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Abstract

Multi-enzyme processes are considered the next-generation of biocatalytic applications. In order

to get a thorough understanding of their complex dynamic behaviour, mathematical modelling

can be used as a valuable tool. In this work, a theoretic study of a deterministic kinetic model

based on the bi bi compulsory-order ternary-complex mechanism of lactate dehydrogenase is

conducted. Nowadays, calibration of enzyme kinetic models is no longer restricted to laborious,

reagent demanding and error-prone graphical analysis because of the availability of high-speed

computers which allow for nonlinear dynamic regression of the entire progress curve. In this

respect, practical identifiability of batch reaction experiments was investigated using the global

SIMPSA optimisation algorithm. Analysis revealed that no unique set of optimal parameters

could be found even when multiple improvements to the objective function and experimental

design were implemented. This clearly indicates that the complete model based on progress

curves of batch reactions lacks practical identifiability. In addition, structural identifiability

analysis, using the DAISY software package, was unsuccessful since computational problems

occurred due to the highly complex model structure. Therefore, an alternative approach based

on a decomposition of the full model was investigated. This method, proposed by Al-Haque

et al. (2012), shows clear advantages since both structural and practical identifiability, using

noise-corrupted in silico data, of the initial rate models are guaranteed. However, such stepwise

incremental methods require lots of different data sets to calibrate the models. In this respect,

a case-specific subset selection algorithm was used to select the most informative experimental

designs. From the analysis it can be concluded that only three well-selected experiments are

needed for accurate parameter estimation, when using a global optimisation algorithm and

noise-free data. Finally, as a proof of concept, virtual simulations of a tri-enzyme process for

the production of (S)-1-phenylethylamine were conducted to show the potential of multi-enzyme

systems.
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Samenvatting

Multi-enzym processen worden aanzien als de nieuwe generatie van biokatalytische toepassingen.

Om inzicht te krijgen in hun complexe dynamische gedrag kunnen wiskundige modellen gebruikt

worden. In deze thesis werd een theoretische modelleerstudie uitgevoerd met betrekking tot

het enzym lactaat dehydrogenase, dat het bi bi compulsory-order ternary-complex mechanisme

volgt. Kalibratie van kinetische enzymmodellen is tegenwoordig niet langer beperkt tot een

grafische analyse, die zeer arbeidsintensief en foutgevoelig is. Computers met hun enorm reken-

vermogen kunnen immers vandaag de dag ingezet worden en deze laten niet-lineaire dynamische

regressie van het volledige concentratieverloop toe. Dit liet toe de praktische identificeerbaarheid

van batchgewijze experimenten na te gaan door gebruik te maken van het globale SIMPSA op-

timalisatie algoritme. Uit dit onderzoek is echter gebleken dat er geen unieke set van optimale

parameters kan bepaald worden. Zelfs na het aanbrengen van verscheidene aanpassingen aan

zowel objectief-functie als aan het experimentele ontwerp werd geen verbetering waargenomen.

Dit wijst er duidelijk op dat het volledige model, gebasseerd op het totale concentratie verloop

van batch reacties, niet praktische identificeerbaar is. Tevens werden er computationele proble-

men vastgesteld wanneer de structurele identificeerbaarheid werd bepaald door middel van het

DAISY software pakket, wat te wijten is aan de hoge complexiteit van het model. Om deze

redenen werd geopteerd voor een alternatieve aanpak waarbij het volledige model opgesplitst

wordt. De stapsgewijze incrementele methode voorgesteld door Al-Haque et al. (2012) heeft

het voordeel dat zowel structurele en praktische identificeerbaarheid gegarandeerd zijn voor de

gebruikte initiële reactie modellen wanneer met ruis verstoorde in silico data gebruikt wordt.

Echter, dergelijke methode vereist heel wat experimentele data voor het kalibreren van de ver-

schillende modellen. Daarom werd een specifiek subset selectie algoritme voorgesteld, om zo

de meest informatieve experimenten te selecteren. Uit deze analyse kon besloten worden dat

er slechts drie goed gekozen experimenten nodig zijn om de parameters accuraat te schatten,

gebruik makende van een globaal optimalisatie algoritme en perfecte data. Tot slot werden

ook virtuele simulaties van een tri-enzym process dat kan instaan voor de productie van (S)-1-

phenylethylamine, uitgevoerd. Deze simulaties gaven naast proof of concept ook het potentieel

van multi-enzym systemen weer.
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PART I
INTRODUCTION





Background

The urge for environmentally friendly products and production processes recently gained tremen-

dous attention. Current industries are pushed to find innovative green alternatives while main-

taining product quality, or even improving it. In this respect, biocatalysis has become a key

component in many industrial production processes. The mild operational conditions and the

effective utilisation of raw materials are often cited as the most important positive features of

nature’s catalysts. However, most industrial applications are limited to enzymes that perform

relatively simple chemistry since these biocatalysts do not require expensive chemical auxiliaries,

e.g. pyridine nucleotide cofactors. This is one of the reasons why, to date, the production of

fine chemicals such as pharmaceuticals is still limited to processes comprised of relatively sim-

ple steps. Clearly, such multi-step procedures are laborious, expensive and time consuming.

Nonetheless multi-enzyme processes in which the catalytic activity of multiple enzymes working

together simultaneously, may offer clear solutions. Indeed, such processes can be used as an in-

novative alternative for effective recycling of the cofactors needed in more complex biocatalytic

conversions. However, few cases have been implemented at pilot or industrial scale because of

the increased complexity of these next-generation processes. Therefore, detailed knowledge of

the process technology is essential for effective implementation and operation. Modelling and

simulation may assist in exploiting the potential benefit of these processes. Nowadays, reliable

mathematical models are increasingly used for design, optimisation and control of industrial

processes. However, few mathematical models have been developed for describing the dynamic

behaviour of multi-enzyme processes. Yet, the individual enzymatic conversions should first be

understood. Numerous techniques exist to calibrate and validate single enzyme reaction models.

As long as no powerful computers were available, scientists relied on analytic and graphical tools

for fine-tuning their models. Although those techniques have shown to be very useful for simple

cases, highly complex systems which are common in systems biology require more advanced

numerical techniques. Despite the ever increasing availability of qualitative data, calibration of

complex models using such computationally demanding techniques still remains a hard nut to

crack.

Objectives

In this MSc. thesis a tri-enzyme process which can be used for the production of an important

synthon in the pharmaceutical industry will be investigated. In particular, the research will

focus on one of the three reactions in this system, i.e. the lactate dehydrogenase conversion.

In a first step, identifiability of the complete kinetic model will be evaluated. Structural identi-

fiability will be scrutinised using an existing software toolbox specifically designed for nonlinear

3



dynamic models. Furthermore, practical identifiability of the model will be assessed using dif-

ferent approaches.

The second part of this thesis deals with experimental design. In this respect, a recent study of

Al-Haque et al. (2012) which claims to provide an attractive alternative for model calibration

based on decomposition of the complete model, will be thoroughly investigated w.r.t. experi-

mental design. Regarding this approach, a straightforward case-specific method for selecting

informative subsets of experiments will be developed and evaluated.

Finally, the usefulness of the tri-enzyme system for the production of (S)-1-phenylethylamine

will be demonstrated using virtual simulations.

Outline

This thesis is comprised of four major parts: “Literature review”, “Materials and methods”,

“Results and discussion” and “Conclusion and perspectives”.

In the first part an extensive review of the available literature is provided in order to gain insight

into the subject of enzyme kinetics modelling. First, an introduction to general principles within

the field of biocatalysis is given. The case study, which laid the foundation for this research, is

also discussed in the first chapter. Next, a brief yet profound overview on the construction and

use of enzyme kinetic models is given. Chapter 3 of the literature review concerns the different

methods for calibrating these models. At the end of this part, the use of optimal experimental

design for enzyme kinetic models is described.

The second part deals with the different methods and software packages used in this thesis. To

get the reader acquainted with the subject of mathematical modelling and mathematical tools

such as parameter optimisation, identifiability analysis, sensitivity analysis and subset selection,

a clear introduction is given first. Subsequently, the different software packages, as well as their

use, are explained. The last chapter of this part concludes with the used experimental data and

how they were obtained.

The “Results and discussion” part in this thesis is divided in three major chapters. The first

chapter deals with the different methods that were used to evaluate practical identifiability of

the complete model as well as structural identifiability. For practical identifiability a division is

made between the standard approach and approaches using different improvements. In the next

chapter, a robust method for calibrating enzyme kinetic models is evaluated w.r.t. experimental

design. Since this method decomposes the complete “progress curve” model into less complex

“initial rate” models, the focus in this chapter is shifted towards the latter type of models.

Different analyses such as practical identifiability and sensitivity analysis, were conducted in

order to get a better understanding of the used initial rate model. It is also in this part of the

4



thesis that the results of a self-implemented subset selection algorithm are discussed. The third

chapter of this part is dedicated to simulation results of the coupled tri-enzyme system.

Finally, in the last part of this thesis the main conclusions that can be drawn from the obtained

results are summarised and recommendations for future research are given.
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LITERATURE REVIEW





CHAPTER 1
Biocatalysis

1.1 Introduction to the field of enzyme technology

Catalysis can be defined as a process in which the reaction rate of chemical reactions is increased

by the use of a substance which is not consumed during the reaction, i.e. the catalyst. Not only

modern industrial chemical processes but also nature uses catalysts for speeding up most of its

biochemical conversions. Nature’s catalysts are known as biocatalysts and were discovered only

two centuries ago. Nevertheless, they have already been used for thousands of years in brewing

and baking processes (Thompson, 1986). Biocatalysts play a key role in all living organisms on

Earth as they regulate and control all metabolic reactions.

The first fully enzymatic industrial process dates from the mid-1960s and was developed for

the conversion of starch into glucose syrup using a bacterial α-amylase and a fungal γ-amylase

(Illanes, 2008). Nowadays, state-of-the-art enzyme technologies such as asymmetric synthesis

have become well-established manufacturing processes (Nestl et al., 2011). It is forecasted that

the global market for industrial enzymes will reach up to US$ 3.74 billion by the year 2015.

The main driving forces for market growth include new enzyme technologies that enhance cost

efficiency and productivity, but also the growing interest among consumers for greener products

(GIA, 2012). This argument follows from the fact that these biomolecules are able to work

under rather mild conditions, i.e. gentle temperature, pH and pressure which saves on energy

and chemical addition.

1.2 Enzyme cofactors

In a general biocatalytic conversion one (or more) substrate(s) is converted into the desired

product(s) using the enzyme as a catalyst. However, some enzymes need an additional helper

molecule in order to be active, i.e. a cofactor. Cofactors are either inorganic metal ions like

Mg2+, Fe2+ and Zn2+ or small organic molecules known as coenzymes such as NADH, flavin

adenine dinucleotide (FADH) and adenosine-5’-triphosphate (ATP). These helpers can either be

9
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converted or recycled during the catalytic reaction. In the former case, an additional regeneration

reaction is needed to reobtain the active cofactor (Willner and Mandler, 1989).

1.3 Multi-enzyme processes

Classically, industrial synthesis of fine chemicals such as bioactive molecules is carried out in

multiple steps. Here, each step comprises a single chemical reaction. Although this approach

allows for excellent control, it requires a lot of time, energy, labour and space. Moreover, large

amounts of waste are produced, resulting in relatively low yields caused by the purification step

usually needed after each reaction in the sequence (Garcia-Junceda, 2008). Recent research

is aiming at the reduction of the economic and environmental impact of such processes. A

possible way to achieve this is by combining multiple reactions in one step. In this way no

intermediate purification steps are needed. The idea of combining multiple steps is not only

applicable for pure chemical conversions, but also enzyme-catalysed reactions can be combined,

giving rise to a multi-enzyme process in which two or more enzymes are present in the same

biochemical reactor (Cornish-Bowden, 2004; Santacoloma, 2012). Multi-enzyme conversions are

merely a scale expansion of what is happening in the cell metabolism. However, the aim is not

to reproduce the whole metabolic network but only a desired part of it.

Various configurations for multi-enzyme conversions exist. A first type is a cascade in which the

product of a first reaction is used as a substrate for a second reaction. Other possibilities are

parallel reactions and the network configuration of reactions. In the former multiple enzymes

compete for the same substrate whereas in a network configuration certain components are used

as connections between multiple reactions of the overall configuration. An example of such a

multi-enzyme network configuration is an enzymatic cofactor regeneration cycle. Some cofac-

tors, such as NADH or FADH, have to be reactivated after their intervention in the biocatalytic

conversion (Section 1.2). Continuous addition of active cofactor seems an obvious solution. How-

ever, this approach is impracticable because cofactors are still very expensive (Serrano Briega,

2011). A more feasible solution is the implementation of an additional regeneration reaction

whose sole function is to reactivate the inactivated cofactors (see Figure 1.1) (Santacoloma,

2012).

Enzyme 1
A B

DC
Enzyme 2

Active cofactor Inactive cofactor

Figure 1.1: An enzymatic cofactor regeneration cycle.

Full-scale examples of multi-enzyme processes are still exceptional. This is mainly due to the
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higher degree of complexity of these systems compared to single-enzyme systems. Therefore,

it is necessary to gain insight in the behaviour of enzymes and substrates in such complex

environments. Note that, although the conditions can be very favourable for a certain step in

the conversion, it could be that this is not the case for the other steps. In such cases enzyme

engineering may offer solutions (Santacoloma, 2012).

1.4 (S)-1-Phenylethylamine (PEA) for optical pure amines

The previous section dealt with the general characteristics of multi-enzyme processes. In this

section a detailed description of the tri-enzyme process for the production of enantiopure (S)-1-

phenylethylamine (PEA) is given.

Optically active chiral amines like PEA are important building blocks in the pharmaceutical

sector for the synthesis of active pharmaceutical ingredients (APIs) applied in antihyperten-

sives, antihyperglycemics, HIV-protease inhibitors. . . (Drauz et al., 1990; Tufvesson et al., 2011).

Enantiopure amines can be produced both by biocatalytic and chemical synthesis. However,

chemical synthesis is still very inefficient (Nugent and El-Shazly, 2010). Regarding biocatalysis,

there are several enzymatic routes for synthesising optically active chiral amines. Aminotrans-

ferases (ATs) or TAs classified as EC 2.6.1. are the most ubiquitous enzymes for this process in

nature. The reaction carried out by these catalysts is the transfer of an amino group (R-NH2)

from the amino donor to the carbonyl carbon atom (R-CO-R) of an amino acceptor under mild

conditions. TAs are very diverse, hence they can be subdivided in smaller groups. Based on

the used substrates one of the groups is called the ω-transaminases (ω-TAs) or amine transam-

inases (ATAs) and consists of enzymes that are able to transfer an amino group between two

substrates of which at least one is not an α-amino acid or an α-keto acid. In general, most of the

TAs accept L-alanine (L-Ala) as the amine donor which is subsequently converted into pyruvate

(Koszelewski et al., 2010).

The production of (S)-1-phenylethylamine (also called (S)-α-methylbenzylamine (MBE)) start-

ing from acetophenone (APH) can be done by asymmetric amine synthesis (see Figure 1.2). Bio-

catalytic asymmetric amination is done by using an (S)-specific ω-transaminase and L-alanine

as amino donor. Due to the unfavourable equilibrium constant (Keq= 8.81×10-4 or 4.03×10-5),

an equilibration time of approximately 48 h and severe product inhibition by pyruvate and PEA

this transamination reaction seems at first sight not applicable at an industrial scale (Shin and

Kim, 1998; Tufvesson et al., 2012). However, there are several methods for shifting amination

reactions towards the desired product side. One of the possibilities is biocatalytic degradation

of the coproduct pyruvate (so called in situ (co)product removal (IS(C)PR)), e.g. the reduction

of pyruvate to (S)-lactate using an oxidoreductase like lactate dehydrogenase (LDH) (Shin and

Kim, 1999). This conversion requires a pyridine nucleotide cofactor (NADH) as a source of re-

ducing equivalents. In order to have a practically and economically feasible production of PEA,
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NAD recycling is needed (Section 1.3). Reconverting NAD back to NADH can be done by using

an additional enzyme such as formate dehydrogenase (FDH) or GDH combined with a suitable

reducing agent, resp. formate or glucose (Shin and Kim, 1999; Koszelewski et al., 2010).

Figure 1.2: Tri-enzyme process for the production of (S)-1-phenylethylamine (PEA)



CHAPTER 2
Modelling enzyme kinetics

2.1 Introduction to mathematical modelling

The main aim of building a mechanistic mathematical model is to mimic the behaviour of

a physical process (i.e. the system) in terms of one or more mathematical equations. If the

model is valid for the system it represents, such a surrogate can be used as a tool for process

simulation, design, control and optimisation. Various model attributes are used to characterise

different types of models. The models used throughout this thesis are all classified as mechanistic,

implying that the model structures are based on physical, chemical and biological laws. At the

same time the models are also deterministic since they ignore random variation and thus always

yield a single value for a given scenario (Dochain and Vanrolleghem, 2001).

The tri-enzyme system described in Section 1.4 can be divided into three separate systems, i.e.

subsystems. Each of these subsystems contains one enzymatic reaction that can be described by

means of a mathematical model. This model describes the kinetics of the enzymatic reaction,

which amounts to describing the rate of change, or dynamics, in the concentration of the different

reactants.

2.2 Single-substrate reactions

Although enzymatic conversions like reaction (2.1) are used for thousands of years by mankind

(e.g. brewing, baking...), enzyme kinetics was still unknown territory until a century ago.

A
E−→ P (2.1)

A: substrate, E: enzyme, P: product

The real increase of knowledge about enzyme kinetics and mechanisms came with the insights of

the British chemist Adrian John Brown in 1902 (Laidler, 1997). It was Brown who found that

the rate of the inversion of sucrose with purified invertase showed a non-linear relation between

13
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the reaction rate and the substrate concentration. This phenomenon is now known as enzyme

saturation and is the base concept in all modern biocatalytic models (Cornish-Bowden, 2004;

Schulz, 1994).

