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Summary

The aim of this thesis is to assess the influence of stochasticity on the stability of cellular

automata, the discrete counterparts of partial differential equations. The stability is assessed

following a Lyapunovian approach, which measures the rate of divergence or convergence of

infinitely close phase space trajectories. The stability assessment was performed on both theo-

retical and practical models. The results for the former indicate that distinct behavioural classes

can be found. In both the one-dimensional CAs and those involving two spatial dimensions a

class is found that does not arise in the other. In the last chapter, the stability of a practical

model is tested for two kinds of neighbourhoods. From this stability analysis it was concluded

that the model could be classified in one of the classes established based on theoretical models

and that stochasticity is not the only source of changes in stability behaviour. It is also likely

that there is more often a large effect of stochasticity in theoretical models than in practical

models.
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Dutch summary

Het doel van deze thesis is het onderzoeken van de invloed die stochasticiteit heeft op cellulaire

automaten, de discrete alter egos van partiële differentiaalvergelijkingen. De stabiliteit wordt

bepaald aan de hand van een Liapunoviaanse aanpak die de snelheid van divergentie van twee

oneindig dichte fasebanen meet. De stabiliteitsbepaling werd uitgevoerd op zowel theoretische

als praktische modellen. De resultaten van de theoretische modellen geven aan dat verschillende

gedragsklassen gedefinieerd kunnen worden, maar dat zowel in modellen met één ruimtelijke

dimensie als deze met twee ruimtelijke dimensies een klasse gevonden werd die niet in de andere

terug te vinden was. In het laatste hoofdstuk wordt de stabiliteit van een praktisch model

nagegaan voor twee soorten buuromgevingen. Uit deze stabiliteitsanalyse werd besloten dat het

model in kwestie kan ingedeeld worden in een van de klassen die opgesteld werden op basis van

de theoretische modellen en dat stochasticiteit niet de enige bron van stabiliteitswijzigingen is.

Het is ook mogelijk dat het bijzondere gedrag dat in sommige theoretische cellulaire automaten

naar voor komt, veel minder zal teruggevonden worden in praktische modellen.
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1. Introduction

Stochastic cellular automata (SCAs) are often used for modelling natural and physical processes,

such as the dynamics of forests (Kubo, 1996) and the interaction between chemical substances

(Van der Weeën et al., 2011, 2013). Besides, Reichenbach et al. (2007) have shown that a SCA

can be used to simulate the interaction between microorganisms in such a way that qualitatively

similar spatial aggregates of microorganisms emerge in silico as they do in vitro. Although

Lyapunov exponents as a means to determine the stability of cellular automata (CAs) were

already established two decades ago to assess the stability of deterministic CAs, in the works

of Wolfram (1984), Shereshevsky (1992) and Bagnoli et al. (1992), the effect of stochasticity

on the stability of elementary CAs (ECAs) has not yet been examined. Since SCAs are so

often used in practical models, it might be important to assess the influence of stochasticity on

the stability of SCAs. The goal of this thesis is to examine the stability of certain theoretical

SCAs and to classify them based on their behaviour. The insights obtained by studying these

theoretical models will then be used to arrive at a better understanding of a SCA mimicking

real-life processes.
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2. Literature study

2.1 Introduction

Spatio-temporal models always involve three domains, namely the space, time and state domain.

Usually, the state domain is the dependent domain. A simple example is the one dimensional

wave equation for a perfectly flexible string with fixed ends at the same height (Armstead and

Karls, 2006):
∂2u

∂t2
= c2∂

2u

∂x2
, 0 ≤ x ≤ a, t ≥ 0,

where c is a constant, x represents the space variable, which is the position along the string, a

is the maximum value of x, t is the time and u is the state, which is the height of the string at

time t and position x. This model is based on a partial differential equation (PDE), in which

space, time and state are continuous. In general, each of these three domains can be either

discrete or continuous. The commonly used names of the eight possible combinations of discrete

and continuous domains are given in Table 2.1. There are, however, also hybrid models that

combine two or more paradigms of those listed in Table 2.1.

Table 2.1: Classification of continuous (C) and/or discrete (D) models and their most common name

(adapted by Baetens (2012) from Berec (2002)).

Space Time State common name

C C C PDE-based models

C C D Spatial point models

C D C Reaction-diffusion models

C D D Agent-based models

D C C Spatially implicit models

D C D Interacting particle system

D D C Coupled-map lattice

D D D Cellular automata

When building models based on (P)DEs, continuity of the universe is assumed. At macro scale

this seems to be appropriate. Yet, in real life many things are discrete, such as the smallest

measurable distance, the Planck distance, which is 1.6162× 10−35 m, the smallest electric charge,

i.e. the charge of an electron, which is −1.602× 10−19 C, and so on. A more important problem

of continuous models is that they are often based upon mathematical equations for which there

3
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exist no closed-form solution, and thus have to be solved numerically. Such numerical methods

(e.g. finite-difference, finite-elements and finite-volume methods) involve the discretisation of

the continuous equations, which leads to truncation and approximation errors (Katz, 2009). To

avoid these disadvantages discrete models can be used. These are intrinsically discrete and the

numerical integration is an exact process. However, discrete models also have disadvantages.

For instance, in order to know the state of the system after a number of time steps, the system

has to be evaluated at every intermediate time step (Toffoli, 1984). Furthermore, the scale of

the discrete units of nature is too small to use as the dimension of a spatial entity in discrete

models. Therefore, an error is introduced by transferring reality to the model.

2.2 Cellular automata

2.2.1 Formalism

The discrete systems discussed in this thesis are cellular automata (CAs). A cellular automaton

(CA) C can be defined as follows (Baetens and De Baets, 2010).

Definition 2.1 A cellular automaton C is a quintuple

C = 〈T , S, s,N,Φ〉,

where

(i) T is a countably infinite tessellation of an n-dimensional Euclidean space Rn, consisting

of cells ci, i ∈ N, which are identified with n-polytopes pni .

(ii) S is a finite set of k states, often S ⊂ N.

(iii) The output function s : T ×N→ S yields the state value of cell ci at the t-th discrete time

step, i.e. s(ci, t).

(iv) The neighbourhood function N : T → ∪∞p=1T p maps every cell ci to a finite sequence

N(ci) = (ci)
|N(ci)|
j=1 , consisting of |N(ci)| distinct cells cij .

(v) Φ = (φi)i∈N is a family of functions,

φi : S|N(ci)| → S,

each φi governing the dynamics of cell ci, i.e.

s(ci, t+ 1) = φi(s̃(N(ci), t)),

where s̃(N(ci), t) = (s(cij , t))
|N(ci)|
j=1 .

Aside from the CAs introduced in Definition 2.1 another family of CAs can be defined, being

the stochastic CAs (SCAs).

Definition 2.2 A stochastic CA S is a sextuple

S = 〈T , S, s,N,Φ,Ψ〉,
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where premises (i)-(iv) of Definition 2.1 still hold, and for which Φ = (φi)i∈N and Ψ = (ψi)i∈N

are families of functions,

φi : S|N(ci)| → S,

ψi : S|N(ci)| → S,

each φi and ψi governing the dynamics of cell ci, i.e.,

s(ci, t+ 1) =

φi(s̃(N(ci), t)), with probability p,

ψi(s̃(N(ci), t)), with probability 1-p,

where p ∈ [0, 1] represents the probability that the transition of a cell ci occurs according to φi.

Definitions 2.1 and 2.2 are the most general definitions of (S)CAs. In practice, there are some

simplifications. The first one relates to the presumed infinite tessellation. This is impracticable,

but can be approximated by a finite tessellation with periodic boundary conditions. A second

simplification is possible by assuming that the transition function is spatially homogeneous. In

the remainder of this thesis, CAs with a homogeneous transition function will be used, referred

to as homogeneous CAs.

Definition 2.3 A homogeneous CA is a CA fulfilling premises (i)-(iv) of Definition 2.1, and

for which Φ = (φi)i∈N is a family of functions,

φi = φj = φ : S|N(ci)| → S,

φ governing the dynamics of every cell ci, i.e.

s(ci, t+ 1) = φ(s̃(N(ci), t)).

Similarly, a homogeneous SCA can be defined. The most studied CAs are those with only two

states, usually denoted 0 and 1 (i.e. S = {0, 1}).

2.2.2 One-dimensional cellular automata

The simplest CAs are those with only one spatial dimension. The neighbourhood of a cell

ci in these CAs is given by {ci−r, ci−(r−1), . . . , ci−1, ci, ci+1, . . . , ci+(r−1), ci+r}, where r is the

range of the neighbourhood (see Figure 2.1). Within the family of one dimensional CAs the

simplest ones are the members of the family of elementary CAs (ECAs). These are CAs with

range r = 1, i.e., every cell has three neighbours (the cell to the right, the cell itself and the

cell to the left), such that s(ci, t + 1) = φ(s(ci−1, t), s(ci, t), s(ci+1, t)). The remainder of this

section will only consider ECAs. Because the neighbourhood of every cell consists of three

cells and every cell has two possible states, there are eight possible neighbourhood configura-

tions. Each configuration leads to an evolution of the middle cell to 0 or to 1. Hence, there

are 28(256) possible rules within the family of ECAs. The rule numbers are based on their

binary notation. For instance, Table 2.2 illustrates that the sum of the products of the val-

ues of s(ci, t + 1) and the decimal numbers gives rise to rule number 150, or, mathematically:
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... ... ......

Figure 2.1: Numbering convention of cells for a 1D CA.

Table 2.2: Rule table for the one-dimensional ECA 150.

N(ci, t) s(ci, t+ 1) binary to decimal

111 1 27(128)

110 0 26(64)

101 0 25(32)

100 1 24(16)

011 0 23(8)

010 1 22(4)

001 1 21(2)

000 0 20(1)

φ(1, 1, 1) ∗ 27 + φ(1, 1, 0) ∗ 26 + φ(1, 0, 1) ∗ 25 + φ(1, 0, 0) ∗ 24

+ φ(0, 1, 1) ∗ 23 + φ(0, 1, 0) ∗ 22 + φ(0, 0, 1) ∗ 21 + φ(0, 0, 0) ∗ 20

= 1 ∗ 128 + 0 ∗ 64 + 0 ∗ 32 + 1 ∗ 16 + 0 ∗ 8 + 1 ∗ 4 + 1 ∗ 2 + 0 ∗ 1

= 150

Although there exist 256 ECAs, their analysis can be restricted to the 88 minimal representative

ECAs, because of symmetries (Vichniac, 1990). This set encompasses the behaviour of all 256

ECAs, thus the behaviour of all 256 ECAs can be described with less computational resources.

The minimal rules are: 0-15, 18, 19, 22-30, 32-38, 40-46, 50, 51, 54, 56-58, 60, 62, 72-74, 76-78,

90, 94, 104-106, 108, 110, 122, 126, 128, 130, 132, 134, 136, 138, 140, 142, 146, 150, 152, 154,

156, 160, 162, 164, 168, 170, 172, 178, 184, 200, 204, 232.

2.2.3 Two-dimensional cellular automata

Because the cells of 2D CAs are 2nd order polytopes (i.e. polygons), the number of neighbours

depends on the neighbourhood definition. Typically, two neighbourhood types are considered

being the Moore neighbourhood and the von Neumann neighbourhood (Baetens and De Baets,

2010).

