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Summary

Predicting ingredient combinations for new recipes is not trivial, since the success of the
combination depends on a lot of factors such as taste, smell, texture, temperature, etc. of the
ingredients. All these factors together create the flavour perception. However, the factors can
influence each other, what makes it very difficult to predict the flavour perception of a certain
ingredient combination. For this reason, data mining and machine learning techniques are
used to predict ingredient combinations.

The aim of our work is to build a model that suggests one or more ingredients to a given
number of ingredients. The idea is based on leftover ingredients in a fridge. A person could
list the available ingredients in his or her fridge and the model would predict which ingredients
can be combined with the remaining ingredients.

We built our models using data provided in Ahn et al. (2011). In a first step, the data was
examined through the use of machine learning techniques. The supervised learning techniques
(naive Bayes and random forest) showed that the origin of a recipe can be predicted based on
its ingredients and that the flavour components found in a certain ingredient can be used to
predict the ingredient’s category (e.g. fruit). When using unsupervised learning techniques
(principal component analysis and spectral clustering) it is possible to cluster ingredients with
the same properties: present in the same recipes or having similar flavour components.

In a next step, predictive models were built to predict ingredient recommendations for some
given recipes. A first model is based on matrix decomposition techniques. This model only
takes into account the information on ingredient combinations captured in the existing recipes.
In a next step, a two-step recursive least squares model was used, taking into account not
only the use of ingredients in recipes but also the flavour components of the ingredients. This
model can be seen as a variant of the pairwise kernel-based framework for learning relations
between objects, as discussed in Waegeman et al. (2012).

To test the models, one ingredient of an existing recipe is removed. The remaining ingredients
are given to the model, to test the ability of the model to bring back the eliminated ingredient.
The model returns a list of ingredients, where the first ingredient makes the best combination
with the given ingredients and the last ingredient the worst. When using the non-negative
matrix factorization model, the eliminated ingredient can be found in the top ten of best

fitting ingredients for 43.6% of the test recipes. For the two-step RLS model this is true for
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57.5% of the test recipes.

Dutch summary

Voorspellen van ingrediéntcombinaties voor recepten is niet eenvoudig. Dit komt doordat
het succes van zo’n combinatie afhangt van heel wat factoren, waaronder de smaak, de geur,
de kleur, de textuur, de temperatuur van de ingrediénten en nog veel meer. Al deze fac-
toren leiden samen tot de flavourperceptie. De factoren kunnen elkaar echter ook onderling
beinvloeden, wat het voorspellen van de flavourperceptie heel moeilijk maakt. Om deze
reden zijn data mining en machinaal leren nuttig om ingrediéntcombinaties te voorspellen.
Het doel van dit werk is om een model te bouwen dat één of meerdere ingrediénten toevoegt
aan een gegeven aantal ingrediénten om zo een recept te vervolledigen. Het idee is gebaseerd
op een koelkast, die nog enkele ingrediénten bevat. Een persoon zou de overgebleven in-
grediénten in zijn of haar koelkast kunnen oplijsten en het model zou dan voorspellen welke
ingrediénten nog aangekocht moeten worden om een smaakvolle maaltijd te creéren.

We bouwden onze modellen gebruik makend van data voorzien in Ahn et al. (2011). In een
eerste stap werd de data onderzocht door gebruik te maken van machinaal leren. Het su-
pervised leren (naive Bayes en random forest) toonde aan dat de oorsprong van een recept
kan voorspeld worden op basis van de aanwezige ingrediénten en dat de ingrediéntcategorie
(bv. fruit) voorspeld kan worden door te kijken naar de aanwezige flavourcomponenten in een
ingrediént. Unsupervised machinaal leren (principal component analysis en spectral cluster-
ing) toonde aan dat het mogelijk is om ingrediénten met gelijke eigenschappen te groeperen:
aanwezig in hetzelfde recept of beschikken over gelijke flavourcomponenten.

In een volgende stap werden predictieve modellen gebouwd om ingrediénten te voorspellen
die gecombineerd kunnen worden met een aantal gegeven ingrediénten. Een eerste model is
gebaseerd op matrix decompositie. Dit model houdt enkel rekening met de informatie over
ingrediéntcombinaties verborgen in bestaande recepten. Vervolgens werd een tweestaps recur-
sive least squares model gebouwd, dat niet enkel informatie uit bestaande recepten haalt, maar
ook informatie haalt uit de flavourcomponenten aanwezig in de verschillende ingrediénten. Dit
model kan aanzien worden als een variant van het paarsgewijze kernel-gebaseerd framework
om relaties tussen objecten te leren, wat besproken wordt in Waegeman et al. (2012).

De modellen werden getest door telkens een ingrediént te verwijderen uit een recept. De
overgebleven ingrediénten werden meegegeven aan de modellen, dan was het aan de modellen
om het geélimineerde ingrediént te vinden. Elk model geeft een lijst van best passende in-
grediénten, het bovenste ingrediént in de lijst past het best bij de opgegeven ingrediénten, het
onderste ingrediént past het slechtst. Als er gebruik gemaakt wordt van het non-negative ma-
trix factorization model, wordt het geélimineerde ingrediént teruggevonden in de top tien van
best passende ingrediénten bij 43.6% van de recepten. Voor het two-step recursive least squares

model staat het bij 57.5% van de recepten in de top tien van best passende ingrediénten.
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Introduction
Aim: To build a model
combinations
Problem: The mechanism to create new recipes is unknown:

that recommends

* Taste and smell

* Sound (e.g. crispness of chips, snap of chocolate)

* Colour (e.g. the colour of wine)

« Texture (e.g. viscosity of honey determines sweetness)
* Temperature (e.g. bitterness of warm beer)

* Interactions (e.g. vanilla odour can enhance the perception
of sweet taste without increasing the amount of sugar)

-> Flavour perception

Two data sets, found in Ahn, et al. (2011).

1. 56,498 recipes containing 381 ingredients + origin of the
recipes

2. flavour profile of 1,525 ingredients coming from fourteen
categories (e.g. fruit, herb, meat) /

/

A closer look at the data

Naive Bayes and random forests:

» origin of a recipe is partially determined by its ingredient
composition

e category of an ingredient is partially determined by its
flavour profile = ingredients within a category have a
similar flavour profile

PCA and spectral clustering:

* ingredients can be clustered based on their use in recipes
and their flavour profile = needed to predict ingredient
combinations

Canonical correlation analysis:

e relation between the flavour components present in
ingredients and the use of these ingredients in recipes

o high correlation: mussel, cognac, fig, etc.
o low correlation: onion, butter, egg, etc.

Kemel Canonical Correlation Analysis: gamma = 10
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Model building

Model evaluation
1. Eliminate ingredient from recipe
2. Give modified recipe to the model
a) Model returns list of best fitting ingredients
b) Determine position of the missing ingredient in this
list
Matrix decomposition
Y = XrecipesX;gredients

* Y = binary recipe data
* Xrecipes » Xingredients = tWo low-rank matrices
* best technique: non-negative matrix factorization:
- eliminated ingredient in the top ten of best fitting

ingredients for 43.6% of the recipes
Two-step recursive least squares

Y = KrecipesWKflavaurs

* Y =binary recipe data
* information from both the recipe data (K ¢cipes) and the

flavour data (Kfiavours)
- eliminated ingredient in the top ten of best fitting

ingredients for 57.5% of the recipes

- J

AN

Ve
Model in practice
The model returns a list of ingredients that can best be
combined with the given ingredients.
Refrigerator none v
acd Suggestions:
chicken chicken broth
rice onion
cream butter
mushroom
Remove all ingredients milk
Show data
" /
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Chapter 1

Introduction

Everyone has had the following problem at least once in his or her life. You still have several
ingredients left in your refrigerator, but you do not know how to combine them into a good
dish. You are convinced that with the addition of only one or two ingredients, they would
make a splendid dish. But how will you know what to add to your grocery list?

There already exist cookbooks in which you can look for a recipe containing the remaining
ingredients, there already exist websites that search through a database of recipes for all
those recipes containing all (or several) remaining ingredients in your refrigerator and there
even exists a website where you can give one of the remaining ingredients and get a list of
ingredients that make good combinations with this one ingredient. But what if you are just
looking for the best fitting type of meat, or which herbs to use with the remaining ingredients?
Or you just want to see which other ingredients you can add to the remaining ingredients in
general. There is no book or website that tells you which type of meat can best be combined
with a set of given ingredients. Solving this problem is our aim.

In this work, we will present a set of models that gives for a given set of ingredients, those
ingredients that can best be combined with all the given ingredients. These combinations
will not be restricted to combinations found in recipes. We will present a set of models that
not only make combinations based on those found in recipes, but also based on the presence
of similar flavour components in the different ingredients. This will allow us to create mew
ingredient combinations.

Before we could start building the models, we had to find out what causes people to say
some combination of ingredients is really tasteful, but another combination just does not
work. The answer is: the flavour of the ingredients is responsible for accepting an ingredient
combination. However there are a lot of other factors like taste, sound, color, temperature,
etc. that influence our perception of flavour. And these factors can also influence each other
and in that way indirectly influence the flavour perception. More information about these
interactions can be found in Chapter 2. These interactions are difficult to predict and they

are not trivial. For this reason we will use data mining and machine learning techniques to



build the model that will predict which ingredients will make a good combination with a given
set of ingredients and which will not. We will try to make new ingredient combinations with
our model, combinations that are unexpected, but tasteful.

Literature on existing models can be found in Chapter 3. In Chapter 4 and 5 the data is
examined using data mining and machine learning techniques. The results of these chapters
are used to build a first model using matrix decomposition techniques that can be found in
Chapter 6. The final model is a two-step recursive least square model, everything about how

it is trained, tuned and tested and the results can be found in Chapter 7.



Chapter 2
The science behind recipes

As the aim of this work is to predict ingredient combinations, it is important to look at the
science behind recipes. In this chapter the interactions between taste, smell, temperature,
etc., leading to flavour perception of ingredients are summarized. Besides that, other reasons

to add certain ingredients are studied.

2.1 Flavour perception

2.1.1 Smell: olfactory system

Smell is an important part of flavour (Smith and Margolskee (2006)). Smell has two main
functions: first of all it allows people to sniff the air in the environment, and secondly it
allows people to enjoy their food (Auvray and Spence (2008)). This is a result of the two
different routes to reach the olfactory receptors: either through the nose by sniffing (orthonasal
olfactory) or through the mouth into the nose while breathing out (retronasal olfactory).
These routes can be seen in Figure 2.1. The last one occurs while eating and drinking:
volatile chemicals will come free in the mouth and reach the receptors in the nasopharynx, so

they play a big role in the perceived flavour of the food.

2.1.2 Taste and the influence of smell

The taste of a foodstuff is perceived by the tongue, on which papillae containing chemical
receptors are found (Moyer (2013)). These receptors can receive the five basic tastes: sweet,
salt, sour, bitter and umami (Smith and Margolskee (2006)). Sweet taste identifies the energy-
rich nutrients, umami is an indicator of amino acids, salt taste is important for a proper dietary
electrolyte balance, sour and bitter taste, however, are mostly related to potentially noxious
and/or poisonous chemicals (Chandrashekar et al. (2006)). This explains why children have
a natural instinct to like sweet and salty food and dislike sour and bitter food.

There exists confusion between senses of taste and senses of smell. The most famous example is

3
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Figure 2.1: Orthonasal and retronasal olfactory (source: Exploratorium).

that people say they cannot taste their food when their nose is blocked. However, as mentioned
above, the taste receptors are located in the mouth and not in the nose. This indicates that
smell and taste are coupled. Another example is that people will describe the odour of
vanilla as sweet (Stevenson and Boakes (2004), Prescott (2004)), even though sweetness is
associated with taste and not with smell. Besides the confusion, odours can also influence
the intensity of a perceived taste. For instance, a sweet taste can be experienced as more
intense (sweeter) when caramel odour is added to a sucrose solution, without changing the
sucrose concentration (Auvray and Spence (2008)). This phenomenon is described as sweet
enhancement; the reverse phenomenon does also exist and is called sweetness suppression.
This also occurs with other tastes like sour and bitter. An odour mostly found in sweet dishes
will induce a sweetness enhancement effect. This relation between the odour and sweetness
might naturally be formed during eating (Auvray and Spence (2008), Prescott (2004)). This
shows that the change in taste perception due to the presence of odours is not due to a
specific property of the odour, but a result of linking odours with taste. An odour can have a
different effect on taste for people from different parts of the world: not all ingredients (and
thus odours) are in all parts of the world used in a same type of dish. It is possible that an
odour is related to sweet dishes in Western countries, but not in other parts of the world.
This would result in a sweetness enhancement effect of the odour for western people, but not
for others (Auvray and Spence (2008), Small and Prescott (2005)).

2.1.3 Influence of texture, temperature, vision and audition

Texture has an influence on the perception of taste and flavour. For instance, when the vis-
cosity of a solution increases, a suppression of both flavour and taste perception can occur
(Auvray and Spence (2008)). In 1987 Baines and Morris investigated the perception of sweet-

ness and strawberry aroma in solutions with different concentrations of guar gum (thickener).
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They found that the flavour and taste perception were progressively suppressed when the
concentration of guar gum became larger than the coil-overlap concentration. At this con-
centration the hydrocolloid chains start to overlap each other in the solution, resulting in a
decrease of movement and a clear increase of the viscosity of the solution. Below this concen-
tration the perception of taste and flavour was practically unchanged (Cook et al. (2003)).
On the other hand perceived texture can also be influenced by the intensity of the taste. For
instance increasing the amount of sucrose in a solution can lead to a lower perceived viscosity
(Auvray and Spence (2008)).

The most famous examples of how temperature can influence the taste perception are the
intense sweetness of melted ice cream or the bitterness of a warm beer (Talavera et al. (2007),
Bakalar (2012)). Studies have shown that temperature can influence the perceived maximum
intensity from bitter and sour stimuli, but not from sweet stimuli (Bajec et al. (2012)). The
effect of temperature on the perceived sweet taste is different for different types of sugars:
the perceived sweetness increases with increasing temperature in case of glucose, fructose
and sucrose. However it decreases with increasing temperature when looking at aspartame
and temperature does not seem to have an effect on the perceived sweetness of saccharin, an
artificial sweetener (Bajec et al. (2012)).

A study of the interaction between the vision of colours and odour determination by Morrot
et al. (2001), has shown that the odour of a white wine, coloured red with odourless dye, is
described with odour terms related to red wine. This experiment confirmed the existence of a
perceptual illusion between odour and colour. But this is not the only effect of colour, it also
has an influence on the taste and flavour perception. Studies have shown that the perceived
intensity of flavours and tastes increases when the colour level of a solution increases (Auvray
and Spence (2008)). Zampini et al. (2007) showed that people will link certain flavours with
the colour of the solution. First, they let their participants link each flavour with a solution
of a specific colour (visually). In a second step, they had to taste the solutions and identify
their flavour. The combination of colour and flavour could be the same as in the previous
step or different or the solutions could be colourless. The participants knew that the colour
of the solutions was not an indicator for its flavour. The results of these experiments show
that the accuracy of flavour recognition was significantly lower when the colours and flavours
were mixed with respect to the first step, than when the colours and flavours were not mixed
(or the solutions were colourless).

Sound of food will mostly influence the perception of its texture properties. Example of this
phenomenon are the crispness of potato chips (Auvray and Spence (2008)) and the snap of a
chocolate bar. All the interactions mentioned above are also described in detail in Stevenson
(2009). Figure 2.2 gives a schematic representation of most of the interactions mentioned

above, except for odour.
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Figure 2.2: Summary of interactions that occur during digestion (source: Del-
wiche (2004)). Cognitive interactions are based on knowledge. Sweet
enhancement is a nice example of such an interaction. For physical
interactions there was to be a physical process that froms the basis
of the interaction. For instance, when heating a foodstuff, volatile
components will be released, which will lead to an increase in smell.
Perceptual interactions occur when the interaction has an effect on
the detection of components. For instance, increasing the viscosity
of a product (texture) will lead to a slower diffusion of components
through and out of the product, leading to a lower receipt of compo-
nents at the taste and olfactory receptors. So an increase in viscosity

will result in a decrease of taste and smell intensity.

2.2 Why add certain ingredients?

Some ingredients are added to a recipe, not for their flavour, but for other specific characteris-
tics. They are added because of their ability to thicken a solution (sauces) or their gel forming
capacity (pudding) or their emulsifying properties to form a stable emulsion (chocolate), etc.
A well-known example is egg. The egg yolk contains lipoprotein, which give the yolk emul-
sifying properties, as they can bind both hydrophilic proteins and hydrophobic lipids. For
instance, mayonnaise contains egg yolk, not for its flavour, but for its emulsifying properties.
The egg white contains ovalbumine and ovoglobuline among other proteins. Ovalbumine will
create a gelling structure after boiling and ovoglobuline is the reason that egg white can be

transformed into a stable foam. This last property gives for instance cake and mousses their

6



airy structure (De Meulenaer (2011)).