When modelling a dynamic process such as an enzymatic reaction, one can use ordinary differ-

ential equations (ODEs) to describe the time-dependent behaviour of the system. The following

mechanism, which consists of micro-kinetic reactions, was suggested by Brown and is used to

derive the ODEs describing a single substrate enzymatic conversion, e.g. the inversion of sucrose

(Laidler, 1997).

E + A
k1−−⇀↽−−
k−1

EA
k2−→ E + P (2.2)

EA: enzyme substrate complex, ki: rate constant of the ith reaction

Using mass action kinetics, this batch system can be written in the following system of ODEs:

da

dt
= −k1 e a+ k−1 c

de

dt
= −k1 e a+ k−1 c+ k2 c

dc

dt
= k1 e a− k−1 c− k2 c

dp

dt
= k2 c = r (2.3)

In this micro-kinetic model a, e and c stand respectively for the concentration of substrate,

enzyme and enzyme-substrate complex (see Figure 2.1.a).

Because there is no explicit analytical solution for the reaction rate (r) in terms of the substrate

concentration, the following quasi-steady-state assumption (QSSA) was introduced by Briggs

and Haldane (1925):

dc

dt
= k1 e a− k−1 c− k2 c = 0 (2.4)

In words, this assumption states that the concentration of enzyme-substrate complex (c) is con-

stant during the period of steady-state, i.e. the rate of formation equals the rate of consumption.

This assumption is valid after the initial transition which takes no longer than a few millisec-

onds (Segel and Slemrod, 1989). Combined with the fact that the total catalyst concentration

(e0 = e+ c) does not change during the reaction, this leads to:

r =
dp

dt
=

k1k2 e0 a

k−1 + k2 + k1 a
=

k2 e0 a

k−1 + k2

k1
+ a

(2.5)

Eq. (2.5) can be rewritten in a more general form known as the fundamental Michaelis-Menten

equation:

r =
kcat e0 a

Km + a
=

V a

Km + a
(2.6)
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Instead of using rate constants, the Michaelis-Menten equation uses experimentally measurable

and meaningful (macroscopic) kinetic parameters (Cleland, 1963). For Eq. (2.5) and (2.6)

the relations between the rate constants (ki) and the kinetic parameters (Km and V ) are the

following (see also Figure 2.1.b):

� V = k2 e0 [mol
l s ]; limiting rate: the rate of the reaction when all the enzymes are saturated

with substrate. Note that V depends on the total active enzyme concentration, e0, so

it does not give a good indication of the intrinsic catalytic activity of the enzyme. To

standardize this parameter, it should be divided by e0 which results in k2 or more generally

kcat [s-1], which is the maximum number of substrate molecules that one enzyme molecule

can convert in a unit of time (Cornish-Bowden, 2004).

� Km = (k−1 +k2)/k1 [mol
l ]; Michaelis constant: the concentration of substrate which results

in a reaction rate half of the limiting rate (if a = Km → r = V/2). This way Km can be

defined as the affinity of the enzyme for its substrate.

time

co
n
ce
n
tr
a
ti
o
n

Substrate
Product

V

V
2

Km

(a) (b)

re
a
ct
io
n
ra
te

substrate concentration

Figure 2.1: (a) Dynamic behaviour of the substrate and product concentrations during a batch exper-

iment. (b) Reaction rate at different substrate concentrations.

2.3 Multi-substrate reactions

The mechanism used for deriving the general Michaelis-Menten equation assumes single substrate

and product. Therefore, it cannot be used for enzymatic reactions with two substrates and two

products. This type of reaction, known as a bi bi reaction, is by far the most common in

biochemistry (Cornish-Bowden, 2004). The following equation represents a bi bi reaction in

which A, B are the substrates, E is the enzyme and P, Q are the products (considering the
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forward direction).

A + B
E−⇀↽− P + Q (2.7)

This overall reaction (2.7) does not give a good representation of what actually happens in

reality. More information about the enzyme-reagent interaction is obtained when looking at

the enzyme mechanism which consists of microscopic reactions. Mechanisms for multi-reactant

enzymatic reactions have been classified in some general groups (Figure 2.2).

Sequential,

Single-displacement

Non-sequential,

Ping-pong

Double-displacement,

Random Ordered

MULTI-SUBSTRATE

ENZYME MECHANISMS

Ordered

Figure 2.2: Classification of multi-substrate enzyme mechanisms.

Often a division is made between sequential mechanisms and non-sequential mechanisms. In

the sequential type, both substrates must bind to the enzyme before any product is released.

The sequential mechanism can be subdivided in: random-order mechanisms, in which the order

of binding the substrates is not important, and compulsory-order mechanisms, when the order

of binding is important (conform the induced-fit hypothesis of Koshland (1958)). For bi bi

reactions the sequential mechanisms are also called ternary-complex mechanisms because of the

ternary EAB/EPQ intermediate (see Figure 2.3a). Typically, kinetics of LDH and GDH can be

described with a compulsory-order ternary-complex mechanism. Non-sequential mechanisms on

the other hand, do not require all the substrates to bind before a product is released and thus a

substituted-enzyme intermediate, E* will be formed. In literature such mechanisms are generally

referred to as ping-pong or substituted-enzyme mechanisms (see Figure 2.3b). Transaminases

typically use this mechanism to transfer an amino group (Cornish-Bowden, 2004; Schulz, 1994).

In principle, the steady state rate expression of any mechanism can be derived using a similar

procedure as in Section 2.2. For complex mechanisms, this will be a very laborious approach

and therefore a faster graphical method developed by King and Altman is frequently used to

obtain the rate equations. For the compulsory-order ternary-complex mechanism, like the LDH
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Figure 2.3: The compulsory-order ternary-complex mechanism for the LDH and GDH conversions

(2.3a) and the substituted enzyme mechanism for the TA conversion (2.3b)

and GDH reactions, following rate expression is obtained (Schulz, 1994; Cleland, 1963):

rLDH/GDH =
dp

dt
= −da

dt
=

[k1k2k3k4 a b− k−1k−2k−3k−4 p q] e0

k−1k4(k−2 + k3) + k1k4(k−2 + k3) a+ k2k3k4 b+ k−1k−2k−3 p
(2.8)

+k−4k−1(k−2 + k3) q + k1k2(k3 + k4) a b+ k1k−2k−3 a p

+k−4k2k3 b q + k−4k−3(k−1 + k−2) p q + k1k2k−3 a b p+ k−4k2k−3 b p q

For the transaminase reaction a similar rate equation can be obtained.

In contrast to the single reactant enzymatic reactions, the equations described here are much

more complex and cannot be expressed in only two kinetic parameters anymore (i.e. V and

Km). That is why Cleland (1963) introduced an additional kinetic parameter i.e. Ki, the core

inhibition constant. When using these three kinetic parameters, rate equation (2.8) can be

rewritten (recommended by the International Union of Biochemistry and Molecular Biology

(IUBMB)). This leads to the following expression for the LDH and GDH conversion rates,

considering the characters defined in Table A.1:

rLDH/GDH =

V1 a b
KiAKmB

− V2 p q
KmPKiQ

1 + a
KiA

+ KmA b
KiAKmB

+
KmQ p
KmPKiQ

+ q
KiQ

+ a b
KiAKmB

+
KmQa p

KiAKmPKiQ
+ p q

KmPKiQ

· · ·

+ KmA b q
KiAKmBKiQ

+ a b p
KiAKmBKiP

+ b p q
KiBKmPKiQ

(2.9)

and for the TA conversion rate:

rTAm =

V1 a b
KiAKmB

− V2 p q
KiPKmQ

a
KiA

+ KmA b
KiAKmB

+ p
KiP

+ KmP q
KiPKmQ

+ a b
KiAKmB

+ a p
KiAKiP

+ KmA b q
KiAKmBKiQ

+ p q
KiPKmQ

(2.10)

In Table A.2 of the Appendix the relations between the kinetic parameters (Km, Ki, V ) and

rate constants (ki) are given.
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The meaning of the different kinetic parameters in the multi-substrate reactions, and their

relation to the kinetic parameters of the single-reactant Michaelis-Menten equation, can be

derived using particular experimental conditions such as initial rate, saturation and constant

concentration of one of the substrates (Cornish-Bowden, 2004).

� The limiting rate (V1: forward reaction, V2: backward reaction) represents the reaction rate

in the case that all substrates in the considered direction occur at saturated concentrations,

while the products are at zero concentration. In the same way as for single-substrate

reactions, V for multi-substrate reactions is also dependent on the enzyme concentration.

� A clearer interpretation of the Michaelis constant (Km) for a certain substrate X of a bi

bi reaction can be achieved using a scenario in which, again, the products are at zero

concentration, but only one of the two substrates is at a saturating concentration, for

example substrate Y. In this case the rate equation for each of the subsystems is simplified

to exactly the same expression as Eq. (2.6)

rTAm/LDH/GDH =
V1 x

KmX + x
(2.11)

And thus, the Michaelis constant can be defined as the substrate concentration of X when

half the limiting rate is reached, taking the above scenario into account.

� The inhibition constant (KiX) of a substrate X is related to the competitive inhibition

constant (Kic) and the uncompetitive inhibition constant (Kiu) obtained when the sub-

strate X is used as a product inhibitor of the reverse reaction. Note that, besides inhibition

constants such as KiX , which are derived from the core mechanisms, other parameters can

be included in the model if other types of inhibition are observed (Cornish-Bowden, 2004).

2.4 Constraints on the kinetic parameters

Applying the Cleland method to Eq. (2.8) (i.e. replacing the rate constants by measurable

and meaningful kinetic parameters) results in a model with ten kinetic parameters, Eq.(2.9).

However, the original rate model contains only eight rate constants. Consequently, there must

be some redundancy among the kinetic parameters. This redundancy can be described with

additional relations between the kinetic parameters.

When a reaction is at equilibrium, the reaction rate is zero and all reactants are in equilib-

rium. A well-known fact is that the presence of catalysts does not affect the equilibrium of

the catalysed reaction. A catalyst only decreases the time needed to reach equilibrium. The

thermodynamic parameter describing this steady state is called the equilibrium constant and is

defined by the Haldane relationship (Schulz, 1994). As an example, the equilibrium constant for

the transamination reaction can be expressed as:
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Keq =
k1k2k3k4

k−1k−2k−3k−4
=
KiPKiQ

KiAKiB
=

(
V1

V2

)
KiPKmQ

KiAKmB
=

(
V1

V2

)
KmPKiQ

KmAKiB
=

(
V1

V2

)2 KmPKmQ

KmAKmB

(2.12)

and for both dehydrogenase reactions as:

Keq =
k1k2k3k4

k−1k−2k−3k−4
=

(
V1

V2

)
KmPKiQ

KiAKmB
=

(
V1

V2

)2 KiPKmQ

KmAKiB
(2.13)

See Table A.2 of the Appendix for the relationship between the kinetic parameters and the rate

constants.

For some mechanisms the Haldane equation explains only a part of the redundancy among

the kinetic parameters. Therefore, additional non-Haldane constraints are applicable for these

mechanisms. Straathof and Heijnen (1996) were the first to develop a systematic methodology

for deriving such additional relations. For the compulsory-order ternary-complex mechanism

the non-Haldane constraint is:

KmA

KiA
= 1 +

V1

V2

(
1− KmQ

KiQ

)
− KmPKiQ

KiPKmQ
(2.14)

and for the substituted-enzyme mechanism, following constraint is valid:

KmA

KiA
= 1 +

V1

V2

(
1− KmQ

KiQ

)
(2.15)





CHAPTER 3
Calibration of enzyme kinetic models

As explained in the introduction of Chapter 2, mathematical models are used to simulate the

behaviour of a studied process. In this way, the process behaviour can rapidly and inexpensively

be investigated under various input conditions without performing the actual real-time experi-

ment. This is referred to as model simulation or virtual experimentation. The term simulation

refers to the act of solving the model, analytically or numerically, given certain experimental

conditions and future model inputs. Note that different conditions and inputs will result in

different model outputs. In mathematical terms an experiment is characterised by the values of

the model parameters, the initial value of the different state variables and the behaviour of the

process input (Dochain and Vanrolleghem, 2001).

Model parameters are those constituents of the mathematical model which do not change during

the course of a single simulation, but they can differ between different simulations. Before a

model can be used for any purpose whatsoever, the values of its parameters have to be determined

from experimentally measured data. This inverse problem is called parameter estimation or

model calibration and typically consists of minimising the deviation between the experimental

data and the model prediction, by means of minimising an objective function. Once a unique

set of parameters leads to the minimal deviation, the model is said to be calibrated for the used

experimental data. Not only should the model predict the experimental data for calibrating, it

should also be able to predict the outcome of experimental data obtained under different input

conditions, this is called model validation. A model passing this is called a validated model

(Donckels, 2009).

Regarding the multi-enzyme process studied throughout this thesis, the parameters are either

the rate constants (ki) or the kinetic parameters (V , Km and Ki). There are several options to

calibrate biocatalytical steady-state models. An overview is given in the subsequent sections.

21
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3.1 Calibration methods

3.1.1 Initial rate analysis

Classically, kinetic parameters are estimated based on initial rate analysis. For this purpose,

only time-concentration data at the beginning of the conversion are collected. The slope of

these data points equals the initial conversion rate, i.e. the reaction rate when no products

are present (see Figure 3.1(a)). Indeed, at the beginning of the reaction only reactants are

present, so there will be no influence of the product on the reaction rate. Estimating parameters

from the initial rate of a multi-substrate bioconversion can be done either by linear regression

(with graphical linearisation) or by nonlinear regression (with algebraic parameter estimation)

(Cornish-Bowden, 2004; Al-Haque et al., 2012)). Both of these approaches have the advantage

of being computationally friendly and are easy to perform (Zavrel et al., 2010; Straathof, 2001).

On the other hand, initial rate analysis can be very expensive and laborious because only one

data point is obtained per experiment. In addition, when using graphical linearisation, the

measurement errors can be distorted leading to a bias in the estimated parameters (Chen et al.,

2008; Goudar et al., 1999).

3.1.2 Progress curve analysis

Instead of using only data at the beginning of the conversion, the entire time course of the

conversion can be used for estimating the kinetic parameters (see Figure 3.1(b)). This approach,

called progress curve analysis, is regarded as an attractive alternative to initial rate analysis.

Progress curve analysis offers the ability of gathering more information from a single experiment

by means of nonlinear regression (NLR). Indeed, long-term phenomena such as severe product

inhibition or hysteresis due to changing enzyme activity can be derived from progress curves

(Bates and Frieden, 1973). This method sounds promising but has an important limitation,

namely the incompatibility of enzyme kinetic models and experimental data. Whereas kinetic

models are formulated in terms of concentration dependent rates, experimental data are time-

concentration data.

To solve this problem, one can differentiate the experimental data using finite difference tech-

niques to derive the reaction rates. Direct numerical differentiation of noise-corrupted exper-

imental data is not an option. Hence smoothing must be performed prior to the algebraic

parameter estimation. This can be done by using regularisation techniques such as filtering,

Fourier transformation or Tikhonov regularisation (Zavrel et al., 2010). However, such regu-

larisation techniques inevitably lead to bias in the estimation (Marquardt, 2005). In contrast,

the dynamic model can also be analytically integrated giving rise to a time-dependent function

which can also be used for algebraic parameter estimation. However, no straightforward explicit

analytical solution can be found even for the simplest enzyme conversion models. Therefore



CHAPTER 3 CALIBRATION OF ENZYME KINETIC MODELS 23

numerical methods or a transcendental function have to be used (Goudar et al., 2004). After

differentiation or integration, algebraic parameter estimation can be performed.

An alternative to both algebraic techniques is dynamic parameter estimation by numerical in-

tegration of the ODEs. In this method, each parameter set needs to be evaluated using a

numerical solver. Although this approach requires tremendous computing power, it does not

require changing the experimental data nor the model.
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Figure 3.1: (a) Initial rate analysis (rinit: initial reaction rate). (b) Progress curve analysis.

3.1.3 Incremental methods

More recently, incremental hybrid methods combining preliminary algebraic parameter estima-

tion and dynamic parameter estimation have been examined (Michalik et al., 2007; Chen et al.,

2008; Al-Haque et al., 2012). In one of the first steps of this step-by-step approach some of the

model parameters are estimated using initial rate analysis. While keeping the obtained values of

these model constituents constant, a subsequent progress curve analysis is performed in order to

determine the values of the remaining parameters. Finally, an additional progress curve analysis

is carried out, but using the estimates of the previous steps as a starting point, i.e. an initial

candidate solution.

3.2 Calibration of the PEA system

In the case of multi-enzyme processes such as the conversion of APH to PEA, the overall reaction

can be modelled by combining the different rate expressions for each subsystem. At first glance,

progress curve fitting seems to be a suitable way to estimate the parameters of a mixture of en-

zymes. However, according to Straathof (2001) this is not the case and thus the enzymes should

be studied one at a time. The transaminase subsystem has been studied in literature. Shin and
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Kim (1998) were the first to determine the kinetic parameters of a substrate-inhibited ω-TA

from Bacillus thuringiensis JS64 based on initial rate analysis. More recently, a more robust

incremental method was suggested by Al-Haque et al. (2012). For the LDH and GDH subsys-

tems, the kinetic parameters were also determined by means of initial rate analysis (Borgmann

et al., 1975; Carper et al., 1983)

Fitting the predicted data to the experimental data should not be taken lightly, especially in

the case of NLR problems. It is a well-known fact that there is a strong correlation between

the different parameters of complex biocatalytic models. Indeed, convergence problems might

occur because of multimodality, i.e. multiple local optima. This can be circumvented by (1)

using a more robust optimisation algorithm, (2) doing multiple regressions at the same time,

(3) starting from different initial parameter sets and (4) reducing the number of parameters to

be estimated (Chen et al., 2008). For many calibrated biocatalytic models the predicted output

fits the experimental data quite well. However, the parameters are not accurate at all. This

can be due to an over-specified model, i.e. it is not possible to find a unique set of parameters

using experimental or in silico data. Generally, this problem is referred to as the problem of

parameter identifiability (Versyck et al., 1999; Zavrel, 2009).