Definition 2.4 The Moore neighbourhood NMi of a polygon p2
i ∈ T contains those polygons

p2
j ∈ T that share a vertex with p2

i , i.e., NMi = {p2
j ∈ T | P0

i ∩ P0
j 6= ∅}

Definition 2.5 The von Neumann neighbourhood N Vi of a polygon p2
i ∈ T contains those poly-

gons p2
j ∈ T that share a line segment with p2

i , i.e., N Vi = {p2
j ∈ T | P1

i ∩ P1
j 6= ∅}
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Two-dimensional CAs can be based upon a regular or irregular tessellation, called regular CAs

and irregular CAs, respectively. In the latter case, the length of the line segments that a

neighbour shares with a cell varies between neighbours. Therefore, a restricted von Neumann

neighbourhood can be defined, containing those neighbours whose shared line segment makes

up a minimal proportion of the cell’s circumference (Baetens and De Baets, 2010).

Definition 2.6 The restricted von Neumann neighbourhood N V,νi of a polygon p2
i ∈ T contains

those polygons p2
j ∈ T that share a line segment p1

r with p2
i and, make up at least a prescribed

proportion ν ∈ [0, 1] of ci’s circumference, i.e., N V,νi = {p2
j ∈ T | P1

i ∩P1
j 6= ∅∧Oij ≥ ν}, where

Oij is the proportion represented by p1
r in p2

i ’s circumference.

Baetens and De Baets (2013a) revealed that, when using a restricted neighbourhood, the be-

haviour of a CA is influenced by the choice of the prescribed proportion of the circumference of

a cell that should be occupied by the shared line segment of a neighbour (ν) (see Section 2.3.3).

For a regular, square tessellation with a von Neumann neighbourhood there are 225 = 232 ≈ 109

possible rules and for a Moore neighbourhood there are 229 = 2512 ≈ 10154. However, in the

framework of theoretical investigations, the evolution of 2D CAs is mostly based on the sum

of the states within the neighbourhood. Essentially, the two most important types of 2D CAs

are totalistic and outer-totalistic CAs. Both are order-invariant, meaning that their transition

function does not depend on the ordering imposed on s̃(N(ci), t) (as opposed to Definition 2.1)

(Baetens and De Baets, 2010).

Definition 2.7 A totalistic CA is an order-invariant CA for which S ⊂ N, and for which there

exists a Ω : N→ S such that s(ci, t+ 1) = Ω(σi), where σi =
∑|N(ci)|

j=1 s(cij , t).

Definition 2.8 An outer-totalistic CA is an order-invariant CA for which S ⊂ N, and for which

there exists a Ω∗ : N×S → S such that s(ci, t+1) = Ω∗(σ∗i ), where σ∗i =
∑|N(ci)|

j=1 s(cij , t)−s(ci, t).

In the remainder of this thesis, the rule numbering convention introduced by Baetens and

De Baets (2010) for totalistic and outer-totalistic CAs will be used, since it is applicable to

both regular and irregular CAs. For that purpose, a new parameter θ is introduced to overcome

the possible unboundedness of σi in irregular tessellations. This parameter is an upper bound

on the sum of neighbouring states, σi,s such that Ω(σi) = Ω(θ), whenever σi ≥ θ. The rule

number of a k-state, θ-sum totalistic CA, further referred to as a (k, θ) totalistic CA, is:

RTθ = zθk
θ + zθ−1k

θ−1 + . . .+ z2k
2 + z1k + z0

=
θ∑

f=0

zfk
f ,
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where zf is the state value of ci at time step t+ 1 if σi at time step t is f . The rule number for

a k-state, θ-sum outer-totalistic CA, further referred to as a (k, θ) outer-totalistic CA, is:

ROTθ = zθ,k−1k
k(θ+1)−1 + zθ,k−2k

k(θ+1)−2 + . . .+ zθ,0k
kθ

+ zθ−1,k−1k
kθ−1 + zθ−1,k−2k

kθ−2 + . . .+ zθ−1,0k
kθ−k

+ . . .

+ z1,k−1k
2k−1 + z1,k−2k

2k−2 + . . .+ z1,0k
k

+ z0,k−1k
k−1 + z0,k−2k

k−2 + . . .+ z0,0

=

θ∑
f=0

k−1∑
g=0

zf,gk
kf+g ,

where zf,g is the state value of ci at time step t+ 1 if σi and s(ci, t) at time step t are equal to

f and g, respectively.

2.2.4 Asynchronous cellular automata

Most CAs are synchronous, meaning that each cell is updated at every time step. On the other

hand, when the cells are updated asynchronously, the CA is referred to as an asynchronous

CA. There are various asynchronous update methods. Bandini et al. (2010) describe various

update methods, for example the random independent, the cyclic order, the random order and

the exponentially clocked method. The random independent method updates one cell in every

time step, which is picked at random. In the cyclic order method, every cell is given a random

number and one cell is updated per time step in the order of the assigned number. The random

order method is similar to the cyclic order method, but the order assigned to the cells is changed

every time all cells have been updated. The exponentially clocked method assigns to every cell

a waiting time according to an exponential distribution with mean one, after which the cell with

the shortest waiting time is updated and subsequently is assigned a new waiting time.

2.2.5 Representation and visualisation of cellular automata

There are two possible ways of representing a CA. In case of regular CAs, the most straightfor-

ward way is by identifying every cell with an element of a matrix (for 2D CAs) or a list (for 1D

CAs). Another representation uses a graph, where the nodes of the graph represent the cells

of the CA and the edges represent the neighbourhood relations. This representation is mainly

used for irregular CAs, but can be used for all CAs.

Visualisation can also be done in two ways, similar to the representation. Either the graph or a

tessellation of all cells can be drawn. For 1D CAs, the cells are not drawn as 1-polytopes (line

segments), as would be expected, but they are drawn as squares. In the case of irregular CAs it

is not always possible to draw a tessellation, since neighbourhood relations can be too complex

to map the underlying graph to a tessellation. When a CA is visualised as a tessellation, the

state of the cells is mostly indicated by assigning a colour to every state and colouring the cells in

the tessellation accordingly. For 2-state CAs, black (for 1) and white (for 0) are typically used.

Since 1D CAs have only one spatial dimension, it is possible to show the evolution throughout

the different time steps by means of a space-time diagram. In this diagram the time is on the
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vertical axis with the configuration at t = 0 at the top of the diagram (see Figure 2.2, 2.3, 2.4

and 2.5).

2.2.6 Applications of cellular automata in food and related sciences

Various applications of (S)CA-based models have been described in food and related sciences.

Van der Weeën et al. (2013) describe a model for oil migration in chocolates. This model is

built upon a SCA with 50 × 260 square cells, seven states (cavity, solid cocoa butter, liquid

cocoa butter, sugar, cocoa particle, nut oil, hazelnut particle) and a neighbourhood of range

two. Periodic boundary conditions are used to mimic the continuous space along the horizontal

axis and fixed boundary conditions are used for the boundaries with air and filling (Van der

Weeën et al., 2013).

Van der Weeën et al. (2011) compare a SCA- and a PDE-based model for the formation of CO2

in the reaction: CaCO3 + 2HCl→ CaCl2 + H2O + CO2. Both models were fitted to data and

their accuracy was compared. The difference in accuracy between both models is small, but the

CA-based model has a better fit to the data, indicating that it would be the better choice.

A model for competition between three species is developed by Reichenbach et al. (2008). This

model has four states, being the three species (A, B and C) and an empty state (∅). Between the

three species, cyclic domination occurs, meaning that species A outperforms species B, species

B outperforms species C and species C outperforms species A. For every cell, one cell in its

neighbourhood is selected at random to compete with. This model leads to complex patterns

where the density of each of the species fluctuates.

Another SCA-based model is set up by Wimpenny and Colasanti (1997). It simulates the

growth of a biofilm for a given concentration of substrate and a given number of attached

microorganisms. The SCA is implemented in an object-oriented language and two objects were

defined, a microorganism and a compartment. Both objects have their own functionalities. A

microorganism is defined by a location in a tessellation, a nutritional state and a function for

growth. A compartment is defined by its position, its number of resources and a function for

the distribution of resources.

All of the above mentioned models are based on 2D SCAs with more than two states. Despite

the simplicity of ECAs, they have some applications in food and related sciences. Diao et al.

(2008) use ECAs to predict transmembrane regions of membrane proteins. Since transmembrane

regions consist of approximately 20 amino acids, the considered amino acid sequences have this

length. This means that for a protein with n amino acids, n− 20 + 1 segments are considered as

possible transmembrane regions. For these segments, the amino acids are replaced by a series of

five binary numbers, leading to ECAs with 100 cells. To check interactions between the different

amino acids in these regions, the ECAs are evolved for a given number of time steps using rule

84 with reflecting boundary conditions. For this ECA the Lempel-Ziv complexity is calculated.

This measure partially reflects sequence effects. Based on this measure and the abundance of

the 20 existing regular amino acids, each protein part is expressed as a vector whose position

gives an indication whether that part is a transmembrane region or not.
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Figure 2.2: A space-time diagram of a one-dimensional CA (rule 168) starting from 2 initial conditions

(a and b), its density (c), Hamming distance (d) and Lyapunov exponent (c) as function of

the time step, starting from a random configuration.
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Figure 2.3: A space-time diagram of a one-dimensional CA (rule 100) starting from 2 initial conditions

(a and b), its density (c), Hamming distance (d) and Lyapunov exponent (e) as function of

the time step, starting from a random configuration.



12 CHAPTER 2. LITERATURE STUDY

(a) (b)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

t

r

(c)

0 20 40 60 80 100
0

10

20

30

40

50

t

H

(d)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

t

l

(e)

Figure 2.4: A space-time diagram of a one-dimensional CA (rule 30) starting from 2 initial conditions

(a and b), its density (c), Hamming distance (d) and Lyapunov exponent (e) as function of

the time step, starting from a random configuration.
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Figure 2.5: A space-time diagram of a one-dimensional CA (rule 110) starting from 2 initial conditions

(a and b), its density (c), Hamming distance (d) and Lyapunov exponent (e) as function of

the time step, starting from a random configuration.
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Another two-state model is the one by Kubo (1996) about gap dynamics in forests. The two

states in this model are gap and non-gap, represented as 0 and +, respectively. A gap is

considered as an area in which the height of the canopy is lower than a certain threshold. Many

studies showed that gap formation is more likely to happen at the edges of already existing gaps

(Kubo, 1996). Therefore, the speed of gap formation is dependent on the number of gap sites in

a cell’s neighbourhood, denoted by δn(0). The speed of gap closing can either be constant (See

Eq. (2.1)), or it can depend on either the total number of non-gaps or the number of non-gaps

in a cell’s neighbourhood.

(0)
b
�

d+δn(0)
(+) (2.1)

More CA approaches for biological modelling can be found in the paper of Ermentrout and

Edelstein-Keshet (1993).

