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Samenvatting

Dit werk beschrijft ons onderzoek omtrent het voorspellen van de interactie tussen messenger
RNAs (mRNAs) en micro RNAs (miRNAs) met behulp van machine learning methoden. Deze
biologische vraagstelling is van groot belang in biomedisch onderzoek in het algemeen en bij
kankeronderzoek in het bijzonder (Farazi et al., 2011). De interactie tussen mRNAs en miRNAs
is namelijk één van de wijzen waarop genexpressie gereguleerd wordt in een cel (Pillai et al.,
2007; Costa, 2010), en disregulatie van normale cellulaire processen kan tot problemen als
kanker leiden (Sato et al., 2011; Taft et al., 2010).
In de hoop nieuwe inzichten in het kanker proces te verwerven en bij uitbreiding nieuwe thera-
pieën te ontwikkelen wordt veel onderzoek gedaan naar welke mRNAs en miRNAs met elkaar
interageren (Gong et al., 2005; Iorio and Croce, 2012). Het testen van deze interacties in
labo experimenten is echter duur en tijdrovend, waardoor het interessant is een slimme exper-
imentele opzet te hanteren, en niet blindelings alle mogelijke combinaties uit te testen. Om
een dergelijke opzet te bekomen kunnen voorspellingsalgoritmen gebruikt worden (Rajewsky,
2006), die onder andere op machine learning technieken gebaseerd kunnen zijn. Deze algorit-
men kunnen dan in silico predicties maken van welke mRNA-miRNA combinaties een hoge
waarschijnlijkheid hebben te interageren, zodat een veelbelovende selectie van combinaties in
labo experimenten gevalideerd kan worden.
Tot dit doel zijn al meerdere algoritmen ontwikkeld (Zotos et al., 2012), maar er is duidelijk
nog verbetering mogelijk, vooral op het vlak van het aantal mRNA-miRNA combinaties die ten
onrechte als interagerend voorspeld worden. Er zijn echter een aantal praktische moeilijkhe-
den verbonden aan de structuur van het probleem dat we wensen te onderzoeken. We willen
namelijk een voorspelling maken omtrent een relatie tussen twee moleculen, hetgeen minder
voor de hand liggend is dan een voorspelling betreffende één type van moleculen (Waegeman
et al., 2012). In het geval van een relatie kunnen er zowel invloeden van de beide moleculen
zelf van belang zijn, als invloeden eigen aan de interactie tussen beiden. Deze onderliggende
structuur heeft ook grote invloed op hoe deze methoden geëvalueerd dienen te worden, wat ook
in dit werk behandeld wordt.
Ondanks dat de informatie zowel van het niveau van de moleculen als van het niveau van
specifieke interactiemogelijkheden afkomstig kan zijn, willen we voor elke mRNA-miRNA
combinatie slechts één conclusie trekken: zal deze interactie vertonen of niet. De kunst zit er
in een model te ontwikkelen dat correct omgaat met deze structuur, dit zowel op biologisch als
machine learning vlak. In de literatuur zijn modellen te vinden waarbij op een bepaald deel
van de beschikbare informatie gestoeld wordt (Wang and El Naqa, 2008), om op deze wijze
de complexe structuur van het probleem te omzeilen. Het lijkt echter wenselijk een model te
ontwikkelen dat meer, en liefst alle, data kan gebruiken om zijn voorspellingen op te baseren.
Het maken van een dergelijk model was dan ook het doel van dit onderzoek. We evalueerden
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verschillende mogelijke oplossingen onder de vorm van uiteenlopende model-structuren.
Welk van deze modellen de voorkeur draagt is afhankelijk van de exacte onderzoeksvraag. Over
het algemeen kan echter geconcludeerd worden dat onze modellen goede resultaten bekomen
bij het vergelijken met enkele veel gebruikte modellen beschreven in de literatuur.
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Chapter 1