3.3 Identifiability

Identifiability analysis determines whether it is possible to assign unique values to the model

parameters given a data set. Generally a distinction between structural and practical identi-

fiability is made (De Pauw, 2005). The former criterion, also called theoretical identifiability,

is met when the parameters can be identified from noise-free data. Structural identifiability is

only a result of the model structure, the selected output variables and the input variables. Since

enzymatic models usually contain non-linearities and multiple parameters, an analysis of the

structural identifiability should be performed prior to the actual model calibration. However,

structural identifiability analysis is still a challenge for nonlinear dynamic models (Chis et al.,

2011). Structurally unidentifiable parameters are the result of an over-specification of the model

compared to the available data, i.e. an ill-posed inverse problem (Tikhonov and Arsenin, 1977).

Common methods for testing the structural identifiability of nonlinear models are: the Taylor

series approach, the generating series method, the similarity transformation approach and the

differential algebra based method (Chis et al., 2011).

Clearly, experimental data in the field of bioprocess engineering is almost never free of noise.

Hence, practical identifiability should be scrutinized. Here, noise-corrupted data is used to

obtain the unique set of parameters. It is rather straightforward that structural identifiability is

a prerequisite for practical identifiability. However, it is no guarantee since the quality and/or

quantity of kinetic experimental data is usually restricted because of the available analytical

techniques (De Pauw, 2005).
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Optimal experimental design

for enzyme processes

Despite the effort of the modeller to represent the process being studied as good as possible, there

will always be an inherent uncertainty about the model prediction. It is generally accepted that

output uncertainty is the combined effect of uncertainty of the measured data, the parameters,

the model structure, the used software and the future model inputs. When looking at one

mathematical model as such, the latter two sources can be disregarded. Clearly, in order to have a

useful model, the uncertainty on the prediction should be as low as possible. Since mathematical

models and parameter values are derived from the observations and dedicated experiments, it is

desired to design the latter in such a way that the data collected is as information rich as possible.

The approach of designing experiments in order to get an accurate model using minimal time

and resources is referred to as optimal experimental design (OED) (Dochain and Vanrolleghem,

2001).

4.1 Optimal experimental design for parameter estimation

OED can be used for improving the statistical reliability, i.e. reducing the variance of the esti-

mated parameter values. Such numerical optimisation techniques, generally known as optimal

experimental design for parameter estimation (OED/PE), result in well-considered choices of

the experimental degrees of freedom in order to get more precise parameter estimates out of the

subsequent experiment (Donckels, 2009). Note that precise parameters are generally considered

to be of utmost importance for accurate predictions. However, under certain conditions, some

models are rather insensitive to some of their parameters and thus imprecisions will not signifi-

cantly affect the accuracy of the model. This indicates that OED/PE is not required for these

parameters (Atáıde and Hitzmann, 2009).

Traditional OED/PE is based on the inverse relationship between the Fisher Information Ma-

trix (FIM) and the parameter estimation error covariance matrix (Ljung, 1999). An overview of

different OED/PE examples is given by Franceschini and Macchietto (2008). Regarding enzyme

kinetics, most research has been done using fairly simple Michaelis-Menten kinetics (Duggleby

25
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and Clarke, 1991; Murphy et al., 2002; Lindner and Hitzmann, 2006; Atáıde and Hitzmann,

2009). Different experimental degrees of freedom were investigated in these studies (measure-

ment frequency, measurement distribution, initial concentrations, optimal input function, num-

ber of replications, . . . ). One of the main conclusions is that model inputs can significantly

improve the precision of the estimated parameters. Since batch experiments do not have any

inputs, more sophisticated fed-batch experiments are mandatory for additional precision (Lind-

ner and Hitzmann, 2006). Feeding of the enzyme solution creates new experimental degrees

of freedom (enzyme feeding, substrate feeding, optimal input function, . . . ) leading to more

informative data. The suggested approaches by these authors can be extended to more complex

enzyme kinetic models. However, this can be particularly difficult and in addition will require

more computational power since complex models contain more parameters (Murphy et al., 2002;

Lindner and Hitzmann, 2006).

4.2 Optimal experimental design for model discrimination

Another source of model uncertainty is when the lack of insight in the process being studied

results in different model structures, i.e. rival models. Since it is desirable to predict the process

behaviour in the best way, the best model structure should be used for the prediction. The

problem of discriminating between rival models can also be approached by optimal experimen-

tal design, i.e. optimal experimental design for model discrimination (OED/MD). Such OED

techniques were first proposed by Hunter and Reiner (1965) and are generally based on the idea

of designing experiments in such a way that the different model predictions differ maximally

(Michalik et al., 2010). However, uncertainty on the measurements and the model predictions

can be taken into account as well (Donckels, 2009).

Discriminating between multiple rival models is not solely dependent on the model structure. It

is fairly straightforward that the accuracy of the estimated parameters will have a substantial

impact on the model selection process. Therefore, the objectives of both OED/PE and OED/MD

should be reconciled with each other (Donckels et al., 2010; Alberton et al., 2011).
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CHAPTER 5
Mathematical modelling and tools

5.1 Model implementation and simulation

A general way to represent continuous-time dynamical systems is (Donckels, 2009):

dx

dt
= f(x,θ, ξ, t); (5.1)

y = g(x,θ, ξ, t); (5.2)

Here, x ∈ S ⊆ Rns contains all the time-dependent state variables defining the state of the

system. In the case of a bi bi enzyme catalysed reaction, x represents a vector containing

the concentration of all the reagents (a, b, p and q). θ ∈ Θ ⊆ Rnp represents a vector of

parameters, i.e. the kinetic parameters (V , Km and Ki) and y ∈M ⊆ Rnm represents a vector

of experimentally measurable output variables (NADH for the LDH and GDH reaction, see

Section 7.1). It can be seen from Eq. (5.2) that the output variables are just an algebraic

transformation of the state variables constituting the system. The experimental setup, ξ, is

determined by the experimental degrees of freedom such as model inputs, initial conditions

x(t0) = x0 and the measurement frequency. The dynamic behaviour of the whole system is

denoted by t.

5.2 Mathematical parameter optimisation

5.2.1 Defining the objective function

In order to find optimal solutions for discrete or continuous problems, optimisation algorithms

are frequently used. Both parameter estimation and optimal experimental design can be re-

garded as optimisation problems (Donckels, 2009). However, this chapter will only discuss

optimisation with respect to parameter estimation, although the main concept can be extended

to any optimisable problem.

Parameter estimation is the determination of the optimal values of the parameters, in order

to obtain the best fit between the model prediction and the measured data. For non-linear
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models this is generally done by minimising a cost or objective function, e.g. the weighted sum

of squared errors:

J(θ) = WSSE(θ) =

ne∑
h=1

nspk∑
l=1

∆y(ξk,θ, tl)
′ ·Q(ξk, tl) ·∆y(ξk,θ, tl) (5.3)

with

∆y(ξk,θ, tl) = yexp(ξk, tl)− y(ξk,θ, tl) (5.4)

Here, ne represents the number of experiments from which data is used, nspk represents the

number of sampling points in experiment ξk, yexp represents the experimentally measured

data of experiment ξk, and Q is an nm × nm matrix of weighing coefficients. This matrix

is not mandatory, but can be used to take measurement errors of the analytic techniques into

account. Therefore, Q is typically chosen as the inverse of the measurement error covariance

matrix (Donckels, 2009). In more complex cases, this matrix of weigh coefficients can be time

dependent, as expressed in Eq. (5.3). However, in this thesis Q will usually be chosen as the

unity matrix Inm . Clearly, if a correct model structure is assumed and the experimental data is

free of noise, the objective function will decrease to zero as soon as the values of the parameters

reach the true system parameters. Also, when data contains noise, a minimum, i.e. a stationary

point or extremum, is expected to be observed in the objective function at the location of the

true system parameters.

5.2.2 Modifications of the objective function

Objective function relative to the measured data points

The weighted sum of squared errors (Eq. (5.3)) only takes into account absolute errors. This

shortcoming can be circumvented by modifying the objective function as follows:

WSSRE(θ) =
n∑
l=0

(
∆y(x,θ, t)

yexp

)′
·Q ·

(
∆y(x,θ, t)

yexp

)
(5.5)

with WSSRE the weighted sum of squared relative errors.

Objective function relative to the sensitivity functions

As explained in Section 5.4 sensitivity functions contain information on the effect of perturba-

tions of the different model parameters on the model output. It is clear that this information

can be used to refine the search for the true system parameters. In this thesis, the following

modification of the weighted sum of squared errors is used:

WSSESF(θ) =

n∑
l=0

(∆y(x,θ, t) ·max TRS(t))′ ·Q · (∆y(x,θ, t) ·max TRS(t)) (5.6)

in which maxTRS is the maximum time dependent value of all the total relative sensitivity

functions (Eq. (5.15)) of the model.
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Handling constraints

Since the parameters of a deterministic model usually have a physical meaning, their values

ought to be in a physically possible range. Different strategies to fulfill these constraints exist

(Scheerlinck, 2012). However, in this thesis only the penalising strategy was considered. Here,

the objective function is modified in such a way that whenever the constraint is not fulfilled,

the objective function is penalised by an additional term C(θ). Note that additional constraints

between enzyme kinetic parameters exist (Section 2.4). Hence these constraints can also be

taken into account when evaluating the goodness of the parameter set. A constrained objective

function can be expressed as:

JC(θ) = J(θ) + C(θ) (5.7)

5.2.3 Metaheuristics

In addition to an objective function, all optimisation algorithms use a metaheuristic, which

iteratively tries to optimise the candidate solution, yet at low computational cost (Scheerlinck,

2012). In computer science, different algorithms have been, and still are being developed to do

so. However, in this thesis we will only focus on two specific variants: the Nelder and Mead

simplex algorithm and the SIMPSA algorithm.

The goal of an optimisation algorithm is to find the minimum of an objective function. The neg-

ative gradient of a function, i.e. −∇J(θ), is an obvious starting point for optimisation algorithms

since this gives the direction where the decrease in the function value is the largest. However,

optimisation algorithms based only on the gradient of an objective function are usually found to

be sensitive to local optima, i.e. stationary points in which the objective function does not reach

its overall minimum. In this thesis, the focus is on gradient-free optimisation algorithms, also

known as direct search methods (Swann, 1969). Unlike gradient-based optimisation algorithms,

these algorithms sample the objective function in a finite number of points at each iteration and

decide which subsequent action should be taken solely based on the function values, without

any explicit or implicit derivative calculation. Such methaheuristics are considered to be more

robust since the probability of finding the global minimum, i.e. the overall minimum, is higher.

The simplex algorithm of Nelder and Mead

A typical gradient-free optimisation algorithm is the simplex algorithm proposed by Nelder and

Mead (1964). To identify the optimum, this algorithm uses a simplex to explore the values of

the objective function. A simplex in an n-dimensional space is a polytope that arises when n+1

points (or vertices) are connected (Swann, 1969; Donckels, 2009). A simplex in two dimensions

is represents a triangle, while in three dimensions it is a tetrahedron.

The search for the optimum, in this case the minimum of the objective function, starts with

defining an initial simplex in the n-dimensional space and evaluating the objective function
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at each of the n + 1 vertices. Subsequently, the vertices are replaced by other points in the

multidimensional space based on the value of the objective function in each vertex. Elementary

mathematical operations such as reflection, expansion and contraction of the simplex, allow the

algorithm to find a (potentially global) optimum (Figure. 5.1).

(a)
high

(b) (c) (d) (e)

Figure 5.1: Elementary operations in a two-dimensional space used by the Nelder and Mead simplex

optimisation algorithm. (a) Simplex at start (lower vertex has highest value for the ob-

jective function), (b) reflection, (c) reflection and expansion, (d) contraction, (e) multiple

contraction

Although the simplex algorithm defined by Nelder and Mead was introduced as being less prone

to local minima, it is still considered to be a local optimisation algorithm since the outcome

is still strongly dependent on the initially proposed candidate solution (Vanhaute et al., 2012).

Therefore, better alternatives are suggested.

The simplex-simulated annealing algorithm

The SIMPSA algorithm is considered to be a more robust algorithm since it attempts to find

the global optimum rather than one of the local optima. As the name indicates, the SIMPSA

algorithm is a hybridisation of the simplex algorithm and a method called simulated annealing.

The latter is based on the process of annealing in metallurgy in which a solid material is rapidly

melted by heating, followed by slow cooling and eventually it is frozen in a state of minimal

energy. Hence, the atoms in the crystal lattice can wander through states of higher energy

and therefore increase the chance of finding configurations with a lower free energy state. In

this way, the size of the crystals in the material increases and at the same time reduces crystal

imperfections creating a more ductile material (Cardoso et al., 1996; Donckels, 2009).

This concept of searching for the state of minimal energy by occasionally allowing movements to

a state of higher energy, is also used in a class of optimisation algorithms called Metropolis algo-

rithms (Cardoso et al., 1996). It can easily be implemented by allowing missteps in the outcome

of some iterations and thus steer the algorithm towards a “wrong-way”, hence, increasing the

chance of finding the global optimum of the objective function. In the same way as the physical
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process of annealing, the probability of a misstep in a single iteration depends on a Boltzmann

distribution with a scale proportional to the temperature (Eq. (5.8)) (Vanhaute et al., 2012).

P(A) =

exp(−(J(θ2)−J(θ1))
T ) , if J(θ2) > J(θ1)

1 , if J(θ2) < J(θ1)
(5.8)

Here, A is defined as the event of accepting a candidate solution θ2 given the prior solution

θ1. Note that a candidate solution is referred to as inferior if ∆J ≥ 0, i.e. an increase in

the objective function value. T represents an independent variable which is referred to as the

annealing temperature. In analogy with the physical process, the probability of performing a

misstep in the search for the optimum decreases as the temperature decreases. Hence, this

probability is very high at the beginning of the optimisation, but approaches zero near the end.

As a result, the algorithm reduces exactly to the simplex method proposed by Nelder and Mead

at the end of the optimisation. The decrease in temperature is determined by the cooling or

annealing schedule used in the algorithm. In this thesis, the cooling schedule of Aarts and van

Laarhoven (1985) was used, as discussed by Cardoso et al. (1996). An important parameter

in such schedules is the cooling rate δ. Smaller values of the cooling rate (0 < δ < 1) lead

to slower convergence and therefore increase the chance of finding the global optimum. Note

that because of the temperature-dependent probability, the optimisation algorithm is no longer

completely deterministic. Hence, it contains a certain degree of randomness. Such probabilistic

optimisation algorithms are therefore referred to as random probing or stochastic (Dochain,

2008).

Besides the cooling rate, the SIMPSA algorithm contains several other parameters. An overview

is given in Table 5.1. Note that manual tuning for some of the parameters is needed.
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Table 5.1: Different parameters of the SIMPSA algorithm itself

Parameter Default value Explanation

T0 1000 Initial temperature: if none provided, an optimal one

can be estimated as described by Cardoso et al. (1996).

Tmin 1 Freezing temperature: when the temperature is be-

low this value, the SIMPSA algorithm is reduced to the

simplex method proposed by Nelder and Mead.

δ 10 The cooling rate: the smaller the value, the slower the

convergence.

ζ 0.95 The acceptance ratio: needed to calculate the starting

temperature. Typically a value of 95% is assigned to ζ

(Cardoso et al., 1996).

fmin 0.9 Minimal factor for cooling

KT0,max 15 Maximal number of iterations in the preliminary temper-

ature loop

KTmin,max 50 Maximum number of iterations in the last temperature

loop

KT,max 10 Maximum number of iterations in the remaining temper-

ature loops

Kmax 2500 Maximum total number of iterations

FEVALmax 1× 104 Maximum number of function evaluations

tmax 2500 Maximum CPU time (s)

TOLX 1× 10-6 Maximum difference between best and worst function

evaluation in the simplex (convergence test 1)

TOLFUN 1× 10-3 Maximum difference between the coordinates of the ver-

tices (convergence test 2)

5.3 Identifiability analysis

As described earlier in Section 3.2, identifiability analysis determines whether it is possible to

assign unique values to the model parameters. According to Chis et al. (2011), the two main

methods for structural identifiability analysis for systems biology models are: the Taylor series

expansion and the differential algebra approach. The Taylor series expansion approach is based

on the fact that the prediction is a unique observation in time of the used input and system. It is

consequently a unique analytic function of time and it is possible to represent the observables by

the corresponding Taylor series expansion in the vicinity of the initial state. The uniqueness of

this representation will guarantee the structural identifiability of the system. In essence, a system
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of nonlinear algebraic equations (AEs) in the parameters is built, based on the calculation of

the Taylor series coefficients, and it is checked whether the system has a unique solution. In the

differential algebra approach, the system’s equations are reordered in order to eliminate the non-

observable states in at least one of the system’s equations. This is not as straightforward as it

sounds and advanced mathematical concepts need to be used like polynomial rings and Gröbner

bases. This method will not be described in detail, since only a testing in an existing software

package called DAISY was done in this thesis (Saccomani and Audoly, 2010). Hattersley et al.

(2011), among others, state that both the Taylor series expansion and the differential algebra

approach, can be applied for very simplistic examples, however they are hard to use in more

complex, real cases.

Different methods exist to investigate practical identifiability of a mathematical model. Most of

these methods are based on information gained from a sensitivity analysis of the model param-

eters combined with information on the measurement uncertainty (De Pauw, 2005). However,

a more direct way of assessing practical identifiability of a model is to create in silico noise cor-

rupted data with a certain model structure, experimental design ξk and a set of parameters θ∗.

This virtual data is afterwards used for retrieving the predefined parameters using parameter

optimisation. If a parameter set is identifiable, this results in:

θ∗ = arg min
θ

(y∗ − y(θ))′ ·Q · (y∗ − y(θ)) (5.9)

in which θ∗ represents the predefined set of parameters used to generate the in silico data y∗

(see Section 7.2).