2.3 Stability of cellular automata

Based on their stability, CAs can be classified according to the classification scheme proposed by

Wolfram (1984). It discriminates between four classes, of which the first three exhibit behaviour

that is similar to attractors found in continuous dynamical systems (Wolfram, 1984):

Class 1: Evolution leads to a homogeneous state

Class 2: Evolution leads to a set of stable or periodic structures

Class 3: Evolution leads to a chaotic pattern

Class 4: Evolution leads to complex localised structures, sometimes long-lived

This classification has so far been proven appropriate for every kind of CA, but it is hard to

use, because it is subjective (since it is based on visual inspection) (Baetens, 2012). Table 2.3

shows the classification of the 256 ECAs according to Wolfram (1984). A typical evolution of a

rule belonging to Class 1, 2, 3 and 4 can be found in Figures 2.2, 2.3, 2.4 and 2.5, respectively.

Table 2.3: Wolfram’s classification of elementary CAs (Wolfram, 1984).

Class Rule number

1 0, 8, 32, 40, 64, 96, 128, 136, 160, 168, 192, 234, 235, 238, 239, 248-255

2 1-7, 9-17, 19-21, 23-29, 31, 33-39, 42-44, 46-53, 55-59, 61-63, 65-74, 76-85, 87, 88,

91-95, 97-99, 100, 103, 104, 107-109, 111-119, 123, 125, 127, 130-134, 138-145, 148,

152, 154-159, 162-164, 166-167, 170-181, 184-191, 194, 196-224, 226-233, 236, 237,

240-247
3 18, 22, 30, 45, 60, 75, 86, 89, 90, 101, 102, 105, 122, 126, 129, 135, 146, 149-151, 153,

161, 165, 182, 183, 195
4 41, 54, 106, 110, 120, 121, 124, 137, 147, 169, 193, 225

There are various other, quantitative, ways of assessing the stability of a CA. The majority of

such measures rely upon Lyapunov exponents (Bagnoli et al., 1992) and Boolean derivatives
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(Vichniac, 1990). In the remainder, both measures will be introduced for two state CAs. On the

other hand, measures like the density (ρ) and Hamming distance (H) have also been suggested,

but these have proven not to be convergent for many rules, which limits their discriminative

power (see Figures 2.2, 2.3, 2.4, 2.5). The density of a CA at a given time step is the proportion

of cells that have a state 1, i.e.

ρ(t) =
1

|T |

|T |∑
i=1

s(ci, t) .

The Hamming distance in this context is the distance between the CA’s configuration at two

subsequent time steps, i.e.

H(t) =

|T |∑
i=1

|s(ci, t)− s(ci, t+ 1)| .

2.3.1 Boolean derivatives

Boolean derivatives are the discrete counterparts of derivatives for real functions. A Boolean

derivative determines whether or not changing the value of a cell cj at the t−th time step

influences the value of a cell ci at time step t + 1 (Bagnoli et al., 1992). Mathematically, this

Boolean derivative can be expressed as:

Φ
′
ij =

∂s(ci, t+ 1)

∂s(cj , t)
= φ(s(c1, t), s(c2, t), . . . , s(ci, t), . . . , s(cj , t), . . .)

⊕ φ(s(c1, t), s(c2, t), . . . , s(ci, t), . . . , s(cj , t), . . .),

where s(cj , t) is the Boolean complement of s(cj , t) and ⊕ is the sum mod 2 operator. The

Boolean derivative is always false (i.e. 0) if cj /∈ N(ci, t) because φ only takes the cells in N(ci, t)

as its arguments. The Boolean Jacobian matrix J is composed of the Boolean derivatives of

every cell with respect to every cell, i.e. its elements are given by:

Jij =


∂s(ci, t+ 1)

∂s(cj , t)
, if cj ∈ N(ci),

0 , else.

Higher-order Boolean derivatives can also be calculated (Vichniac, 1990). Vichniac (1990) proved

that higher-order derivatives can, when starting from a single one on a background of zeroes,

be used to predict the value of a cell after T time steps without having to evolve the system for

T − 1 intermediate time steps. The difference in computational cost between using higher-order

derivatives and evolving the CA for intermediate time steps is an indication for the complexity

of a rule, with the difference decreasing as complexity increases (Vichniac, 1990).

Based on the Jacobian, another measure of complexity can be calculated (Baetens and De Baets,

2010). This measure, denoted µ̄ and referred to as the input sensitivity, represents the geometric

mean over T time steps of the average proportion of cells cj in N(ci) that affect s(ci, t+ 1):

µ̄ =

(
T∏
t=1

µ(t)

)1/T

, (2.2)
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where

µ(t) =
1

|T |

|T |∑
i=1

1

|N(ci)|
∑

j:cj∈N(ci)

Jij . (2.3)

2.3.2 Lyapunov exponents

Lyapunov exponents were originally conceived for continuous dynamical systems. They are a

measure for the average rate of exponential divergence of two nearby trajectories in phase space

(Eckmann and Ruelle, 1985). Mathematically, this rate can be expressed as:

λ = lim
t→∞

lim
δx(0)→0

1

t
log

(
|δx(t)|
|δx(0)|

)
,

where log is the natural logarithm and δx(0) represents the initial separation between two

nearby trajectories. The limit limδx(0)→0 is necessary, because otherwise the trajectories would

diverge exponentially and would no longer be nearby. The number of Lyapunov exponents of

a continuous dynamical system equals the dimensionality of the phase space. The ensemble of

all Lyapunov exponents is called the Lyapunov spectrum Λ. These exponents are the natural

logarithms of the eigenvalues of:

lim
t→∞

(t−1∏
l=0

J l

)′(t−1∏
l=0

J l

) 1
2t

,

where ′ represents the transpose and J l is the Jacobian at time l. The theorem of Oseledec

(1968) guarantees that this limit exists. If one of the Lyapunov exponents is larger than zero,

the system is unstable.

Lyapunov exponents for discrete dynamical systems were first introduced by Wolfram (1984).

Wolfram (1984) conceived left and right Lyapunov exponents which represent the speed at

which a defect propagates to the left or to the right in a 1D CA, respectively. Yet, the rate of

propagation of defects to the left or right can only grow linearly, such that exponential divergence

cannot be obtained. Besides, they are only of use for 1D CAs. Therefore, such directional

Lyapunov exponents are not frequently used as a measure of chaotic behaviour. Nowadays, the

maximal Lyapunov exponent (MLE), denoted as λ, is used far more often. The MLE can be

assessed through a damage spreading analysis. By means of such an analysis the propagation

of defects throughout the tessellation is studied. A defect (defective cell) is a cell whose state

is different in two configurations (Baetens and De Baets, 2010). Usually, a damage spreading

analysis starts from two initial configurations that differ in only one cell, i.e. there is one defect.

This is the smallest possible separation between two nearby trajectories in discrete systems such

as CAs. These two configurations are then evolved and the number of defects is tracked as the

system evolves. If we denote the number of defects on time step t as εt, the finite-time MLE

can be defined as (Bagnoli et al., 1992):

λ(t) =
1

t
log

(
εt
ε0

)
, (2.4)

where ε0 is the initial number of defects. The MLE is then defined as λ = limt→∞ λ(t). Counting

the number of defects, however, is not as straightforward as would be expected, since defects
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can cancel each other in configuration space due to the discrete nature of the system. Also, as

with directional Lyapunov exponents, the propagation rate would never become exponential.

Thirdly, since we work with a finite tessellation, the number of defects is limited whereas time

is infinite. These three reasons would lead to λ = −∞ for every rule, if we would simply count

the number of defects in configuration space. These problems can be overcome by keeping track

of the multiplicity of defects in every cell (Baetens and De Baets, 2013b). Bagnoli et al. (1992)

used the Boolean Jacobian matrix (see Section 2.3.1) to calculate the propagation of defects.

For a given MLE, the number of defects at a given time step can be calculated, given the initial

number of defects:

εt = ε0 e
λt.

Since both the proportion of cells in a cell’s neighbourhood that affect a cell (µ̄) and the Lyapunov

exponent (λ) are good measures of stability, they are often used together. This is shown in

Figure 2.6 for the 88 minimal ECA rules, or at least those that do not have λ = −∞ for

all members of an ensemble of different initial configurations (IC) and different initial defects

(initial perturbations (IP)). The reason for using this ensemble will be explained in Section 3.2.

A mean-field estimate of the upper bound on the Lyapunov exponent can be found by considering

the time- and space-averaged proportion of cells in a cell’s neighbourhood that affect this cell

(µ̄) and the space-averaged number of cells in a cell’s neighbourhood, referred to as the mean

connectivity of a tessellation, and denoted in the remainder as V . The mean-field estimate of

the number of defects at a given time step is:

εt,m = ε0 (V µ̄)t,

which leads to the mean-field estimate of the upper bound on the MLE (λm):

λm(µ̄) = log(V µ̄). (2.5)

Contrary to the directional Lyapunov exponent, the MLE is applicable to all tessellations.

Based on the MLE, Baetens and De Baets (2010) proposed a new classification:

Class 1: λ = −∞ for all members of the ensemble

Class 2: λ = −∞ for some, but not all members of the ensemble

Class 3: λ ≥ 0 for all members of the ensemble

CAs belonging to Class 1 are referred to as unconditionally superstable. For CAs belonging to

Class 2, a distinction is made between those that give rise to a positive MLE for most members of

the ensemble and those that give rise to a homogeneous state for most members of the ensemble,

referred to as conditionally unstable and conditionally stable, respectively. The CAs belonging

to Class 3 are referred to as unconditionally unstable (Baetens and De Baets, 2010). Class 2

exists because the most stable state can, for some CAs, not be reached from every configuration

due to their discrete nature. This will be explained in more detail in Section 3.2.

Baetens et al. (2012) assessed the stability of CAs that are updated according to the four asyn-

chronous methods discussed in Section 2.2.4 and compared the Lyapunov exponents with the
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Figure 2.6: Lyapunov exponents as a function of the input sensitivity µ̄ for the 88 minimal ECAs (dots)

and the mean-field estimate of the MLE (line). Rules for which some of the Lyapunov

exponents in the ensemble are −∞ are represented by squares. Rules that have a positive

Lyapunov exponent for all members of the ensemble are represented by circles.

ones obtained for their synchronously updated counterparts. Yet, since in these four asyn-

chronous methods only one cell is updated every time step, defects cannot spread at the same

speed as is the case for synchronous update methods. Therefore, the Lyapunov exponents of

synchronous and asynchronous methods have to be normalised by dividing them by their re-

spective upper bounds. The upper bound on the MLE of asynchronously updated CAs where

one cell is updated at every time step is given by (Baetens et al., 2012):

λm(µ̄) = log

(
|T | − 1 + V µ̄

|T |

)
, (2.6)

where µ̄ is the one obtained in the synchronous case.

At this point, it should be noted that chaos apparently present in configuration space is not

always linked to unstability in phase space, and vice versa. And, last but not least, the MLE is

a measure for the effect of single defects, whereas in configuration space two or three adjacent

cells can cancel each other.

2.3.3 Effect of topology

Topology refers to the whole of size and neighbourhood relations of a CA. Baetens et al. (2013)

revealed that the tessellation size has an influence on the stability of a measure, leading to the

concept of a representative tessellation size beyond which the value of a measure is no longer
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influenced by the tessellation size. Beside variability of a measure, the actual value itself can

change depending on the topology (Baetens and De Baets, 2013a). Baetens and De Baets

(2013a) used the value of the proportion of the circumference of a cell that is occupied by the

shared line segment of a neighbour (ν) as a parameter to assess the influence of topology on the

behaviour of a CA. They revealed topological bifurcation points, where the Lyapunov exponent

jumps from a positive value to 0 or −∞ or vice versa.
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3. Materials and methods

3.1 Materials

The algorithms were developed on a desktop computer provided by Ghent University, Depart-

ment of Mathematical Modelling, Statistics and Bioinformatics. The full-scale in silico exper-

iments were performed on the high performance computing (HPC) infrastructure, and more

specifically on the Gengar and Raichu clusters. The specifications of the computing infrastruc-

ture can be found in Table 3.1.