Beside egg, there are other ingredients with unique properties, such as butter. Cocoa butter
is chosen to make chocolate because of its melting properties. When it is crystallized into
the desired crystal form, it will make the chocolate melt in the mouth. An other example is
potato: it is added to soup before boiling and will lose its structure during boiling, this will

release the starch inside the potato, which will create a thickening effect of the soup.

2.3 Conclusion

It can be concluded that the interaction between smell, taste, touch, vision and audition are
quite substantial. This brings us to the conclusion that flavour can not easily be defined or
modulated, since it is actually a mixture of all the senses mentioned above, because all these
senses will interact with each other and will create the final perception of flavour of the food
a person gets when eating it. Therefore data mining and machine learning techniques are
suitable for predicting ingredient combinations.

Another conclusion is that an ingredient is not always added for its flavour but sometimes it

is added as an aid for structure or stability.






Chapter 3
Modeling of recipes

There already exist several models that relate to recipes. Some models predict which recipes
people will like based on scores they have given to some other recipes or to certain ingredients.
Other models are more like search engines: when given several ingredients, they search a
database of recipes and return those recipes that contain all or some of the given ingredients.
Other models predict ingredient combinations as is the aim of this work. Some of the existing

models will be reviewed below.

3.1 Some existing models using recipe data

Sobecki et al. (2006) developed a web-based information system (a hybrid recipe recom-
mender), which can recommend certain recipes to different types of users based on given
information in the user profile. This system uses fuzzy reasoning for demographic recommen-
dations of recipes. The demographic attributes that are used in the model are age, gender,
number of inhabitants in the place of living, cooking experience and whether or not the
user wants vegetarian recipes or not. Hybrid means that the model is a combination of demo-
graphic, content-based (user likes new item, if he/she liked a similar item) and a collaborative
approach (user likes an item, if a similar user likes the item or, when the user unregistered:
recommend item that is liked by whole population) of recommendation.

Freyne and Berkovsky (2010) did research on designing a recipe recommender that recom-
mend healthy recipes. Their aim was to educate the users and help them get a healthier
lifestyle with personalized recommendations and to keep this healthier lifestyle. They gath-
ered ratings on individual ingredients, but also on recipes. Based on the scores given, the
model will recommend a certain recipe. For ingredients that are not yet rated by the user,
the ratings are predicted. They will also relate the recipes and the food items to optimize the
accuracy of the recommendation, by breaking down the recipe into its ingredients.

Forbes and Zhu (2011) improved the accuracy of recipe recommendations by using the ma-

trix factorization approach for collaborative filtering. The collaborative filtering approach is
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able to recommend an item without understanding the item itself. This approach links users
together based on similar taste. It suggests that when one of the users like a certain recipe,
other users (with similar taste) will like it as well, although it does not know anything about
that recipe. Before the model can be built, the users need to give scores to recipes. For each
recipe a list of the ingredients is available for the model. The model is a two-step approach
and needs two inputs: a matrix containing the scores given to each recipe and a binary ma-
trix containing the recipes and their ingredients (1 if an ingredient is present in the recipe,
0 otherwise). A single-step model would only take into account the information captured in
the score matrix.

In 2011, van Pinxteren et al. designed a recipe recommender with the aim to deliver healthier
variants of routine recipes. They constructed a measure that determines the similarity of
recipes, which is created with a user-centered approach. The similarity was not determined
based on the ingredients, but by means of a card-sorting experiment. People could find essen-
tial information of a recipe on the card of that recipe, like the title, ingredients, preparation
time, a picture, etc. There were two sets of cards: in the first one, each card contained a
very different kind of recipe, in the second set every card contained a different Italian pasta
with meat. As the recipes in this second set were all very similar, this set was made to see
which factor (beside ingredients) had most influence. With the first set the participants had
to divide the recipes into groups and characterize the different groups. This showed which
characteristics are mainly used to determine similarity between recipes. With the second
set, one recipe was selected and the participants had to rank the remaining recipes on a five
point scale going from very similar to very dissimilar. The results of these tests were used
to determine those ingredients which are most important to people to decide whether or not
two recipes are similar. Only these ingredients were taken into account in the model. Also,
the results on the meal type, preparation time, cooking technique, etc. were evaluated and
in total 55 features were created that are important for people during recipe similarity de-
termination. They created an algorithm that can search for these features in a text. Each
feature was assigned a certain weight in the similarity measure, based on the results of the
participants. This similarity measure was then used to recommend healthier alternatives for

the people that fit their daily routine.

3.2 Search engines

There already exist several websites that provide search engines for recipes. Some examples
are supercook.com, myfridgefood.com and recipematcher.com. All these sites work in a similar
way. One can select some ingredients with which one would like to make a dish. After selecting
the ingredients, one can press a button and the search engine embedded in the site will start
to search through all the existing recipes in its database and select those which contain all or

most of the selected ingredients. Those recipes are shown in a list on the site. For each recipe
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the site tells which of the selected ingredients will be used and which additional ingredients

one will need to buy, in order to be able to complete the dish.

3.3 Foodpairing.com

Another website built around a model about recipes, more precisely ingredient combinations,
is Foodpairing.com. The model is not based on existing recipes, but on the principle that a
good combination can be achieved when the combined ingredients have the same major flavour
components. So the model is created based on scientific flavour analysis of foodstuffs. For each
foodstuff, the flavour components are determined by using gas chromatography coupled mass
spectrometry. Once all the flavour components are identified, the major flavour components
are determined. These are the components that will determine the smell of the foodstuff and
it are those components that are taken into account in their model. Foodpairing.com gives,
for a certain ingredient, a number of ingredients that are most similar to it, based on the
flavour composition. Those ingredients result in the creation of a tasteful combination when
the ingredient is combined with one of the proposed ingredients.

The model returns a tree, with the ingredient of interest in the middle and all the ingredients
with similar major flavour component around the center. An example is given in Figure 3.1.
The ingredients are divided into categories and for each category the three ingredients which
are most similar to the ingredient of interest are represented in the model. There are nine
categories (e.g., meat, fruit, vegetables) which brings the number of suggested ingredient to
twenty-seven. The more flavour components a suggested ingredient has in common with the
ingredient of interest, the closer the ingredient is located to the center of the tree. This model
does not return recipes, but it does suggest ingredient combinations that are new and of which
one would not expect that the ingredients really match together.

The website of foodpairing.com has been renewed since the beginning of this year and now
contains a new model: twist it. This model makes it possible to replace one ingredient in an
existing recipe: one gives the ingredients in the recipe and tells the model which ingredient
should be replaced. The model returns a list of fitting ingredients. This can for instance be

used when one is allergic to one of the ingredients in the recipe.

3.4 Conclusion

Most of the models that are already built are made to recommend existing recipes to people
based on information of those people that was gathered. This is not the aim of the models
that are built in this work. These models will predict new ingredient combinations or, more
precisely, give for a certain number of ingredients those ingredients that make good combina-
tions with all given ingredients. The Foodpairing model is most similar to the models in this

work. However, it gives ingredients that make good combinations with a single ingredient.
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Figure 3.1: Example of a Foodpairing tree (source: Sense for Taste (2014)). Dif-
ferent branches leave the center of the tree. Each branches contains
ingredients from a different category, for instance, dairy, meat, herbs,
etc. The closer the ingredients are to the center of the tree, the more
flavour components they have in common with the ingredient in the
middle. This means that the ingredients closest to the center make
the best combinations with the given ingredient.
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Chapter 4

First step of model building: data

4.1 Description of the existing data sets

One of the main requirements to build a good model is sufficient data, both in quantity as well
as in quality, to train and test the model. The data that will be used to build the models is
found in “Flavor network and the principles of food pairing”, by Ahn et al. (2011). This data
consists of five data sets covering recipes, ingredients and flavour components. A first data
set contains 56,498 recipes originating from eleven different regions. The ingredients needed
to prepare each recipe are enumerated, as well as the region where the dish originates from.
All these recipes together contain 381 different ingredients, from almond to zucchini. The
number of ingredients used in a recipe ranges from very small to very large, the distribution
can be found in Figure 4.1.

The eleven regions from which recipes are collected are Africa, East Asia, Eastern Europe,
Latin America, the Middle East, North America, Northern Europe, South Asia, South East
Asia, Southern Europe and Western Europe. Table 4.1 shows for each region the number of
recipes present in the data and the average number of ingredients used in the recipes coming
from this region.

A second data set contains 1,503 ingredients, including the 381 ingredients found in the first
data set. The ingredients are given an identifier going from zero to 1,529. Besides the number
and the name of the ingredient the data shows the ingredient category of each ingredient.
There are fourteen different categories covering all types of ingredients. The categories are
alcoholic beverage, animal product, cereal and crop, dairy, fish, flower, fruit, herb, meat,
nut, seed and pulse, plant, plant derivative, spice and vegetable. The subdivision of the
ingredients into the different categories allows to predict to best fitting ingredient within a
specific category. For instance when you leave one ingredient out of a recipe, the missing
ingredient can be predicted or the best fitting ingredient within the same category of the
missing ingredient can be found. Some examples of animal products are honey and gelatin.

Examples of plant derivatives are cocoa and tea. Parsley and basil are herbs, while pepper
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Table 4.1: Number of recipes and number of ingredients per recipe per region in
the flavour Network data.

Region Number of recipes Average number of st. dev.
ingredients
Africa (Afr) 352 10.45 4.22
East Asia (EaAs) 2512 8.96 3.81
East Europe (EaEu) 381 8.39 3.56
Latin America (LaAm) 2917 9.38 3.66
Middle East (MiEa) 645 8.39 3.63
North America (NoAm) 41524 7.96 3.44
North Europe (NoEu) 250 6.82 3.20
South Asia (SoAs) 621 10.29 4.54
Southeast Asia (SEAs) 457 11.32 4.60
South Europe (SoEu) 4180 8.86 3.57
West Europe (WeEu) 2659 8.03 3.71

and ginger are spices.

In the third data set an overview is given of 1,107 flavour compounds found in food. The
flavour compounds are numbered from zero to 1,106 and each compound is provided with
its own CAS-number. The CAS-number can be used to find more information about the
flavour compounds like the chemical structure, synonyms, etc. A fourth data set consists
of two columns. The left column contains different ingredients shown with their id-number.
A same number can be found more than once. The right column contains id-numbers of
flavour compounds. This data set links the flavour compounds with the ingredients. A fifth
data set reorganizes the fourth data set and gives for two ingredients the number of flavour
compounds they have in common. The information found in data sets two, three and four is
used to give an overview of the different ingredient categories. For each category the number
of ingredients given for this category and the average number of flavour compounds found in

these ingredients is given in Table 4.2.

4.2 Bringing the data in the desired form

4.2.1 Recipes and their ingredients

The first data set containing for each recipe the names of the ingredients found in this recipe
is transformed into a binary matrix Y, since a binary matrix is more typical for machine
learning and data mining. The features of the data are the 381 different ingredients (i) found

in this data set. The rows of the matrix contain the different recipes (7). If an ingredient is
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Histogram: distribution of the number of ingredients found in a recipe
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Figure 4.1: Distribution of the number of ingredients in the recipes

found in a recipe a one will be found where the row of this recipe meets the column of this
specific ingredient. If the ingredient is not found in the recipe the element on this place in

the matrix will be zero. This results in following matrix:

1, if ingredient 7 is part of recipe r;
Y = (4.1)
0, otherwise.

A 382th column is added to the matrix. This column contains the origin of the recipes. The
new data set is a sparse matrix with a filling degree of 2.16%. This matrix can be used to
check whether or not the origin of the recipe can be predicted based on the ingredients found

in the recipe.

4.2.2 Combinations of ingredients in recipes

The data set constructed in the section above (Y') can be used to create a matrix containing for
each couple of ingredients the number of recipes where the two ingredients are used together.
This matrix (A)is square and symmetric. The 381 different ingredients form both the variables

as the observations. The matrix can easily be constructed by multiplying the transpose of the
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Table 4.2: The different ingredient categories and the number of ingredients and

average flavour compounds found in each category per ingredient.

Category Number of ingredients Average number of St. dev.

flavour components

alcoholic beverage 50 59.56 75.67
animal product 18 8.50 16.37
cereal /crop 39 32.69 33.82
dairy 39 91.90 60.96
fish /seafood 56 46.79 30.16
flower 66 6.35 8.03
fruit 186 42.10 44.92
herb 90 12.00 17.74
meat 57 85.23 59.72
nut/seed/pulse 33 29.48 34.48
plant 313 3.33 7.01
plant derivative 420 12.00 38.63
spice 54 20.51 20.86
vegetable 104 36.67 42.35

binary matrix (381 x 56498) created in the section above with the this matrix (56498 x 381):
A=YTy. (4.2)

This matrix will be used to study the combining ability of two ingredients in a recipe.

4.2.3 Ingredients and their flavour compounds

A new matrix is constructed using the data in the fourth data set to combine the ingredients
with their flavour compounds. This new matrix (X) contains 1,525 rows; these are the
ingredients for which flavour compounds are given. This means that there are five ingredients
for which no flavour compounds are given. The data set consists of 1,107 variables or 1,107
flavour compounds. The data in this new data set will be binary. For each ingredient a one
is given in the columns of the flavour compounds that are found in that ingredient and a zero
if the flavour compounds are not found in the ingredient. Two extra columns could be added
to the matrix; a first containing the number of flavour compounds found in each ingredient

and a second giving the ingredient category in which the ingredient belongs to:

1, if flavour component c is present in ingredient i;
Xie = (4.3)
0, otherwise.
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4.3 Data mining analysis of the data

In this section the data is analyzed for a first time. To examine the data, machine learning
techniques are used. There are two types of techniques: supervised and unsupervised. In
this section mainly supervised learning techniques are used to analyze the data. In the next
chapter, the data will be studied using the unsupervised machine learning techniques. More
information on machine learning and the difference between supervised and unsupervised
techniques can be found in Barber (2012a).

The data is examined using supervised learning techniques to see if there are differences in use
of ingredients between the different regions and whether the composition of a recipe is enough
to determine its origin. For this part the binary data set, containing the recipes as labels and
the ingredients as features, is used (Section 4.2.1). Next to that, the ingredient categories
are studied. The aim is to determine whether or not ingredients within one category consist
of different flavour components compared to ingredients belonging to a different category.
Or, in other words, whether or not the category of an ingredient can be predicted based on
the flavour components found in this ingredient. For this analysis the binary data set in
Section 4.2.3 is used. These results will be a first indication to determine whether or not a
universal model predicting ingredient combinations can be made; or if each region would need

its own model.

4.3.1 Origin of recipes

The object of this analysis is to determine whether or not the origin of a recipe can be
predicted based on the ingredients that are in the dish. For these predictions the binary
representation of the 56,498 recipes is used. The features of the models that are built are
thus the 381 different ingredients and the response is the origin of the recipes. First a heat
map is drawn of the data set together with a dendrogram of the regions based on this heat
map. In a following step the data is divided into four groups for cross validation. One group
serves as test data. The remaining groups will form the data for training the model. The
origin of the recipes is predicted using a naive Bayes model and a random forests classifier.
For each model, a confusion matrix is constructed based on the predicted and the actual
regions of origin. Based on these matrices the classification accuracy for each model will be

determined.

Naive Bayes

Due to the large difference in number of recipes per region; it is necessary to subsample a
same number of recipes per region to train the model or to give a weight to each region. This
guarantees that each region has the same importance while training the model. Otherwise

the group with the largest number of data, will dominate the trained model, which results in
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wrong classification of the test recipes into the largest group.

The naive Bayes-model is built by using a preprogrammed function in R (‘e1071’ package).
This function allows the user to give weights to the different groups. Next to the binary data
of the recipes, per origin the number of recipes in the train set is given to train the model.
After the model is built and trained, the accuracy of the model is determined. The test set is
given to the model and the origin of each recipe is predicted. The predictions are compared
with the actual origins in a confusion matrix and through the classification accuracy.

If the recipes would be classified randomly into the eleven groups, the accuracy would be
approximately 0.09. The trained model does not assign all the recipes of the test data to the
right region. However, the numbers (different from zero) in the confusion matrix are quite
well distributed over the matrix. This means that there is no region that is chosen more than
another. However, since most recipes are coming from North America, this is the region that
shows most misclassifications in both ways. Recipes that are actually coming from North
America are assigned to other regions; and recipes that do not belong to North America are
assigned to North America. The accuracy of the prediction achieved by the naive Bayes-model
is 0.714, which is a lot higher than 0.09. This means that the origin of the recipes can be
predicted quite well by the naive Bayes model.