Introduction

The increasing availability and decreasing cost of molecular analyses results in an ever in-
creasing amount of information (Mardis, 2011). Although brave researchers used to construct
sequence alignments by hand, it is now common practice to use computer programs for these
kinds of tasks (Nayeem et al., 2006; Sauder et al., 2000). The greater our insight in biological
systems, the complexer the problems we want to analyse become. This gives rise to the need of
computer algorithms that can cope with such problems, including the vast amount of complex
data that comes with it. In some cases, this is no longer possible with algorithms explicitly
programmed by humans, since this implies that one must perfectly understand the problem one
wants to solve, including everything that might influence it. So, why not take the use of compu-
ters a step further, and make them able to learn so they might deduce information we ourselves
are not able to? One must appreciate the simplicity of the term invented for this concept: ma-
chine learning. The idea of machines that are able to think and learn is not new, although public
opinion generally does not consider this as a good thing. Sadly more movies are released han-
dling the terrible nightmare of the technological singularity, when robots become self aware
and smarter than humans, than about how great this technology can be. Luckily, but perhaps
also sadly, most people do not know how far computer science has already evolved. Now, the
good news: the past half century has brought us an enormous number of exiting machine learn-
ing applications that you encounter daily, maybe even without knowing it. Machine learning
applications can be used to read text (Sebastiani, 2002), detect fraud (Fawcett, 1997), drive
cars in real traffic situations (Desouza and a.C. Kak, 2002), detect spam email (Guzella and
Caminhas, 2009), beat champion players in games and quizzes like Jeopardy! (Ferrucci et al.,
2010) and so forth. Still, no need to worry, we are not reaching the technological singularity
yet.
When we turn to applications in bio-informatics, machine learning can be a valuable tool in, for
example, biomarker discovery (Calvo et al., 2010; Lyons-Weiler et al., 2003). Here, one could
try to link the absence or presence of a molecule to an outcome of a disease or therapy. In this
work, we have used machine learning techniques to predict the interaction between messenger
RNAs (mRNAs) and micro RNAs (miRNAs). This situation is more complicated, since we are
not trying to predict an outcome based on features, but a relation between two molecules. This
relation can be influenced by characteristics of both the molecules themselves and the specific
combination of these molecules. It is interesting to spend a moment thinking about the size
of it all: mRNAs and miRNAs have sizes measurable in nanometres, which is 10−9 m or one
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billionth of a meter. In order to translate this to a more daily context, think of it in this way:
if one meter would be as big as the diameter of the earth then a nanometre would be about the
size of a pebble. So, when thinking about the human body and mRNA or miRNA molecules,
keep the earth and the pebble in mind.
The prediction of mRNA-miRNA interaction is of great interest to medical researchers, since
it can regulate gene expression and thus influences many cellular processes (Pillai et al., 2007;
Costa, 2010). Although cells are under constant regulation, sometimes things go wrong, which
might cause diseases such as cancer (Sato et al., 2011; Taft et al., 2010). As a consequence,
researchers wish to know which mRNAs are influenced by which miRNAs. This information
might allow them to guide cell processes and hopefully prevent or cure illnesses Tong and
Nemunaitis (2008). However, since wet-lab tests to validate this interaction can be very expen-
sive, it is not desirable to test all possible combinations of mRNAs and miRNAs one might be
interested in. Predictive models can be used to make in silico predictions of the interactions
for a large number of mRNA-miRNA combinations, allowing researcher to test only the most
promising combinations in wet-lab tests. In literature, multiple algorithms are described that
can make such predictions (Zotos et al., 2012), some of which are also machine learning based
models. However, the performance of these algorithms is often rather poor, especially when
considering the high number of false positives. With the research described in this work, we
try to improve this performance. Due to the structure of this unusual relation problem, some
of the current methods choose to focus on a part of all available information, further explained
in Chapter 4, in order to simplify the problem. In search of a better solution, we explore some
approaches that can enable us to use more, if not all, of the available information.
The biological background on mRNA and miRNAs, including how they regulate the functions
of a cell in the human body, is given in Chapter 2, while Chapter 3 provides a basic introduction
to the machine learning side of this work. Both chapters are written as accessible as possible,
allowing one to understand the basics of both topics, even if these are not one’s speciality. In
this light, Chapters 2 and 3 are more or less standalone and written independently form the
rest of this work. However, readers are advised to go trough the chapters outside their field
of study, in order to understand the “why” and ‘how” of this work. Chapter 4 describes the
dataset we have used for this work and Chapter 5 handles upon the models we have constructed.
Chapter 6 summarises the results and discussion of this research. Some general conclusions and
perspectives are included in Chapter 7. We hope all this can cast a light on the opportunities,
and the pitfalls, of combining biological and technological research.
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Chapter 2