Table 3.1: Properties of the computational infrastructure.

Desktop

Intel® Core™ 2 CPU 6300 @ 1.86GHz

1.99 GB of Ram

Gengar

156 computing nodes

dual-socket quad-core Intel Xeon Harpertown (L5420) @ 2.5 GHz

16 GB RAM/node

Raichu

64 computing nodes

dual-socket octa-core Intel Xeon Sandy Bridge (E5-2670) @ 2.6 GHz

32 GB RAM/node

Mathematica versions 9.0.0 and 9.0.1 (Wolfram Research Inc.) were used for the development

of algorithms and conducting the in silico experiments.

3.2 Methods

3.2.1 Initial condition and initial perturbation

For the simulations of 1D CAs, a tessellation of 500 cells was used. It is assumed that this

tessellation size is representative, since it is almost as big as the 512 used by Bagnoli et al. (1992).

Because not every configuration of a CA can be reached from a given initial configuration (IC)

(Bagnoli et al., 1992), it is possible that the stability of a rule depends on the initial configuration

and/or the initial perturbation (IP), i.e. the initial defect. However, it is impossible to calculate

the MLE for all possible initial perturbations of all possible initial configurations. Bagnoli

21
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et al. (1992) avoided this problem by swapping positions of two random cells at every time

step, i.e. giving the CA a push. Hence, when a CA gets to a configuration from which it

cannot evolve to a more stable state, this extra push can force the CA towards the most stable

configurations. Another way of handling this problem is by assessing the MLE for an ensemble

of perturbations of a random initial configuration (Baetens and De Baets, 2010). Baetens and

De Baets (2010) then made a distinction between rules based on the number of perturbations

that lead to negative Lyapunov exponent (see Section 2.3.2). In this dissertation, the effect of

different initial conditions and perturbations on the numerically obtained value of the MLE was

tested, prior to running full-scale in silico experiments. The results can be found in Figure 3.1.

From this figure it is clear that no distinction, i.e. no consistent difference, can be observed

between the outcome of the approach involving different initial conditions of which the same

cell is perturbed, and the one involving one IC where each time a different cell is perturbed.

Only small differences can be found between the figures on the left and the respective figures

on the right, meaning that there is no difference in either using various initial conditions or

various initial perturbations. Therefore, in the remainder of this work, a combination is used,

i.e. different random initial configurations with each time a different random initial perturbation.

The choice of the ensemble size, denoted as |E|, is based on the computing time needed. By

examining the results from the timing tests (see Section 3.2.2), it was clear that an ensemble size

of 100 would lead to excessive required computing time, yet 8, like used by Baetens and De Baets

(2010) would for some 1D CAs not be sufficient. A compromise was found in an ensemble size

of 30.

For 2D CAs, the topology designed by Baetens and De Baets (2010) is used (See Figure 3.2).

This is an irregular tessellation of 675 cells, where the square cells on the sides were inserted to

facilitate the implementation of periodic boundary conditions. Similar to 1D CAs, an ensemble

of 30 combinations of random initial conditions and initial perturbations is used.

3.2.2 Time steps and timing

Since it is impossible to determine the Lyapunov exponent after an infinite number of time steps,

an error will be made by determining the Lyapunov exponent after a finite number of time steps.

To determine whether the number of time steps used is sufficiently large, a convergence threshold

for the Lyapunov exponent of 0.001 is used. This threshold is based on Baetens et al. (2012).

Figure 3.3 shows the maximum of the absolute difference in Lyapunov exponents between the

last two, of 500, time steps, for the ensemble, for the 88 minimal rules. Rules 1, 9, 22, 33 exceed

the threshold, but this may be disregarded since this is the maximum value of the absolute

difference over an ensemble of 30 members and only four rules exceed the threshold. The

increased accuracy achieved by increasing the number of time steps does not compensate the

additional computing resources needed.

This is especially the case for SCAs, since each time step only a fraction p of all cells is updated,

on average. Therefore, SCAs need to be evolved for more time steps to have an equal number of

updated cells as in the case of deterministic CAs. If the number of time steps for deterministic

CAs is denoted as T , and the number of time steps for SCAs is denoted T ∗, the following relation
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between T and T ∗ holds:

T ∗ =
T

p
. (3.1)

The resemblance with asynchronous CAs, for which the number of time steps was derived by

Baetens et al. (2012), can be seen easily. In this dissertation 100 equidistant update probabilities

values will be considered, leading, through Eq. (3.1), to a 520 fold computing time required for

SCAs compared to deterministic CAs.

Timing of the script executions was done on the Gengar cluster, but the batch job execution was

done on the Raichu cluster, which is about one third faster than the Gengar cluster. Timing is

given in Table 3.2. The final setup that was chosen is the one where each script covers one rule,

30 combinations of IC and IP and 500 time steps.

Table 3.2: Timing of different experimental setups on the Gengar cluster.

|E| # rules # time steps # p-values Stochastic Timing (h)

1 88 500 / No 00:17:30

100 1 500 / No 00:19:30

10 1 500 / No 00:02:00

1 1 500/p 100 Yes 02:20:00
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Figure 3.1: Comparison between the situation for the 88 minimal rules with 1 initial condition (IC) and

30 initial perturbations (IP) (left) and the situation for 30 IC where one IP is used (right)

over 500 time steps, in the case of deterministic CAs. The top figures concern the number

of Lyapunov exponents that are −∞, the middle figures concern the average of the finite

Lyapunov exponents and the lower figures represent the average of the finite Lyapunov

exponents as a function of the input sensitivity (µ̄). Lines between data points are drawn

solely to facilitate comparison.
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Figure 3.2: The tessellation designed by Baetens and De Baets (2010)
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Figure 3.3: Difference in Lyapunov exponents between two consecutive time steps after 500 time steps
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4. Stochastic cellular automata

Stochastic cellular automata (SCAs) have been introduced in Definition 2.2. In this chapter,

mainly stochastic elementary cellular automata (SECAs) will be examined in detail. The last

section will briefly discuss two-dimensional SCAs. More specifically, the case that will be exam-

ined is the one where the transition function ψ (see Definition 2.2) is given by:

ψ(s̃(N(ci), t) = s(ci, t),

meaning that with a probability 1 − p the rule is not applied. First, the effect of stochasticity

on the space-time configuration will be examined for one exemplary rule per Wolfram class

(Wolfram, 1984). Subsequently, the Lyapunov exponents (λ) and input sensitivity (µ̄) will be

examined for all 88 minimal SECAs. Also the number of infinite MLEs will be examined.

Essentially, the family of SECAs that is examined here may be seen as a family of SCAs where

φ and ψ are two different rules chosen from the 256 rules of ECA. In this case, however, ψ

always equals rule 204. Continuing along this line of reasoning leads to the realisation that

deterministic ECAs are not only SECAs with p = 1, but also SCAs where φ = ψ.

4.1 Visual examination

For a visual examination, the same four rules as the ones considered throughout Chapter 2 will

be used (Figures 4.1, 4.2, 4.3 and 4.4, for rules 168, 100, 30 and 110, respectively). Since for

values of p smaller than 1 the number of time steps is increased to maintain the number of cell

updates (cfr. Eq. (3.1), the number of time steps in the corresponding space-time diagrams will

also increase. To be able to compare diagrams across different values of p, there are two options.

The first option involves adjusting the aspect ratio of the diagrams, which would, however, lead

to increasingly flatter cells with decreasing p. The other option is to show only as many time

steps as in the deterministic case, which is opted for in this dissertation. This means that for

the case where p = 0.5 the configuration at only every other time step will be shown. However,

for some values of p an additional minor adjustment of the aspect ratio is unavoidable, because

it is impossible to show part of a time step.

Rules 168 and 100, of which the space-time diagrams for different update probabilities are

displayed in Figures 4.1 and 4.2, do not exhibit very interesting behaviour as a function of p,

because, after a few time steps, the configuration reaches a fixed point in phase space. The

behaviour of rules 30 and 110, displayed in Figures 4.3 and 4.4, on the contrary, seems to be

greatly dependent on the update probability. The largest difference can be seen between the

27
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deterministic case (p = 1) and the case where p is 0.8. From Figure 4.4 it can be deduced that

adding stochasticity can give rise to more chaos in systems that are typically recognised by their

more structured, long-lived patterns (Wolfram Class 4), whereas Figure 4.3 indicates that it can

reduce chaos in systems that have a chaotic deterministic evolution (Wolfram Class 3). Later

on, it will be found that Class 2 ECAs can also exhibit chaotic behaviour when stochasticity is

introduced, but Class 1 ECAs always are unconditionally superstable.

(a) (b) (c)

Figure 4.1: Evolution of SECA 168 from one random initial condition, with p respectively 0.05 (a), 0.5

(b) and 1 (c)

(a) (b) (c)

Figure 4.2: Evolution of SECA 100 from one random initial condition, with p respectively 0.05 (a), 0.5

(b) and 1 (c)

4.2 Stability of SECAs

Many different behaviours were encountered, which makes it not easy to find some sort of

classification as was found for deterministic CAs and asynchronous CAs. Of course, for every

value of p the rules could be classified according to the classification system of Baetens and

De Baets (2010), but the goal here is to find some kind of classification that is based on the

entire set of Lyapunov exponents for the different values of p.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Evolution of SECA 30 from one random initial condition, with p respectively 0.05 (a), 0.2

(b), 0.4 (c), 0.6 (d), 0.8 (e) and 1 (f)

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Evolution of SECA 110 from one random initial condition, with p respectively 0.05 (a), 0.2

(b), 0.4 (c), 0.6 (d), 0.8 (e) and 1 (f)



30 CHAPTER 4. STOCHASTIC CELLULAR AUTOMATA

4.2.1 Normalisation

The first thing that was done to enable a comparison between the MLEs of SECAs and deter-

ministic ECAs was a normalisation. This was done by dividing the Lyapunov exponents in both

cases by the maximum of their respective upper bounds. This maximum is found for µ̄ = 1.

According to Eq. (2.5), the MLE of deterministic CAs can be at most log(3)

For a SCA no upper bound has been reported in literature. However, the same equation is

applicable, but the input sensitivity (µ̄) now depends on the probability p. In the remainder,

the input sensitivity of SCAs will be denoted as µ̄s, while µ̄d will be used to denote the input

sensitivity in the deterministic case. In theory, µ̄s can be found as the p-weighted average of µ̄d,

on the one hand, and the input sensitivity that would be obtained if cells were not updated, on

the other hand. The latter equals 1/V because the state of a cell at time step t+ 1 remains the

same as its state at the time step t, such that the following expression for µ̄s is found:

µ̄s =
(1− p)|T | 1

V
+ p |T |µ̄d

|T |
. (4.1)

Using this expression leads to a mean-field estimate of the upper bound on the MLE for SCA

(λm,s):

λm,s(µ̄, p) = log(µ̄s V ) = log(1− p+ p V µ̄d). (4.2)

The maximum value of this upper bound for a 1D SECA is found for µ̄d = 1, and equals

log(1 + 2p), which is then used to normalise the numerically obtained MLEs of SECAs.