Dendrogram based on the heat map

A dendrogram is actually an unsupervised learning technique, but it is performed here, since
it will tell something about the differences between the different regions and it can be used
to group the regions for further analysis. Due to the large number of recipes in the data set,
it is not possible to create a heat map of the whole data set. So before analyzing the data
through a heat map, the data is transformed into a (11 x 381) matrix. The eleven rows of
this matrix represent the eleven regions and the 381 column represent the ingredients found
in the recipes. For each region the posterior probability to find a certain ingredient in a
recipe coming from that region is calculated. This probability is placed in the new matrix on
the row associated with the region for which the probability was calculated and the column
associated with that certain ingredient. Once the matrix is completely filled in with the
posterior probabilities, the heat map can be built using this new data set. The heat map is
created using a preprogrammed function in R (heatmap.2) and can be found in Figure 4.2.
Once the heat map is completed, a dendrogram of the regions is constructed based on this
heat map. The dendrogram can also be found in Figure 4.2.

The regions can be separated into two clear groups. One group contains the Western regions:
Northern-Europe, Western-Europe, Eastern-Europe and Northern-America. The other group
contains the remaining regions. This means that the composition of the recipes coming
from the Western regions is much alike, while it is rather different for the recipes made
in the non-Western regions. Looking at the dendrogram this last group rapidly separates

into three groups: Eastern regions, Southern regions and South-Asia. This means that the
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Figure 4.2: Hierarchical clustering of the origin of the recipes based on the ingre-

dients by means of a heat map.

(combinations of) ingredients used in these recipes are also quite different for the different
groups of regions. These four groups are given below and will be used in further analysis to

subdivide the recipes into four groups instead of eleven:
e Cluster 1: West: Northern Europe, Eastern Europe, North America, Western Europe
e Cluster 2: East: East Asia, Southeast Asia
e Cluster 3: South Asia
e Cluster 4: South: Latin America, Southern Europe, the Middle East, Africa

When the regions are divided over three groups, the third and fourth cluster become one.

Random forests

In a next step the recipes are classified using a random forests model. R also provides a
preprogrammed function to build a random forests model in the RandomForest package. The
model is trained and tested with the same train and test data as used in the naive Bayes
model. This allows for comparison of both methods. The trained random forests model is
used to predict the origin of the recipes in the test data. A confusion matrix is built and the

accuracy is determined. The random forests model predicts the origin with an accuracy of
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0.79, a bit better than the naive Bayes model. It can be concluded that the origin of a recipe
can be predicted quite well based on the ingredients that are used in the recipe.

A random forests model can not only be used to predict the origin of the recipes; it can
also be used to determine which ingredients are important during the classification process
of the recipes. The thirty most important ingredients to determine the origin of each recipe
are given in Figure 4.3. Olive oil and cayenne are clearly the key ingredients. Important
ingredients must have a high posterior probability of appearance in some of the regions and a
low probability in the other; in that case the ingredient can make a preselection of the regions
of origin.

The posterior probabilities of appearance in the different regions for these two recipes can be
found in the naive Bayes model. Olive oil is mostly related to the Southern regions (Africa,
Southern Europe, the Middle East) and has a very low probability to be found in recipes
coming from the Eastern regions (East and Southeast Asia) and Northern and Eastern Europe.
Cayenne on the other hand has a very high probability to be found in Eastern recipes and a
very high to medium probability of appearance in recipes coming from the Southern regions.
Sesame oil only has a high to medium posterior probability in East and Southeast Asia and
has a very low posterior probability in all other regions. Tomato is mostly found in recipes
coming from Southern regions (Africa, Latin America, Southern Europe). These differences
in posterior probability directly show the importance of these ingredients. The number of
ingredients (features) that should be taken into consideration while building the model could
be reduced based on the importance of the ingredients determined by the random forests
model. For instance, only the fifty most important ingredients could be chosen as features
for the model instead of all 381 ingredients.

Since the random forests model has the largest accuracy, this model is used to test the clusters
found in the dendrogram of the heat map. The 56,498 recipes are redistributed into the four
clusters of the dendrogram. These clusters form the new origin of the recipes. To predict
these origins a random forests model is built and trained with three quarters of the recipes.
The trained model is used to predict the origin of the remaining recipes. Just as before, the
predictions are compared to the actual clusters in a confusion matrix and the accuracy of
the model is determined. The only difference is that there are only four categories instead of
eleven regions. This means that the accuracy of a random model would be around 0.25. The
actual classification accuracy of the model is 0.86. The value is higher than before the recipes
were grouped together based on the clusters found in the dendrogram, which means that the
clustering was good. The ingredients that are important for this classification are almost the
same as those in the general model and can be found in Figure 4.4. However, the order has
changed a little, as well as the shape of the graph. This means that the redistribution into

the four groups makes little difference in predicting the origin of the recipes.
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Most important ingredients in Random Forest classification of recipes
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Figure 4.3: Most important ingredients to predict the origin of the recipes ac-

cording to the random forests classifier.

Naive Bayes versus random forests

The naive Bayes approach differs from the random forests approach in the fact that the naive
Bayes approach assumes conditional independence, meaning that the feature values, here the
ingredients, are treated as independent, conditioned on the class, here the origin of the recipes
(Bishop (2006)). This is not the case in the random forests approach. The fact that random
forests scores better may suggest that the different ingredients are not independent, but that

the presence of certain ingredients depends on the presence or absence of other ingredients.

Predicting the origin based on the total number of ingredients per recipe

To study whether the origin of the recipes can be predicted based on the number of ingredients
present in each recipe, a random forests classifier is used. The classifier will have the origin
as response and the number of ingredients as feature. The classifier is built and trained with
three quarters of the data after which it is tested with the remaining quarter of the data.
To study the accuracy of the model, a confusion matrix of the predicted and actual origin is
built and the accuracy is determined.

The origin of the recipes cannot be predicted based on the number of ingredients found in the
recipes. The model classifies each recipe as coming from North America. It can be concluded
that there is too little difference between the different regions when looking at the number of

ingredients per recipe.
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Most important ingredients in Random Forest classification of recipes
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Figure 4.4: Most important ingredients to predict the cluster number (heat map
in Figure 4.2) of the recipes according to the random forests classifier.

4.3.2 Flavour compounds in ingredients

The aim in this section is to determine whether or not the ingredients can be classified into
their own category based on the flavour components that are present in these ingredients. The
binary data set containing the different flavour components as features and the ingredients
as observations, will be ideal to study this objective. The models that are built to analyse
the ingredients, have the 1,107 flavour components as variables and the fourteen ingredient
categories as response. Because of the large number of flavour components, it will be difficult
to visualize a heat map, therefore a dendrogram will be built based on hierarchical clustering
instead of a heat map. This dendrogram will tell which categories are more alike than others.
In a next step a naive Bayes model and a random forests classifier are built and trained with
three quarters of the ingredients of each category, after which their classification accuracy is
determined by testing the models with the remaining one quarter of the ingredients of each

category and comparing the predicted and actual categories.

Dendrogram based on hierarchical clustering

To perform a hierarchical cluster analysis on the categories, a preprogrammed function is
used (hclust from the stats package in R). First, each column of the data set is scaled. This
will result in a better clustering, because the number of times a flavour component appears
is otherwise taken into consideration as well. The hclust function calculates the Euclidean

distance between the different ingredients based on the values of the flavour components for
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Figure 4.5: Dendrogram of the ingredient categories based on the flavour com-

pounds of the ingredients.

each ingredient. The Euclidean distance is then used to cluster the categories. The hierarchi-
cal clustering is done based on the complete linkage method. The hierarchical dendrogram
is built in such a way that at each node, the cluster that goes to the left is tighter than the
cluster that goes to the right. This means that the value of the merge on the left will be lower
than the value of the merge on the right. The height represents the distance of the furthest
neighbor, or in other words, it is the distance between the two most dissimilar categories.
The result of the hierarchical clustering can be found in Figure 4.5. There are two clear
groups in the dendrogram. The one on the right contains the meat and the dairy category;
the one on the left contains the remaining categories. The order of the categories in which
they are separated from the remaining categories is quite logical. First meat and dairy are
separated followed by the fish and seafood. These are all ingredients of animal origin. The
only category also belonging to this group is animal products which contains ingredients like
honey, gelatin... But apparently the flavour components present in this category are quite
different from those found in the other animal ingredients. The remaining categories are from
vegetable origin. From left to right there are first the fruit and root parts of trees and plants,
like nuts, seeds, cereals, fruit, etc, followed by the flower and leave parts and finally the whole
plant. The two categories that are most alike based on the flavour components are the plants
and the plant derivatives. Those will probably be the two categories that are most difficult
to distinguish by the predictive models.

Naive Bayes

The ingredient category forms the response of the naive Bayes model and the different flavour
components the variables. For this model it is not necessary to scale the data first. After
building and training the model with the train data, it is tested with the test data. For each

category the number of ingredients belonging to this category is given to the model. This is to
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give weight to the categories, so each category has an equal part in the model. The model has
a classification accuracy of 0.442. Based on the 14 categories, the accuracy of the predictions
would be approximately 0.071 if the classification would be done randomly. As the accuracy
of the trained model is higher than 0.071, the categories can be predicted quite well based on
the components present in the ingredients of each category. The distribution of the confusion
matrix is rather good. In the previous section, it was predicted that the model would have
most difficulty in distinguishing plant derivatives from plants, since those two categories have
the most similar flavour composition. This is confirmed here, as the largest confusion occurs
between the plants and the plant derivatives.

When looking at the posterior probabilities of the categories, it is clear that ingredients of
some categories have most of the time the same flavour components, while the ingredients of
other categories do not. The maximum posterior probability for the meat and dairy categories
is 81% and 85%, respectively. For dairy only one component has a probability of 85%. This
component is valine, an essential amino acid typically found in protein-rich products like
dairy and meat. But for meat 21 components are found with a posterior probability of 81%.
When those components are present, the probability is rather high that the ingredient will
belong to the meat category. This explains why these two categories are first separated
from the remaining categories in the dendrogram. The lowest posterior probability is found
for plants and plant derivatives. The categories have a posterior probability of 5.4% and
9.8%, respectively. This means that there are no flavour components that are typical for
these categories, making it much more difficult to identify the ingredients belonging to these

categories.

Random forests

The random forests classifier has the category as response and the flavour components as
features just like the naive Bayes model. It is built and trained with the same training data
as for the naive Bayes model. After which it is tested with the same test data. A confusion
matrix is built to compare the predicted categories with the actual categories. The classifier
has a classification accuracy of approximately 0.57. This accuracy is higher than the one of
the naive Bayes model. Apparently the random forests classifier can better approximate the
reality than the naive Bayes model.

The values in the confusion matrix are quite well distributed. However, the category of
plant derivatives contains the highest number of ingredients that are incorrectly classified:
ingredients not belonging to this category are identified as plant derivatives. Most of the
times it are actually ingredients belonging to the plant category but the random forests
classifier also places some herbs and fruits into the plant derivatives. In the naive Bayes
model the category having the highest number of ingredients that were incorrectly classified
were the plant category and not the plant derivatives.

For dairy and meat there are no incorrect classifications in both ways: all the ingredients
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belonging to these categories are classified into the correct category and no other ingredients
are classified into these categories as well.

It can be concluded that the ingredient category can be predicted quite well based on the
different flavour components and that the random forests classifier is more suitable to perform

this task than a naive Bayes model.

Predicting the category based on the total number of flavour components present

in the ingredients

Since the random forests model had the best classification accuracy, this technique is used
to study whether or not the category can be predicted based on the total number of flavour
components present in the ingredients. The classifier has the variable category (containing
the 14 categories) as response and the variable total (containing for each ingredient its total
number of flavours) as feature. Just like before three quarters of the data is used for training
and one quarter for testing the classifier. The predicted categories are compared with the
actual categories in a confusion matrix and the classification accuracy is determined.

The model has a classification accuracy of approximately 0.34. This means the categories
cannot really be predicted based on the number of flavour components present in the ingre-
dients. So, it is better to use the different flavour components, since then the classification

accuracy is larger.

4.3.3 General conclusion

The data set of the recipes contains a lot of recipes coming from North America. The main
reason here for is the way of collecting the ingredients. Ahn et al. (2011) used three on-
line websites (allrecipes.com, epicurious.com, menupan.com) and downloaded all the recipes.
When a recipe was classified as belonging to an ethnic cuisine, it was placed in the corre-
sponding group. But not all the recipes where labeled with an origin.

When looking at several of the North American recipes, they do not seem to have their origin
in North America at all. For instance, one recipe contains peanut oil, tomato, pepper, onion,
beef, cayenne, ginger, garlic, rice and turmeric. These ingredients rather suggest an Asian
recipe (or maybe an African recipe). So does the recipe containing vinegar, meat, vegetable
oil, soy sauce, rice, oyster and seaweed. Other recipes are more likely to come from Southern
Europe. An example is a recipe containing tomato, cheese, olive oil, parsley, macaroni, basil,
garlic, egg and bread, which reminds of Italy.

For this reason the reclassifications done by the random forests classifier or the naive Bayes
model are probably not that bad for recipes labeled as being North American. There even is
a chance that the new origin of these recipes is better than the original. However, because
of the large number of North American recipes in the data set, and the questionable origin

of some of these recipes, a lot of the recipes labeled as not coming from North America are
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now classified as if they did come from North America. This is probably worse than before
the reclassification.

Therefore it could be better to only reclassify the recipes labeled as coming from North Amer-
ica, instead of relabeling all the recipes.

This reasoning is more difficult for the ingredient categories. Since classifying ingredients into
categories is based on science, it is not possible to claim that a vegetable should be classified
as a fruit, a cereal or as an alcoholic beverage. However, it could be stated that the difference
between a plant, herb, vegetable... is rather small, as a herb is actually also a plant and a
vegetable is a part of a plant. And that the classification into the categories normally is not
done based on flavour components. Therefore, it could be possible to reclassify the ingredi-
ents into different groups, not based on type of ingredient, but based on flavour components

present in the different ingredients.
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Chapter 5

Unsupervised learning techniques

5.1 Objective

In this chapter the objective is to group the ingredients that go well together. For the recipe
data (Section 4.2.2), this means grouping together those ingredients that are frequently used
together in a recipe. With the flavour data (Section 4.2.3), the ingredients containing a
comparable flavour composition are grouped together. As indicated in Chapter 3, ingredients
having similar flavour components often form a tasteful combination. The clustering of the
ingredients into groups will be a first indication of the results that could be expected with
the predictive model that will be built.

5.2 Combinations of ingredients in recipes

In this section, the data set containing information about the combinations of ingredients in
the recipes is used (Section 4.2.1). This data set has the 381 different ingredients both as
features and as observations and gives for each combination of two ingredients the number
of times these ingredients are found together in a recipe. What makes this data set suited
to study which ingredients go well together, and which do not, based on the existing recipes.
These are ingredients that go well together not only in theory but also in practice. These

combinations will be interesting for the final model that will be built.

5.2.1 Principal component analysis

Information on the principles of principal component analysis (PCA) can be found in Barber
(2012b). To determine the principal components of the data set, a preprogrammed function,
written in R, is used (princomp). The function will calculate 381 principal components, the
same number as ingredients.

First the columns of the data are scaled. The princomp function is used to calculate the

principal components. To be able to analyze the results, two of these components will be
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plotted against each other, to visualize the results. This plot will make it easier to divide
the ingredients into groups. Since the first component points in the direction of ingredients
with the largest variation instead of correlation (e.g., the ingredients that appear more or less
frequently in recipes), this component is not a relevant choice when the aim is to group the
ingredients based on similar characteristics. The second and third component are more ap-
propriate choices. These components usually contain more information about characteristics
that are present in some observations but not in other. This makes it easier to divide the
ingredients in groups. Figure 5.1(a) shows the graph that is obtained by plotting the second
and third components. In a next step the data set is divided into subsets, based on the origin
of the recipes and the groups found in the dendrogram (Section 4.3.1). The dendrogram is
used to divide the regions into four groups. Three of these groups contain more than one
region and will be studied. Those three groups represent the Southern regions, the Western

regions and the Eastern regions:
e Western: Northern Europe, Eastern Europe, North America, Western Europe;
e FEastern: East Asia, Southeast Asia;
e Southern: Latin America, Southern Europe, the Middle East, Africa.

The Western subset consists of 45,196 recipes, containing 369 ingredients. The Eastern sub-
set contains 2,969 recipes that are composed of 263 different ingredients. The third subset
includes the 8,094 Southern recipes containing 318 ingredients. Apparently the number of
different ingredients used in recipes is smallest for the Eastern recipes. For each of the three
subsets principal components are calculated and the second and third principal component
are plotted. The graphs can be found in Figure 5.1.

When looking at Figure 5.1(a) there are three groups of ingredients that are isolated from
the others. The first group, located on the left, contains egg, wheat, vanilla, butter, milk
and cream. These ingredients are typical found in recipes coming from Western regions. The
second group, in the upper part of the graph, contains ingredients like soy sauce, scallion,
ginger, rice, cayenne and sesame oil, which are mostly found in Eastern recipes. The group
on the bottom of the graph contains ingredients that are typical for Southern recipes, like
olive oil, tomato and onion.

