fouling rate.

� increasing the TSS-concentration means increasing the number of particles in the sys-

tem, and proportionally increases the fouling rate.

� lowering the particle diameter resulted in a much higher number of particles, and illus-

trated that filter cake growth can go out of bounds when k is badly chosen.

� changing the flux within a range that can be found in MBRs does not significantly alter

the fouling rate.

� the assumptions that particles adhere according to their momentum, that particles do

not influence each others motion can still lead to an accurate depiction of the reality,

and can be kept in the model. On the other hand, the assumptions regarding the static

flow profile, the equally-sized particles and the immobilization of adhered particles will

not hold in a real MBR, and should be revised.

� the ratio of CPU time to simulated time should be in the range of minutes to simulate

seconds.
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� the attachment algorithm can be improved, and cake growth should be extended with

a detachment module.

Still, we were able to assess the influence of a few simulation parameters, of which the most

notable one is the adhesion parameter k. The resulting filter cakes have, moreover, emphasized

that the latter has a great influence on the model output, as it completely determines the

fouling rate.

Another conclusion from the results was that the current version of the model does not allow

for simulating dynamic filter cakes. Therefore, the first things that should be dealt with

are the calculation of the resulting forces on the deposited particles and, by extension, the

possibility of detachment. Also, the adhesion algorithm is up for revision, and should be

improved with the proposed mechanisms.

Beyond that, a number of extensions of the model is possible, which should be accessed

according to the purpose for which the model will be engaged. If the final model should be

used as a research tool, to gain more insight in the fouling process, it should describe its

constituting processes thoroughly in detail. In case it is applied to, for example, optimize

a certain aeration configuration, it would suffice if some processes would be simplified. It

should for every case be assessed how complex the model should be, considering the CPU

time required for the simulations.

All in all, this filter cake model could become an important tool in getting a better under-

standing of the processes in MBR, and in this master thesis a decent framework was developed

where it can be built upon.
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