Epigenetic regulation of gene expression
mediated by miRNA

2.1 Introduction

The goal of this chapter is to give a general biological introduction to the topics concerning
this master thesis, revolving around micro RNA (miRNA) and its influence on gene expression.
After a brief introduction to the basic molecules and mechanisms of molecular biology, further
information is given on the epigenetic regulation of gene expression and the role miRNAs
play in this process. In a subsequent section, the measurement of miRNA and its effects will be
discussed. The chapter will be concluded with some interesting research topics and applications
involving miRNA.

2.2 Meet the molecules

In order to provide the necessary background to the biology behind this research, some of the
basic molecules of life are mentioned. The two types of molecules that are most important for
the remainder of this work are nucleic acids and proteins.

2.2.1 Nucleic acids

Nucleic acids are biopolymers that contain the genetic information of an organism. They con-
sist of only a few basic nucleotides: adenine (A), tyrosine (T), guanine (G), cytosine (C) and
uracil (U). Combining these nucleotides in long sequences makes it possible to store enormous
amounts of complex information. Such a sequence of nucleotides is also called a strand, of
which the start is called the 5’ end and the end the 3’ end. The two most important types of
nucleic acids are DNA and RNA, each having their own structure and function.

DNA The hard copy of the genetic information in a cell is stored as DNA inside the nucleus.
The nucleotides present in DNA are A, T, G and C, which are organised in a double helix, as
can be seen in Figure 2.1. This structure is stabilised due to the formation of base pairs between
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the nucleotides of the different strands of the DNA helix: bonds can be formed between A and
T and between G and C. This means that both strands of the helix hold the same information,
but in complementary sequences.

RNA A less bulky and more versatile version of DNA is RNA. It generally consists of only
a single strand of nucleotides, making it smaller and less stable than DNA and allowing it to
bind to other molecules. In addition to single stranded RNA (ssRNA), double stranded RNA
(dsRANA) also exists, and is a typical intermediate form during viral replication in a cell.
Although largely similar, the nucleotides present in RNA are not all the same as those in DNA:
T is replaced by U.
Many different types of RNA exist, all fulfilling different roles in the cell, but we will limit
ourselves to those relevant to the processes regarding miRNA. This summation can be seen as
a general overview of the RNAs related to this work, some functions will only be explained in
Section 2.3.

• Messenger RNA (mRNA) is used to transport the information encoded in the DNA out
of the nucleus. It is formed by transcription of the DNA, and functions as a template to
form a protein during transcription. The information stored in RNA is encoded based on
groups of three nucleotides, called a codon.

• Transfer RNA (tRNA) is used to link nucleotide sequences with their corresponding
amino acids during translation of mRNA into proteins. The bottom of a tRNA molecule
holds an anti-codon, a nucleotide sequence complementary to a specific codon. The cor-
rect amino acid can bind to the top of the tRNA, linking the correct codon to the correct
amino acid.

• Ribosomal RNA (rRNA) is RNA that is present in ribosomes. These ribosomes are a type
of cellular machinery, made up of both rRNA and proteins, which mediate translation
of mRNA into proteins. They are formed by the binding of two parts, called the small
ribosomal subunit and the big ribosomal subunit.

• Micro RNA (miRNA) is a small strand of non-coding RNA, meaning it does not form
proteins. Most miRNAs are about 21 nucleotides long and play important roles in the
regulation of gene expression. In plants, miRNAs usually form a perfect match with
their target mRNAs, whereas in animals this is not the case. Here, the region at the 5’
end of the miRNA is considered to be the most important region, holdings patches where
miRNA and mRNA are complementary called “seeds".

• Small interfering RNA (siRNA) is a second type of small non-coding RNA. They gen-
erally originate form exogenous dsRNA, meaning they where not formed in the cell by
transcription of DNA but, for example, introduced by viral infection. They are about the
same size as miRNA, but form a perfect match with their target mRNA. In contrast to
miRNAs, siRNAs target a very limited number of mRNAs, usually only one.