The graphs for the different parts of the world prove that there is a difference in combining
ingredients in the different parts. The graph of the Western recipes still shows clear groups
of ingredients (bottom left: egg, wheat, butter, milk, vanilla; top left: onion, garlic, tomato,
olive oil...). However, the other two graphs do not show clear groups. The graph of the East-
ern recipes still shows some outliers, but the graph of the southern recipes is closely packed
and most of the ingredients are located around the origin. Knowing this, it could be useful
to build different predictive models for the different parts of the world (as done in Section

6.5.3), using only the recipes belonging to each part of the world.
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Figure 5.1: Principal component analysis of the recipes. Figure (a) is constructed

using all the recipes present in the recipe data set. Figures (b), (c)

and (d) represent the second and third principal component when

the analysis is performed with only a part of the recipes based on the

origin of the recipes.

29



Kernel principal component analysis

Principal component analysis can also be used to analyze kernel matrices. The data set used
in this section takes the form of a graph. The ingredients form the vertices of the graph. Two
ingredients are linked together when they are used together in a recipe. The weights of these
edges are the number of recipes in which both ingredients are present. Graphs have their own
type of kernels; one example is the diffusion kernel (Kondor and Afferty (2002), Karatzoglou
et al. (2004)).

The data set has almost the form of the operator of the diffusion kernel:

1, for i ~ j
Hij =< —d;, fori=j (5.1)
0, otherwise,

with d; the number of edges connected to vertex ¢. The diffusion kernel is calculated as
follows:
K =P, (5.2)

So to obtain the diffusion kernel, you have to calculate the matrix exponent of SH. Instead
of using the value 1 when two ingredients are linked together (i ~ j), the number of common
recipes can be used, to get a weighted kernel. So the only thing that has to change in the
data set is the value of the diagonal items. To determine a good value for the hyperparameter
B of the diffusion kernel, the principal components of the kernel matrix are calculated and
plotted. The value of 8 that divides the ingredients best is chosen (Figure 5.2).

The ingredients are less isolated from each other, but have a better dispersion. However,
the ingredients that are near to each other can likely be exchanged in recipes. For instance,
vanilla can be exchanged with cocoa, mussel with oyster or clam and cured pork with pork

sausage.

5.2.2 Spectral clustering analysis

The spectral clustering method groups the data points into a specific number of clusters. The
difficulty of this method is determining the number of clusters that represent the data well.
Especially since it is an unsupervised learning technique, which means that the accuracy of
the clustering cannot be tested afterwards.

One possibility to estimate the number of clusters is by looking at the within cluster sum of
squares (wss). This value tells something about how closely the clusters are packed. This
value should be as small as possible. However, when taking too many clusters there is a risk
of overfitting the data.

The data is clustered into different numbers of clusters and for each clustering the within

cluster sum of squares is determined. These values are plotted against the number of clusters,
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Figure 5.2: Kernel principal component analysis using a diffusion kernel of the

recipe data.

resulting in a curved graph (Figure 5.3). The decision is made to divide the data into six
clusters, since the within sum of squares will only decrease a little when the number of clusters
is increased. The ingredients that are grouped together are ingredients that are typically used
together in recipes.

When using the spectral clustering technique, the clustering is not deterministic. This means
that results of the analysis can change every time the analysis is performed, or, in other
words, some ingredients will change groups when the data is clustered into the same number
of clusters several times in a row. Therefore it is important to determine the stability of
the clustering. The stability is measured by clustering the ingredients into six clusters for
thirty times. After each clustering the ingredient combinations in each group are saved in a
matrix. This matrix contains 381 rows and columns, the same number of ingredients. When
two ingredients are clustered into the same group the value in the box containing the first
ingredient as row name and the second ingredient as column name will be increased by one.
After the thirtieth clustering this matrix gives an idea of the stability of each cluster. When

a cluster is stable, the ingredients in this cluster will be clustered together thirty times, when
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Figure 5.3: Determination of the number of clusters for spectral clustering of the

ingrendient combinations in recipes.

the clustering is unstable this value will be lower, since the ingredients will not be grouped
together after each clustering.

There are some stable groups, for instance the group containing butter, milk, eggs, wheat and
vanilla. After each clustering these ingredients were found in the same group. Twenty-six
times (of the thirty) cream was found in this group as well. Another example is the group
of black pepper, pepper, cayenne, garlic, olive oil, onion, tomato and vinegar. This indicates
that these are also ingredients that are used together in a lot of recipes, thus likely form
a good combination. Also soy sauce, ginger, rice, scallion, beef, thyme, parsley, green bell
pepper, etc. were each time found in one group. It can be concluded that some combinations
of ingredients are very stable; these are ingredients that have already been used together a lot.
These groups can be used to suggest a new ingredient to an existing recipe: when ingredients
out of these groups are already present in the recipe, the other ingredients will probably lead

to a good combination as well.

5.3 Comparison of ingredients based on their flavour profile

In this section it will be determined whether the different types of ingredients can be isolated
from the others, based on their flavour components. For this study the binary data set,
containing the ingredients as observations and the flavour components as variables/features,
will be used. The data columns are scaled to get more correct results. The aim of the
following examinations is to find the ingredients with a similar flavour composition, because
those ingredients will have a similar taste and could lead to tasteful combinations. Just like

before the techniques that will be used to study this case are principal component analysis
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and spectral clustering analysis.

5.3.1 Principal component analysis

As mentioned before a preprogrammed function is used (princomp in R) to calculate the 1,107
principal components, the same number as flavour components. Just as before the second and
third principal component are plotted against each other, to visualize the results. The graph
will make it easier to divide the ingredients into groups based on the difference in flavour
components. This graph can be found in Figure 5.4.

The graph shows that, by using the principal component analysis, at least some ingredients
can be divided into different groups based on the flavour components that are present in the
ingredients. The different types of tea are isolated in the upper left corner. The alcoholic
beverages and the different types of cheese are separated in two groups in the lower half of
the graph. The right upper arm of the graph contains the different types of meat. The berries
and other types of fruit can be found in the left part of the graph. Most of the ingredients,
however, can be found in the middle of the graph. These ingredients have a too similar flavour
composition and cannot be separated from each other in this two-dimensional subspace. In
contrast with the previous section, the ingredients are now grouped together per category.
The data set contains 23 different types of cheese: blue cheese, Camembert cheese, cheddar
cheese, cheese, Comte cheese, cottage cheese, cream cheese, domiati cheese, emmental cheese,
feta cheese, goat cheese, etc. All these types of cheese contain 266 flavour components, from
which 127 are present in all 23 types of cheese. The other flavour components are present in
7,6,5,4,3,2or 1 type of cheese. Those 127 common flavour components are the reason why
the types of cheese can be grouped together and can be separated from the other ingredients.
However, since they do not have an identical composition, it should be possible to see the
different types of cheese in the graph, since they are not plotted on the exact same spot. One
possibility is to do a new principal component analysis by using only the data of the cheese.
Unfortunately, this is not possible since there are 266 features (=flavour components) and
only 23 observations (= types of cheese); and a linear principal component analysis can only
be done when there are at least as many observations as features. A solution could be to
only look at the flavour components that they do not share, however, this still results in 139
features. The only option to see the difference between the types of cheese is to isolate the
part of the graph that contains the different types of cheese and magnify it. This is done in
Figure 5.4.

Kernel principal component analysis

Principal component analysis can also be used to analyze kernel matrices. Firstly the data
set is transformed into a kernel matrix after which it is analyzed using PCA. In R, a prepro-

grammed function exists for this method as well (kpca). The data set and the type of kernel
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Figure 5.4: Principal component analysis of the ingredients based on their flavour

components.

(linear, Gaussian, etc.) are given to the function, which returns the principal components.
Just as before, the second and third principal component are plotted to examine the results.
This function allows to determine which type of kernel describes the data best.

In Figure 5.5 each category has its own color. The alcoholic beverages are given in red,
the animal products in yellow, the cereal and crops in dark blue and so on. This graph
shows the results of kernel PCA after scaling and transforming the data into a linear kernel
(vanilladot: (x,x')). All 1,525 ingredients are used to determine the principal components,
but only the 381 ingredients present in the 56,498 recipes are shown in the graph. This way
both the advantages of a large data set (more accurate model) and a small data set (readable
graphs and results) are exploited.

From the graph it is clear that certain categories (or parts of these categories) can be isolated
from the others. At the bottom of the graph there is a group of dairy products. Those are the
different types of cheese. Above the line of ingredients there is a group of plant derivatives,

namely the different types of tea. At the end of the line there are five isolated meat products:
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Figure 5.5: Linear kernel principal component analysis of the ingredients based

on their flavour components.

all the types of beef. At the beginning of the line the alcoholic beverages are grouped together,
but the ingredient that is most isolated from all the other is coffee in the right upper corner.
The ranking of the categories in the line of ingredients is rather logical. From left to
right: the alcoholic beverages, fruit, species and plant derivatives, herbs, flowers and plants,
nut/seed/pulse, grain/crops, vegetables, dairy and animal products, fish/seafood and finally
meat. There is a transition from vegetable products to animal products.

When the Gaussian kernel (rbfdot: e*"”X*X/'F) is used in the kernel principal component
analysis, the data is represented very poorly. Most of the ingredients are plotted at the same
spot, because of some outliers even when the data is standardized before being transformed
into a kernel matrix. When the outliers are removed from the data, the remaining ingredi-
ents are lying on a curve. However, the ingredients seem to be distributed over the curve
randomly and no logical ranking can be identified. It can be concluded that the Gaussian
kernel is not appropriate to describe the data. This is not that surprising since the Gaus-
sian kernel represents a continuous function, while the data is discrete. The kernel polydot
((scale.(x, x') + offset) 1°8™°) gives almost exactly the same results as the linear kernel. This
type of kernel could also be used to describe the data. The Laplace kernel (laplacedot:
e_"”X_X/”) results in a rather similar graph as the Gaussian kernel; this type of kernel is just

like the Gaussian kernel, not suitable to describe the data.

5.3.2 Spectral clustering

A preprogrammed function (specc in R) is used to divide the ingredients into groups using a

spectral clustering technique. The function not only needs the data set but also the number of
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Figure 5.6: Graph to determine the number of clusters for the spectral clustering.

clusters that should be used. However, with this type of data, it is very difficult to determine
the number of clusters.

Just as before the within sum of squares is determined for different numbers of clusters. The
values are plotted against the number of clusters, resulting in a graph with a curved form
(Figure 5.6). Both the within sum of squares and the number of clusters should be as small
as possible to cluster the data well but also prevent overfitting. The data is clustered in seven
clusters, since the within sum of squares of eight is not that much smaller than that of seven
clusters.

Also for this data set the stability of the clustering is determined by clustering the ingredients
thirty times into seven clusters and keep track of the number of times two ingredients are
grouped together. The cluster stability is much lower than for the recipes. However, after
each clustering round the different types of cheese are grouped together. Most of the times
the different types of tea are found in one group as do the different types of meat. The types
of liquor and wine are mostly found in the same group, together with the different types
of grape. These ingredients are frequently found in the group containing the cheese. Thus,
fermented foods are lumped together.

The stability matrix is filled with rather low values, meaning that the clustering is not that
stable resulting in different groups after each clustering. It can be concluded that spectral

clustering is not a good method to cluster the ingredients based on their flavour components.

5.4 Comparison of the two data sets

To study whether or not there is a relation between the flavour components present in the

ingredients and the combinations of the ingredients found in recipes, a kernel canonical corre-
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lation analysis is performed. The canonical correlation analysis is a data reduction technique
that looks for a pair of linear subspaces that have high cross-correlation for two or more
variables, in such a way that each component from one subspace is correlated with a single
component in the other subspace (Bishop (2006)). In other words, the technique searches
for a sequence of uncorrelated linear combinations from one dataset (the recipe data) and a
corresponding sequence of uncorrelated linear combinations of a second data set (the flavour
data) that leads to a maximum correlation between these two sequences (Friedman et al.
(2008)).

For the data of the flavour component the same binary data set as in the section above is used.
However, for the recipes the diffusion kernel (Section 5.2.1) is chosen. The kernel used for the
canonical correlation analysis is the linear kernel. To perform this analysis a preprogrammed
function in used (kcca from the kernlab package in R). The function returns for both data
sets estimated coefficients for the variables in the feature space. Figure 5.7 shows a scatter
plot of the first canonical variates of each data set. The values for the recipes can be found
on the y-axis and those for the flavour components on the x-axis.

The distribution of the ingredients in the scatter plot shows a diagonal shape, indicating
that there is a correlation between the flavour components and the use of the ingredients in
recipes. The distance of each ingredient to the diagonal is calculated. Ingredients that are
close to the diagonal possess a rather specific taste, resulting in the fact that they can only be
combined with a limited number of ingredients. Examples are mussel, cognac, fig, star anise,
etc. Ingredients with the largest distance to the diagonal are onion, butter, brown rice, bell
pepper, chicken, egg, etc. All these ingredients are used in a lot of different combinations.
Butter is not only used on bread but also to bake meat, vegetables or to make cake or cook-
ies, indicating that the use of this ingredient is not related to its flavour, but rather to other
properties like structure, melting point, etc. Egg is known for its emulsifying properties and
its ability to create foam, and just like butter it is used in all kinds of recipes.

It can be concluded that in most cases the combinations of ingredients in a recipe are depend-
ing on the flavour composition of those ingredients. However, flavour is not the only factor
determining the choice of ingredients, as discussed in Chapter 2. Some ingredients are added
for other properties like emulsifying properties, structure properties, melting properties, nu-

tritional properties, etc.
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Figure 5.7: Kernel canonical correlation analysis of the recipes and the flavour

components.
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Chapter 6

Matrix decomposition

In this chapter, a first predictive model will be built to find good ingredient combinations. In
this attempt, only the ingredient combinations found in the recipe data will be used to predict
good combinations. Later, the information found in the flavour data will be added to the
model, since ingredients with the same flavour compounds are supposed to go well together.

The method used to build the predictive model in this chapter is matrix decomposition.

6.1 Data

The model will be built using the binary data set containing 56,498 recipes (Section 4.2.1).
The recipes containing only a single ingredient are left out of the data set, since those recipes
do not contain any information about ingredient combinations and so will not be useful during
the model building sections. Another reason to eliminate those recipes is that there will be no
remaining ingredients after erasing one of the containing ingredients, for model selection and
evaluation. The total number of recipes containing only a single ingredient is 354, resulting
in a data set of 56,144 recipes to build the models.

In a first step 240 recipes are randomly chosen from the 56,144 recipes. These recipes are
then divided into twelve groups of twenty recipes. Eleven of these groups form the train and
tune data. The remaining group is the test data. The model building will be explained is

more detail in Section 6.3.

6.2 Used techniques

There exist several types of matrix decomposition. A visual representation of a matrix decom-
position technique can be found in Figure 6.1. Matrix decomposition is an approximation of a
matrix by multiplying two matrices with a low rank. It is difficult to choose the most suitable
method, since the structure present in the data is still unknown. Therefore three different

types of matrix decomposition are examined and compared. The aim is to find the method
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Figure 6.1: Schematic representation of matrix decomposition. In a first step
the original matrix is split into two matrices, the Recipe matrix and
the Ingredient matrix. The dimensions of these two matrices are
determined by the number of latent features, K, chosen during the
decomposition. In a second step, the product of these two matrices is
calculated resulting in a new matrix, similar to the original matrix.

that is most appropriate to predict ingredient combination based on information found in
existing recipes. By training and testing a model using each of the three different techniques
of matrix decomposition, the type of matrix decomposition that predicts the ingredients in
the recipes best can be found. This final model will be studied in more detail. The three
methods that will be studied are:

e Singular value decomposition (SVD)
e Non-negative matrix factorization (NNMF)

e Independent component analysis (ICA)

6.2.1 Singular value decomposition

Friedman et al. (2008) tells that singular value decomposition is a standard decomposition

method in numerical analysis. With this techniques the matrix Y is decomposed as:
Y = USVT, (6.1)

where Y is an m x n matrix. In this work Y is the recipe data with m and n equal to
56,498 and 381 respectively. U and V contain respectively the left and right singular vectors
of Y in their columns. U is an m x m orthogonal matrix (i.e. UTU = I,,). V is an n x n
orthogonal matrix. ¥ is an m X n diagonal matrix and contains the singular values (d;) of
Y on its diagonal. The singular values are ordered from most important (explaining most of
the variation found in the data) to least important: d; > dy > ... > d,, > 0.

In this work UY. delivers the Recipe matriz (m x n), VT gives the Ingredient matriz (n x n)
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in Figure 6.1. There are maximum n latent features. The number of features, K, will be
changed by setting the n — K last singular values in the ¥-matrix to zero. Leaving only the
first K singular values to take part in the recomposition of the recipe matrix. When the
decomposition technique used is SVD the K range goes from 2 to 100. This method is mostly
used on Gaussian distributed data, and as the recipe data is not Gaussian, the chance that
this method will be good at predicting ingredient combinations based on binary data is rather

small. The principal component analysis is also based on singular value decomposition.