5.4 Sensitivity analysis

Since the outcome of a mathematical model is directly determined by its degrees of freedom, i.e.

model inputs, parameters and initial values, it would be very useful to determine the effect of a

perturbation in the degrees of freedom on the model output. Such a modelling tool exists and

is referred to as sensitivity analysis. The absolute sensitivity of the model output (y) w.r.t. the

model parameters (θ) can mathematically be expressed as:

∂y(x,θ, ξ, tl)

∂θ

∣∣∣∣
θ= θ̂

(5.10)

Note that for dynamical models this expression needs to be evaluated at each moment tl of the

simulation, therefore one speaks of a SF. A second important issue is that although Eq. (5.10)

can be calculated in every point of the multidimensional parameter space Θ, it does not give an

overall picture of the model sensitivity within the whole user defined parameter range. Hence,

a distinction is made between local sensitivity analysis (LSA), which determines the sensitivity

of the model in a single point θ̂ of the parameter space, and global sensitivity analysis (GSA),

which determines the sensitivity of the model in the whole parameter range. No GSA methods
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were used throughout this thesis since current OED techniques generally use local SFs. Hence,

they will not be explained any further.

Expression (5.10) can be computed analytically as follows (Donckels, 2009):

d

dt

(
∂x(x,θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

)
=
∂f(x,θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

+
∂f(x,θ, ξ, tl)

∂x

∣∣∣∣
θ̂

·
∂x(θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

∂y(x,θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

=
∂g(x,θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

+
∂g(x,θ, ξ, tl)

∂x

∣∣∣∣
θ̂

·
∂x(θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

(5.11)

Sensitivities can also be approached numerically. A very simple and often used method is

finite difference analysis whereby the relative difference between the output of a simulation

slightly perturbed in one of its parameters and the output of a non-perturbed simulation is

calculated. Using the central difference formula, the sensitivity of the model output with respect

to parameter θj on time tl is approximated by:

∂yi(x,θ, ξ, tl)

∂θ

∣∣∣∣
θ̂

= lim
∆θj→0

yi(x,θ + ∆θj , ξ, tl)− yi(x,θ −∆θj , ξ, tl)

2 ·∆θj
(5.12)

Here ∆θj represents an infinitesimally small perturbation of the parameter value θj . Choosing

a good perturbation is not straightforward, too high values lead to inaccuracies in the approx-

imation (a linear approximation of a non-linearity) whereas too low values jeopardize machine

accuracy. Different techniques exist to determine the optimal perturbation (De Pauw and Van-

rolleghem, 2006). However, most of the SFs determined in this thesis are analytically calculated,

avoiding the issue of finding the optimal perturbation.

Hitherto, only absolute sensitivity functions were discussed, i.e. using the absolute value of both

the parameters θ and the model outputs y. Comparing SFs derived from different parameters

or model outputs requires relative values. Different relative sensitivity functions can be defined:

� Sensitivity relative to parameter θj :

∂y(x,θ, ξ, tl)

∂θj
· θj (5.13)

� Sensitivity relative to an output variable yi:

∂y(x,θ, ξ, tl)

∂θj
·

1

yi
(5.14)

� Sensitivity relative to both parameter θj and output yi, i.e. the total relative sensitivity

(TRS):
∂y(x,θ, ξ, tl)

∂θj
·
θj
yi

(5.15)
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Sensitivity functions are very valuable for getting a thorough understanding of both the model

and the process. For example, it gives the modeller information about correlations between

certain parameters. In this context, parameters are called correlated when they have similar or

opposite effect on the output variable; another term for this would be parameter interaction.

Correlations are of great importance since they complicate accurate parameter estimation. On

the other hand, sensitivity functions are particularly interesting when setting up optimal exper-

iments. Thirdly, SFs can also help simplifying complex models since insensitive parameters can,

in certain cases, be expelled from the model. Insensitive parameters are these parameters that

do not influence variation in the model output significantly.

In the field of enzyme kinetics the term elasticity is frequently used (Cornish-Bowden, 2004).

However, this should not be confused with model sensitivity. Elasticity in enzyme kinetics

denotes the relative change in reaction rate, defined here as r (e.g. Eq. (2.9)), due to variation

in a reagent xj of that reaction:
∂r(x,θ)

∂xj
·
xj
r

(5.16)

5.5 Subset selection

In the field of statistics and machine learning, subset selection is used as a tool for effective

analysis of large data sets in an acceptable period of time. The main question tackled in these

cases is simply (Scheerlinck, 2012):

“Is it possible to select a subset of samples or features from a large data set which

is as informative as the entire data set?”

In this thesis, selecting optimal subsets of available data is not the main objective. However,

selecting an optimal subset of experimental designs from a large set of candidate experiments is

of greater importance. Hence the question tackled in our case is the following:

“Is it possible to select a subset of experiments from a large set of proposed experi-

mental designs which is as informative as performing all the proposed experiments?”

Whether subset selection is used for data analysis or experimental design, both have the same

objective, i.e. selecting a subset which is as informative as the total set. In other words, the

acquired subset contains the same variability as the total set, though over a smaller number of

samples or experiments. Note that the concept of subset selection for experimental design is

related to practical identifiability of the model since the latter depends on the quality and/or

quantity of the experimental data (Section 3.3). Hence, if the total set of experiments and

corresponding data allows for a practically identifiable model, subset selection can be used.

In nearly all cases of selecting a subset from a given set, numerous candidates can be defined.

Brute force methods calculate all possible subsets and decide afterwards which one is best. This
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can only be performed for simple cases since it requires considerable computational power. A

more attractive alternative is to reformulate the subset selection problem as a combinatorial

optimisation problem, where the objective is to maximise the variance in the subset. Various

algorithms are available for such problems, e.g. the Kennard and Stone algorithm, genetic algo-

rithms, ant colony algorithms. . . However, in this thesis a fairly simple, self-implemented, subset

selection algorithm was constructed (Algorithm 1).

Algorithm 1: Selecting the optimal subset of experimental designs

Input:

Set of N candidate experimental designs and the corresponding experimentally derived

data yexp;

True system parameters θopt;

The minimal distance dmin between the estimated parameters and the true system

parameters;

Result:

An optimal subset of experimental designs Eopt

Begin:

Initialise a random or user-defined subset of experimental designs E, of size Nsub < N ;

θ̂E = argmin J(θ) using E and yexp,E;

Calculate the relative Euclidean distance dθ̂E between θ̂E and θopt;

while dθ̂E > dmin do

Determine all the neighbouring experimental designs Nb of a randomly chosen

design in the subset E;

replace = false;

for i ≤ #Nb AND replace == false do

Replace the chosen experimental design by the ith neighbouring experimental

design Nbi, creating a new subset ENb;

θ̂Nb = argmin J(θ) using ENb and yexp,ENb
;

Calculate the relative Euclidean distance dθ̂Nb between θ̂Nb and θopt;

if dθ̂Nb < dθ̂ then

E←− ENb;

dθ̂E ←− dθ̂Nb ;
replace ←− true;

end

end

end

Eopt ←− E;

return Eopt
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As discussed above, the result of this algorithm is a subset of experimental designs Eopt which

are informative for the entire set of experiments.

In words, this algorithm can be explained as follows. First, the inputs need to be defined.

One of the inputs is a vector containing all the possible experimental designs along with the

experimental data derived from these experiments. A second input is the set of true system

parameters θopt. Note that if real experiments are performed (Section 7.1), the set of true

system parameters should be estimated using all the available real experimental data. This is

not the case when virtual experiments are used (Section 7.2), since θopt in such cases is just

θ∗ used to generate the in silico data. Finally, a termination criterion for the algorithm is also

needed. For this purpose, a minimal distance (dmin) between the estimates and the true system

parameters must be specified by the user.

In the first step of the algorithm, a random or user-defined subset E containing a predefined

number of experiments Nsub is initialised. In the next step, the parameters of the model are

estimated using the experiments of this subset E and their corresponding data. Since the

goodness of the subset needs to be defined, the relative Euclidean distance dθ̂E between the

estimated parameter set θ̂E and the given set of true system parameters θopt is determined:

dθ̂E =

√√√√√ np∑
i=1

(
θ̂E − θopt

)2

θopt
(5.17)

If dθ̂E is less than a predefined minimal value dmin, the subset is called acceptable. However if

this is not the case, a new subset of experiments should be selected in the subsequent steps. In

the latter case, the algorithm determines all the neighbouring experimental designs of a randomly

chosen experiment in the subset. A neighbouring experiment is defined as an experiment which

differs from the reference experiment with a minimal difference in only one of its degrees of

freedom, similarly to the Von Neumann neighbourhood in the field of cellular automata (see

Figure 5.2).



40 5.5 SUBSET SELECTION

A

B

Figure 5.2: The following grid represents the total set of experimental designs. Note that A and B are

two degrees of freedom which vary for each experiment in the set. The reference experiment

is represented by one of the black boxes, while the neighbouring experiments are shown in

grey.

Subsequently, the reference experiment in the subset is replaced by one of its neighbours and

thus a new subset of experimental designs ENb is defined. Again, the parameters of the model

are estimated and compared with the true system parameters, although this time ENb and its

corresponding data set are used for the estimation. If the parameters θ̂Nb resulting from the

estimation using the newly created subset ENb are better than the parameters resulting from

the previous subset, i.e. the Euclidean distance to the true system parameter is lower, then the

initial subset E is replaced by the more informative set ENb. If this is not the case another

neighbour will be selected and the process is repeated. If none of the neighbours results in an

improved parameter estimation another reference experiment will be randomly chosen.

This sequence of steps which iteratively tries to optimise the candidate solution could ultimately

find a subset of experiments that is as informative as the total set of experiments. However, there

is a chance that the algorithm does not find a solution conform the predefined stop criterion. In

the latter case the algorithm is stopped if a maximum number of iterations is exceeded.
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Software

6.1 Model and experimental design implementation

All mathematical models and most of the mathematical tools used throughout this thesis, were

implemented in MATLAB® (The Mathworks, Natick, MA) using a comparable markup lan-

guage as used in the open-source Systems Biology Toolbox 2 software package (SBTOOLBOX2)

(Schmidt and Jirstrand, 2006). In order to simulate different experimental set-ups of the same

biological system, two data structures have to be declared. It is rather obvious that one of

these structures represents the model, which contains the ordinary differential equations and/or

algebraic equations (e.g. Eq. (2.9) for the LDH or GDH reaction), while the other structure

represents the experimental design. In Table 6.1 and Table 6.2 an overview of the information

in both data structures is given.

To solve the nonlinear ODEs encountered throughout this thesis, the standard MATLAB imple-

mented solver ode15s was used. This solver is built to solve stiff initial value problems (IVPs).

Stiffness is an important concept in numerical analysis. According to Burden and Faires (2005)

stiff differential equations are characterised by having a fast transient solution followed by the

steady-state solution which causes certain numerical methods to be unstable. The ODEs consid-

ered in this thesis show a comparable dynamic behaviour, i.e. fast transient solution and steady

solution.

6.2 Mathematical parameter optimisation

For the progress curve analysis, an existing MATLAB implementation of the SIMPSA algorithm

was used (Donckels, 2009). This implementation is partly based on section 10.4 and 10.9 in

“Numerical Recipes in C”(Press et al., 1992), and the paper of Cardoso et al. (1996).

A second freely available software package called Encora 1.2 was also used for progress curve

analysis. This program, specifically designed for enzyme kinetic model calibration, uses the

Nelder and Mead simplex algorithm for estimating the kinetic parameters of biocatalytic models

41
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Table 6.1: Information contained in the data structure representing the mathematical model.

Example Explanation

Name LDH The name of the model.

Description - A brief explanation of the model and what it

represents.

States NADH, Pva,

Lact, NAD,

Eq. (2.9)

The states x which represent the state of the

model. This also contains the set of ODEs de-

scribing the dynamic behaviour of the model.

Variables rLDH Variables which are not states nor model out-

puts and how these are defined.

Constants - The different constants of the model and their

values.

Parameters V1, V2,KmA,

KmB,KmP ,KmQ,

KiA,KiB,KiP ,KiQ

The different parameters of the model and their

default values.

Manipulations - Manipulations such as spiking and sampling ac-

companied by the default settings.

Table 6.2: Information contained in the data structure representing an experimental design.

Example Explanation

Measurement times 0:1:1800 s All the moments at which a measure-

ment is performed.

Initial conditions NADH0 = 0.100 mM

Pva0 = 0.100 mM

Lact0 = 0 mM

NAD0 = 0 mM

The initial conditions of the system.

Manipulations - Manipulations such as spiking and

sampling accompanied by the default

settings.

Measured states NADH The states which can be measured dur-

ing the experiment.
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with up to two substrates and products. The differential equations are integrated using a fourth-

order Runge-Kutta solver (Straathof, 2001).

For initial rate analysis the standard MATLAB embedded simplex optimisation algorithm was

used. Although small modifications with regard to the objective function were made in order to

deal with the encountered constrained optimisation problems (Section 5.2.2).

6.3 Identifiability analysis

For the differential algebra method, an implementation in an existing software package called

DAISY was tested (Saccomani and Audoly, 2010).





CHAPTER 7
Experimental data

7.1 Real experiments

7.1.1 Experimental set-up

The lab experiments were carried out by The Center for Process Engineering and Technology

(PROCESS) at the Technical University of Denmark (DTU). Single enzyme batch experiments

of LDH and GDH were performed in plastic cuvettes (1 mL). Here, the change of NADH was

measured online, in situ, using a spectrophotometer at 30◦C (λabs 340 nm). To stabilise pH

around 8, a phosphate buffer was used. Experiments of the coupled ω-TA/LDH/GDH tri-enzyme

system were carried out at the same temperature and pH. In this case, off-line measurements of

acetophenone, (S)-1-phenylethylamine and glucose were performed. An overview of the different

experimental designs is given in Appendix B. Note that only progress curves at varying initial

concentrations were supplied. However, by estimating the slope of a linear regression through a

predefined number of initial data points, initial rates can easily be deduced from the progress

curves.

7.2 Virtual experiments

Generating experimental data by means of lab experiments can be very laborious and time

consuming. Hence, sometimes in silico data is generated by performing virtual experiments. In

other words, data is generated by simulating the system using the mathematical model. The

only prerequisites for this are a predefined set of parameters θ, an experimental design ξ and

a model structure. Using in silico data, it can easily be checked if the parameter optimisation

yields the correct values.
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CHAPTER 8
Progress curve analysis

8.1 Introduction

In Chapter 2 of this thesis it was mentioned that micro-kinetic rate models for biocatalytic

conversions, such as Eq. (2.3), had to be transformed into models comprised of macroscopic

kinetic parameters. However, the use of kinetic parameters (V,Km,Ki) instead of rate constants

(ki) is actually not mandatory, it is merely a historical artefact. The fact is that for considerable

time, no advanced numerical tools were available for estimating the parameters of dynamic

models within a reasonable period of time. Therefore, graphical initial rate methods were vastly

used. However, graphical analysis requires the models to be expressed in the form of easily

derivable kinetic parameters (i.e. V,Km,Ki). Nowadays, high-speed computers are available for

numerical analysis and thus one is no longer limited to graphical methods. Hence, progress

curve analysis can be performed in a reasonable period of time. In contrast to graphical analysis

all of the parameters can be estimated simultaneously when using progress curves. Therefore,

estimating kinetic parameters or rate constants makes no difference when using the entire time

series. However, in this thesis biocatalytic models comprised of macroscopic kinetic parameters

were used since these are still the most abundant in the present literature (Zavrel, 2009).

According to Straathof (2001) different enzymatic reactions in a multi-enzyme process should

be studied one at a time, i.e. single enzyme kinetics (Section 3.2). In this thesis the focus is

mainly on the lactate dehydrogenase (LDH) subsystem, used for the in situ removal of pyruvate.

This system was selected due to the availability of a large amount of accurate experimental

data. However, analysis of the glucose dehydrogenase (GDH) subsystem is very similar since

both enzymes have the same reaction mechanism, i.e. a bi bi compulsory-order ternary-complex

mechanism. Hence, the methods and techniques applied in this part of the thesis can also be

used for analysing the latter subsystem.

Calibrating the rate equation requires experimental data. In what follows a distinction is made

between progress curve analysis using data derived from one single experiment (i.e. a single

progress curve) and data derived from multiple experiments (i.e. multiple progress curves).
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Intuitively, it is expected that calibration of a model using multiple experimental data sets

leads to more precise parameters (especially if some of the experimental degrees of freedom are

varied). However, more experimental data implies that more experiments have to be performed.

In practice this can be quite time- and resource-consuming and might not even be necessary.

Therefore, information contained in only one progress curve is examined as well. Note that one

progress curve already contains a large number of data points.

8.2 One single enzyme batch reaction

This section deals with the dynamics of the LDH subsystem in a batch reactor. In such an

experimental set-up the change of the product concentrations (NAD and lactate) is simply

given by the reaction rate rLDH (Eq. (2.9)), whereas the change in substrate concentrations

(NADH and pyruvate) is given by the negative value of that reaction rate (−rLDH). Note that

enzyme deactivation is not included in the model since this is not relevant for the experimental

periods studied in this thesis.

8.2.1 Standard approach

In a first step the model describing the dynamic behaviour of the different reagents in the

LDH subsystem, i.e. Eq. (2.9), was calibrated using experimental design no. 1 (Table B.1 in

the Appendix) and its corresponding data set. Though only the results of experiment no. 1 are

shown, the presented conclusions are very similar for the other experimental designs.

The values of the different kinetic parameters are limited to a physically possible range given in

Table 8.1. Although the search for the true system parameters is restricted by these boundaries,

the continuous range is still enormous. Hence, a constrained SIMPSA algorithm was used for

calibrating this model since this optimisation algorithm is rather robust with respect to local

optima.

Table 8.1: Lower (LB) and upper bounds (UB) for the different kinetic parameters of the LDH subsys-

tem.

V1 V2 KmA KiA KmB KiB KmP KiP KmQ KiQ

[µM/s] [µM/s] [µM] [µM] [µM] [µM] [µM] [µM] [µM] [µM]

LB 0 0 0 0 0 0 0 0 0 0

UB 3× 107 3× 107 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106

As initial parameter guess a random set of parameters was chosen, limited by the lower and

upper boundaries. The optimal result is given in Figure 8.1 and Table C.1 in the Appendix.
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Figure 8.1: Progress curve of NADH concentration during an LDH batch reaction (experimental design

no. 1). Experimental data vs. model prediction, note the systematic error of the residuals.