For the sake of completeness, it should be mentioned that this normalisation is not a perfect one,

because the dependence of the MLE on µ̄d is not identical in the stochastic and deterministic

case (see Figure 4.5). This can easily be seen when the exponential of λm,s is considered.

eλm,s = 1− p+ p V µ̄d.

For the deterministic case (p = 1), a linear dependence, with intercept equal to zero, is found,

whereas for p < 1 an extra constant appears. This extra constant leads to a difference when the

natural logarithm is taken. This difference increases as p decreases, so for the limit case where

p = 0, the following normalised MLE is found for deterministic CAs:

λn,d =
log
(
V µ̄d

)
log
(
V
)

=
log
(
V
)

+ log (µ̄d)

log
(
V
)

= 1 +
log (µ̄d)

log
(
V
) , (4.3)
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and analogously for SCAs:

lim
p→0

λn,s = lim
p→0

log
(
1− p+ p V µ̄d

)
log
(
1− p+ p V

)
[ 00 ]
=
H

lim
p→0

−1+V µ̄d
1−p+p V µ̄d
−1+V

1−p+p V

=
−1 + V µ̄d

−1 + V

=
1

1− V
+

V

V − 1
µ̄d . (4.4)

One could argue that perhaps it would then be better to normalise with µ̄d equal to the one

found for every rule. However, normalisation is preferably done on the basis of a constant

reference value, therefore, µ̄d is not varied in the normalisation, but it is put at its maximal

value. Another problem with µ̄d-dependent normalisation can easily be seen when µ̄d = 1/V is

inserted in Eq. (4.2). In the remainder the normalised MLE (nMLE) will be denoted as λn.

deterministic

stochastic Hp = 0.01L

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

md

ln

(a) Normalised MLEs for SCAs with p equal to 1

(deterministic case) and 0.01

0.0 0.2 0.4 0.6 0.8 1.0
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(b) The maximum of the error between a SCA and a

deterministic CA as function of p

Figure 4.5: Theoretical error between the Lyapunov exponents of deterministic and stochastic CAs

after normalisation

An overview of all rules before normalisation along with the upper bound (cfr. Eq. (4.2)) is

given in Figure 4.6. The data points represent the averages of the finite MLEs and the averages

of the input sensitivity µ̄s of the 88 minimal SECAs as a function of the probability p. The

surface represents the upper bound on the MLE, which is given by Eq. (4.2).

The situation on the front pane, p=1, is exactly the same as in Figure 2.6. When p decreases, the

Lyapunov exponent decreases as well, because fewer cells are updated every time step, leading to

a decreased speed of defect propagation. Similar to Figure 2.6, a number of rules do not fit the

upper bound. Those are in general rules with an input sensitivity less than 1/3 or rules with an

input sensitivity larger than 1/3 and low MLE values. Theoretically, the former should lead to a

negative MLE, but CAs are spatially heterogeneous and therefore the local input sensitivity can

be larger than 1/3 while the global one is smaller. A similar reasoning applies to those rules with

an input sensitivity larger than 1/3. Something else that causes some SECAs to deviate from

the theoretical upper bound is the fact that, due to the absence of a second spatial dimension, a

defect that reaches a position from where it cannot further propagate in a certain direction does
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Figure 4.6: Plot of the average finite Lyapunov exponents (λ) and mean input sensitivity (µ̄s) of the

88 minimal rules for different update probabilities (p), along with the upper bound.

not have the possibility to avoid this obstacle. In 2D SCAs this possibility does exist, which

leads to defect propagation rates that are much closer to the theoretical upper bound. In the

limit case where p = 0, the MLE is log(1)/t = 0 and the input sensitivity is 1/V . This point is,

however, never included because it is straightforward and because normalisation is impossible.

4.2.2 Behavioural classes

After normalising the numerically determined exponents, the rules were grouped according to

their nMLEs. To avoid confusion, the newly formed classes will be given letters instead of

numbers. Eventually, the following classification is proposed. First, the rules that belonged to

Class 1 or Class 3 of the classification by Baetens and De Baets (2010) for every p, were grouped

into two classes. These are the rules that are unconditionally superstable or unconditionally

unstable, respectively, irrespective of the update probability p. They will be denoted as Class

A and Class B, respectively. Upon forming these groups, 71 more rules out of 88 remain to be

classified.

The 71 remaining rules were first divided into two groups: rules that for some values of p

lead converging phase space trajectories (Class 1) and rules that never display such behaviour,

irrespective of the update probability. The rules in these groups were then clustered using the

FindClusters algorithm of Mathematica (Wolfram Research inc., 2008) on the basis of their

MLE sequences. This algorithm uses by default the Euclidean distance between corresponding

points as a dissimilarity function. Since the distance to infinity cannot be calculated, −∞ was

replaced by −1. Some post-processing was done to get clusters of rules with similar behaviour.

Finally, the first group, being the one containing rules that for some values of p give rise to

converging trajectories, was divided into three subgroups. Two of them are referred to as Class

C and D. The third subgroup contains rules with properties of Classes C and D, and is referred

to as Class E. These kind of results were to be expected, since classifications are artificial.

For what concerns the subgroup enclosing rules that never give rise to λ = −∞, irrespective of

the update probability, one rule is found, namely rule 74, whose behaviour is almost identical

to that of rule 56, which belongs to Class E. Therefore, rule 74 was added to Class E. Other
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subgroups were not as easily distinguishable, since all rules behave more or less similar. There

are several rules that exhibit specific behaviour that looks like other rules, but never are there

larger subgroups to be found. Therefore these remaining rules were grouped in one class, referred

to as Class F.

Now that different behavioural classes have been defined, it is worthwhile to characterize these

classes in more detail. As mentioned earlier, Classes A and B enclose those rules that are uncon-

ditionally superstable and unconditionally unstable, respectively, irrespective of p. Therefore,

for Class A rules, the number of MLEs that is −∞ is the same as the ensemble size, irrespective

of p, whereas it is zero for all rules belonging to Class B.

The behaviour of the rules belonging to Class C is threefold, as can be seen in Figure 4.7(a)

(and in Appendix Figure A.2). More precisely, for p = 1 or close to 1, conditionally unstable

behaviour is observed. But, as p decreases, a range of p-values exists for which the MLE is −∞
for all members of the ensemble. Finally, when p decreases even further the MLE becomes again

positive and the number of MLEs that equals −∞ decreases with decreasing p.

The behaviour of rules belonging to Class D is twofold, as can be seen in Figure 4.7(b) (and

in Appendix Figure A.3). The distinction in behaviour becomes apparent from investigating

the number of Lyapunov exponents that are −∞, rather than from studying the magnitude of

the Lyapunov exponents. The finite nMLEs are always very close to zero, and would probably

become zero, if an infinite number of time steps could be considered. For p = 1, Class D rules

have more than five members of the ensemble that are unstable (MLE 6= −∞). For lower values

of p, roughly less than five members of the ensemble are unstable. Therefore, we can say that

Class D rules are close to being unconditionally superstable.

Since Class E is the intermediary class between Class C and Class D, the behaviours of the rules

belonging to Class E are internally different and have properties of both classes. The general

trend that can be discerned among the rules in Class F is that the number of members of the

ensemble that lead to converging phase space trajectories is more or less independent of the

update probability p. The nMLE itself is also largely independent of p, leaving some minor

exceptions aside.

When comparing the Lyapunov exponents of Class B and Class F, given in Figures A.1 and

A.5, respectively, it can be seen that they exhibit similar behaviour. In fact it is likely that

there are only four types of behaviour (Classes A, B, C and D), since Class E and Class F are

intermediary classes. The question might arise whether it would not be better to put the rules

in these intermediary classes in one of the four other classes.

The reason why stability in Class C rules decreases again for low values of p is not yet fully

understood, but, the following observation was made when analysing the space-time diagrams of

rules in this class and of the multiplicity of defects. Essentially, it appeared that the initial defect

introduced in SECAs belonging to both Class C and Class D stays very localised in the case

of the deterministic scenario (p = 1). For Class D rules this is still the case when p decreases,

meaning that there is no need for an immediate stabilisation of the system. In contrast, for

Class C rules, defects start to propagate to the left and to the right very quickly, therefore,

stabilisation needs to happen at the start, because otherwise too many cells contain a defect, so
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Figure 4.7: Number of infinite MLEs as a function of the update probability p for Classes C, D and E

of the SECAs.

that stabilisation is no longer possible.

Table 4.1: Classification of the 88 minimal 1D SECAs.

Class Rule number

A 0, 8, 32, 40, 128, 136, 160, 168

B 51, 54, 57, 60, 105, 108, 150, 156, 204

C 1, 3, 7, 19, 23, 50, 178

D 2, 10, 15, 34, 42, 130, 162, 170

E 5, 14, 24, 56, 138, 142, 152, 184

F 4, 6, 9, 11, 12, 13, 18, 22, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 41, 43, 44, 45, 46,

58, 62, 72, 73, 74, 76, 77, 78, 90, 94, 104, 106, 110, 122, 126, 132, 134, 140, 146, 154,

164, 172, 200, 232

4.3 Detailed examination

Now that different classes have been found, an exemplary rule from each class will be examined

in detail. This will be done by looking at their space-time diagram for different values of p,

the standard deviation on the MLE across the members of the ensemble, the final density as

a function of p and a measure for determining the complexity of the configuration at the final

time step. The latter measure is the Lempel-Ziv complexity (LZ) (Lempel and Ziv, 1976), which

will be explained in Section 4.3.4. Besides, for the rules belonging to Class C a close-up of the

range of values of p between 0.99 and 1 will be presented because the stability of SECAs changes

drastically across this range. The rules for which these measures are determined are 150, 23, 130,

152, 110 and 30. Class A rules will not be examined in detail, since their behaviour is trivial,

irrespective of the update probability. More precisely, such rules reach a uniform configuration

after a certain number of time steps and cannot escape from this configuration anymore, leading

to straightforward values of the measures under consideration. It should also be noted that the

MLEs and the detailed measures were calculated in two different runs. This might lead to small

discrepancies due to chance. The space-time diagrams were calculated on the desktop and only

for one combination of IC and IP.
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4.3.1 Space-time diagram

The space-time diagrams of rules 150 (Class B), 23 (Class C), 130 (Class D) and 152 (Class E)

are given in Figures 4.8, 4.9, 4.10 and 4.11, respectively. The space-time diagram of rule 110

(Class F) has already been shown in Figure 4.4. Also rule 30, whose space-time diagram is given

in Figure 4.3, belongs to class F.

Rule 150 displays chaotic behaviour irrespective of the update probability p. For p = 1 triangular

patterns can be discerned, which disappear when p decreases. A shift is observed towards other

short lasting structures, such as black areas, white areas and areas in a striped pattern.

(a) (b) (c)

Figure 4.8: Evolution of SECA 150 from a random initial condition, with p respectively 0.05 (a), 0.5

(b) and 1 (c).