6.2.2 Non-negative matrix factorization

With non-negative matrix factorization the data and components are assumed to be non-

negative, meaning that only positive values are found. The matrix Y is decomposed as:
Y ~WH, (6.2)

where Y is an m x n matrix, W is an m x K matrix and H is an K xn matrix. The value of K
can be a lot smaller than n and m, where K < max(n,m). As mentioned before, none of the
three matrices (can) have negative elements. To find the values of W and H, the following

function is maximized:

L(W,H) = Z Z [Yijlog(WH);; — (WH);] . (6.3)

A Dbig difference with the previous method is that only the first K features can be calculated.
The method will just divide the information into the K features. A second difference is that
the features are not ordered from most important to least important, so it is not possible to
just take the first two features to account for the biggest part of variation. This should be
taken into account when evaluating the results. This technique is also used in Lee and Seung
(1999).

Although only K latent features need to be calculated, NNMF is a very time consuming
method since it needs to do iterations to maximize Equation (6.3). Therefore the K range is
kept very small. And the optimal value of K is found after several runs with different ranges
of values of K. The K-range going from two to fifteen seems to give the best results, so this

range will be used to build the model.

6.2.3 Independent component analysis

The independent component analysis assumes that the S; components are statistically inde-

pendent. The matrix Y is decomposed as:
Y =SB, (6.4)

where Y is an m X n matrix. The ICA considers this matrix as a linear combination of non-

Gaussian (independent) components. The S-matrix contains the independent components of
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Y. The S-matrix is also known as the estimated source matrix. The B-matrix represents an
estimated linear mixing matrix. S = YCW, with W a matrix that maximizes the negative
entropy, or in other words maximizes the non-Gaussian character, which ensures that the
estimations are uncorrelated. The C-matrix will limit the number of components, this will
allow to only take into account the first K features as preferred in the model building.

This method allows to only calculate K features, just as the NNMF. The information found
in the data is summarized in those K features. Just as in the NNMF, the features are not
ordered based on their importance. The total range of K goes from 2 to 100, but it is divided
into subranges of fifteen values to reduce the duration of the model building. The optimal
range is found by running the model with the different subranges and selecting the range that
delivers the best results. This range is used to build the model.

The previous chapter showed that the Gaussian kernel was not suited to represent the recipe
data. This means that the recipe data does not follow the Gaussian distribution. Independent
component analysis is used for non-Gaussian processes, meaning that this method should be
more appropriate to predict ingredient combinations, than the singular value decomposition
method, which is mostly used on data with a Gaussian distribution. The difference between
singular value decomposition (used in PCA) and independent component analysis can be seen

in Figure 6.2.

6.3 Model building step by step

The model building process can be summarized as follows: a recipe will be randomly selected
from the data (train or test recipe) and one of its ingredients (randomly picked) will be
erased from the list and saved in a new list. In a next step, the model will predict values for
each ingredient. The ingredient with the highest value is selected as best fitting the given
ingredients. In the ideal case the erased ingredient should be predicted, but it is also desirable
if this ingredient occurs in the top ten of best fitting ingredients. As there is always a chance
that the recipe was not optimal and so the eliminated ingredient is not the best fit.

The train data groups are examined one by one, therefore only twenty recipes will be examined
at the same time. Each of the twenty recipes is copied from the data set. The ingredients of
each recipe are identified. For each of the twenty train recipes, one of the present ingredients
is eliminated at random. The name of this ingredient is saved in the result matrix, as is the
identity number of the recipe and its origin. After removing this ingredient from the recipe
(zy; : one — zero), the original recipe is replaced in the data set. As the data set is binary,
mathematically this action results in the replacement of a single one with a zero in the row
of the recipe and the column of the eliminated ingredient. The resulting modified data set
differs thus from the original set with twenty ones that are replaced with zeros, distributed
over twenty of the 56,144 rows. This small difference will likely have no effect on the matrix

decomposition of the data set. This is the reason that only a small number of recipes is
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Figure 6.2: Difference between singular value decomposition (used in PCA) and
independent component analysis. Both methods find the same first
axis, along the longest line of data points, but not the same second
axis. SVD (or PCA) finds a second axis perpendicular to the first
axis. ICA however finds a second axis along the shorter line of points,
which is in this case, a better representation of the data points (source:
Varoquaux (2012)).

selected as training data. This data set forms the original recipes.

In a next step a decomposition of this data set into a product of two matrices is performed,
as can be seen in Figure 6.1, by using one of the three matrix decomposition techniques that
are enumerated in Section 6.2. These two matrices are called the Recipe matriz (56,144 x K),
containing components with latent features of each recipe, and the Ingredient matriz (K x
381), containing latent features for each ingredient. K is the number of latent features that
are calculated or taken into account. The maximum number of latent features is 381, equal
to the number of ingredients in the data set. This value of K is the only parameter that can
be changed to improve the predictive capacity of the model. The value of K is changed over
a range of values, to determine the value of K, that leads to a model that can best predict
the missing ingredient in the train recipes. Depending on the technique used to perform the
decomposition of the matrix, the range of the values of K will change (Section 6.2).

The data set is reconstructed by making the product of the Recipe and Ingredient matrix
(Figure 6.1). Since only K latent features are used to reconstruct the data set, the resulting
matrix will not be binary. The value of K cannot be too small, however, it can not be too
large either. When the value is too small, a lot of information would be lost and a too large
K-value would result in overfitting of the data. The remaining ingredients in the test recipes

that have a value equal to one, are not of interest since those ingredients are already present
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in the recipe and so cannot be added anymore. The predicted value of these ingredients
is changed to a very low value, making sure that they will not be suggested as preferred
ingredient to combine with the remaining ingredients.

When the recipe had originally a value equal to zero for a certain ingredient, its new value
will depend on the frequency with which the ingredient is combined with one, several, or all
the ingredients present in the recipe. If the ingredient is frequently combined with (some of)
the ingredients in the recipe, its value will be larger than when it is not frequently combined

with the ingredients in other recipes.

6.4 Model selection and validation

6.4.1 Training and tuning

The model is trained for different values of K. After each training step, the prediction
capacity will be evaluated based on the ingredient that was removed from the recipe. The
twenty recipes in the train set are taken out of the predicted recipe matrix one by one and
are examined. For each recipe, the ingredients are sorted based on their predicted value,
from the largest to the smallest value. Since the predicted value of the remaining ingredients
of the recipe are changed to a very low value, as mentioned in the previous section, these
ingredients will be last in the sorted list. The higher the predicted value of an ingredient,
the better this ingredient can be combined with the remaining ingredients in this recipe; the
lower the predicted value is, the worse the combination will be. If the performance of the
prediction is high, the eliminated ingredient should have a high predicted value, and thus
this ingredient should be found in the top ingredients of this sorted list. The place of the
eliminated ingredient in this list will be called the rank of the eliminated ingredient. In other
words, when the eliminated ingredient has the highest predicted value, it will be on top of
the sorted list and will get a rank equal to one.

In a next step the rank of the eliminated ingredient is determined for each of the twenty
recipes in the train set. The mean of the rank of these twenty recipes is determined and
linked to the value of K, used for the reconstruction of the recipe data in this training step.
This action is repeated for each value of K considered. For each value of K, the mean rank
(of the twenty recipes in the train data) is saved into a matrix. Once all the values in this
matrix are found, the value of K with the lowest mean rank is selected to be the best value
of K for this group of training recipes. In a next step, the twenty recipes of this training set
are restored to their original form (eliminated ingredient: x,; : zero — one).

Once the recipe data is restored, the next set of train data is examined in just the same way.
So this process is repeated ten times with the remaining ten groups of train data. Each set of
train data delivers its own best value of K, resulting in eleven best values of K. The median

of these values is determined and classified as best value of K.

44



6.4.2 Testing

The best value of K found during training is used to perform a decomposition and a recon-
struction of the twenty recipes in the test group. Just as in the training phase, one ingredient
of each test recipe is eliminated at random and saved in the result matrix. After decompo-
sition and reconstruction the rank of the eliminated ingredient is determined. Also the top
five of ingredients that can best be combined with the remaining ingredients are saved, as
is the value of K found during training, the identity number and the origin of the recipes,
the category of the eliminated ingredient and the rank of the eliminated ingredient if only
ingredients of the same category (fruit, vegetables, spices,...) are taken into account.

This whole process of selecting 240 recipes and training and testing the model is repeated one
hundred times (by means of the HPC-cluster), resulting in 2,000 tested recipes and 100 best

values of K.

6.5 Results

6.5.1 Performance measures

For each technique, the hundred runs (found after testing the models in Section 6.4.2) are
collected in one single document, resulting in 2,000 test recipes and 100 values of K. The
mean best value of K is determined for each technique. Besides the best value of K, two
other parameters can be determined: the average general rank of the eliminated ingredient
(2,000 values) and the average rank of the ingredient when only looking at ingredients of the
same category. These values allow to determine the percentage of ingredients with a smaller
rank than the eliminated ingredient. Thus resulting in a larger value in the predicted recipe
and thus a better fit in the test recipe than the eliminated ingredient according to the tuned
model (Table 6.1). These percentages will help to evaluate and compare the three techniques.

Position of the ingredient in general:

general rank of eliminated ingredient
average percentage general rank = mean - - . (6.5)
total number of ingredients

Position of the ingredient in the category:

category rank of eliminated ingredient
av. percent. category rank = mean - - - . 6.6)
total number of ingredients in that category

For each general and category rank value the percentages of test recipes having this general
or category rank is determined. For general rank these percentages are plotted against the
general rank values and a cumulative curve is added to the graph as well. This last one
allows to easily compare the three techniques visually and to determine the capacity of the
techniques by for instance looking at the percentage of recipes with a general rank smaller or
equal to ten. The latter value gives the percentages of test recipes for which the eliminated

ingredient can be found in the top ten of recommended ingredients.
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6.5.2 Comparing the three techniques

The results for the parameters mentioned above are given in Table 6.1 for each of the three
techniques. They will be studied in more detail below.

The mean best value of K is the largest for the SVD and the smallest for the NNMF. How-
ever, these values do not say much about the performance of the techniques. They only say
something about the number of components needed to capture the information on ingredient
combinations hidden in the data set. Apparently NNMF can best compress this information
and thus needs the smallest number of components to have the highest performance.

The average percentage general rank tells a lot more about the performance of the models.
When comparing the techniques based on this parameter, it is clear that the NNMF can pre-
dict the eliminated ingredient best, followed by ICA. SVD has the worst performance. The
NNMF has an average percentage general rank of 10.8%, which means that on average the
eliminated ingredient can be found on the thirty-eighth place, when ordering the ingredients
from best fitting the recipe to worst fitting the recipe. This is quite a good performance,
when keeping in mind that predicting ingredient combinations is very difficult, since they
depend on taste, flavour perception, texture, etc. (see Chapter 2). The difference in average
percentage general rank between NNMF and ICA is almost equal to the difference between
ICA and SVD (both approximately 18%). This may suggest that the performance of the
different techniques also declines in a same degree. However to confirm this statement, the
predictions of the three techniques will need to be studied in more detail.

The average percentage category rank follows the same trend as the average percentage gen-
eral rank. The rank is best for the NNMF technique and worst for the SVD technique. These
values should be smaller than the average percentage general rank, since the category ranks
will be smaller than the general ranks as a lot of ingredients are removed from the results,
since they don’t belong to the same category. However, in Tabel 6.1 the average percentage
category ranks are larger. This is because these values are biased by the small number of
ingredients in certain categories. For instance, the category of animal products (like honey,
gelatin, etc.) contains only five ingredients. When the eliminated ingredient has the lowest
rank of these five ingredients, its percentage category rank is only 20% (1/5). The prediction
is very good, but the percentage is rather high; this is why the value of the average percent-
age category rank is biased and should not be interpreted. However, the measure can still be
used to compare the three techniques and to conclude that also here the NNMF techniques
had the best performance. A better way to evaluate the category rank is by determining the
percentage of recipes that have a category rank of one, or lower or equal to three. When the
predictions are made with NNMF, 35.6% of the test recipes have a category rank equal to
one. When we look at a category rank smaller than or equal to three, 62.7% of the recipes
are covered. For ICA, these percentages are respectively 32.2% and 52.9% and for SVD these

percentages are equal to 8.2% and 9.3%. These values give a much better view of the differ-
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Table 6.1: Summary of the results for the three types of matrix decomposition
(* 381 ingredients, ** 2000 test recipes).

All categories Within category
technique | average % st.dev. % recipes: average % average
general general ingredients in category value of
rank* rank top 10** rank K
NNMF 10.8% 17.5% 43.6% 15.8% 5.2
I1CA 28.5% 38.7% 39.7% 31.9% 4.3
SVD 46.5% 29.6% 6.4% 48.6% 27.8

ence in predicting capacity between the different techniques. It is clear that the difference in
performance is much smaller between NNMF and ICA than between ICA and SVD.

A similar value can be determined for the general rank. Since here all the ingredients are
together in one group, the value of general rank is chosen higher than three. For the general
rank, the percentage of ingredients having a general rank smaller or equal to ten is deter-
mined. Or, in other words, the eliminated ingredient can be found in the top 10 of best
fitting ingredients. These values can be found in Table 6.1 as well. These values confirm
what was found in the previous paragraph: NNMF has the best performance when predicting
ingredient combinations in recipes. But the difference between ICA en SVD is much clearer
than when just looking at the average percentage general rank. It is also very clear that SVD
is definitely not a good technique to predict ingredient combinations.

This can better be seen when plotting the percentage of recipes with a certain general rank
against the different values of the general rank. The plot of each technique can be found in
Figure 6.3. Since there are 381 ingredients and each test recipe contains at least one ingredi-
ent, the largest general rank that can be found is 380. To be able to compare the techniques
even better a cumulative curve of the recipes is added to the graphs as well. This curve
shows for each general rank the percentage of recipes that have a general rank smaller or
equal to this rank. When only looking at the cumulative curves, it is immediately clear that
NNMF has the best performances of the three techniques. This cumulative curve increases
exponentially in the small general ranks and quickly reaches a value close to one. The curve
has a really low slope in the higher values of the general rank. This technique also has the
highest percentage of test recipes with a general rank equal to one. The linear character of
the cumulative curve of the SVD shows that the predictions done by this technique are al-
most done randomly. The graph of the ICA technique is very interesting. It shows that most
of the predictions done are almost as good as NNMF, however the technique has problems
with predicting the eliminated ingredient in certain recipes, since the percentages go up again
when the largest ranks are reached. It is not clear what is so special about these recipes that

the prediction of the eliminated ingredient is so bad. It contains no rare ingredients and the

47



number of ingredients in these recipes is not particularly smaller or larger than recipes that
have good predictions.

It can be concluded that the non-negative matrix factorization is the best technique of ma-
trix decomposition to use when predicting ingredient combinations. Independent component
analysis also is a quite good technique, however, this technique shows some weaknesses in
predicting ingredient combinations for certain recipes. It is clear that singular value decom-
position is not at all a good technique to use for this application. Its predictions are better
than random (average percentage general rank is smaller than 50%) but not at all good enough

to be used to predict ingredient combinations.

6.5.3 Comparing Western, Eastern and Southern diets

The unsupervised learning techniques showed that there was a difference in the way of com-
bining ingredients in recipes between the different parts of the world. To see if this is also
important when predicting eliminated ingredients, the data set is divided into Western, East-
ern and Southern recipes just like in Section 5.2.1.

Based on the conclusion in Section 4.3.3, which states that the origin of the recipes that
should be coming from North America is sometimes doubtful, the North American recipes
are reclassified. This is done by dividing all the recipes into the 4 clusters that were found in
Section 4.3.1 and training a random forest model to predict the origin cluster based on the
ingredients found in each recipe. The train data contained the recipes of all the continents
except for North America. 2,000 recipes of the 48,581 North American recipes were randomly
chosen and also put into the train data. The remaining North American recipes formed the
test data. This allowed to reclassify the North American recipes. The relabeling was done
eleven times and each time the new labels for the North-American recipes were saved. Each
North-American recipe was then classified into the cluster (West, East or South) that was
predicted most for that recipe during these eleven relabellings. Resulting in a decrease of
Western recipes and an increase of Eastern and Southern recipes.

It is important to note that the total number of ingredients per category is different for the
three origins. This will have a influence on the category rank percentage. For each origin the
number of unused ingredients is determined, as is their category, and these results are taken
into consideration when calculating the rank percentages. The Eastern recipes contain only
301 different ingredients, the Southern 334 and the Western 363.