One could state that the model fits the single progress curve reasonably good since the two curves

visually cover each other. However, when looking at the residual plot, valuable information on

the fit is revealed. Clearly, a systematic error is observed. This means that the residuals of

the same variable, i.e. the concentration of NADH, at different points in time are dependent on

each other. This is also referred to as autocorrelation. The reason for this kind of correlation

can have multiple origins, e.g. errors in the proposed model structure, the inputs or the used

parameter set. However, it is most likely that in this case the estimated parameters are causing

this systematic scatter since the model inputs and model structure are considered to be correct.

Indeed, scientists are quite sure about the enzymatic mechanism, which is represented in the

model structure (Borgmann et al., 1975; Cornish-Bowden, 2004).

When performing several similar parameter estimations starting from the same or different

initial parameter guesses (IG), another problem arises: no unique set of parameters can be

found (Figure 8.3, Table C.2 and C.3). This implies that the objective function has several local

minima in which the optimisation algorithm gets stuck.

When looking at the total relative sensitivity functions (Figure 8.2), locally around the first

estimated set of parameters, we may conclude that the model output is, in this case, most

sensitive for perturbations in V1,KmB and KiA. Note that the sensitivity curve of KiA overlaps
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with the curve of KmB. When taking a closer look at the SFs of the other parameters, we clearly

see an increase in sensitivity of V2,KmP and KiQ. Although the SFs of experiments no. 1 and

no. 10 look very different, they do have a lot in common.

In the case of experiment no. 1, the equilibrium which favours the product side is not yet reached

at the end of the experiment. Hence, the sensitivity of the parameters which are in the forward

initial rate model (V1,KmB and KiA) are sensitive for a much longer time because there is still

a significant amount of substrate which can be converted into product. Unlike the former case,

experiment no. 10 reaches the thermodynamic equilibrium much faster. Which translates to

SFs of V1,KmB and KiA that are only significant in the beginning of the experiment during a

short period of time. Looking at the SFs of the parameters represented in the reverse initial rate

model (V2,KmP and KiQ) the opposite effect is observed, i.e. a slow increase for experiment no.

1, yet much faster for experiment no. 10. Indeed when the experiment progresses, more product

is formed and the parameters of the reverse initial rate model become more important.

Variations in the model output are almost exclusively governed by the parameters for which the

model is most sensitive. Hence, it is of utmost importance that these parameters are precisely

known. However, from the sensitivity functions we can also elucidate that most of the parameters

are highly correlated. This is because the extrema of their sensitivity curves occur at the same

point in time. This basically means that, if the modeller wants to change the course of the

NADH progress curve, this can be realised by changing either of these parameters. Considering

that optimisation algorithms depend heavily on the individual effect of the different parameters

in the model, this has serious consequences when trying to estimate the kinetic parameters of

this model.

In what follows a brief overview is given of all the approaches that were investigated in order to

solve the problem of non-uniqueness of the estimated parameters.
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Figure 8.2: Using the parameters from Tabel C.1 the following progress curves and total relative sen-

sitivity functions are obtained for both experiment no. 1 and no. 10.
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8.2.2 Improvements of parameter estimation

Manual tuning of the SIMPSA algorithm

Cooling rate and minimal cooling factor : In order to enhance the search for the global optimum,

fine-tuning some of the parameters of the SIMPSA algorithm seems an obvious choice. In this

thesis most of the parameters of the algorithm were set to their recommended values or were

calculated beforehand by the algorithm itself (Cardoso et al., 1996). However according to

Vanhaute et al. (2012) and Donckels (2009) the cooling rate δ and the freezing temperature

T0 need to be tuned manually. To avoid the algorithm getting stuck in a local minima, the

value for the cooling rate is lowered from 10 to 1 with a constant decrease of 1 (Figure 8.4).

It should be remembered that as the temperature decreases, the probability of performing a

step in the wrong direction decreases and the SIMPSA algorithm converges to the “local”

Nelder and Mead method. Hence adjusting the cooling rate should result in slower, yet steadier

convergence (Section 5.2.3). Note that the SIMPSA algorithm used throughout this thesis also

contains a parameter called the minimal cooling factor (fmin). This latter parameter determines

the minimal difference between subsequent temperatures, e.g. if the initial temperature is 1000

the subsequent temperature should at least be as low as 900 for an fmin = 0.9. Hence, in order

to have a slower convergence the minimal cooling factor was raised from 0.9 to 0.99. The result

of this modification is again unsatisfactory since there is no improvement in the value of the

objective function and no unique solution for the different kinetic parameters was found. This is

also the case when lowering the freezing temperature T0, below the default value of 1 (Figure 8.3

– Freezing temp. – and Table C.5).
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Figure 8.3: In order to estimate the parameters of the LDH model, different approaches were examined.

In this figure an overview of the standard deviation between the estimates of different

iterations is given. This is done for each of the proposed improvements.
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Initial temperature: It was already mentioned in Table 5.1 that the initial temperature of the

SIMPSA algorithm does not need to be declared beforehand, since the algorithm itself is capable

of estimating this parameter. Therefore, the outcome of an optimisation with and without an

arbitrarily defined initial temperature of 1000 was compared. Again, the result after a testing

of 20 iterations, starting with a computed optimal temperature, was unsatisfactory (Figure 8.3

– No initial temp. – and Table C.4).

TOLX and TOLFUN : Using two different convergence tests, the SIMPSA optimisation algo-

rithm determines whether an optimum is reached or not. If one of these test criteria is met, the

algorithm stops and returns the values of the parameters in this optimum. A rather straight-

forward way to make both criteria more stringent at the same time, is by multiplying the value

of the objective function with a large factor. To test whether this approach leads to a unique

set of parameters, a testing of 20 iterations was performed using a multiplication factor of 1e6.

As shown in Figure 8.3, this approach lowers the deviation between the outcome of different

iterations, yet it does not generate an exclusive set of parameters (Figure 8.3 – Factor – and Ta-

ble C.6). Note that besides these two convergence tests, other termination criteria such as Kmax,

FEVALmax and tmax exist. However, increasing these termination criteria will not improve the

the accuracy of the algorithm.

Rescaling the objective function

Looking at the final part of the objective function, it is observed that there is little variation

between the different iterations (knowing that the error of the initial guess was about a thou-

sandfold larger). This clearly indicates that the shape of the multidimensional objective function

does not show a well distinguishable global minimum. Hitherto, the objective function we used

was the WSSE with no real weighting, i.e. Q is the unity matrix Inm constant in time. By chang-

ing how the objective function is defined, it is possible to alter its hyperdimensional shape. Note

that, as a result of noise, there is a chance that the objective function may not have a global

minimum at all.

Units and truncation: A possible way to reshape the objective function is through rescaling of

the experimental data. The data obtained from the Danish lab at DTU were originally expressed

in milimolar (mM), however, this were adjusted for all of the different approaches to micromolar

(µM). The reason why this is done is because one would expect that higher values of the

residuals lead to more precise parameters when the tolerance of the optimisation algorithm is

kept constant (TOLFUN and TOLX for the SIMPSA algorithm). Sensitivity functions can also

be used to rescale the experimental data. For example, by only taking into account the part

of the progress curve that is highly sensitive to perturbations in the parameters. Clearly, less

sensitive parts are redundant since these have less distinctive power. In this respect, the model

output ought to have sections at which it is less sensitive to all of the parameters comprising

the model. This is, however, not the case for experiment no. 1 (Figure 8.2).
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WSSRE: As mentioned in Section 5.2.2 the weighted sum of squared errors only takes into

account absolute errors. In other words, the same absolute errors at higher values of the output

variables are of equal importance when compared to the same errors at lower values of the

output variables. By using the weighted sum of squared relative errors (WSSRE) this can easily

be circumvented. However, this does not improve the search for a unique set of parameters

(Figure 8.3 – WSSRE – and Table C.10).

SFs: Parameter sensitivities can also be used for redefining the objective function. Most opti-

misation algorithms try to optimise a problem by iteratively changing a candidate solution and

subsequently evaluating the newly proposed candidate. For continuous optimisation problems,

iteratively changing a candidate solution basically means that one or more model parameters

are changed each iteration. A change in the parameters can either significantly alter the model

output or it could have no influence whatsoever. In the field of mathematical modelling the

impact of a small perturbation in one of the parameters can be quantified using sensitivity anal-

ysis (Section 5.4). Local sensitivity functions reveal how the output of the model is affected

by a slight change in one of the parameters. Redefining the objective function, with respect to

parameter sensitivities, can be done by weighting the residuals according to the maximum value

of all the total relative sensitivity functions. In this way, the residuals become more important

if the model output is more sensitive to a parameter, resulting in a time dependent weighting.

This means that the differences between model output and experimental data needs to be lower

in these regions of the progress curve. Hence, it is expected that the algorithm will be able

to make a better distinction between different sets of parameters. Note that only for in silico

data and thus with known real parameter value, the local sensitivity functions can be calcu-

lated beforehand. Therefore, when using this modification for real experimental data, either

some prior knowledge of the parameters should be available e.g. parameter values from a prior

optimisation or an updated local sensitivity function at every iteration should be included. In

this thesis the former approach, i.e. taking the maximum of the local relative SFs into account

when evaluating the objective function, was used to refine the search for the global optimum.

However, no satisfactory results were obtained (Figure 8.3 – Relative to the SFs – and Table

C.9).

Constraints: Additional restrictions on the values of the kinetic parameters can also help to

redefine the shape of the objective function. In Section 2.4 it was shown that the kinetic pa-

rameters of both dehydrogenase reactions must fulfill two constraints, i.e. the Haldane and the

non-Haldane relationship. Taking into account such constraints is practically done by imple-

menting a penalty function C(θ) (Section 5.2.2). In this thesis the following penalty function

was arbitrarily chosen:

C(θ) = 0.5 ·∆H · J(θ) + 0.5 ·∆nH · J(θ) (8.1)
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in which,

∆H =

(
V1

V2

)
KmPKiQ

KiAKmB
−
(
V1

V2

)2 KiPKmQ

KmAKiB
(8.2)

and

∆nH =
KmA

KiA
−
[
1 +

V1

V2

(
1− KmQ

KiQ

)
− KmPKiQ

KiPKmQ

]
(8.3)

The result is given in Figure 8.3 – Constrained – and Table C.7. Again, no remarkable improve-

ment in the result is observed.

Finally, besides the MATLAB implementation of the LDH model and the SIMPSA optimisation

algorithm, a software package called Encora 1.2 (specifically designed for progress curve analysis

of biocatalytic models) was also used. Research has shown that among computer programs,

which use dynamic parameter estimation, large differences can occur in the result (Zavrel et al.,

2010). Although Encora 1.2 is not the most recommended software for analysis of progress

curves, it was nonetheless chosen since it is freely available (Straathof, 2001). In a first step,

noise free in silico data for a single LDH conversion was generated using an arbitrarily chosen

set of predefined parameters and initial conditions. Subsequently, the Encora 1.2 software was

used to re-identify the ten kinetic parameters. Note that this software always takes into account

the additional Haldane and non-Haldane constraints. However, also in this case the result

was unsuccessful since the program was not able to find the true system parameters nor did

it find a unique set of parameters starting from different initial guesses. Therefore a clear

message to the community: it is not because you have a visually acceptable fit and a set of

optimised parameters using specific software, that these parameters represent the true system

parameters. It is consequently dangerous to use such set of parameters for extrapolation. Hence,

the MATLAB implementation of the model and optimisation algorithm was used for the further

course of this thesis.

Fixing parameters of the LDH model

Constants: Although the underlying mechanism of dehydrogenase enzymes are well known,

little knowledge on the values of the kinetic parameters of the LDH system has been reported to

date. Borgmann et al. (1975) were one of the first to determine the eight rate constants (ki) of

different LDH isoenzymes at varying temperatures using graphical initial rate analysis. In order

to improve our knowledge of LDH kinetics, the values of the parameter in the initial rate model

(Table C.12) were considered as constants. Which means that the number of parameters to be

estimated is almost halved, i.e. from ten to six parameters. Note that these literature parameters

are not valid for the experimental data available to us. Hence, in silico data had to be used.

A prerequisite for such virtual data is a predefined set of parameters. Logically, the values of

V1,KmA,KmB and KiA were taken from the literature and the remaining six parameters had to

be arbitrarily chosen. For this purpose, the values of the remaining six parameters were chosen
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so that the additional Haldane and non-Haldane constraints were satisfied (Table C.13). The

result is given in Figure 8.3 – Fixed + Constrained – and Table C.8.

8.3 Impact of the experimental design

Estimating the parameters of complex nonlinear biocatalytic models from one single reaction

batch experiment was proven to be too ambitious. This is mainly because such experiments do

not provide a wide variety of information in the measured data. Hence, strategies that increase

the information content of an experiment were investigated in the next steps.

8.3.1 Optimal experimental design for parameter estimation

OED: Increasing the information content of experiments is vastly associated with optimal ex-

perimental design (OED). It was already mentioned in Section 4.1 that OED/PE is generally

based on the inverse of the Fisher Information Matrix (FIM). Since, under the condition that

the measurement errors and the residuals are white and uncorrelated and the model is linear,

the FIM is equal to the lower bound of the parameter estimation covariance matrix. However,

OED/PE can not be used for our case because there are some restrictions to the LDH and GDH

systems. Firstly, calculation of the FIM requires information about the local sensitivity of the

output variable around the optimal parameter values. Since we do not find a unique value for

each of the parameters in the model using the SIMPSA algorithm, calculation of a unique FIM

is not possible. Indeed, for different iterations the search algorithm ends in completely different

regions of the parameter space. Secondly, the condition of white and uncorrelated residuals and

a linear model is clearly not met for the system we are evaluating (Section 8.2) (De Pauw, 2005).

We must thus conclude that it is not possible to use OED/PE directly as a tool for increasing

the information contents for the LDH and the GDH subsystems.

8.3.2 Multiple experimental designs

Multiple experiments: Although OED can not directly be used for the different subsystems in

this thesis, alternative methods are available to increase the information content of experimental

data. A rather straightforward way of doing this is by just increasing the amount of available

data. In this respect, two possibilities are available. Either more measurements need to be

performed during a single experiment or more different experiments should be performed. In

the former approach one could measure additional states or measure the same states but with

a higher frequency.

In some cases, multiple states of a system can be measured. Hence, it is possible that some of

the parameters in the model have different effects on different output variables. Indeed, this

favours parameter estimation. According to the previous argument, we should somehow try to
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measure more than one state of the system. However, care must be taken since this is only valid

for certain cases. The system focused on is unfortunately not such a case, because although

the LDH subsystem has four potentially measurable states (i.e. the concentration of NADH,

pyruvate, lactate and NAD), these states do not contain different information. The fact is that

the states of a system consisting of just a single batch reaction are merely transformations of

one another. Hence, we use the same equations (Eq. (2.9)) to model the different states of the

LDH system. Therefore, other strategies should be explored.

Since no additional information is obtained when measuring additional states and because of

the high frequency (i.e. 1/60 to 1/30 Hz) of the measured data, measuring more of a single

experiment will not significantly improve the information content of the data. Hence, using

data from multiple experiments is the most attractive alternative.

In the same way as for the single experiment, a parameter estimation was done using experi-

mental data obtained from multiple lab experiments, i.e. experiments no. 1 to 10 (Table B.1).

Again, unsatisfactory results were obtained (Figure 8.3 – Multiple exp. – and Table C.11).

Under the assumption that ten experiments still might be too few in order to determine the

parameters of the considered LDH subsystem, even more in silico data were generated to con-

firm the previous conclusion. In this respect, different degrees of freedom were varied. Looking

at the available experimental designs for both progress curves and initial rate experiments (Ta-

ble B.1 and B.2), one can deduce six degrees of freedom in each experiment: the duration of

an experiment, the measurement frequency and the initial concentrations of each of the four

components. Considering the same possible ranges, it can easily be shown that there are 12,800

possible experimental set-ups. Although we can virtually perform this much experiments, in

reality this is practically not possible without high-throughput techniques. Since in our case all

the experiments are performed manually, we should limit the amount of virtual experiments.

Therefore, a testing was done using only 50 arbitrarily chosen experimental designs and data

sets (using the parameters in Table C.12 and C.13). However, each of the 20 repetitions took

into account multiple adjustments, i.e. δ = 1, fmin = 0.99, no user-defined initial temperature,

a multiplication factor of 1e6, the WSSRE objective function and the additional Haldane and

non-Haldane constraints. The result for parameter V1 is given in Figure 8.5. Even with the

adjustments and more data sets, the SIMPSA optimisation algorithm is still not able to find the

true parameter values nor a unique set of parameters.

8.4 Structural identifiability analysis

Since none of the aforementioned approaches leads to a unique set of parameters, we can con-

clude that progress curve analysis is not an option for accurate and precise estimation of all the

kinetic parameters in the LDH model. It was already mentioned in Section 3.2 that nonlinear

biocatalytic models which contain a large number of parameters, are often found practically
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Figure 8.5: The estimated value of V1 for different iterations taking into account multiple in silico

generated datasets. Note that the result of different iterations is scattered over the whole

parameter space.

and/or structurally unidentifiable, i.e. no unique value can be assessed to the parameters com-

prising the model (Chis et al., 2011). The approaches examined in the previous section clearly

focused on practical identifiability of the LDH model. In this respect, we must conclude that the

model describing the kinetics of lactate dehydrogenase, i.e. Eq. (2.9) is practically unidentifiable

using the different approaches suggested by us. According to Chis et al. (2011) lack of practical

identifiability is in general terms solvable if the experimental constraints allow for designing

sufficiently rich experiments. Obviously, the crux of the problem is that the experiments in our

case do not allow for such designs.