For Class C rules it would be expected to observe some sort of stable pattern for those p that

lead to infinite MLEs. Observing the space-time diagram of rule 23 in Figure 4.9, however,

it can be concluded that this is not the case. So, although this pattern seems chaotic, it is

stable. One could look at this as if the pattern at every time step is so random that one defect

has no effect. When p is decreased beyond the range of values that give rise to infinite MLEs,

patterns (repeats of 01) emerge that seem to be stable. Yet, the MLE indicates that, although

these patterns seem stable, they can be easily disturbed by inserting a defect. This illustrates

the difference between phase space and configuration space. The inherent instability of a series

of 01 is observed when this pattern is tested for the range of values of p where random initial

conditions lead to stability. This test consists of determining the MLE for the following setting:

p = 0.8, the initial condition consists of 50 repeats of 01, the 50th cell is perturbed, 100 time

steps are considered and 30 repetitions are performed to account for the stochastic nature of the

SECA. This leads to only two out of 30 MLEs being −∞ and an average nMLE of 0.615.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Evolution of SECA 23 from a random initial condition, with p respectively 0.05 (a), 0.2 (b),

0.4 (c), 0.6 (d), 0.8 (e) and 1 (f).

The space-time diagrams of rule 130 are consistent with its MLE graphs. The graphs representing

the number of infinite MLEs suggest that in some cases a defect can remain, but the low

magnitude of the remaining positive MLEs indicates that these defects do remain localised. The

development of a uniform configuration in combination with a MLE that can be positive indicates

that in phase space, where single defects are considered, defects are not always cancelled, whereas

in configuration space two or three defects may cancel out each other until all defects are

cancelled.

(a) (b) (c)

Figure 4.10: Evolution of SECA 130 from a random initial condition, with p respectively 0.05 (a), 0.95

(b) and 1 (c).
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Rule 152 is a Class E rule. It differs from rule 130 in that it has fewer MLEs that equal −∞
and that when p decreases beyond 0.1, the finite nMLEs increase towards 0.5. This range of

update probabilities is also the one where the number of infinite MLEs reaches its maximum.

This behaviour is reflected in the space-time diagrams. The situation at p = 0.05 shows that it

takes longer for the SECA to reach a uniform configuration. This means that the chance of a

defect not being cancelled, in configuration space (see space-time diagram) and in phase space

(see MLEs), increases. It is possible that the few positive MLEs at low values of p would also

go to −∞ if t approaches ∞.

(a) (b) (c)

(d) (e) (f)

Figure 4.11: Evolution of SECA 152 from a random initial condition, with p respectively 0.05 (a), 0.2

(b), 0.4 (c), 0.6 (d), 0.8 (e) and 1 (f).

The Class F rules 30 and 110 have already been discussed in Section 4.1. The space-time

diagrams of rule 30 (see Figure 4.3) resemble the ones of rule 23, however, without the situation

where the chaos had increased. Therefore, it is not surprising that this rule is unstable. In the

space-time diagrams of rule 110 (see Figure 4.4) the long-lived patterns that are so typical for

a Class 4 rule, as introduced by Wolfram (1984), are replaced with more chaotic patterns. This

change turns out to have not much effect on the stability.

4.3.2 Standard deviation

The standard deviation (std) of the nMLE across the members of the ensemble of the exemplary

rules is given in Figure 4.12. It is important to notice that the scale of the vertical axis differs

between the six graphs. For the sake of clarity, the nMLEs of the different rules are also given.
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At first, it could be expected that the standard deviation would increase with decreasing p,

since it is to be expected that a lower update probability would introduce additional variability

between the members of the ensemble. This is the case for Class B and Class F rules.
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Figure 4.12: Average and standard deviation of the finite nMLEs of rules 150, 23, 130, 152, 110 and 30

versus the update probability.

For rule 130, and even more pronounced for rule 23, the highest standard deviation is found in

the deterministic case. This can be explained by looking at the difference in the approaches for

determining the MLE between Bagnoli et al. (1992) and Baetens and De Baets (2010). Bagnoli

avoided problems with the incapability of some CAs for certain IP and IC to reach their most

stable configuration by swapping positions of a few cells at every time step. This extra push

makes sure that the CA does not get stuck in an unstable configuration if there exists a more

stable one. On the other hand, the approach used in this thesis does not push CAs to their most

stable configuration, but the stability of a CA is observed across an ensemble of IC, leading to

unstability for some IC. This might explain the big drop in standard deviation, and MLE, for
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rule 23 for the transition region between the deterministic and stochastic settings. A cell that

is not updated can be seen as a push to move away from the configuration in which the CA got

stuck. This reasoning also explains the increase in stability for these two rules, as p becomes

smaller than 1. Another increase in standard deviation for rule 23 is found in the range of values

of p where rule 23 leaps from unconditionally to conditionally stable behaviour. This is to be

expected, since the stochasticity causes a transition to happen around a certain value, but not

exactly at a constant value.

The std plot of rule 152 looks like the one of rule 130. This makes sense, since the MLE plots

of both rules are also very similar. The MLE of rule 152 increases again for very low values of

p, giving rise to a transition zone that brings along an increase in standard deviation here.

From the plots of rules 150, 110 and 30 the magnitude of the standard deviation due to stochas-

ticity can be deduced. The plots also confirms the hypothesis that rules belonging to Class F

are very alike those of Class B.

4.3.3 Density

In Chapter 2 it was mentioned that the density is not a good measure since it does not converge

as t becomes large. The low value of the standard deviation observed in Figure 4.13 indicates

that although this measure does not approach a constant value, it fluctuates around the same

value, leading to a small standard deviation. This does, however, not mean that it is a good

measure for stability, as is clearly illustrated by rule 23, which becomes stable for a certain

range of values of p whereas the density remains constant. The density gives an indication of

the configuration, but it is not very distinctive. The link between the density and the space-time

diagram can easily be seen. When comparing both, it must be kept in mind that the densities

in Figure 4.13 are not based on the space-time diagrams depicted in this dissertation and that

the densities represent the averages over 30 combinations of IC and IP, whereas the space-time

diagrams are based upon one combination of IC and IP.

4.3.4 Lempel-Ziv complexity

The Lempel-Ziv complexity (Lempel and Ziv, 1976), denoted in the remainder as `, can be

defined as follows.

Definition 4.1 Let v = v1v2...vk and w = w1w2...wn be binary strings. v is a prefix of w if

vi = wi for 1 ≤ i ≤ k. If k < n, then v is said to be a proper prefix of w.

Now, y1|...|yr is called the Lempel-Ziv partition of w, if

• yi 6= yj for all i = 1, . . . , r − 1 and j = 1, . . . , i− 1

• w = y1y2...yr

• every proper prefix of yi is equal to a yj for all i = 1, . . . , r and j = 1, . . . , i− 1

The Lempel-Ziv complexity of w, `(w), is then defined as the number of patterns, r, in the

Lempel-Ziv partition of w.
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Figure 4.13: Average and standard deviation of the density (ρ) on the final time step of rules 150, 23,

130, 152, 110 and 30.

According to this definition yr could satisfy yr = yi for some i = 1, . . . , r − 1. If it does satisfy

this condition, w is called an open sequence. Otherwise, w is called a closed sequence. In this

dissertation the Lempel-Ziv complexity of an open sequence will be adjusted in such a way that

it equals r − 1, rather than r, making it equal to the maximal number of unique substrings.

For example, consider the binary string 111000111110100. The Lempel-Ziv partition of this

string is given by 1|11|0|00|111|110|10|0. According to Definition 4.1, the Lempel-Ziv complexity

would be eight, but since this is an open sequence, as the last substring is not unique, the Lempel-

Ziv complexity will be considered seven in this dissertation.

It can easily be seen that the Lempel-Ziv complexity depends on the length of the string.

Therefore, a normalisation will be applied according to:

`n =
`− `min

`max − `min
, (4.5)

where `n, `min and `max represent the normalised LZ (nLZ) and the minimum and maximum

LZ for a string of a given length, respectively. The nLZ has a value between zero and one and

may be used to quantify the complexity of a certain configuration of a (S)ECA at a certain time

step. The higher the complexity, the closer to one the nLZ will be. Uniform configurations will

have a nLZ equal to zero. The average values of the nLZ of the SECA configuration at the last

time step, as a function of p, can be found in Figure 4.15. Before discussing the results, the

convergence of the LZ will be examined. Figure 4.14 shows the nLZ as a function of the time

step for rule 23 with update probability 0.5 for a random initial condition. It can be seen that

no convergence to a fixed value is reached. The results of the exemplary rules show a smooth

line, indicating that, similar to the density, the LZ exhibits some sort of convergence.

Rule 150 behaves as was to be expected. It leads to complex configurations in the deterministic

case and continues to do so when stochasticity is introduced.
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Figure 4.14: The normalised Lempel-Ziv complexity for rule 23 with update probability being 0.5 and

starting from a random initial condition.

The Class C example (Rule 23) seems to have a nLZ that is in concordance with its space-

time diagram (see Figure 4.9). At first, the complexity of the final configuration increases with

decreasing p to reach a maximum and then decreases again with decreasing p.

Generally speaking, the LZ of a CA seems in accordance with its space-time diagram. Therefore,

the LZ can be used as a measure for characterizing the configuration of a CA. A remark can be

made, namely, the LZ suggests that the exemplary rules of Class B and Class F are not as alike

as was indicated in Section 4.2.2. However, this conclusion is only based on one example from

Class B (rule 150) and two examples from Class F (rules 30 and 110). Maybe even Class B rules

exhibit different LZ within their own class. One might also argue that classification was done on

the basis of the rules’ stability in phase space, whereas the LZ is based on configuration space.

To address the problem that only one or two examples are selected, the LZ of all minimal rules

was computed (see Appendix A.1.2). From this data it could be concluded that the LZ profile

of Class B rules is quite uniform, with only minor exceptions. Both Classes C and D exhibit two

different kinds of profiles, which are also mutually different. The LZ profiles of Class E rules can

be divided into four different types, similar as those in Classes C and D. In Class F, a variety

of profiles emerge, both similar to profiles found in other classes and completely new profiles.

This means that the proposed classification based on the MLEs is still more or less valid if the

LZ measure is considered. This is along the line of the expectations, since defect propagation in

configuration and phase space are related, but not identical.

4.3.5 Class C close-up

Recall that Class C rules are rules that are unconditionally stable for a certain range of values

of p. Since the transition between conditional and unconditional stability occurs quickly for

Class C rules, a close-up is considered between p = 0.99 and p = 1 to determine whether this

transition really occurs abruptly or more gradually. The close-ups of the number of infinite

MLEs for Class C rules can be found in Figure 4.16. This graph shows that the transition from

conditional to unconditional stability happens gradually, even for those rules for which it seems

a discrete transition if steps of 0.01 are considered (see Figure A.2) for the update probability.
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Figure 4.15: Average and standard deviation of the normalised Lempel-Ziv complexity (`n) on the final

time step of rules 150, 23, 130, 152, 110 and 30.
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Figure 4.16: Close-up of the number of infinite MLEs for Class C rules for values of p between 0.99 and

1.
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4.4 Two-dimensional cellular automata

The 2D SCAs that are examined in the framework of this thesis are the (2,7) totalistic SCAs

(see Section 2.2.3) (Baetens and De Baets, 2010). This means that there are 256 rules to be

examined.

4.4.1 Normalisation

For the normalisation of 2D (S)CAs the same equations as the ones used in the case of 1D (S)CAs

are applicable, but the value of the average connectivity (V ) should be adjusted appropriately.