The same process of model development was used as before, but in all three cases the matrix
decomposition was done by using the non-negative matrix factorization technique, since this
technique scored best in the previous section. During training the value of K was varied from
two to fifteen, just as in the previous section, and only twenty recipes were taken as train data
at the same time. The models are just as in the previous section trained and tested for one

hundred times resulting in again 2,000 test results (with 100 values of best K'), which can be
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(c) Singular value decomposition (SVD)

Figure 6.3: General rank distribution after matrix decomposition
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Table 6.2: Summary of the results for the different parts of the world, using
NNMF (* 381 ingredients, ** 2000 test recipes).

All categories Within category
technique | average % st.dev. % recipes: average % average
general general ingredients in category value of
rank* rank top 10** rank K
World 10.8% 17.5% 43.6% 15.8% 5.2
East 8.4% 14.0% 50.0% 12.4% 4.2
South 8.6% 15.2% 50.5% 12.9% 4.3
West 9.0% 15.9% 50.8% 14.5% 3.4

analyzed. Just as in the previous section, the average percentage general rank, the average
percentage category rank and the percentages of recipes having a general rank smaller or
equal to ten are determined. The results of the Western, Eastern and Southern recipes can
be found in Tabel 6.2 together with the results found when using the total data set (world).
There are no large differences between the best values of K of the different origins. The value
is lowest for the Western recipes and highest when taking into account the whole data set, but
the differences are rather small. The average percentage general rank is lowest for Eastern
recipes, but not that different from the values of the Southern and Eastern recipes. However
it is clear that the prediction capacity can be improved when taking into account the origin; as
all three average percentage general rank values are smaller than the one found for the world.
This again proves that the ingredient combinations are different for the different origins and
it is easier to predict the eliminated ingredient when only taking into account recipes with
the same origin and thus the same way of combining ingredients. The same conclusion can
be found when looking at the percentage of recipes with a general rank smaller or equal to
ten. These percentages are not to different between the different origins, but are clearly larger
than the one found with the whole data set. Here the difference is even clearer: 50% instead
of 43.6%, meaning that for half of the test recipes the eliminated ingredient can be found in

the top ten of recommended ingredients to add to the remaining ingredients.

6.5.4 A closer look at the components

To get a better view at how the non-negative matrix factorization makes the decisions to
predict certain ingredients and based on what it groups the ingredients together, the latent
features of the ingredient matrix (Figure 6.1) are studied in more detail. As mentioned before,
NNMF does not order the features from most important to least important, meaning that it
is not possible to just take the first two features and study those. It is possible to tell the

technique to calculate two latent features, and in that way force the technique to compress
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all the information in two features. However, to give the technique some more freedom, the
model is asked to calculate three features and the features are compared two by two. This
method can be compared with the principal component analysis used in Chapter 5.

The three plots can be found in Appendix A. When plotting the first and second feature
(Figure A.1), it is clear that the ingredients are divided based on the type of recipe: left in
the graph there are sweet ingredients, mainly found in desserts and more on the right there
are ingredients found in the main course. Ingredients for which the first feature is equal to
zero, correspond to sweet dishes. Some examples are egg, vanilla, cinnamon, walnut, raisin,
yeast, ect. This can be more clearly seen on the zoom of the plot (Figure A.2). The larger
the value of the first feature, the more an ingredient fits in a main course instead of a dessert,
for instance olive oil, tomato and garlic and onion with the largest value of the first feature.
When looking at the plot of the first and third feature (Figure A.3), it seems like the third
feature is created based on the origin of the recipes. For instance, ingredients with a large
value in feature three are ingredients mostly found in Western recipes: butter, milk, wheat,
cream, vanilla, while the ingredients with a very small value (almost equal to zero) are the
ingredients mostly found in Eastern recipes: for instance tomato, garlic, olive oil, cumin, bell
pepper. It seems like the model divides the recipes into groups: type of recipe, origin, etc.
and groups together the ingredients within the groups of recipes.

As the model has a best value of K of approximately five, the non-negative matrix factor-
ization is done again with five features this time. As it is not possible to plot combinations
of these components against each other, the twenty ingredients with the highest values are
determined for each feature. These ingredients are listed in Table A.1. The first feature con-
tains ingredients from Southern recipes. The second feature contains ingredients commonly
found in recipes from Eastern regions. The ingredients in the third feature are ingredients
that are mostly used in main courses and not in desserts, while in the fifth feature, it is the
other way around. The same conclusion can be made as before. The model selects ingredients

based on type of recipe (main course or dessert) and origin of the recipes.

6.6 General conclusion

It can be concluded that, of the three techniques that have been studied, non-negative matrix
factorization is the best technique to predict ingredient combinations in recipes. This can
partially be explained by the fact that the data contains no negative values, the ingredient
is either present or not. For the second part of the explanation, it is important to look at
the results of unsupervised learning techniques: these show that ingredients can be clustered
based on combinations of ingredients found in recipes. This means that the latent features
created by the matrix decomposition method represent groups of ingredients, where each
feature has high values for certain ingredients and low values for others, but all positive.

Multiplying the low rank matrices will result in a weighted positive combination of existing
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ingredient combinations, and this will result in a new recipe. This leads to the conclusion
that non-negative matrix factorization is appropriate to predict ingredient combinations. Its
performance is acceptable as the average percentage general rank is equal to 10.8%. This
means that in 50% of the recipes the eliminated ingredient can be found in the top 40 of best
fitting ingredients with the remaining ingredients in the recipe.

A second conclusion is that there is no real difference in performance of the model between
the different origins, however, the performance is better when only recipes of the same origin
are considered, compared to when the whole data set is used to build the model. It is possible
that the four models are totally different, for instance in the way of predicting ingredient
combinations. So it might be a good idea to build three separate models: one for Western
recipes, one for Eastern recipes and one for Southern recipes and let the user decide which
origin he wants to chose for his new recipe.

When looking at the features of the non-negative matrix factorization model, it is clear
that the model takes into account the type of recipe (dessert or main course) that can be
formed with the given ingredients and the origin of recipes containing the given ingredients.
The model classifies the recipes into groups and looks for the most logical combinations of

ingredients within a certain group.
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Chapter 7

Two-step recursive least squares

model

In this chapter, a second type of predictive model is built. The difference with the model in
the previous chapter is that this model will not only use the recipe data set, but will also take
into account the information contained in the flavour data set. It will be studied whether or
not this can lead to a better performance. For this model, the two-step recursive least squares
method is used to predict the ingredient combinations. This allows to use not one, but two
data sets to make predictions. Just as in the previous chapter, the aim of the model is to

predict which ingredients can be added to a given set of ingredients to form a good dish.

7.1 Data

For this model, both data sets containing information on the ingredients are used. So not
only the recipe data, but also the flavour data will be used. The recipes containing only
one single ingredient are just as before removed from the data set, since these recipes do
not give information on ingredient combinations, and are not useful for the model building.
However, this time also recipes containing two ingredients are removed. This is because those
recipes contain only one ingredient after elimination one for tuning or testing, and combining
ingredients with only one remaining ingredient does not seem useful. This reduces the number
of recipes in the data set from 56,498 to 55,001. The flavour data is reduced to only those
ingredients that are also present in the recipes (1525 — 381 ingredients). When studying
the flavour components present in these ingredients, it can be concluded that 86 of the 1,107
flavour components are not present in one of the recipe ingredients. These flavour components
are removed from the data set as well, resulting in a total of 1021 flavour components.

The binary form of the recipe data X, (55,001 x 381) is used to build the model, as is the
binary data set of the flavour components X, (381 x 1021). The recipes will be divided into

train recipes, tune recipes and test recipes. For the standard version of the model, the data
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sets will be brought into the model in the linear kernel form, as this was the best kernel
method in Chapter 5:

K, = X, XTI with X, the binary recipe data set, (7.1)

K, = X, X! with X, the binary flavour data set. (7.2)

In later sections, K, and K, will be replaced with other kernel matrices to optimize the

model. These models will be compared to the standard version using two linear kernels.

7.2 Model building step by step

To build this second model, the kernel version of two-step RLS is used. This type of model
is totally different from the matrix decomposition used to build the first model. Before
explaining how the model is built, it is important to know how the equation of the kernel
two-step RLS looks like, to know how the technique works. In the previous section, we
determined that K, and K, will be the linear kernels of the recipe data and the flavour data.
The following two-step RLS equation shows how the recipes can be predicted based on these
two kernels:

Y ~ K,WK,. (7.3)

The Y-matrix in this equation contains binary representations of the predicted recipes, which
means that the Y-matrix is equal to the X, matrix. The recipe data thus has a double
function: it contains the recipes that should be found by the model, but it also contains the
information on ingredient combinations needed to predict recipes.

Normal RLS trains a set of independent linear models, here this would mean that for each
ingredient a linear model is trained. Two-step RLS on the other hand performs two regressions
(of a transposed matrix), making the independent linear models trained in the first step,
dependent during the second step. In the first step, the two-step RLS method will complete
the training set. In the second step a model is build for the target task. The biggest advantage
of the two-step RLS approach is that the model trained with auxiliary data, can be re-used
when new target tasks appear. More information on the two-step RLS method can be found
in Pahikkala et al. (2014).

Now that the two-step RLS equation is known, the model building can start. In a first step,
the recipe data is divided into train, tune and test data. This is done by dividing the recipes
into several groups, some groups become train (X, trqin ), other groups become tune (X, tune)
or test (Xy,est) data. Which groups become train, tune or test data is determined through
cross-validation. The model will be trained and tuned five times in a row. This is done with
five groups of recipes, in the first step, the first group of recipes form the tune data, while
the four other groups form the train data. In the second step, the second group of recipes

becomes the tune data and the first, third, fourth and fifth groups become the train data and
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SO on.
Once the data is prepared, the model can be trained. During training the W-matrix in
Eq. (7.3) is determined by giving Y, K, and K,; this W-matrix will be used during tuning.
The model is trained with the part of the recipe data selected as mentioned above (Xy trqin)-

The corresponding linear kernel is Ky, train = Xu,trainX. T This kernel is used to determine

u,train®

the W-matrix. To prevent overfitting, the matrix of coefficients is estimated as follows:

W = (Ky 4+ MD)W (K, + AL (7.4)

Different values of A\, and A,, the hyperparameters, are selected for tuning. For each pair of
A-values, a W-matrix is trained. This will allow to determine the optimal values of A, and
Ay, during tuning, that result in the best predictions. The tuning step starts with predicting
Yiune predict using Eq. (7.3), with Ky june equal to Xy, tune X1

u,train -’

By using Xy train, Ku,tune
has the same dimension as W, which is needed to multiply the matrices. But first one
ingredient of each tune recipe is eliminated from the data by replacing the one in the data
(in the row of the tune recipe and the column of the eliminated ingredient) with a zero, just
as in the previous chapter. The names of the eliminated ingredients are saved and will be
used to evaluate the tune results. Also the remaining ingredients are determined, since these
ingredients are not of interest and their predicted values will be removed during the evaluation.
As the model is trained and validated five times in a row for tuning (as mentioned above),
five optimal A, and A, values are found. The method of determining the optimal values is
explained in the next section. The median of these values is taken as optimal value for testing.
All five values are saved as well.

Once the optimal values of A\, and A, are found, the model is tested. The testing method
is similar to the one used in the previous chapter. The main difference is that the number
of selected test recipes is much larger than with the matrix decomposition model. This is
because the test data is not present during training and tuning of the model. With the
previous model, the test data could not be separated from the train or tune data as the whole
data set matrix had to be used for decomposition. This also means that with this second
model it will be much easier to predict new recipes, as the W-matrix will always be the same
and does not need to be recalculated when a new recipe is added.

Just as with the tune data, one ingredient of each test recipe is removed by replacing the
one in the data with a zero. These ingredients are saved in the result matrix. To determine
the W-matrix for testing the model, the train and tune data are united into Xy traintune
to maximize the information captured in the W-matrix: W is calculated using Eq. 7.4,

with Ky train tune = thmm,tuneXT and the optimal values of A, and A, (found

u,train,tune

during tuning). This W-matrix is then used to determine Yiest predict using Eq. 7.3, with

Ky test = Xu7testX;{ traintune- L he prediction results will be used to evaluate the model.
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7.3 Model evaluation

7.3.1 Training and tuning

The model is trained for different values of A\, and \,. After each training the model is tuned
to evaluate the prediction capacity of the trained model based on the ingredients that were
left out of the tune data. This time it is not the rank of the eliminated ingredient that is
used to evaluate the capacity of the model as in the previous chapter, but the area under
the (Receiver Operating Characteristics) ROC curve, or AUC method. On a ROC curve, the
number of true positives is plotted on the Y-axis and the number of false positives on the
x-axis. Some examples of ROC curves are given in Figure 7.1. The AUC allows to not only
make sure that the eliminated ingredient has a large value in the prediction, but also that
the ingredients that are not present have a low value in the prediction. When the prediction
is done well, the AUC-value should be near one. AUC-values go from zero to one, where
zero means that the predicted labels are the opposite of the actual labels, AUC of 0.5 means
random labeling and one is perfect. More information on AUC-values and ROC-curves can
be found in Huang and Ling (2005).

First, the remaining ingredients present in the tune recipe are removed from Yiyne predict-
Then, the AUC-value of the tune recipe is determined: the eliminated ingredient forms the
true positive result, all the other ingredients are negative results. A preprogrammed function
is used to determine the AUC of each tune recipe based on the values of Y;yne predict- Once an
AUC-value is calculated for each tune recipe, the average of these values is determined and
will be used to find the optimal values of A\, and A,: for each pair of A-values, a W-matrix
is trained and Yiune predict values are predicted for which the mean AUC-value is determined.
The pair of A-values with the highest average AUC (closest to one) is crowned the optimal
pair of A-values. Figure 7.2 shows for each pair of A-values the average AUC-value. From the
graph it is also clear that the value of A\, is more important to optimize the performance of
the predictive model than the value of A,.

This is done for each combination of train/tune data, resulting in five pairs of optimal \-
values. The median of these values is taken for each A and these are the values that will be

used during the testing part of the model building.

7.3.2 Testing

The optimal values of A\, and A, are used to build the W-matrix as explained in Section 7.2.
The Yiest predict-matrix is evaluated similarly as done in Chapter 6 to make it easier to compare
both models. This means that the rank of the eliminated ingredients of the test data is
determined. Each recipe is evaluated separately.

First the predicted values of the remaining ingredients of each test recipe are replaced by very

low values, making sure that these ingredients will not be suggested as best fitting.
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Figure 7.1: Four examples of ROC curves. A ROC curve dominates an other
ROC curve, when for each value of false positives (FP) the value of
true positives (TP) is higher for the first ROC curve than for the
second. In this figure curve A and B dominated D. This means that
the AUC-value of A and B will be higher than that of D. (source:
Huang and Ling (2005))

parameter optimization of lambda.u and lambda.v using recipes in tune data

Figure 7.2: Average value of AUC of recipes in tune data for optimizing the value
of A\, and \,. Here the optimal value of log()\,) is three; the optimal

value of log(),) is minus two.
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In a next step the predicted values of each recipe are ordered from highest value to lowest
value. Ingredients that fit the remaining ingredients well, will have a high value, ingredients
that do not make a good combination with the remaining ingredients will have a low value.
The rank of the eliminated ingredient in this ordered list is determined and saved in the result
matrix, next to the name of the eliminated ingredient. Also, the top five ingredients of best
fitting ingredients is saved in the result matrix. Just as in the previous chapter the rank is
also determined when only the ingredients of the same category as the eliminated ingredient
are taken into account.The category and this rank are saved into the result matrix as well.
Since it is possible to take a large number of test recipes (which was not possible in the
previous chapter, since the test data could not be separated from the train and tune data),
this whole process needs to be done only once to have the number of results that is needed

to make reliable conclusions.

7.4 Results

7.4.1 Performance measures

The same performance measures are used to evaluate the predicting capacity of the two-step
RLS model as were used to evaluate the matrix decomposition model. Just as a reminder the
parameters will be repeated.

The first two parameters are the average percentage general rank (Eq. (6.5)) and the average
percentage category rank (Eq. (6.6)), giving the average percentages of ingredients which have
a smaller rank than the eliminated ingredient. Besides those parameters, the percentage of
recipes having a certain general rank or category rank is determined for each general rank
value and category rank value. These percentages can be plotted against the rank values
and a cumulative curve can be added. But these percentages also allow to determine the
percentage of recipes having a general rank smaller or equal to ten or a category rank equal
to one or smaller or equal to three. All these parameters allow to evaluate the performance

of a model and to compare two models with each other.

7.4.2 The impact of scaling

In this section it will be investigated whether or not the eliminated ingredient can be predicted
better if the data sets are standardized (= feature scaling) before determining the linear kernel
or not. Or, in other words, it will be determined whether or not it is necessary to scale the
data first before building (training, tuning and testing) the model.

When feature normalization is done, the values of each feature in the data have zero-mean
and unit-variance. This is done by subtracting the mean of the feature from each value of the
feature and then dividing each new value by the standard deviation of the feature.