Considering the previous conclusion, a more appropriate question would thus be “Is the LDH

model structurally identifiable?”. Different methods for testing the structural identifiability of a

mathematical model exist. In this thesis, a software package called DAISY was used to examine

structural identifiability by means of a differential algebra based method. For this purpose, we

considered a batch LDH experiment in which only one state was measured. However, when

testing the structural identifiability using DAISY software, computational problems were en-

countered due to the complexity of the rate equation. This was expected from the difficulties in

determining the structural identifiability of large and complex models, mentioned in literature

(Chis et al., 2011; Hattersley et al., 2011; Meshkat et al., 2011). However, when neglecting the

reverse reactions and when only including the inhibiting effect of the products in the equations,

some analyses could be performed. Unfortunately, the successful analyses revealed unidentifi-

able models, i.e. an over-specified model. This was not only the result when having only one



62 8.4 STRUCTURAL IDENTIFIABILITY ANALYSIS

measurement and no inputs (i.e. a batch experiment), but also when having two measurements

in a batch experiment. Note that it was not possible to finish an analysis that included system

inputs. So, using DAISY, no conclusions could be drawn for a system that has the freedom of

giving pulses.

A simple solution for unidentifiable models is reducing the complexity of the model. For exam-

ple, by taking into account parameter sensitivities, the mathematical model can be simplified

by removing the parameters for which it is considered insensitive (Santacoloma, 2012). From

the modeller’s perspective, this could definitely improve parameter calibration. However, care

must be taken, since such an approach leads to empirical input-output models with no physical

meaning whatsoever. Furthermore, scientists in the field of biocatalysis are most familiar with

the kinetic models that use the notation proposed by Cleland (1963). One of the advantages

of these models is that they allow for an easy comparison of enzyme activities. For example,

the ratio kkat/Km, referred to as the specificity constant, is a simple measure for the intrinsic

efficiency of an enzyme. However, if the model structure changes, these measures will no longer

be valid since the parameters are lumped together.



CHAPTER 9
Initial rate analysis

9.1 A systematic approach for estimating the kinetic parameters
of biocatalytic reactions

Thus far, it was not possible to estimate the kinetic parameters in Eq. (2.9) simultaneously.

Therefore, one could ask whether it is possible to decompose the present model in such a way

that the parameters of the complete model can be determined in a systematic manner. Using

graphical analysis for deriving the kinetic parameters in a stepwise procedure is well documented

in literature (Cornish-Bowden, 2004). However, when using numerical methods, such incremen-

tal approaches were not available until recently (Chen et al., 2008). Al-Haque et al. (2012)

tackled this shortcoming intelligently by exploiting the best features of several of the current

approaches. They propose a robust methodology allowing systematic calibration of complex

enzymatic models. Four hierarchical steps, in which the output of each step is the input of the

subsequent step, have to be performed. Clearly, this methodology can be used in this thesis.

In the first step of the aforementioned methodology, the region in which the initial reaction

rate changes linearly with a change in enzyme concentration is defined, because beyond this

region mass transfer limitations influence the overall reaction rate. Note that in this thesis

we are always working in this linear region. Next, the full rate equation, i.e. Eq. (2.9) for

the LDH subsystem, is decomposed into the initial rate equations for both the forward and

the reverse reaction, i.e. Eqs. (9.1) and (9.2). This is done by eliminating all the terms in

the rate expression which contain variables representing product concentrations. Indeed, this

is a valid approach since experiments that contain only substrates and enzyme initially, have

a negligible concentration of products during the initial part of the conversion. Using initial

rate data derived from different experiments, the four parameters in each of the two equations

can now be estimated utilizing algebraic parameter estimation (V1, KmA, KmB and KiA for the

forward reaction; V2, KmQ, KmP and KiQ for the reverse reaction). Note that Eqs. (9.1) and Eq.

(9.2) are nearly identical since they have the same model structure but different variables. This

results in following similarities: V1 ↔ V2, KmA ↔ KmQ, KmB ↔ KmP , KiA ↔ KiQ, a0 ↔ q0

63
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and b0 ↔ p0. In fact, this is the reason why the sensitivity functions at the beginning and near

the end of the conversion show such a comparable course (Section 8.2.1).

rinit,f =
V1 a0 b0

KiAKmB +KmB a0 +KmA b0 + a0 b0
(9.1)

rinit,r =
V2 q0 p0

KiQKmP +KmP q0 +KmQ p0 + q0 b0
(9.2)

In step three of the systematic approach, the additional core inhibition parameters (KiB and

KiP ) are regressed using entire progress curves. However, the values of the parameters estimated

in the previous step are considered fixed. Following this step, the set of parameters obtained in

the previous two steps is used as initial guess for a final optimisation. Note that the different

methods to improve the precision of the estimated parameters as suggested in Section 8.2.2, can

be used both steps three and four. Another remark is that the original case study of Al-Haque

et al. (2012) does not indicate whether a global or a local optimisation algorithm was used in the

last step of the calibration. However, it is believed that a local optimisation method was used

since in global optimisation the influence of the initial parameter guess is much more limited.

9.2 Structural identifiability of the initial rate model

Unlike progress curve analysis, the approach suggested by Al-Haque et al. (2012) does not require

a large number of parameters to be estimated at once. Intuitively, we would expect that this

systematic approach allows for more precise parameter identification. Structural identifiability

analysis of the initial rate model (Eqs. (9.2) and (9.2)) was conducted in the same way as

for the complete rate equation, i.e. assuming the measurement of only one variable during a

batch experiment. The DAISY software showed global identifiability for the initial rate model,

thus a unique set of parameters should be identifiable using noise free data and an appropriate

algorithm. Note that both initial rate equations have the same model structure, therefore they

have similar structural identifiability properties. Henceforward, we will only focus on the forward

initial rate expression.

Though the initial rate models are structurally identifiable, this does not imply that the SIMPSA

algorithm at its original settings will be able to identify a unique set of parameters starting from

noise free data. Therefore, a testing using noise free in silico data was carried out. Analysing

the available initial rate data obtained from the PROCESS department at DTU (Table B.2)

reveals that there are two degrees of freedom that vary between the initial rate experiments, i.e.

the initial concentration of respectively NADH (a0) and pyruvic acid (b0). Four different initial

concentrations of NADH were used in the experiments, whereas for the initial concentration of

pyruvic acid (Pva), thirteen different concentrations were used. Hence, a total of 52 initial rate
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experiments were performed in the lab. In the virtual experimental data set, an initial concen-

tration of 400 µM was included for both components. Hence, 70 different virtual experimental

designs are available. Visually this is represented in Figure 5.2. For each of the 70 experiments,

noise free in silico data was virtually generated using the literature parameters (Table C.12).

This is graphically represented in Figure 9.1. Note that the initial reaction rate increases as

the initial concentration of both components increases. Since the concentration of enzyme is

constant, saturation occurs at elevated substrate concentrations.
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Figure 9.1: The initial reaction rate (rinit,f ) as a function of the initial concentration of Pva and NADH.

Subsequently, this dataset is used to re-identify the literature parameters. In this respect, the

more robust SIMPSA optimisation algorithm is compared with the Nelder and Mead simplex

method. Maintaining the default settings and considering a WSSE objective function, the

SIMPSA algorithm performed much better w.r.t. the optimal parameter values, than the local

simplex algorithm when considering the upper and lower boundaries in Table 8.1. Nevertheless,

the performance of the local optimisation algorithm can be increased by increasing the maximum

number of function evaluations and iterations, as well as lowering the termination tolerance.

Since the default settings of the SIMPSA algorithm did not allow for fast convergence, manual

tuning is needed (Table 9.1).



66 9.2 STRUCTURAL IDENTIFIABILITY OF THE INITIAL RATE MODEL

Table 9.1: Settings used for the SIMPSA and simplex algorithm in order to accelerate estimation of the

initial rate parameters.

SIMPSA simplex

Parameter Value Parameter Value Parameter Value

T0 - KT0,max 15 Kmax 106

Tmin 10-6 KTmin,max 50 FEVALmax 108

δ 1 KT,max 2000 TOLX 10-6

ζ 0.95 Kmax 106 TOLFUN 10-6

fmin 10-6 FEVALmax 108 Factor 106

tmax 2500 TOLX 10-6

Factor 106 TOLFUN 10-6

For both the tuned simplex and tuned SIMPSA algorithm, the result after 50 different optimi-

sations is given in Figure 9.2. The first 25 optimisations all had an initial guess in the entire

parameter range — note the logarithmic scale of the vertical axis — whereas the range for the

last 25 iterations was a thousandfold smaller. Several things can be deduced from this figure.

Firstly, it seems that the SIMPSA algorithm performs better when compared to the simplex

algorithm. Indeed, the values of the four parameters after SIMPSA optimisation are almost

always around the optimal value, i.e. θ/θopt = 1, while this is not the case for the Nelder and

Mead simplex algorithm. This clearly indicates the presence of different local minima. Hence,

a global optimisation algorithm is needed for this model. However, if we ensure that the ini-

tial guess is closer to the optimal value (the last 25 optimisations), the simplex algorithm also

finds the optimal parameter values, i.e. the literature values. Another remarkable observation

is that according to this figure, both optimisation algorithms are better in predicting the values

of parameter V1 and KmA. To validate this observation, a plot of the objective function near

the optimal parameter values was made (Figure 9.3). Clearly, the curvature of the objective

function is the steepest for V1, which means that optimisation algorithms will be able to estimate

this parameter quite accurately and precisely. This is, however, not the case for parameter KiA

since the minimum is less distinguishable.
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Figure 9.2: Comparison between the estimates of both the tuned simplex algorithm and the tuned SIMPSA algorithm. Note that the boundaries

of the last 25 iterations are a thousandfold smaller than the first 25 iterations.
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Figure 9.3: Visualisation of the WSSE objective function near the optimal parameter values. Each mark

represents a point in the parameter space for which the value of the objective function was

calculated.

For parameters KmA and KmB an intermediate curvature is observed. Looking at the local

relative sensitivity functions around the literature parameter values (Figure 9.4), the behaviour

of the objective function can easily be explained. It seems that the initial rate model is most

sensitive for perturbations in V1. Hence, the value of the objective function increases rapidly

when diverging from the optimal parameter values. On the other hand, the initial rate model is

relatively insensitive for changes in parameterKiA, which clearly explains the stagnant behaviour

of the objective function near its optimal value.
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9.3 Practical identifiability of the initial rate model

It should be noted that experimental data in the field of bioprocess engineering is almost never

free of noise. Hence, noise-corrupted data is used to estimate the kinetic parameters. Second,

initial rate analysis is based on linear regression through a (small) set of consecutive initial data

points. To assess the influence of both features, an additional testing was done using in silico

generated data. Obviously, real experimental data can also be used for this purpose. However,

we chose not to, since the true system parameters are only known in the case of virtual data. In

this respect, the initial reaction rate had to be disturbed with noise. The following steps were

performed for each of the 70 experimental designs.

First, the initial rate model and literature parameters (Table C.12) were used to simulate the

first seconds of the progress curve. Indeed, the use of the initial rate model is valid since the

concentration of product ought to be negligible in the initial period of time. In order to mimic

the measurement noise, Gaussian noise, N (0, σ), was added to these virtually generated data

points. To do so, different values for the standard deviation σ were used:

� σ = 0.0346µM: The standard deviation of 100 data points in the visually stagnant phase

of experiment no. 10.

� σ = 0.122µM: The standard deviation of the residuals when regressing a straight line

through the first five seconds of the data obtained in experiment no. 10.

� σ = 1.227µM: Equals to 5% of the average measured concentration in experiment no. 6.

This approach was mentioned by Al-Haque et al. (2012).

� σ = 1 / 5 / 10µM: Arbitrarily chosen values for the standard deviation.

Note that in this thesis σ was assumed to be identical at each time instant; this is also the

case in other studies (Al-Haque et al., 2012; Zavrel et al., 2010). Finally, a straight line was

regressed through the first 10 data points of the disturbed progress curve. This corresponds

to 4.5 s of the conversion. Next, the slope of this line was set to be the noise-corrupted initial

reaction rate. According to Zavrel et al. (2010), usually around 10% of the conversion is taken

into account when deriving the initial reaction rate using graphical analysis. For our case, the

fastest experiments reach this point around 5 to 6 s. Hence, by taking into account the first 10

data points our method is more or less in agreement with other studies.

The aforementioned method was repeated 50 times for each value of the standard deviation.

Thus, 50 different data sets, each containing 70 disturbed initial rates, were available for

analysing the effect of a certain degree of measurement noise. To do this, parameter estimations

were conducted using only one data set at a time. The result can be seen in Figure 9.5(a). On the

vertical axis the standard deviation (relative to θopt) between the different results of each of the
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50 estimations is given. The outcome of this testing is quite straightforward, i.e. as the standard

deviation on the measurements (σ) increases, the results after different optimisations deviate

more from one another. This means that practical identifiability can no longer be guaranteed

beyond a certain degree of noise. Remarkably, the deviation is not the same for each parameter.

It seems that the value of parameter KmB is highly influenced by measurement noise. Thus, this

parameter can not be accurately estimated at high levels of noise using the SIMPSA algorithm.

This is, however, not the case for V1. Hence, this parameter can be estimated with sufficient

accuracy and precision. In practice, this plot can be used as a valuable tool to evaluate the

precision of the estimated parameter values.
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Figure 9.5: The influence of measurement noise (a) and the number of consecutive data points used

for deriving the initial reaction rate (b). Note that the lines connecting the marks are only

drawn to simplify the use of this figure. They should thus not be interpreted as continuous

data.

Another important issue that was investigated is the influence of the number of consecutive

data points used for linear regression on the estimates. In Figure 9.5(b) this is clearly visu-

alised. Note that on the vertical axis, the relative Euclidean distance to the optimal parameter

value is given (Eq. (5.17)). In contrast to Figure 9.5(a) which focused on the accuracy of the

estimates, Figure 9.5(b) clearly focuses on the precision of the estimates. Obviously, the more

data points (p) used in the regression, the larger the distance. This is because the initial reaction

rate is underestimated to a larger extent. Again, not all parameters are equally influenced by

this feature. It seems that the relative distance for the estimates of parameter KiA is largest.

However, we have already shown in Figure 9.4 that the model is rather insensitive to changes

in this parameter. Hence, the effect on the model output will be fairly small. It is most likely

that a change in parameter KmA has a larger impact on the model output. Once again, these

Figures clearly indicate that there are some serious issues which should be taken into account

when fitting the initial rate model to data.
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9.4 Subset selection for experimental design

It was clearly mentioned in Section 9.1 that, in order to estimate the true system parameters with

sufficiently high precision, the use of a stepwise incremental method is compulsory. However,

the problem with such robust methods is that they require lots of different data sets to calibrate

and validate the complete model. Therefore, this can be quite laborious and costly, especially

when fine chemicals such as pyridine nucleotide cofactors are needed (Serrano Briega, 2011). For

example, the method proposed by Al-Haque et al. (2012) uses six different data sets to calibrate

and validate biocatalytic models of the same complexity. Each of these sets is comprised of

multiple experiments. The most reagent demanding steps in this method are these which need

initial rate data (step no. 1 and 2). Indeed, when performing initial rate analysis each experiment

delivers only a single data point. In this respect, obtaining 70 or even 30 (Al-Haque et al., 2012)

initial rates for both the forward and the reverse reaction, is not considered to be very user

friendly. Hence, if we are able to reduce the amount of experimental data needed, we could save

time, money and labour.

Decreasing the number of experiments without compromising the precision of the parameter

estimates can be considered a subset selection problem. Different approaches are available in

literature to solve such problems, but in this thesis a straightforward case-specific algorithm was

developed and implemented (Algorithm 1 in Section 5.5).

In a first step, the same noise free data as in Section 9.2 was used to test the performance of the

newly proposed subset selection algorithm. Besides θopt and yexp, values for the termination

criterion (dmin), the maximum allowed number of iterations (ITERmax) and the number of

experiments in a subset (Nsub) need to be declared beforehand. The former two values were

arbitrarily chosen: dmin = 0.1 and ITERmax = 1000. In contrast, Nsub was varied between 2 and

70. It is noteworthy that the subset selection algorithm includes parameter estimation. Hence,

different optimisation algorithms can be used during the subset selection process. In this thesis,

the performances of both the simplex and SIMPSA algorithm were compared when using the

same settings as in Table 9.1.

Figure 9.6 gives a clear overview of the result. For each evaluated number of experiments, the

subset selection algorithm was run fifty times and either termination information was saved.

The bars in the figure show the number of occurrences for each of the three possible states after

the selection process:

� Unsuccessful selection: the total number of tested subsets exceeded the maximum allowed

number (ITERmax), which indicates a non-successful subset selection.

� Optimal selection: the subset selection algorithm was able to find a good subset after

changing some neighbouring experiments.
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� Direct optimisation: the algorithm did not select any new neighbouring experiments since

the initial subset was already informative enough.

From this figure, it can be seen that when the number of experiments in a subset increases,

the probability of directly finding an optimal subset, i.e. direct optimisation, increases as well.

However, it seems that the simplex algorithm has a harder time finding an optimal subset.

This can be seen from the fact that the number of iterations which need additional sampling,

i.e. optimal sampling, is higher for the simplex algorithm. Unlike the simplex algorithm, the

SIMPSA optimisation algorithm seems to be able to estimate the kinetic parameters easily

when five or more random experiments are available. It is even possible to find the true system

parameter by only taking into account three well-chosen experiments. This is definitely not the

case for the deterministic simplex algorithm since the number and the location of the experiments

must be well chosen. Clearly, these occurrences are due to the local character of the latter

algorithm.

simplex SIMPSA

(a) (b)

Unsuccessful selection

Optimal sampling

Direct optimisation

Figure 9.6: The result after subset selection using either the simplex (a) or the SIMPSA (b) optimisation

algorithm for evaluating the goodness of a subset.