For the tessellation used in this dissertation, V equals 6.97. The average MLE as a function

of the input sensitivity and the update probability, as well as the theoretical upper bounds are

given in Figure 4.17.

4.4.2 Behavioural classes

Upon classifying the rules in this family in a similar way as was done in Section 4.2.2 for the

SECAs, a few issues arise. First of all, Class B, enclosing the unconditionally unstable SCAs,

turns out to be empty. This might be due to the totalistic nature of the CAs in combination with

their irregularity. The irregularity leads to the introduction of a threshold on the sum of states

that is taken into account above which an increase in the sum of the states of the neighbouring

cells has no further effect (see Section 2.2.3). For (2,7) totalistic CAs, this threshold is seven.

Analysing the number of neighbours of the tessellation learns that around twelve percent of the

cells have more than seven neighbours. Because Class B is empty, a little flexibility regarding

unconditionally unstable behaviour is applied. More precisely, if 28 or more members of the en-

semble have a positive MLE, for a certain value of p, the rule is considered to be unconditionally

unstable, and similarly for unconditionally stable SCAs. By doing this, Class A (unconditionally

stable) and Class B (unconditionally unstable) contain, respectively, twenty and nineteen rules.

The remaining rules are divided into two groups, those that are for some values of p uncondi-

tionally stable and those that are not. The former can be divided into two distinct classes (C

and D, see Figure 4.18) and one class that is an intermediary one between Class A and Class C

or Class D. This last class is not named yet, since it will be merged with other classes. The

second group is not split any further and will be referred to as Class F. Although there are

some rules (for example, rules 65, 161 and 228) with distinct behaviour in Class F, they are not

assigned to a separate class. Moreover, rules 23 and 95 are moved from Class F to Class D.

Finally, the rules in the intermediary class located in the first group are merged with Class F.

One could also argue that the intermediary class of the first group should be kept as a separate

class. However, Class F contains several rules that exhibit behaviour related to the unnamed

intermediary class, leading to difficulties in deciding which rule of Class F to consider as related

with Class C or Class D. The graphs of the number of infinite MLEs, the averages of the finite

nMLEs and the averages of the input sensitivity as a function of the update probability p can

be found in Appendix A.2.

As a conclusion to this section it can be seen that Classes A, B and C for 2D SCAs are more or

less similar to the corresponding 1D SECAs classes. The behaviour of these classes, however, is
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Figure 4.17: Plot of the average finite Lyapunov exponents (λ) and average input sensitivity (µ̄) of the

256 (2,7) totalistic SCAs for different probabilities (p), along with the upper bound

less pronounced for 2D SCAs. This is clear from the fact that a certain amount of flexibility was

necessary to have Class B rules and from the fact that the range of values of p for which Class C

rules become unconditionally unstable is not as clear-cut. Class F of 2D SCAs corresponds with

Class F of 1D SECAs as well, but it contains some extra rules, being those that are for 1D

SECAs classified into Classes D and E.

Table 4.2: Classification of the 256 2D (2,7) totalistic SCAs.

Class Rule number

A 0, 16, 32, 64, 80, 96, 128, 144, 160, 192, 208, 224, 248-255

B 20, 21, 42, 43, 74, 84-86, 106, 107, 148, 149, 170, 171, 202, 203, 212-214

C 1, 3, 7, 15, 31, 62, 63, 124-127

D 11, 23, 47, 95

F 2, 4-6, 8-10, 12-14, 17-19, 22, 24-30, 33-41, 44-46, 48-61, 65-73, 75-79, 81-83, 87-94, 97-

105, 108-123, 129-143, 145-147, 150-159, 161-169, 172-191, 193-201, 204-207, 209-211,

215-223, 225-247

4.5 Conclusion

Overall, it can be concluded that the update probability does affect the stability, determined

by the Lyapunov exponent, of some CAs. However, there are different ways of interference

between the update probability and stability. For some rules one of more bifurcations arise.

These bifurcations could be called stochastic bifurcation, analogous to topological bifurcations

when the effect of topology is investigated (see Section 2.3.3).

As indicated in the above section, some 2D CA classes are not found in 1DCAs and vice versa.

This indicates that there is need for a unified classification of SCAs. Furthermore, Class F,

which now contains the rules that could not be classified in any of the other classes, might also

be divided into more classes. One possibility to do this is based on whether or not a rule displays
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Figure 4.18: Number of infinite MLEs as a function of the update probability p for Classes C and D of

the 2D stochastic (2,7) totalistic CAs.

the typical behaviour as a function of the update probability. This typical behaviour consists

of µ̄s having linear dependence on the update probability and the MLE being a horizontal line

that bends down a little for small values of p.
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5. Alternating cellular automata

For the sake of curiosity, another family of CAs will be examined briefly, namely the family

of so-called alternating cellular automata (ACAs) (Buchholz et al., 2000). In this dissertation,

ACAs are CAs that evolve according to two ECA rules, each of them applied at every other time

step. The effect on the stability of combining a given rule with every other rule will be examined.

In Figure 5.1 the bar charts summarize the change in stability. A change in stability is defined

here as a transition between one of the behavioural three classes as proposed by Baetens and

De Baets (2010) (see Section 2.3.2). Therefore, rules that remain Class 2 are considered as being

equally stable, irrespective of the possible change in number of members in the ensemble that

give rise to MLEs equal to minus infinity.

The results for the Class 1 (unconditionally superstable) rules are a bit surprising. It could have

been expected that the stability of these rules does not change when combining them with other

rules, since they lead to a uniform configuration, as such cancelling every defect. With respect to

rule 0, for which the uniform configuration is reached after one time step, this is indeed the case.

But other rules that normally need a few more time steps to reach a uniform configuration seem

to leave, in some cases, enough time for the unstable rule to create so many defects that they

cannot be cancelled by the stable rule. However, most Class 1 rules whose stability decreases

move to Class 2. Only rule 40 combined with rule 29 and rule 168 combined with rules 57, 105

and 156 become unconditionally unstable (Class 3).

The results of Class 2 rules are also not as obvious as expected. The results clearly show that

combining a Class 2 rule (conditionally (un)stable) with rules other than Class 1 rules can

increase the stability. This is shown in more detail in Figure 5.2. This figure clearly proves

that combining a conditionally (un)stable rule with an unconditionally unstable rule can lead

to Class 1 (unconditionally stable) behaviour. The question now arises whether combining two

unconditionally unstable rules could also lead to Class 1 behaviour. This turned out to be not

the case.
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Figure 5.1: Bar chart of the change in stability of Class 1, 2 and 3 ECA rules, representing the number

of rules that lead to decreased (white), equal (gray) or increased (black) stability when

combined with the rule at hand. On the horizontal axis the rule number of the rule at hand

is given.
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Figure 5.2: Distribution of the classes where rules that increase stability for class 2 rules come from.

White (Class 1), gray (Class 2), black (Class 3).
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6. Practical model

6.1 Rationale

Now that several theoretical SCAs have been examined, it is time to use the insights gained

throughout Chapter 4 to unravel the dynamics of a SCA mimicking a real-world process. An

attempt was made to find a model that is as alike the theoretical cases as possible. This means

that the model should have the following characteristics:

1. it should have only two states,

2. be stochastic,

3. be two-dimensional,

4. and be constituted of a CA senso stricto.

Especially the first and the last requirement are hard to fulfil, since two-state CAs either model

only one substance/organism or empty spaces do not exist. These simple two-state CAs are often

of a mainly theoretical nature or require extra information, mostly in the form of a coupled-

map lattice. Aside from these four characteristics, two additional properties are preferred,

being: that the CA should be homogeneous and the model should be governed by only one

parameter. These two additional properties are mainly practical, since a heterogeneous CA

would significantly increase the complexity and, therefore, the required computing time, whereas

multiple parameters would require either multi-dimensional graphs of the MLE as a function of

the parameters or assessing the influence of one parameter on the stability while keeping the

other parameters fixed.

Most of the models given in Section 2.2.6 fail to meet the first requirement. The paper in which

a CA is used to represent interaction between amino acids (Diao et al., 2008) does not meet

the third requirement. The only model that fulfils all four requirements is the model for forest

spatial dynamics (Kubo, 1996). Yet, this model has multiple update probabilities, which would

significantly complicate the stability analysis.

6.2 Bacterial competition with uniform update probability

Since no suitable models were found in literature, a new model was constructed, based on the

model of Reichenbach et al. (2008). At first, a model for bacterial growth was conceived, in which

the two states were: a living cell, represented by 1 and an empty space or a dead cell, represented
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by 0 (see Appendix B.1). However, this model was quickly put aside and a competition model,

for competition between two species, was developed. Since no cyclic domination can be used

when dealing with only two species, another competition mechanism had to be used. Also, no

empty spaces were allowed, to limit the number of possible states to two.

6.2.1 Model kinetics

The rule that was used to model the competition was the majority rule, meaning that competi-

tion leads to victory of the species that has the most congeners in the considered neighbourhood.

On a regular square grid the majority rule is the (32, 5) totalistic rule for a Moore neighbour-

hood and the (56, 5) totalistic rule for a von Neumann neighbourhood. A regular grid is used

because otherwise the majority rule would require a heterogeneous CA. The most straightfor-

ward implementation of the rate of competition is by using a uniform update probability. This

means that, at every consecutive time step, every cell has a certain probability of being updated.

In this way this model is very similar to the theoretical models in Section 4.4.

6.2.2 Results

The stability was tested for an ensemble of ten random ICs and with each a random IP. The

averages of the finite Lyapunov exponents, as well as the standard deviation, are shown in

Figure 6.1(a) and Figure 6.1(c), for a Moore and von Neumann neighbourhood, respectively.

The corresponding numbers of infinite Lyapunov exponents are given in Figure 6.1(b) and Fig-

ure 6.1(d).

These graphs indicate that the competition model with a homogeneous update probability can

be classified as a Class F SCA. This was to be expected, since the one-dimensional form of

the majority rule, being rule 232, also belongs to Class F (see Table 4.1). However, when a

von Neumann neighbourhood is used, the degree of instability appears to be more pronounced

than when a Moore neighbourhood is used. This is to be expected, since the size of a von

Neumann neighbourhood is markedly smaller than that of a Moore neighbourhood, implying

that the effect of a single defect is more pronounced. The dependence of the stability on the

topology was already mentioned in Section 2.3.3 and is observed here in practise. This means

that although this thesis is about assessing the effect of the update probability on the stability,

other influential factors should not be discarded in a thorough stability analysis.

6.3 Bacterial competition with varying update probability

In the previous section the update probability was assumed to be the same for every cell. It

would, however, make sense that competition would happen faster as one species is increasingly

outnumbered by the other in its neighbourhood. The dependence of processes on the local

population density is a well-established concept in population ecology (Rockwood, 2009). A

similar dependence of the update probability on the neighbourhood is used in the gap dynamics

model of Kubo (1996). In the field of microbiology, a well-known example of density dependence

of physiological processes is quorum sensing (Swift et al., 2001).
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Figure 6.1: Average normalised Lyapunov exponents and number of infinite Lyapunov exponents for

the competition model with uniform update probability for a Moore neighbourhood (a, b)

and for a von Neumann neighbourhood (c, d).