First the influence of scaling on the flavour data is examined. The model is built twice: once
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Table 7.1: This table tells whether or not scaling the flavour data will improve
the prediction capacity of the two-step RLS model. Both versions of
the model are built with K, = X, X! and K, = X,XI. However
for the second version X, was scaled before determining K, (* 381

ingredients, ** 3667 test recipes).

All categories Within category
technique average % % recipes: average % % recipes:
general ingredient in category ingredient in
rank* top 10%* rank top 3**
non-scaled X, | 6.7% 57.5% 12.3% 72.8%
scaled X, 6.6% 57.5% 12.2% 72.7%

with scaled flavour data (X,) and once without scaling the flavour data. In both models the
recipe data is not scaled, this is done to just study the effect of scaling the flavour data. Both
models are built with exactly the same train, tune, test data. This to be able to compare the
results of both models. Comparing the performance of both models will be done based on
the average percentage general rank, the average percentage category rank, the percentage
of recipes with a general rank smaller or equal to ten and the percentage of recipes having a
category rank smaller than or equal to three. These results can be found in Table 7.1.
There are no real differences in value of these parameters between the two models. The
values of the model with the scaled flavour data are only slightly better, but the differences
are actually not worth mentioning. It can be concluded that it is not necessary to scale the
flavour data when building the model, since it does not (really) improve the results.

The recipe data should be scaled before dividing it into train, tune and test groups, because
it is possible that a certain ingredient might not be present in the train, tune or test data,
making it impossible to scale the data as the standard deviation becomes zero and it is not

possible to divide by zero.

7.4.3 Do the flavour data improve the predictions or not?

To study whether or not it is better to add the information on ingredient combinations
captured in the flavour data to the model when predicting the eliminated ingredient, two
models are built. The two models are built identically, except for the K,-matrix. The first
model contains the K,-matrix as described in Eq. (7.2), with the non-scaled X,-matrix. In
the second model K, is replaced with an identity matrix I (381 x 381). Just as in the
previous section, the two models are compared based on the average percentage general rank,
the average percentage category rank, the fraction of recipes with a general rank smaller or
equal to 10 and the fraction of recipes having a category rank smaller or equal to three. The

two models are trained, tuned and tested with exactly the same data, making sure that the
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Table 7.2: This table contains the results of two versions of the two-step RLS
model. Each version of the model is built with K, = Xquf7 but K,
is different for the two versions as given in the table (* 381 ingredients,
** 3667 test recipes).

All categories Within category
technique average % % recipes: average % % recipes:
general ingredient in category ingredient in
rank* top 10%* rank top 3**
K, =X, XI' |6.7% 57.5% 12.3% 72.8%
K,=1 5.8% 60.2% 11.2% 75.6%

results can be compared without any doubt. The parameter values for both models can be
found in Table 7.2.

The model, containing an identity matrix where the K,-matrix should be, scores for all four
parameters best. It has a lower average percentage general rank and a higher percentage
of recipes having a general rank smaller or equal than 10. This means that the eliminated
ingredient in a test recipe is predicted better with the model containing the identity matrix,
than with the model containing K,. The same can be seen when looking at the values of
the category parameters. Apparently, it is not better to add the information of the flavour
component to the model when predicting eliminated ingredients, as it lowers the prediction
capacity of the model.

However, this does not mean that the information in the flavour data is not useful. It could be
possible that the chance of finding new ingredient combinations, leading to tasteful recipes,
increases when the flavour components are added to the model as well. Research has already
proven that ingredients with similar flavour components go well together. So adding this
information to the model could improve the creativity of the model in making good ingredient

combinations. This is examined in Section 7.4.6.

7.4.4 The impact of secondary ingredient interactions

In this section the secondary interactions between ingredients in recipes are added to the model
as well. This means that for each combination of ingredients a value is added to the recipe
data as well, turning the recipe data into an (55001 x 145542) matrix. However, because of the
large dimensions of the recipe data, when also adding information on ingredient combinations
for each recipe, it becomes impossible to calculate the linear kernel (K, = X, X.). To solve
this problem, the polynomial kernel will be used instead of the linear kernel. This kernel
allows to take into account interactions of higher degrees. The equation of the polynomial
kernel is as follows:

k(zi,x;) = ({25, 2;) + offset)d8ree, (7.5)
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Table 7.3: Evaluation whether or not secondary interactions between ingredients
in recipes improves the prediction capacity of the two-step RLS model.
Both version are built with K, = X, X/, but with a different matrix

for K, as given in the table (* 381 ingredients, ** 3667 test recipes).

All categories Within category
technique average % % recipes: average % % recipes:
general ingredient in category ingredient in
rank™ top 10%* rank top 3**
K, = linear kernel 6.7% 57.5% 12.3% 72.8%
K, = polynomial kernel | 5.9% 58.9% 11.4% 74.7%

In this case the offset equals 1 and the degree equals 2. For Ky trqin both x; and z; are
recipes from the train data, but for K, tune, ; are tune recipes and x; are train recipes. In
this model K, equals XUXE , just as in the standard version of the model.

This model will be compared with the model where X,, is determined using the linear kernel.
To make sure the results of both models can be compared, the models are trained, tuned and
tested with exactly the same data. The results can be found in Table 7.3. From the results
it is clear that the eliminated ingredient can be better predicted when secondary ingredient
interactions are taken into account as well. The average general rank is lower, as is the average
category rank and for more recipes the eliminated ingredient can be found in the top 10 of
best fitting ingredients in general and top 3 of best fitting ingredients per category. It can
be concluded that using the polynomial kernel instead of the linear kernel does improve the
performance of the model.

Since the performance of the model improved when K, was replaced with an identity matrix,
and it improved when K, was built using the polynomial kernel instead of the linear kernel,
a new model is built having both changes. This model is also trained, tuned and tested with
the same recipes as the other models and the results are compared with the standard version
of the model. All the results are brought together in Table 7.4.

Looking at the results, it can be concluded that the performance of the model is even better

when both changes are done in the model, instead of only one of the changes.

7.4.5 Two-step RLS vs. Matrix decomposition

In this section the best model found in the previous chapter is compared with the model built
in this chapter. The matrix decomposition technique which delivered the best results in the
previous chapter was non-negative matrix factorization. The two-step RLS model is built
with both data sets and without scaling the data. However it is important to keep in mind
that the tuning step is different for both models.

The two techniques are compared based on the same four parameters that are used in the
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Table 7.4: Summary of the results of four versions of the model. The first version
is the standard version, where both K, and K, are calculated using
the linear kernel function. For the second version K, stays the same,
but here K, is calculated using the polynomial kernel function. For
the third function K, stays the same, but here K, is replaced with an
identity matrix. In the fourth version both changes are done. (* 381

ingredients, ** 3667 test recipes)

All categories Within category
technique average % % recipes: average % % recipes:
general ingredient in category ingredient in
rank* top 10** rank top 3**
K, =lin. and K,=lin. 6.7% 57.5% 12.3% 72.8%
K, =pol. and K,=lin. 5.9% 58.9% 11.4% 74.7%
K, =lin. and K,=1 5.8% 60.2% 11.2% 75.6%
K, =pol. and K,=I 5.0% 61.3% 10.3% 94.9%

previous two sections: the average percentage general rank, the average percentage category
rank, the percentage of recipes with a general rank smaller or equal to ten and the percentage
of recipes having a category rank smaller or equal to three. The values of these parameters
for both models can be found in Table 7.5. However, in this section also the plots of the
recipe percentages against the general rank values will be compared. These graphs are shown
in Figure 7.3.

Looking at the values in Table 7.5, it is clear that the performance of the two-step RLS
model is still a lot better than that of the NNMF model, despite the fact that this was the
best model in the previous chapter. As expected, the two-step RLS technique can predict
ingredient combinations better than a matrix decomposition technique. The same conclusion
can be made when comparing the graphs in Figure 7.3. The cumulative curve of the two-step
RLS model goes faster to one than that of the NNMF, meaning that more recipes have a
smaller general rank. There are also more recipes with a general rank equal to one in the
two-step RLS graph than in the NNMF graph. It is clear that the performance of the two-step

RLS model is higher when predicting ingredient combinations in recipes.

7.4.6 The different versions of the model in practice

Testing which model can best bring back an eliminated ingredient is one way to test the
performance of the different versions of this two-step recursive least squares model. However,
that is not the aim of the model. The model is built to predict ingredient combinations for
a given set of remaining ingredients in a refrigerator. So in this section the different versions

are evaluated based on their top five of best fitting ingredients for a given set of ingredients.
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Two-step RLS : general rank distribution
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(b) Non-negative matrix factorization (NNMF).

Figure 7.3: Comparing the prediction capacity of the NNMF-model and the two-
step RLS model.
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Table 7.5: Comparing the prediction capacity of the NNMF-model and the two-
step RLS model, based on the different performance measures. For
the NNMF-model the results are determined using 2000 test recipes
and for the two-step RLS model using 3667 test recipes.

All categories Within category
technique average % % recipes: average % % recipes:
general ingredient in category ingredient in
rank top 10 rank top 3
Two-step RLS | 6.7% 57.5% 12.3% 72.8%
NNMF 10.8% 43.6% 15.8% 62.7%

To the four versions of the model, given in Section 7.4.4, a same set of ingredients is given
and the four lists of best fitting ingredients are compared.

Firstly, the models are given ingredients that form a dessert, the ingredients given to the
model are egg, cocoa and cream. All three ingredients are used in for instance chocolate
mousse. The four lists of top five best fitting ingredients can be found in Table 7.6(a). It is
clear that the last two version, both built with K, = ((xyi7y, ;) + 1)?, are good in predicting
an eliminated ingredient, but are not that great in suggesting ingredients: onion and garlic
are not really fitting the dish. However the first two version both give an acceptable list of
ingredients. All ingredients in this list can be used in a dessert, where vegetable oil is the less
common ingredient found in desserts.

In a second round the models are given three new ingredients. This time they have to give
the five ingredients that best fit chicken, rice and cream. These are ingredients found in a
main dish. The results of the four models can be found in Table 7.6(b). Versions three and
four give almost the same five ingredients as in the previous case, all ingredients that are
frequently used in recipes. Versions one and two have changed their predicted ingredients.
The ingredients fit the given ingredients rather well. Both models predict chicken broth and
onion, which are commonly combined with chicken and rice. The second version, containing
only information on ingredient combinations in existing recipes, also predicts mushrooms.
The first version, containing also information on the flavour components, predicts brown rice
to be combined with the set of given ingredients. However, as there is already rice in the given
ingredients, brown rice will not be chosen by the user. This ingredient is probably suggested
becomes it has a high number of shared flavour components with rice.

A third and last round contains tomato, beef and wheat, based on spaghetti, where the pasta
still needs to be made, starting with wheat. The question is, will the different versions of
the two-step RLS model also make a spaghetti-like dish, or will the suggested ingredients be
something totally different? The results are given in Table 7.6(c). Just as in the previous cases

the first two versions of the model give better fitting ingredients than the last two versions,
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which again give ingredients with the highest likelihood of appearing in a recipe. Versions
one and two give similar ingredients, however, version one suggests raw beef, while beef was
already given to the model. This is because it shares a lot of flavour components with beef.

It can be concluded that versions three and four of the model, which also take into account
secondary interactions between ingredients in recipes, are not the best versions of the model
to predict creative ingredient combinations. The models predict wheat, butter, egg, onion,
garlic, independent of the given set of ingredients. So these version will not be selected as
final version of the model to be used by other people. Versions one and two predict most of
the time similar ingredients, however version one also adds ingredients with similar flavour
components. This is not always useful, as it predicted brown rice, while given rice and raw
beef, while given beef. These are not combinations that will be made in practice. Therefore

version two, built with K, = XuXE and K, = I, is selected as best version of the model.

7.4.7 Adding an additional ingredient to the model

This section examines what happens to the list of ingredients when one ingredient is added
to the set of given ingredients. In the previous section, the version of the model built with
K, = XuX;‘f and K, = I, is selected as best version. Therefore only that version of the model
will be used from now on.

The experiment starts by giving only one ingredient to the model. The selected ingredient
is egg, this ingredient can be used in both desserts and main dishes. In a next step, the
ingredient that could best be fitted with egg is selected as additional ingredient to the recipe
and thus is given to the model as well. This step is repeated once more. The results of these

three runs are given below:
e Egg: wheat, vegetable oil, vanilla, milk, bread
e Egg + wheat: butter, milk, vanilla, yeast, vegetable oil
e Egg + wheat + butter: vanilla, milk, yeast, lard, cinnamon

It is clear that the list of fitting ingredients changes when an ingredient is added to the set of
given ingredients. The ingredients do not just move up to a higher rank and a new ingredient
is not added at the bottom of the list. After each addition the model makes new predictions,
which is rather logical as X, pew changes, and thus the model will calculate new predicted
values for each ingredient.

In the next step the model is run twice: in one scenario an ingredient typical for dessert is
added, in the other an ingredient commonly found in main dishes is added. The results can

be found below:
e Egg + wheat + butter + cocoa: vanilla, milk, lard, cane molasses, yeast

e Egg + wheat + butter + onion: milk, vanilla, yeast, lard, vegetable oil
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Table 7.6: Version 1 is the model built with K, = XUXE and K, = XUXUT,
version 2 is built with K, = XUXE and K, = I, version 3 is built
with K, = ((zy,izy,;) +1)? and K, = X, X! and finally version 4 is

built with K, = ((xy,24,;) + 1)? and K, = I.

(a) Top five of best fitting ingredients, when given egg, cocoa and cream.

Version 1 Version 2 Version 3 Version 4
butter vanilla butter butter
wheat wheat wheat wheat
vanilla milk garlic garlic
milk butter garlic garlic
cane molasses vegetable oil milk milk

(b) Top five of best fitting ingredients, when given chicken, rice and cream.

Version 1 Version 2 Version 3 Version 4
brown rice chicken broth butter butter
onion onion onion onion
chicken broth butter garlic garlic
butter mushroom egg egg

milk milk wheat wheat

(c¢) Top five of best fitting ingredients, when given tomato, beef and wheat.

Version 1 Version 2 Version 3 Version 4
raw beef onion butter butter
onion egg egg egg

egg yeast garlic garlic
yeast garlic onion onion
garlic butter olive ail olive oil

It would be best when the first list contains all sweet ingredients, and the second list contains
all main ingredients. The first list does contain only ingredients found in desserts, however,
the second list also contains a lot of sweet ingredients. Apparently egg, wheat and butter are
mostly used together in desserts, and not that much in main dishes, which makes it difficult
for the model to predict ingredients for main dishes An option here could be to ask ingredients
from a certain category like meat or vegetable: when giving egg, wheat, butter and onion to

the model and asking for meat or vegetables, the model returns:

e Meat: beef, chicken broth, bacon, chicken, ham

e Vegetable: potato, tomato, celery, mushroom, carrot
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It can be concluded that adding the best fitting ingredient to the set of given ingredients,
the suggested ingredients will not just move up a place, but new predictions will be done
based on the presence of the new ingredient. It can also be concluded that the model will
not always predict ingredients that are wanted, for instance the model returns ingredients for
desserts instead of main dishes. But then there is always the option to request ingredients

from a certain category.

7.4.8 Predict more rare or tasteful ingredients

In this section the predicted values that are given by the model are scaled before ordering
them, resulting in the best fitting ingredients, to get rather rare ingredients or ingredients
with a more distinctive flavour. Just as in the previous section only the second version of the
model will be used.

To force the model into suggesting ingredients that are used less frequently, the predicted
value of each ingredient is divided by the number of times that the ingredient is found in the

recipe data. This is done as follows:
Y.pred_scaled|i] = Y.pred[i]/log(presence[i] + 1), (7.6)

where 7 is an ingredient and presence is a vector containing for each ingredient the number
of times it is present in a recipe from the recipe data. Since it is possible that an ingredient
is only present once, each value is increased by one, this to make sure that the argument of
the logarithmic function is not equal to zero.

To be able to scale the predicted values, to get more tasteful ingredients, a measure is needed
that is correlated with the taste of the ingredients. In Section 5.3 the ingredients are grouped
together based on their flavour components, which are good indicators for tastefulness of an
ingredient. It seems that in Figure 5.4 ingredients with a lot of flavour like cheese, wine,
tea are located at the edges of the figure and ingredients with less flavour are located in the
middle of the figure, around the origin (0,0). Therefore the distance of each ingredient to the
origin of the graph is determined and this distance will be used to measure the tastefulness
of the ingredients. The predicted value of each ingredient is multiplied by the logarithm of

the distance to the origin in Figure 5.4, increased by one:
Y.pred_scaled[i] = Y.pred[i] * log(taste fulness[i] + 1) (7.7)

The model is given chicken, rice and cream, just as in the second round of Section 7.4.6. First
the top five is given without scaling the predicted values, then the predicted values are scaled
for tastefulness and rareness, to get a top five with more rare ingredients and a top five with
more tasteful ingredients. The three lists are given in Table 7.7.