Remarkably, both optimisation algorithms have some problems when estimating the parameters

using the total data set, i.e. 70 experiments. However, this is just the result of how the selection

algorithm was designed. If the total data set is used, no additional experiments will be left for

subsequent selection. Hence, the algorithm is forced to stop after its first attempt. Since the

simplex algorithm performs only a local search, it could happen that the initial guess does not

allow in finding the overall minimum (Figure 9.2). Note that the initial guess is kept constant

during a run of the selection algorithm so that all proposed subsets are evaluated starting from

the same point in the parameter space. The reason why the number of iterations is also exceeded

once when using the SIMPSA algorithm, was not thoroughly investigated. Most likely, this is

related to the settings of the algorithm which favour fast convergence.
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The main aim of the subset selection algorithm is to distinguish subsets of experiments which

are as informative as the total set of experiments. However, there will always be some degree

of randomness in the path of this algorithm, for example, the randomly chosen initial guess and

the stochastic behaviour of the SIMPSA algorithm. Hence, it is not capable of finding a single

best subset of experiments. The goal of the algorithm is thus revealing either trends in the

selection process or patterns in the obtained subsets. Indeed, a simple observation is that when

experiments in the initial subset only vary in one of the two degrees of freedom, the selection

algorithm proposes to vary the other degree of freedom as well. Clearly, more complex patterns

could be observed. However, a thorough evaluation of the patterns requires an appropriate

pattern recognition tool which was not yet fully exploited in this thesis.

Note that the aforementioned testing was done using noise-free in silico data. Intuitively, it is

expected that the results for true experimental data will favour the ‘iterations exceeded’ state.

However, looking back to Figure 9.5 learns us that the result might not be that different at

all, especially not when the measurement noise and the number of consecutive points are kept

relatively low. However, if the previous assumption is not valid, a potential pitfall for this

method is the termination criterion dmin. In our case dmin only takes into account the relative

distance to the true system parameters. However, these are only known in the case of in silico

data. To deal with this shortcoming an alternative approach is suggested.

When using real experimental data, the only way of evaluating the goodness of an estimated

parameter set is to compare the optimal parameter set for different repetitions of the optimisation

i.e. starting from different initial parameter guesses. Hence, in the first step of this potential

alternative approach multiple optimisations starting from the same subset of experiments, yet

different initial parameter guesses, should be conducted. Next, the resulting parameter sets

need to be compared based on the average euclidean distance between the parameter sets of the

sets in parameter space. If this distance fulfills a predefined criterion, it is assumed that the

global optimum is found, i.e. the true system parameters. If not, one of the experiments in the

subset needs to be replaced so that the whole process can start over. This simple, yet powerful

tool is just one of the possible ways to find the optimal subset of experiments in the case of

noise-corrupted experimental data.





CHAPTER 10
The coupled tri-enzyme system

10.1 Proof of concept

The use of a coupled tri-enzyme system for the production of PEA has recently gained substantial

interest. The reason being that, in practice, it has been confirmed that the production yield of

PEA significantly increases if the coproduct pyruvate is removed in situ (Shin and Kim, 1999)

(Figure 1.2). The aim of this section is to confirm that the same results are obtained using

virtual simulations. Note that this part does not build on previous results, it is merely for

proving the concept of multi-enzyme processes.

Due to the lack of some parameter values, preliminary parameter estimation was needed for the

LDH and GDH subsystems. In this respect, the same approach as in Section 8.3.2 was used to

estimate the unknown parameters. However, the upper bound for V2 was set to be one tenth

of the limiting rate in the forward direction (V1). This is done because for both the LDH and

GDH reactions, it is known that the equilibrium clearly favours the product side of the forward

reaction. The resulting values are given in Table C.14 of the Appendix. As mentioned before,

the complete model used for describing both subsystems is not practical identifiable. Therefore,

the estimated values should obviously not be considered as the true system parameters since

they only describe the system under the investigated experimental conditions.

To simulate the tri-enzyme system, i.e. the system with the cofactor regeneration cycle, Eq. (2.9)

was used for both the LDH and GDH conversions. However, for the TA conversion substrate

inhibition was included to the aforementioned model (Eq. (2.10)) in order to resemble reality as

close as possible (Shin and Kim, 1998) (Figure 10.1).

rTAm =

V1 a b
KiAKmB

− V2 p q
KiPKmQ

a
KiA

(1 + a
KsiA

) + KmA b
KiAKmB

(1 + b
KsiB

) + p
KiP

+ KmP q
KiPKmQ

+ a b
KiAKmB

· · ·

+ a p
KiAKiP

(1 + a
KsiA

) + KmA b q
KiAKmBKiQ

(1 + b
KsiB

) + p q
KiPKmQ

(10.1)

In Figure 10.2 the result of both simulations with and without cofactor regeneration cycle
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is depicted. The system without the regeneration cycle reaches equilibrium relatively fast,

whereas the system with additional regeneration keeps on converting acetophenone (Ace) to

(S)-1-phenylethylamine. The regeneration cycle continues until the the glucose concentration

becomes limiting.
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Figure 10.1: Simulation results for the tri-enzyme system. The initial concentrations are shown in the

upper left corner.

Nowadays, protein engineering and ab initio design, i.e. computer aided design and subsequent

in vivo expression, of biocatalysts enables scientists to increase enzyme activity. Increasing the

activity of the enzymes involved in the regeneration step will have no significant effect since the

thermodynamic equilibrium and kinetics of these reactions already favour the formation of the

desired components. However, increasing the activity of the rate-limiting enzyme i.e. the TA

leads to an increased product yield and a shorter equilibration time. The result is depicted in

Figure 10.2. The data obtained from DTU showed a comparable time-scale for the conversion,

indicating that the enzymes used in their lab experiments clearly have a higher activity than

those first described by Shin and Kim (1998).
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Figure 10.2: Simulation results for the tri-enzyme system if the limiting rate (V1) of the TA reaction is

multiplied with a factor 200 (Santacoloma, 2012).



PART V
CONCLUSIONS AND PERSPECTIVES





Conclusions

In this MSc. thesis, a rather theoretical study was conducted in order to gain more insight

into next-generation biocatalytic processes, i.e. multi-enzyme processes. This study focused on

calibration and experimental design for a bi bi compulsory-order ternary-complex mechanism.

In this respect, special attention was paid to the recently published work of Al-Haque et al.

(2012).

First, the practical identifiability of the model describing the complete mechanism of the LDH

enzyme was investigated based on the available data i.e. batch reaction data at different initial

concentrations of NADH and pyruvic acid. More specifically, a global optimisation algorithm

(SIMPSA) was repeatedly used to estimate the parameters of the model based on one single

batch experiment and using the sum of squared errors as objective function. This analysis

revealed that no unique optimal parameter set could be found. In fact, this is the result of

strong correlations between the parameters. In order to enhance the practical identifiability,

several improvements like manual tuning of the optimisation algorithm, rescaling the objective

function and taking multiple experimental data sets into account, were suggested. Even though

these improvements did not lead to an exclusive set of parameters, some of them can definitely

be used for other continuous optimisation problems.

Practical identifiability of the complete model based on entire progress curves of batch reactions

was thus rejected. It should be noted that, a lack of practical identifiability does not imply that

parameter estimation techniques fail in regressing the model. The problem is that the obtained

estimates are not unique and in fact meaningless for these deterministic models because they

do not allow for extrapolation or validation. Hence, software packages designed especially for

estimating the kinetic parameters of enzyme kinetic models should be applied with caution. In

addition, optimal experimental design (OED) could not be used since practical identifiability is

a prerequisite for this method.

Besides the more practical approach, structural identifiability was also scrutinised using the

differential algebra method, but to no avail. The used software bumped into computational

problems due to the highly complex model structure. Hence, no conclusions could be drawn

with regard to over-specification of the complete model. However, it was shown that even a

simplified model revealed structural unidentifiability. Although over-specification of a model can

be solved by simplifying the model structure, this is not recommended for kinetic models in the

field of biocatalysis. Indeed, simplified models result in lumped parameters and a corresponding

loss of information. A relevant example is the following: based on the ratio of different kinetic

parameters, enzyme properties like the intrinsic enzyme efficiency can be deduced. This is,

however, no longer the case when reducing model complexity.
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Clearly, progress curve analysis can not be used directly for a precise estimation of all the

parameters in the lactate dehydrogenase model. Therefore, alternative approaches such as the

stepwise incremental method proposed by Al-Haque et al. (2012) are mandatory. In this method,

the parameters related to the initial reaction rate are estimated beforehand.

Identifiability analysis revealed that both the forward and reverse initial rate models are struc-

turally identifiable. This was also proved by the fact that the true parameters of the initial rate

model could be uniquely estimated from noise-free in silico data at different initial concentra-

tions. Furthermore, the initial rate model is quite insensitive to changes in the sole inhibition

parameter of the model. In contrast, the limiting rate reveals to be the most sensitive parameter.

Moreover, it was shown that practical identifiability can be guaranteed when using noise-

corrupted virtual data. In this respect, noise corrupted data were used to determine noise

corrupted initial rates as the slope of the linear regression through the data. Both the variance

of the noise and the number of data points used in the regression, were varied. Because even the

parameters of identifiable models can only be estimated within a confidence interval, an easy-to-

grasp figure was developed in order to perform a first assessment of the estimates’ precision.

Regarding the number of experiments needed to calibrate the initial rate model, additional

testing was done using a straightforward case-specific subset selection algorithm. Originally,

it was assumed that a large data set was needed in order to calibrate the initial rate model.

However, this research clearly showed that when using a robust optimisation algorithm and

high-quality data, the number of experimental data sets might reduce to three well-selected

experiments. In order to select a good experimental design, the suggested subset selection

algorithm can be used as a valuable tool, even if the true system parameters are not known.

This should be further verified on a real case.

Finally, the usefulness of multi-enzyme systems, in particular the tri-enzyme system for the

production of (S)-1-phenylethylamine, was demonstrated by performing virtual simulations. Al-

though the true system parameters are not thoroughly known, it was clearly shown that the use

of in situ coproduct removal via an enzymatic cofactor regeneration cycle shifts the equilibrium

towards the desired product side.

Future perspectives

It is often cited that the use of progress curves from enzymatic conversions hold particular

promise regarding precise kinetic models. The main argument for this belief is that progress

curves contain more information on the conversion in contrast to initial rate data. However,

when using the entire time course of a conversion, the model becomes highly complex because

additional phenomenons such as inhibition become important. Hence, identifiability can no

longer be guaranteed.
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That is why future research should not focus solely on progress curve analysis but rather on sys-

tematic approaches which combine progress curve analysis and initial rate analysis. The method

proposed by Chen et al. (2008) and Al-Haque et al. (2012) are good starting points, but as the

author claims himself, this is still a robust methodology which leaves room for improvements.

A possible improvement is the inclusion of methodologies for optimal experimental design and

thus reducing the number of experimental data needed.

Unlike the complete model, the initial rate models allowed for structural and practical iden-

tifiability. Hence, optimal experimental design should be performed for these models so that

experimental work only focuses on what is relevant for the process and its model. In this re-

spect, it is advised that the result of the suggested subset selection algorithm is evaluated using

advanced pattern recognition tools. This could ultimately lead to a set of easy-to-use rules, that

allow for defining informative sets of experimental designs. In addition, the subset selection

algorithm should be validated on real experimental data.

Although it was not mentioned before, spiking of the system with substrates and/or products

could also be examined w.r.t. identifiability. It was already described that for relatively simple

enzyme systems spiking significantly improves the precision of the estimated parameters. In this

respect, some preparatory work was done using the LDH model. However to date, no conclusions

could be drawn.

Finally, if the models of the individual enzymatic steps in a multi-enzyme system are well

understood, the transition towards modelling of a multi-enzyme process can be made. Intuitively,

it is expected that additional phenomena such as inhibition and other interactions will become

important in the case of a multi-enzyme system. Hence, model complexity will increase even

more, which requires additional sophisticated evaluation techniques.
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APPENDIX A
Relation kinetic parameters and rate

constants

To facilitate the use of the rate expressions, the characters A and B are assigned to the substrates

of a bi bi enzyme conversion, whereas the products are denoted using P and Q (Table A.1).

Table A.1: The following characters representing either substrate or product, will be used throughout

this thesis.

A B P Q

TA L-alanine acetophenone pyruvate (S)-1-phenylethylamine

LDH NADH pyruvate (S)-lactate NAD

GDH NAD glucose glucono-δ-lactone NADH

The relations between the kinetic parameters and the rate constants are given in Table A.2.

While kinetic parameters (V , Km, Ki) can always be expressed in terms of rate constants

(ki), an inverse relation is not always possible. Thus, a distinction between rate equations

with identifiable and unidentifiable rate constants should be made. A simple example of a

rate expression with unidentifiable rate constants is the Michaelis-Menten equation. Here, no

unique set of rate constants can be found if the kinetic parameters are known. Hence, we

call them unidentifiable rate constants. This is also the case for more complex mechanisms

such as the rate equation for the substituted-enzyme mechanism (Straathof and Heijnen, 1996).

An example of an expression with identifiable rate constants is the compulsory-order ternary-

complex mechanism. The relations for this mechanism are given in Table A.3 (Cornish-Bowden,

2004).



Table A.2: Definitions of the kinetic parameters for both mechanisms. Although KiB is not in Eq.

(2.10), it can be derived using the Haldane relation given in Section 2.4

Ternary-complex mechanism Substituted-enzyme mechanism

V1
k3k4 e0
k3+k4

k2k4 e0
k2+k4

V2
k−1k−2 e0
k−1+k−2

k−1k−3 e0
k−1+k−3

KmA
k3k4

k1(k3+k4)
k4(k−1+k2)
k1(k2+k4)

KmB
k4(k−2+k3)
k2(k3+k4)

k2(k−3+k4)
k3(k2+k4)

KmP
k−1(k−2+k3)
k−3(k−1+k−2)

k−3(k−1+k2)
k−2(k−1+k−3)

KmQ
k−1k−2

k−4(k−1+k−2)
k−1(k−3+k4)
k−4(k−1+k−3)

KiA
k−1

k1

k−1

k1

KiB
k−1+k−2

k2

k−3

k3

KiP
k+3+k4
k−3

k2
k−2

KiQ
k4
k−4

k4
k−4
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Table A.3: The inverse relations between the rate constants and the kinetic parameters for the

compulsory-order ternary-complex mechansim

Rate constant

k1
V1

KmA e0

k2
V1(k−2+k3)
k3KmB e0

k3
V1V2KiQ

e0(V2KiQ−V1KmQ)

k4
V2KiQ

KmQ e0

k−1
V1KiA

KmA e0

k−2
V1V2KiA

e0(V1KiA−V2KmA)

k−3
V2(k−2+k3)
k−2KmP e0

k−4
V2

KmQ e0
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APPENDIX B
Experimental designs

In the following tables an overview of different experimental designs is given. These experiments

were carried out by The Center for Process Engineering and Technology (PROCESS) at the

Technical University of Denmark (DTU).

Table B.1: Experimental design of the different LDH experiments.

Initial concentration Measurements

NADH Pva Duration Frequency

(µM/l) (µM/l) (min) (1/s)

Exp. 1 100 100 30 1

Exp. 2 100 200 15 1

Exp. 3 100 300 15 1

Exp. 4 100 400 15 1

Exp. 5 100 500 15 1

Exp. 6 100 1000 10 2

Exp. 7 100 2000 10 2

Exp. 8 100 3000 5 2

Exp. 9 100 4000 5 2

Exp. 10 100 5000 5 2
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Table B.2: Experimental design of the different LDH initial rate experiments. All experiments where

measured for 1 minute with a measurement frequency of 20 Hz.

Initial concentrations

NADH (µM) 100 300

200 500

Pva (µM) 100 3000

200 4000

300 5000

500 10000

1000 15000

2000 20000

25000

Table B.3: Experimental design of the different GDH experiments.

Initial concentrations Measurements

NAD+ Glu Duration Frequency

(µM/l) (µM/l) (min) (1/s)

Exp. 1 150.7 100 10.0 1

Exp. 2 150.7 250 10.0 1

Exp. 3 150.7 1000 10.0 1

Exp. 4 150.7 10000 5.6 1

Exp. 5 150.7 50000 10.0 1

Exp. 6 150.7 1000 5.3 1

Exp. 7 226.1 100000 10.0 1

Exp. 8 226.1 250 10.0 1

Exp. 9 226.1 1000 10.0 1

Exp. 10 226.1 10000 10.0 1

Exp. 11 226.1 50000 10.0 1

Exp. 12 226.1 100000 10.0 1

Exp. 13 301.5 100 10.0 1

Exp. 14 301.5 250 10.0 1

Exp. 15 301.5 10000 10.0 1

Exp. 16 301.5 50000 10.0 1

Exp. 17 301.5 5000 10.0 1

Exp. 18 301.5 100000 10.0 1



APPENDIX C
Results and discussion

Table C.1: Parameter values after optimisation.