6.3.1 Model kinetics

The model is similar to the previous model, except for the fact that that the update probability

is no longer homogeneous. Instead, the update probability depends on the minimal update

probability, denoted as pm, which is the update probability when neither of the species in a cell’s

surroundings has the majority. The surroundings of a cell is defined here as the neighbourhood

without the cell itself and the number of organisms of species A in the surroundings is denoted

as z. The maximum rate of competition is assumed to correspond with an update at every

time step (update probability p = 1), and occurs when the surroundings only contains cells of

one species (z = 0 or z = |N | − 1). The only parameter in this model is the minimal update

probability pm. The dependence of the update probability on the surroundings is illustrated in

Figure 6.2.

6.3.2 Results

This alteration of the place in the model where stochasticity is included has two consequences.

Firstly, a minimal update probability equal to zero is not a trivial case, and secondly, normali-

sation is not possible, since the update probability is spatially heterogeneous. The results (see

Figure 6.3) appear to be consistent with the results of the model with a homogeneous update

probability. Besides the effect of the neighbourhood on the stability, also an effect of the chosen

combination of IC and IP seems to have an effect. This can be seen by looking at the number of

infinite MLEs across all minimal update probabilities of each member of the ensemble, instead
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Figure 6.2: Update probability as a function of the number of species A in a cell’s surroundings (z).

of looking at the number of infinite MLEs across all members of the ensemble for each minimal

update probability. For the Moore neighbourhood, the number of infinite MLEs, across the

different values of the minimal update probability pm, varies between 24 and 50 out of the 51

considered minimal update probabilities. For the von Neumann neighbourhood, it varies be-

tween 7 and 46. This indicates that for the SCA at hand, there are regions with more stability

and regions with less stability. This is also reflected in the configuration at equilibrium (see

Figure B.2).

6.4 Continuous model

Reichenbach et al. (2008) developed a method for transforming a SCA into a set of PDEs.

This method will be used here to get the mean-field counterpart of the model with uniform

update probability. Since this model only has two states, one PDE suffices. If a von Neumann

neighbourhood is considered and the density of species A and B at time t and position (x, y) is

represented by X(x, y, t) and Y (x, y, t), respectively, the change of X can be described by the

following equation:

∂X

∂t
= −pX(x, y, t)

(
Y (x+ ∆x, y, t)Y (x−∆x, y, t)Y (x, y + ∆y, t) (6.1)

+ Y (x+ ∆x, y, t)Y (x−∆x, y, t)Y (x, y −∆y, t)

+ Y (x−∆x, y, t)Y (x, y + ∆y, t)Y (x, y −∆y, t)

+ Y (x+ ∆x, y, t)Y (x, y + ∆y, t)Y (x, y −∆y, t)
)

+p Y (x, y, t)
(
X(x+ ∆x, y, t)X(x−∆x, y, t)X(x, y + ∆y, t)

+X(x+ ∆x, y, t)X(x−∆x, y, t)X(x, y −∆y, t)

+X(x−∆x, y, t)X(x, y + ∆y, t)X(x, y −∆y, t)

+X(x+ ∆x, y, t)X(x, y + ∆y, t)X(x, y −∆y, t)
)
.

This equation was found by following this reasoning. If the central cell is occupied by species A,

it will switch to species B if three out of four cells of the surroundings are of species B, leading

to a negative contribution. The speed of this transition is p. The positive contribution is found

when the central cell is of species B and three or four out of four cells in the surroundings
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Figure 6.3: Average normalised Lyapunov exponents and number of infinite Lyapunov exponents for

the competition model with varying update probability for a Moore neighbourhood (a, b)

and for a von Neumann neighbourhood (c, d).

are of species A. In this equation all terms that are evaluated at a position adjacent to the

central position are replaced by their Taylor series, dropping third and higher order terms.

Subsequently, ∆x and ∆y are replaced by ∆r. Also, X(x, y, t) and Y (x, y, t) are replaced by

X and Y , respectively, for the sake of brevity. The following equation is now obtained for the

change of X:

∂X

∂t
=
p

4
Y
[
16X3 + 12∆r2X2∇2X (6.2)

+∆r4

(
−4

(
∂X

∂y

)2 ∂2X

∂x2
+
∂2X

∂y2

(
−4

(
∂X

∂x

)2

+ ∆r2∂
2X

∂x2
∇2X

))]
−p

4
X
[
16Y 3 + 12∆r2Y 2∇2Y

+∆r4

(
−4

(
∂Y

∂y

)2 ∂2Y

∂x2
+
∂2Y

∂y2

(
−4

(
∂Y

∂x

)2

+ ∆r2∂
2Y

∂x2
∇2Y

))]

+
p

2
∆r2XY

[
−4

(
∂X

∂y

)2

+ 4

(
∂Y

∂y

)2

− 4

(
∂X

∂x

)2

+ 4

(
∂Y

∂x

)2

+∆r2

((
∂2X

∂y2

)2

−
(
∂2Y

∂y2

)2

+ 4
∂2X

∂y2

∂2X

∂x2
− 4

∂2Y

∂x2

∂2Y

∂y2
+

(
∂2X

∂x2

)2

−
(
∂2Y

∂x2

)2
)]

Using the fact that ∆r6 ≈ 0 and ∆r4 ≈ 0, the following simplified equation is found:
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∂X

∂t
= pXY

[
4X2 − 4Y 2 + 2∆r2

(
−
(
∂X

∂y

)2

+

(
∂Y

∂y

)2

−
(
∂X

∂x

)2

+

(
∂Y

∂x

)2
)

(6.3)

+3∆r2X∇2X − 3∆r2Y ∇2Y
]
.

Since no empty spaces are allowed, it may be said that X = 1− Y . Inserting this into Eq. (6.3)

leads to:
∂X

∂t
= p(1−X)X(2x− 1)

[
4 + 3∆r2∇2X

]
. (6.4)

For the numerical solution of this equation the Mathematica function NDSolve (Wolfram Re-

search inc., 2008) was used. The method of lines was chosen to solve the PDE and the spatial

discretisation was done by using the tensor product grid method with a minimum of 101 points.

The derivatives were approximated pseudospectrally. Dirichlet boundary conditions were im-

posed, consisting of the initial values at the boundaries. The initial condition that was used for

solving the PDE can be found in Figure 6.4 and is described by

X (x, y, 0) =

√
xy

4
(sin(10x) + 1) (sin(10y) + 1) .

However, since for the Taylor series, ∆r → 0, Eq. (6.3) can even further be simplified to:

∂X

∂t
= 4p(1−X)X(2X − 1). (6.5)

The solution of this equation was not much different from the one of Eq. (6.3) and due to its less

complicated structure the minimum number of points considered by the tensor grid discretisation

could be raised to 401, leading to the solution as shown in Figure 6.5. This solution was found

for p = 0.9 and t = 15, starting from the initial condition given in Figure 6.4. At the transitions

between density 1 to 0, discretisation errors can be observed. Since Eq. (6.5) has no spatial

derivatives, it can be solved for a single point in space. Figure 6.6 shows the solution for an

initial condition of X = 0.4 for several values of the update probability. This clearly illustrates

the influence of the update probability on the rate of change in density. The steady state

solutions of Eq. (6.5) can also be easily found by setting the time derivative to zero: X = 1,

X = 0 and X = 0.5.

The solution that was found lives up to the expectations, because at the positions where species A

has the majority the density of species A reaches the maximum density and in all other cases

it goes to zero. The problem is that there are no spatial derivatives present in Eq. (6.5), which

means that there is no possibility of colony formation if the initial condition would be composed

of very small, very close colonies. This grouping into larger colonies is observed in the SCA

model. Therefore, like in the paper of Van der Weeën et al. (2011), it might be necessary to

include a diffusion/motility term, even though this is not explicitly included in the SCA model,

because motility requires empty spaces to go to.
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(a) (b)

Figure 6.4: 3D-plot (a) and contour plot (b) of the initial condition that was used to solve the PDE

representing the continuous counterpart of the majority rule in the case of a von Neumann

neighbourhood.

(a) (b)

Figure 6.5: 3D-plot (a) and contour plot (b) of the solution of the most simplified continuous ap-

proximation of the competition model for t = 15, for p = 0.9 and for a von Neumann

neighbourhood.
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Figure 6.6: Plot of the solution of the most simplified continuous approximation of the competition

model for several update probabilities.



7. Conclusions

Generally speaking, it may be concluded that based on the stochasticity, different stability

regimes can be distinguished. A few behavioural classes seem to emerge only in either one-

dimensional or in two-dimensional SCAs. This indicates the need for a unified classification.

Furthermore, it might be appropriate to discard the intermediary Class E of the 1D SCAs and

classify the rules it contains in either Class C or Class D. For Class F, which is now considered as

some sort of rest class, a division could be performed. Rules which, to a certain extent, comply

with the general behaviour of SCAs, described in Section 4.5, can be put in one class, denoted

here as Class F’, and the other rules can be put in an other class, denoted here as Class F”. One

could then argue that Class A and Class B also comply with this general behaviour and that

the only difference lies in the number of members of the ensemble that lead to infinite MLEs.

It follows then that these two classes combined with Class F’ represent the expected behaviours

of SCA and that Class C, Class D and Class F” represent eccentric behaviours.

It can be said that most SCAs exhibit, when considering the MLE, the same behaviour across all

update probabilities. However, some SCAs have one or more bifurcation points. This indicates

that for some rules the influence of stochasticity is not limited to the rate at which the CA

evolves, but that it can also influence the Lyapunovian stability. The Lempel-Ziv complexity

indicated that, besides effects on the stability, also changes in the emerging configurations occur.

This was already demonstrated by Bouré et al. (2012) by observing the density, which holds

slightly less information than the Lempel-Ziv complexity. However, the latter only applies to

1D CAs and, therefore, nothing can be said about configurational changes in 2D CAs.

The results of the competition model indicate that besides bifurcations that can be traced back

to the stochasticity, topological bifurcations also have to be accounted for in a stability analysis.

59



60 CHAPTER 7. CONCLUSIONS



8. Future developments

The classification set forth in this thesis was mainly based on the Lyapunov exponents. It might

be useful to use the input sensitivity µ̄s as the basis for classification. The input sensitivity is

related to the MLE, but there are important differences. For instance, the input sensitivity is

always a value between zero and one and is therefore never −∞, which makes the processing

of data easier. The input sensitivity is also linked more directly to the configuration than the

MLE.

On a related topic, it might be useful to express µ̄s differently. It is now based on the Boolean

derivative of every cell, leading to 1/V for an update probability p = 0. If for the calculation of

µ̄s only the Boolean derivatives of the updated cells would be used, the theoretical curve of the

input sensitivity as a function of the update probability would be a horizontal line. This way

shifts in average input sensitivity and, therefore, configuration can be noticed easier. An extra

advantage is that classification could be done based on the size of the area included between

the line of the input sensitivity as function of the update probability and the line representing

µ̄s = 1/V .

Since the value obtained for the MLE does not only depend on the update probability, but also

on the chosen IC and IP, it might be useful to assess the stability of every cell for a certain IC.

The stability for a certain cell could be determined by calculating the MLE a certain number

of times. The extent of intra- or inter-cellular variation of the MLE is an indication of the

relative influence of the stochasticity and the topology on the stability, respectively. This could

be repeated for several IC.
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