When comparing the list with more rare ingredients, butter and milk are left out, which is

logical as these are ingredients that are used in a lot of recipes. Gelatin and soy sauce are
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Table 7.7: Top five of best fitting ingredients, when given chicken, rice and
cream to the version of the two-step RLS model, with K, = X, XTI
and K, = I. First when the predicted values are not scaled, second
with predicted values scaled to predict more rare ingredients and last

with predicted values scaled to predict more tasteful ingredients.

Non-scaled Rare Tasteful
chicken broth chicken broth cream cheese
onion onion cheese
butter mushroom strawberry
mushroom gelatin pepper

milk SOy sauce cayenne

added, these are not that rare ingredients, but less common as butter and milk. So the aim
to predict less common ingredients is fulfilled. The third list contains definitely ingredients
that are more tasteful, for instance cheese, pepper, cayenne. These are also ingredients that
form creative combinations with the given ingredients, for instance strawberry with chicken,
rice and cream.

It can be concluded that scaling the predicted values to get more rare, or more tasteful ingre-
dients is definitely possible, as long as there is a good measure to determine this characteristic

of each ingredient.

7.4.9 A closer look at the model matriz

Just as in the previous two sections only the second version of the model will be examined.

The model can be simplified as followed:

Y = Ku,newrecipeWKm
T
= Xu,newrecipeXu WK’U7

= Xu,newrecipeMa

with M = XI'W K,, which will be called the model matriz and X, the binary recipe data set.
The model matrix is a square matrix of order 381, meaning that both features and observations
are corresponding with the 381 ingredients. Or, in other words, the matrix contains for each
ingredient combination a value that says how well two ingredients go together.

This model matrix may contain information on how the ingredients are predicted, which
parameters (origin, type, ingredients) have the most influence when determining ingredient
combinations, etc. To collect this information the model matrix will be analyzed.

The model matrix is different for each version of the two-step RLS models. Only the model

matrix of the version that was selected as best performing will be studied in more detail.
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When looking at the values in the matrix, it is clear that the presence of some ingredients will
not influence the result of the prediction, as these ingredients have a value of zero for each
feature in the model matrix. This means that the model will ignore this ingredient and only
look at the other given ingredients to suggest a top five. Some examples of such ingredients
are angelica, beech, geranium, holy basil, etc. These are all ingredients that are very rare and
thus not present in a lot of recipes. As the model matrix is built with only one third of the
recipe data, because of memory issues, it is possible that these ingredients were not present
in the part of the recipe data used to build the model matrix. The model matrix would have
more information on these ingredients if the flavour data was taken into account as well, but
as seen above, that version of the model is less useful in practice.

Some value are positive and others are negative. When a value is negative, this means that
the presence of the given ingredient, found in the row of the matrix, prevents the ingredient
found in the column of the matrix to be selected as best fitting ingredient. This means that
these two ingredients do not make a good combination. When the value is positive, the two
ingredients do make a good combination, and the higher the value, the better the combination.
An example of a combination with a high value is apple and cinnamon or chicken and chicken
broth.

As the model only takes into account information on ingredient combinations found in recipes,
it is normal that an ingredient commonly found in recipes of Eastern origin, for instance soy
sauce, has the highest values for other Fastern ingredients such as sesame oil, ginger, sake,
scallion, garlic, etc. The same reasoning can be done for type of recipe. Ingredients commonly
found in dessert group together. An example is vanilla, that has the highest values for cocoa,
egg, milk, wheat, butter, cream, cane molasses.

It can be concluded that the model takes into account the type of recipe that can be made
with the given ingredients and the origin of the ingredients. A second conclusion is that
rare ingredients have no influence on the results of the model. Less rare, but still not that
common, ingredients (e.g. black tea) have less say in the results, as these ingredients have

lower values than typical ingredients (e.g. butter).

7.5 Website

Building a model that can predict ingredient combinations is one thing, however, if nobody can
use the model, then why build a model in the first place? With this idea in mind a brainstorm
began and the end conclusion was that making a website where people can use the model in
practice was the best idea. The link to the website is http://www.kermit.ugent.be /ingredient-
suggester.

The model on the website is the version built with K, = XUX;F and K, = I, as this was the
version that suggested the most promising top five. The code behind the website is written in
PHP. The model matrix is determined using R and the HPC-cluster. This matrix is loaded
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into the memory of the website. In the memory there is also a list containing all the 381
ingredients that are found in the recipe data and a list containing for each ingredient the
corresponding category. These are all needed to run the model and to build the website.

The user is allowed to insert five ingredients into (the memory of) the website, that are for
instance left over in his/her refrigerator. This is done by typing the name of the ingredient
they want to add and the website will give the possible ingredients through auto-complete,
as the users can only choose between the 381 ingredients present in the list in the memory of
the website. When the users have added five ingredients or less to the list of ingredients to
give to the model, the user pushes the button on the screen and the model starts predicting
the five ingredients that best fit the given ingredients. The process that happens behind the

screen is as follows:
1. a vector with 381 zeros is created and is called new_recipe
2. the column number of the given ingredients are determined
3. at those places in the new _recipe vector the zero is replaced by one
4. the new _recipe vector is multiplied with the model matrix M

5. the values in the resulting vector corresponding with the given ingredients are replaced

by -999, as these ingredients are not wanted
6. the values in the vector are ordered from high to low

7. the five ingredients that correlate with the five highest values are returned to the screen

and can be seen by the user

As the new_recipe vector is binary, this process can be shortened. There is no need to create
a new vector. The only things that need to happen are determining the column number of
the selected ingredients and compute for each column of the model matrix the sum of the
values that are located on the rows having those numbers. Which is the same as multiplying
the two matrices, but quicker.

The user can also select from which category the suggested ingredients should come, if he/she
wants to. Than the process is the same except that only the predicted values of ingredients
from the selected category are taken into account.

Some screen shots of the website are shown in Appendix B.

7.6 General conclusion

A first conclusion that can be made is that the model based on two-step recursive least
squares has even better results than the model based on non-negative matrix factorization.

This means that it can better predict an eliminated ingredient of a recipe. For almost 60% of
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the recipes, the eliminated ingredient can be found in the top ten of best fitting ingredients.
But, more importantly, this two-step RLS method allows to predict fitting ingredients for a
new recipe very easily, which was not an option with the matrix decomposition method.
Secondly, it can be concluded that it is not necessary to scale the flavour data before building
the model, as the results of the model do not improve when the data is scale compared with
the model where the data were not scaled.

The results of the model improve even more when the flavour data is left out of the model: the
eliminated ingredients gets a higher place in the list of good fitting ingredients. And the same
degree of improvement in predicting the eliminated ingredient can be found when secondary
interactions between ingredients in recipes is added to the model as well. Combining these
two changes to the model results in an even better performance of the model in predicting
the eliminated ingredient.

However, when testing the different versions of the model in practice, it becomes clear that
not all versions can be used to suggest ingredients to add to a given set of ingredients. When
adding the secondary ingredient interaction to the model, the model predicts only ingredients
that are commonly used in recipes, such as wheat, butter, egg, onion, garlic, ect. The list of
best fitting ingredients does not really change when the set of given ingredients changes. This
is not wanted, so even though the versions of the model containing also secondary interactions
are good at predicting the eliminated ingredient, they are not suitable for suggesting ingredient
combinations. Therefore, these versions of the model are eliminated.

The other two versions of the model both give different lists of suggestions for different sets of
ingredients, a big improvement in comparison to the previous two versions. The two versions
suggest some similar ingredients, but not all. The version containing also information on the
flavour components of each ingredient suggests ingredients with similar flavour compositions
as the given ingredients. This is good, as it is already proven in literature that ingredients
with shared flavour components make good combinations. However, it is not always wanted,
as the model suggested brown rice, when given rice and raw beef when given beef. These
ingredients will not be used in combination. Because of this, the version of the two-step
RLS model containing only primary interactions and no information on flavour components
is selected as best version.

It is possible to force the model to predict more rare ingredients or more tasteful ingredients,
as long as there is a good measure to collect these characteristics for each ingredient.

A last conclusion is that the more common the use is of an ingredient, the more influence this
ingredient has on the results of the model. So rare ingredients have (almost) no influence on

the suggested ingredients.
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Chapter 8

General conclusions

The aim of this work was to build a model that predicts the ingredients that can best be
combined with a given set of ingredients to create a good dish.

Canonical correlation analysis showed that the flavour components found in ingredients are
correlated with the use of these ingredients in recipes. This means that some ingredients are
combined based on their similarity in flavour. Therefore, it could be a good idea to add the
information on ingredient combinations, captured in the flavour data, to the model.

During this work two types of models were built: a first model was based on matrix decom-
position and for the second model we used the two-step recursive least squares technique.
Multiple versions of both model types were built.

As mentioned above, the first model is based on matrix decomposition. By approximating
a matrix by a product of two low-rank matrices, the decomposition technique has to search
for patterns in the data. Each technique uses a different approach to split the matrix. Non-
negative matrix factorization appeared to be the best technique to find patterns in the recipe
data and is thus most suited to predict an eliminated ingredient of a recipe, as was done
during tuning and testing of the model. Singular value decomposition has the lowest perfor-
mance. This technique is apparently not capable of finding the right patterns in the data.
Supervised learning techniques show that the recipes could be divided into three groups,
based on the origin of the recipes. Based on this information three models were built using
only parts of the recipe data. There is no real difference in performance of the three models,
however, the performances are better compared to when the whole data set is used to build
the model.

Replacing the matrix decomposition model with the two-step RLS model allows to add the
flavour data to the model as well. In this way, the model gets more information on ingredients
that are rather rare in recipes, and thus the chance of these ingredients to be selected as best
fitting ingredients will increase. This could result in more creative ingredient combinations,
which was part of the aim of this work. However, adding the flavour components to the model

made the model predict similar ingredients as the one that was given. For instance, when
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rice was given to the model, it would suggest brown rice, and when given beef, it gives raw
beef as output, as both of these ingredients have almost the same flavour composition. These
are obviously not combinations that will be made in practice. This problem could be solved
by tuning the model in such a way that ingredients that are too much alike receive a lower
value.

If the model could recognize the type of recipe better, it would know that when egg is given in
combination with cocoa, it has to suggest ingredients found in desserts. On the other hand,
when egg is given in combination with onion, the model should no longer look for dessert
ingredients, but it should suggest ingredients found in main courses. This change in the
model would result in suggesting ingredients that are more suitable for the type of dish the
user wants to make. The objective could be accomplished by adding the secondary ingredient
interactions, found in recipes, to the model by using a polynomial kernel instead of a linear
kernel. These interactions would tell the model to look for combinations in the dessert recipes
when the secondary interaction egg and cocoa is present. However, this addition only led to
suggesting ingredients that are used a lot. The reason for this is probably because these
ingredients have secondary interactions with a lot of ingredients. Or in other words: a lot
of ingredients have secondary interactions with these ingredients and thus these ingredients
have a high chance of being selected. It is possible that this effect could be reduced by scaling
the recipe data before calculating the kernel matrix or by choosing a lower degree in the
polynomial kernel, for instance one point five instead of two.

Since part of the aim was that people could use the model, the two-step RLS model, built
with a linear kernel of the recipe data, but without the flavour data, is incorporated into a
website. Print screens can be found in Appendix B. This model is able to find an eliminated
ingredient from a recipe, when all remaining ingredients of the recipe are given to the model.
In 60% of the cases the eliminated ingredient can be found in the top ten of best fitting ingre-
dients. The model is also able to suggest ingredients that truly fit the given ingredients. For
instance, when the model is given chicken, rice and cream, the ingredients found in the top
five of suggested ingredients are chicken broth, onion, butter, mushroom and milk. Further
optimization of the model would lead to even better recommendations.

The model could still be improved by adding more recipes to the recipe data and bringing in
new ingredients that can be selected by the users. As mentioned above, lowering the degree
of the polynomial kernel and increased tuning when the flavour data is added, could result in

better suggestions of the model. The final model could be validated through sensory testing.
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Appendix A

Model 1: latent features

A.1 Five latent features (K=5)

Table A.1: Top twenty: ingredients with highest value for the five features.

Feature 1 Feature 2 Feature 3 feature 4 feature 5
olive oil garlic onion egg butter
garlic cayenne pepper wheat milk
tomato vegetable oil vinegar vegetable oil wheat

basil scallion tomato cinnamon cream
black pepper black pepper beef vanilla vanilla
parsley SOy satuce celery cane molasses cocoa
macaroni ginger mustard lard cane molasses
parmesan cheese cumin carrot walnut cream cheese
oregano rice green bell pepper yeast yeast
bell pepper cilantro potato nutmeg pecan
thyme bell pepper tamarind milk starch
lemon juice chicken cane molasses raisin corn
rosemary sesame oil corn buttermilk milk fat
white wine corn vegetable oil apple gelatin
bread fish cheddar cheese lemon juice almond
cheese coriander mushroom bread coconut
mozzarella cheese tomato bread almond cheese
olive lime juice bacon cocoa cheddar cheese
chicken broth shrimp parsley pecan potato
mushroom soybean chicken mustard black pepper
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A.2 Three latent features (K=3)

2nd Latent Feature

2nd Latent Feature

Non negative matrix factorization on recipe data: first and second latent feature of the ingredient matrix
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Figure A.1: Non-negative matrix factorization: first and second feature.

Non negative matrix factorization on recipe data: first and second latent feature of the ingredient matrix

©
o
(=}
8 walifat
(S}
<
o
(S}
raisin
o apple
2 f
S}
lemon_juice
o | Ay -
S - oat
S bread
comn
N
K .
Eh‘%{e@vine riceiuy chicken beef
T T T
0.05 0.10 0.15

1st Latent Feature

Figure A.2: Non-negative matrix factorization: first and second feature: zoom.
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3th Latent Feature

3th Latent Feature

Non negative matrix factorization on recipe data: first and third latent feature of the ingredient matrix
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Figure A.3: Non-negative matrix factorization: first and third feature.

Non negative matrix factorization on recipe data: first and third latent feature of the ingredient matrix
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Figure A.4: Non-negative matrix factorization: first and third feature: zoom.
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3th Latent Feature

3th Latent Feature

Non negative matrix factorization on recipe data: second and third latent feature of the ingredient matrix
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Figure A.5: Non-negative matrix factorization: second and third feature.

Non negative matrix factorization on recipe data: second and third latent feature of the ingredient matrix
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Figure A.6: Non-negative matrix factorization: second and third feature: zoom.
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Appendix B

Model 2: Website

Ingredient

Suggester

Marlies De Clercq

Refrigerator ALL v

]Add ingredient (one at a IH Add ]

click on the ingredient itself to
remove.

| Remove allingredients |

(v I ]

Figure B.1: When opening the website, it looks like this.
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Ingredient Suggester About
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Refrigerator ALL

geen data
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beef_broth
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beer

beet

bell_pepper [v]
bergamot -

Figure B.2: The user can insert an ingredient by typing the name of the ingredient
in the box, selecting the ingredient from the list and press the add
button.

Ingredient

Suggester

Marlies De Clercq

Refrigerator AL v

|Add ingredient (one at a t| Add

e beef
s tomato

click on the ingredient itself to
remove.

Remove all ingredients
Show data

Figure B.3: When an ingredient is added to the list, the name of the ingredient is
added in green beneath the box to add new ingredients. By clicking
on the name, the ingredient can be removed from the list. When the
user is satisfied with the list of ingredients he/she entered (max. 5),

he/she can push the button show data.
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Ingredient

Suggester

Marlies De Clercq

Refrigerator

|Add ingredient (one at a ][ Add |

e beef
e tomato

click on the ingredient itself to
remove.

| Remove allingredients |

Show data

ALL v

onion => 0.086884226

garlic => 0.07056339

basil => 0.051658381

celery_oil => 0.047468889

cayenne => 0.045986527

corn => 0.042686487
green_bell_pepper => 0.041357903
macaroni => 0.037359609
oregano => 0.033412882
mozzarella_cheese => 0.030043078
vinegar => 0.028494698

pepper => 0.026498005
beef_broth => 0.026419602

Figure B.4: The website returns a list of five names of ingredients that fit the

given ingredients best. In this picture the model still returns more

ingredients and the corresponding predicted values.

This will be

adjusted in the final website.

Ingredient

Suggester

Marlies De Clercq

Refrigerator

|Add ingredient (one ata l|| Add |

s beef
s tomato

click on the ingredient itself to
remove.

| Remove all ingredients |

Show data

lspice v

cayenne => 0.045986527
pepper => 0.026498005
black_pepper => 0.020216448
tamarind => 0.018244295
cumin =>0.014715839
tabasco_pepper => 0.008037604
cinnamon => 0.003767463
saffron => 0.00145939
galanga => 0.000488315
pimenta => 0.000152492
clove => 3.63E-5

Figure B.5: The user can also choose to select a certain category the suggested

ingredients should belong to. The website returns a list of five names

of ingredients coming from the selected category that fit the given

ingredients best.
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