Parameter Value

Initial Final

V1 1.93655447× 107 1.93572496× 107

V2 5.298662× 105 1.2758126× 106

KmA 1.3574017× 106 4.506756× 105

KiA 1.6979848× 106 1.6979517× 106

KmB 1.3162406× 106 1.3570537× 106

KiB 3.1432380× 106 1.7679455× 106

KmP 3.6749689× 106 3.1652505× 106

KiP 4.9496166× 106 1.0538413× 106

KmQ 3.0927219× 105 4.9266544× 106

KiQ 1.7755018× 105 3.5763446× 106



Table C.2: Summarizing result after 20 iterations of progress curve analysis. Standard settings; starting from the same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 1.87E+07 1.08E-02 6.30E+02 2.50E+06 5.63E+05 4.86E+04 6.57E+03 2.84E+05 4.25E+06 5.00E+05 79.48

Max 2.95E+07 2.22E+06 2.13E+06 4.98E+06 9.59E+05 2.82E+06 4.58E+06 4.45E+06 5.00E+06 4.57E+06 100.27

Stdv 3.17E+06 6.58E+05 5.95E+05 7.92E+05 1.14E+05 9.29E+05 1.47E+06 1.21E+06 1.95E+05 1.20E+06 4.84

Rank 1 7 8 6 10 5 2 3 9 4 -

Stdv/range 0.106 0.022 0.119 0.158 0.023 0.186 0.295 0.243 0.039 0.239 -

Rank 7 10 6 5 9 4 1 2 8 3 -

Table C.3: Summarizing result after 20 iterations of progress curve analysis. Standard settings; starting from the different initial guesses.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] SSE

Min 6.43E+06 1.29E-01 3.28E+02 2.69E+05 2.77E+05 3.24E+05 8.97E+03 7.19E+05 1.35E+06 9.41E+03 9.51E+01

Max 2.93E+07 2.58E+06 2.71E+06 3.95E+06 4.92E+06 4.57E+06 4.77E+06 4.89E+06 4.99E+06 4.96E+06 1.00E+02

Stdv 7.29E+06 7.70E+05 8.77E+05 1.02E+06 1.17E+06 1.41E+06 1.14E+06 1.15E+06 1.16E+06 1.17E+06 1.33E+00

Rank 1 10 9 8 4 2 7 6 5 3 -

Stdv/range 0.243 0.026 0.175 0.204 0.235 0.282 0.229 0.230 0.232 0.235 -

Rank 2 10 9 8 4 1 7 6 5 3 -
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Table C.4: Summarizing result after 20 iterations of progress curve analysis. No initial temperature; starting from the same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 9.70E+06 2.25E-01 2.61E+02 1.06E+06 2.77E+05 6.89E+05 8.28E+03 1.54E+05 1.19E+06 2.42E+06 9.59E+01

Max 2.98E+07 2.58E+06 2.83E+06 4.66E+06 1.96E+06 4.29E+06 4.98E+06 4.93E+06 4.96E+06 4.78E+06 1.00E+02

Stdv 6.20E+06 6.18E+05 6.32E+05 1.19E+06 4.98E+05 1.04E+06 1.10E+06 1.33E+06 1.48E+06 7.50E+05 9.66E-01

Rank 1 9 8 4 10 6 5 3 2 7 -

Stdv/range 0.207 0.021 0.126 0.238 0.100 0.208 0.220 0.267 0.295 0.150 -

Rank 6 10 8 3 9 5 4 2 1 7 -

Table C.5: Summarizing result after 20 iterations of progress curve analysis. Freezing temperature of 0.1; starting from the same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 1.73E+07 1.88E-01 1.36E+03 1.60E+06 5.07E+05 1.11E+04 4.62E+03 3.69E+04 8.97E+05 8.80E+05 9.38E+01

Max 2.83E+07 2.12E+06 1.80E+06 4.73E+06 1.29E+06 4.98E+06 4.74E+06 4.43E+06 5.00E+06 4.88E+06 1.00E+02

Stdv 2.74E+06 4.77E+05 4.00E+05 9.04E+05 2.08E+05 1.51E+06 1.02E+06 1.27E+06 1.12E+06 1.17E+06 1.44E+00

Rank 1 8 9 7 10 2 6 3 5 4 -

Stdv/range 0.091 0.016 0.080 0.181 0.042 0.303 0.204 0.254 0.224 0.233 -

Rank 7 10 8 6 9 1 5 2 4 3 -
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Table C.6: Summarizing result after 20 iterations of progress curve analysis. Multiplying the value of the objective function with a factor; starting from the same

initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 1.76E+07 2.47E-02 1.34E+01 1.67E+06 5.34E+05 3.91E+05 5.92E+03 2.59E+05 4.59E+06 2.62E+06 9.44E+07

Max 2.65E+07 2.59E+06 4.81E+03 4.82E+06 1.26E+06 4.49E+06 4.84E+06 3.81E+06 5.00E+06 4.76E+06 1.00E+08

Stdv 2.24E+06 5.86E+05 1.40E+03 6.67E+05 1.46E+05 9.84E+05 1.10E+06 9.26E+05 9.12E+04 6.41E+05 1.30E+06

Stdv/range 0.075 0.020 0.000 0.133 0.029 0.197 0.220 0.185 0.018 0.128 -

Rank 6 8 10 4 7 2 1 3 9 5 -

Table C.7: Summarizing result after 20 iterations of progress curve analysis. Taking into account the additional constraints; starting from the same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂) ∆H ∆nH

Min 1.14E+06 1.05E+06 8.71E+04 5.99E+05 2.55E+05 3.40E+06 1.75E+06 2.16E+06 2.06E+00 4.07E+00 1.00E+02 9.99E-07 9.70E-08

Max 2.62E+07 5.00E+06 3.26E+06 3.94E+06 3.37E+06 4.92E+06 4.80E+06 5.00E+06 3.49E+06 5.00E+06 2.92E+02 2.43E-05 3.38E+00

Stdv 6.96E+06 1.04E+06 9.56E+05 1.09E+06 9.61E+05 4.34E+05 8.57E+05 7.67E+05 8.72E+05 1.40E+06 4.26E+01 6.75E-06 7.56E-01

Rank 1 4 6 3 5 10 8 9 7 2 - - -

Stdv/range 2.32E-01 3.45E-02 1.91E-01 2.17E-01 1.92E-01 8.69E-02 1.71E-01 1.53E-01 1.74E-01 2.80E-01 - - -

Rank 2 10 5 3 4 9 7 8 6 1 - - -
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Table C.8: Summarizing result after 20 iterations of progress curve analysis. Considering the literature parameters as constants; starting from the same initial guess.

V2 [µM/s] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂) ∆H ∆nH

Min 1.18E+04 5.00E+03 3.77E+03 2.43E+05 1.17E+06 1.19E+03 8.92E+04 8.41E+02 1.11E+02

Max 3.80E+06 2.74E+06 5.00E+06 4.98E+06 5.00E+06 4.99E+06 4.63E+06 8.96E+02 1.13E+02

Stdv 1.34E+06 1.00E+06 1.24E+06 1.01E+06 8.60E+05 1.39E+06 2.06E+06 2.14E+01 5.97E-01

Rank 2 5 3 4 6 1 - - -

Stdv/range 0.045 0.201 0.247 0.202 0.172 0.277 - - -

Rank 6 4 2 3 5 1 - - -

Table C.9: Summarizing result after 20 iterations of progress curve analysis. Weighted by the maximum of the total relative sensitivity functions; starting from the

same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 1.37E+07 2.10E+04 1.53E+05 7.88E+05 7.74E+05 9.17E+04 2.83E+06 2.09E+04 7.75E+05 1.44E+06 1.91E-02

Max 3.00E+07 2.01E+07 4.46E+06 3.47E+06 3.39E+06 4.02E+06 4.99E+06 4.15E+06 4.46E+06 4.97E+06 1.45E-01

Stdv 4.46E+06 4.91E+06 1.25E+06 6.64E+05 7.72E+05 9.60E+05 6.88E+05 1.36E+06 9.69E+05 1.20E+06 3.79E-02

Rank 2 1 4 10 8 7 9 3 6 5 -

Stdv/range 0.149 0.164 0.251 0.133 0.154 0.192 0.138 0.271 0.194 0.240 -

Rank 8 6 2 10 7 5 9 1 4 3 -

95



Table C.10: Summarizing result after 20 iterations of progress curve analysis. Weighted by the maximum of the total relative sensitivity functions; starting from the

same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 1.26E+07 2.84E-01 3.72E+05 4.91E+05 5.61E+05 1.19E+06 2.39E+06 2.90E+06 1.88E+04 7.29E+02 4.07E+04

Max 2.92E+07 8.72E+02 4.57E+06 4.78E+06 3.49E+06 5.00E+06 4.76E+06 5.00E+06 4.59E+06 5.00E+06 4.08E+04

Stdv 5.51E+06 2.25E+02 1.18E+06 1.51E+06 8.42E+05 1.04E+06 7.10E+05 4.83E+05 1.23E+06 1.78E+06 1.09E+01

Rank 1 10 5 3 7 6 8 9 4 2 -

Stdv/range 0.184 0.000 0.237 0.303 0.168 0.208 0.142 0.097 0.246 0.357 -

Rank 6 10 4 2 7 5 8 9 3 1 -

Table C.11: Summarizing result after 20 iterations of progress curve analysis. Considering data from multiple experiments; starting from the same initial guess.

V1 [µM/s] V2 [µM/s] KmA [µM] KiA [µM] KmB [µM] KiB [µM] KmP [µM] KiP [µM] KmQ [µM] KiQ [µM] J(θ̂)

Min 2.00E+07 4.92E+06 5.36E+05 8.81E+05 8.97E-05 5.59E+03 4.72E+03 2.27E+02 2.05E+06 4.34E-03 5.59E+03

Max 2.88E+07 5.00E+06 2.93E+06 4.58E+06 9.59E+00 4.76E+06 4.42E+06 4.94E+06 4.72E+06 3.69E+06 4.76E+06

Stdv 2.76E+06 2.66E+04 8.95E+05 1.24E+06 3.12E+00 1.82E+06 1.66E+06 1.84E+06 9.44E+05 1.37E+06 1.82E+06

Rank 1 9 8 6 10 3 4 2 7 5 -

Stdv/range 0.091859979 0.000885387 1.79E-01 2.48E-01 6.25E-07 3.63E-01 3.32E-01 3.68E-01 1.89E-01 2.73E-01 -

Rank 8 9 7 5 10 2 3 1 6 4 -
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Table C.12: Parameter values for the LDH-1 isoenzyme taken from the literature (Borgmann et al.,

1975). Note that these are not valid for the experimental data which was available to us.

Parameter Value

V1 25.74 µM/s

KmA 2499.10 µM

KiA 2030.30 µM

KmB 2.23 µM

Temp. 37 ◦C

pH 10

Table C.13: Remaining parameter values needed to generate in silico data.

Parameter Value

V2 0.22 µM/s

KiB 436.75 µM

KmP 41.00 µM

KiP 585.05 µM

KmQ 12.19 µM

KiQ 848.58 µM

KiQ 904.5
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Table C.14: Estimated parameter values using progress curve analysis. The values in bold were obtained

from the literature.

TA1 LDH2 GDH3

V1 [µM/s] 8.63× 10−3 25.74 21.00

V2 [µM/s] 7.00 2.40 2.09

KmA [µM] 1070.00 249.91 3.17

KiA [µM] 2850.00 2.23 6.21

KmB [µM] 540.00 2030.30 4560.00

KiB [µM] 130.00 1962.16 320693.37

KmP [µM] 9850.00 4326.62 36244.22

KiP [µM] 31.40 3377.87 1501799.30

KmQ [µM] 35030.00 3868.18 2749662.30

KiQ [µM] 10.20 2712.75 78601.38

KsiA [µM] 25.82 - -

KsiB [µM] 1.24 - -

1 Shin and Kim (1998), 2 Borgmann et al. (1975), 3 Carper et al. (1983)
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València.

Lindner, P. O. F. and Hitzmann, B. (2006). Experimental design for optimal parameter esti-

mation of an enzyme kinetic process based on the analysis of the Fisher information matrix.

Journal of Theoretical Biology, 238(1):111–23.

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall, second edition.

Marquardt, W. (2005). Model-based experimental analysis of kinetic phenomena in multi-phase

reactive systems. Chemical Engineering Research and Design, 83(6):561–573.



104 BIBLIOGRAPHY

Meshkat, N., Anderson, C., and Distefano, J. J. (2011). Finding identifiable parameter combi-

nations in nonlinear ODE models and the rational reparameterization of their input-output

equations. Mathematical biosciences, 233(1):19–31.

Michalik, C., Schmidt, T., Zavrel, M., Ansorge-Schumacher, M., Spiess, A., and Marquardt, W.

(2007). Application of the incremental identification method to the formate oxidation using

formate dehydrogenase. Chemical Engineering Science, 62(18-20):5592–5597.

Michalik, C., Stuckert, M., and Marquardt, W. (2010). Optimal experimental design for dis-

criminating numerous model candidates: The AWDC criterion. Industrial & Engineering

Chemistry Research, 49(2):913–919.

Murphy, E. F., Gilmour, S. G., and Crabbe, M. J. C. (2002). Effective experimental design:

enzyme kinetics in the bioinformatics era. Drug Discovery Today, 7(20 Suppl):S187–91.

Nelder, J. A. and Mead, R. (1964). A simplex method for function minimization. The Computer

Journal, 7(4):308–313.

Nestl, B. M., Nebel, B. a., and Hauer, B. (2011). Recent progress in industrial biocatalysis.

Current Opinion in Chemical Biology, 15(2):187–93.

Nugent, T. and El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends

for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis &

Catalysis, 352(5):753–819.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes

in C: The Art of Scientific Computing, volume 29. Cambridge University Press, Cambridge,

second edition.

Saccomani, M. P. and Audoly, S. (2010). Examples of testing global identifiability of biologi-

cal and biomedical models with the DAISY software. Computers in Biology and Medicine,

40(4):402–407, http://www.dei.unipd.it/%7epia/.

Santacoloma, P. A. (2012). Multi-enzyme Process Modeling. PhD Thesis, Danmarks Tekniske

Universitet.

Scheerlinck, K. (2012). Metaheuristic versus tailor-made approaches to optimization problems

in the biosciences. PhD Thesis, Gent University.

Schmidt, H. and Jirstrand, M. (2006). Systems Biology Toolbox for MATLAB: a computational

platform for research in systems biology. Bioinformatics (Oxford, England), 22(4):514–515,

http://www.sbtoolbox2.org.

Schulz, A. R. (1994). Enzyme Kinetics - From Diastase to Multi-enzyme Systems. Cambridge

University Press, Cambridge.



BIBLIOGRAPHY 105

Segel, L. A. and Slemrod, M. (1989). The quasi-steady-state assumption: a case study in

perturbation. Society for Industrial and Applied Mathematics, 31(3):446–477.

Serrano Briega, G. (2011). Evaluation of Coupled Dehydrogenase Systems. Number June. Master

Thesis, Danmarks Tekniske Universitet.

Shin, J.-s. and Kim, B.-g. (1998). Kinetic modeling of ω-transamination for enzymatic kinetic

resolution of α-MBA. Biotechnology and Bioengineering, 60(5):534–540.

Shin, J.-s. and Kim, B.-g. (1999). Asymmetric synthesis of chiral amines with ω-transaminase.

Biotechnology and Bioengineering, 65(2):206–211.

Straathof, A. (2001). Development of a computer program for analysis of enzyme kinetics

by progress curve fitting. Journal of Molecular Catalysis B: Enzymatic, 11(4-6):991–998,

http://www.tnw.tudelft.nl/?id=35959&L=1.

Straathof, A. and Heijnen, J. J. (1996). New constraints between kinetic parameters explain the

(un)identifiability of enzymatic rate constants. Biotechnology and Bioengineering, 52(3):433–

7.

Swann, W. H. (1969). A survey of non-linear optimization techniques. FEBS Letters, 2:S39–S55.

Thompson, S. (1986). Biotechnology-Shape of things to come or false promise? Futures,

18(4):514–525.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems. Wiley-VCH Verlag

GmbH, New York.

Tufvesson, P., Jensen, J. S., Kroutil, W., and Woodley, J. M. (2012). Experimental deter-

mination of thermodynamic equilibrium in biocatalytic transamination. Biotechnology and

Bioengineering, 109(8):2159–62.

Tufvesson, P., Lima-Ramos, J., Jensen, J. S., Al-Haque, N., Neto, W., and Woodley, J. M.

(2011). Process considerations for the asymmetric synthesis of chiral amines using transami-

nases. Biotechnology and Bioengineering, 108(7):1479–93.

Vanhaute, W. J., Vandenberghe, S., Scheerlinck, K., De Baets, B., and Verhoest, N. E. C.

(2012). Calibration of the modified Bartlett-Lewis model using global optimization techniques

and alternative objective functions. Hydrology and Earth System Sciences, 16(3):873–891.

Versyck, K. J., Bernaerts, K., Geeraerd, a. H., and Van Impe, J. F. (1999). Introducing optimal

experimental design in predictive modeling: a motivating example. International Journal of

Food Microbiology, 51(1):39–51.

Willner, I. and Mandler, D. (1989). Enzyme-catalysed biotransformations through photochemi-

cal regeneration of nicotinamide cofactors. Enzyme and Microbial Technology, 11(8):467–483.



106 BIBLIOGRAPHY

Zavrel, M. (2009). Model-based Experimental Analysis of Enzyme Kinetics in Aqueous- Organic

Biphasic Systems. PhD Thesis, Rheinisch-Westfälischen Technische Hochschule Aachen.

Zavrel, M., Kochanowski, K., and Spiess, A. C. (2010). Comparison of different approaches

and computer programs for progress curve analysis of enzyme kinetics. Engineering in Life

Sciences, 10(3):191–200.


	List of Tables
	List of Figures
	Acronyms
	Introduction
	Literature review
	Biocatalysis
	Introduction to the field of enzyme technology
	Enzyme cofactors
	Multi-enzyme processes
	(S)-1-Phenylethylamine (PEA) for optical pure amines

	Modelling enzyme kinetics
	Introduction to mathematical modelling
	Single-substrate reactions
	Multi-substrate reactions
	Constraints on the kinetic parameters

	Calibration of enzyme kinetic models
	Calibration methods
	Initial rate analysis
	Progress curve analysis
	Incremental methods

	Calibration of the PEA system
	Identifiability

	Optimal experimental design  for enzyme processes
	Optimal experimental design for parameter estimation
	Optimal experimental design for model discrimination


	Materials and methods
	Mathematical modelling and tools
	Model implementation and simulation
	Mathematical parameter optimisation
	Defining the objective function
	Modifications of the objective function
	Metaheuristics

	Identifiability analysis
	Sensitivity analysis
	Subset selection

	Software
	Model and experimental design implementation
	Mathematical parameter optimisation
	Identifiability analysis

	Experimental data
	Real experiments
	Experimental set-up

	Virtual experiments


	Results and discussion
	Progress curve analysis
	Introduction
	One single enzyme batch reaction
	Standard approach
	Improvements of parameter estimation

	Impact of the experimental design
	Optimal experimental design for parameter estimation
	Multiple experimental designs

	Structural identifiability analysis

	Initial rate analysis
	A systematic approach for estimating the kinetic parameters of biocatalytic reactions
	Structural identifiability of the initial rate model
	Practical identifiability of the initial rate model
	Subset selection for experimental design

	The coupled tri-enzyme system
	Proof of concept


	Conclusions and perspectives
	Appendices
	Relation kinetic parameters and rate constants
	Experimental designs
	Results and discussion

	Bibliography
	Bibliography