2.2.2 Proteins

Proteins are another type of biopolymers and are the workhorses of the cell. They are made
up of amino acids, of which there are 21 common types. Proteins have structural or active
functions, other than storing genetic information, such as catalysing reactions and transferring
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Figure 2.1: Overview of DNA in the cell. The DNA is present in the nucleus of the cell, wound around histon
proteins. Together they are organised in nucleosomes and can be structured as chromosomes (sciencelearn.org).

other molecules. Their structure is defined at four levels. The primary structure is made up of
the sequence of amino acids and will define the subsequent structures due to the availability
of side chains of the amino acids. The secondary structure is defined as the way the strand of
amino acids folds together in helices or sheets. The tertiary structure is defined by the final
folding of one strand of amino acids, whereas the quaternary structure is the structure obtained
if all the necessary subunits come together and form one big functional protein. Predicting this
fold structure of protein sequences is one of the major challenges in structural bioinformatics.
Histones are of particular interest in this work, as they are involved in epigenetic regulation of
gene expression. Histones are globular proteins that bind DNA and give structure to it, as can
be seen in Figure 2.1. The complex of DNA and histone proteins is called chromatin (Cooper,
2000). Depending on how this binding occurs and how the histones are modified, DNA can
either be packed very tightly or can be more accessible. This altering of DNA accessibility is a
form of epigenetic regulation.

2.3 Central dogma of molecular biology

The central dogma of molecular biology describes how information is transferred from DNA
through RNA to proteins, as illustrated in Figure 2.2, and is extremely relevant to biology,
biotechnology and bioinformatics. As mentioned above, DNA holds the genetic information of
an organism, but this information needs to be transcribed into mRNA in order to be translated
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into proteins. It implies, however, that the study of DNA and its products can give insights in
all molecular processes taking place inside a cell.

Replication Replication is the process in which DNA is copied and occurs whenever cells
duplicate to make sure each of the daughter cells has the same amount of genetic information.
The two strands of the original DNA are locally separated and are used as templates for the
new DNA. New nucleotides are paired with the ones in the template strands by a protein called
DNA polymerase. This results in two identical copies of the original DNA, each having one
original strand and one newly generated one.

Transcription The process in which an RNA strand is formed using DNA as a template is
called transcription. Like in replication, the two DNA strands separate locally by means of a
protein complex. In this case a protein called RNA polymerase scans one of the DNA stands
and generates a complementary mRNA strand.

Translation To create a protein, the mRNA needs to be translated. Three subsequent nu-
cleotides of a mRNA molecule are called a codon. Each codon corresponds to one amino acid
of the future protein. Since nucleotides of mRNA cannot bind to amino acids themselves, an
intermediate molecule is needed. This molecule is tRNA, which has the nucleotides comple-
mentary to a specific codon on one side, and the corresponding amino acid on the other. When
a mRNA molecule is to be translated, it needs to reach a ribosome. This ribosome will scan the
mRNA strand, allowing one codon at a time to interact with its complementary tRNA. In this
way all the necessary amino acids are provided and linked, one by one, in the correct order,
resulting in a self-assembling protein.

2.4 Epigenetic regulation of gene expression

Epigenetics is a term for all processes that influence gene expression or cellular phenotype
without changing something to the nucleotide sequence of the DNA or RNA involved (Gold-
berg et al., 2007). Although most of these processes were until recently considered mysteries,
general principles are being discovered thanks to the growing research in this field.

DNA methylation and chromatin remodelling A fundamental way to influence the expres-
sion of a gene is by regulating transcription. To be transcribed, the DNA in the region of the
gene of interest needs to be accessible for transcription factors (Cooper, 2000). This is de-
termined by the DNA and chromatin structure in that region, which can be altered by DNA
methylation and histone modification, respectively. In the case of DNA methylation, methyl
groups are added to Cytosine residues in the DNA, preventing transcription. This methylation
pattern is called an imprint and is stably passed on during cell division. In the case of histone
modification, different outcomes are possible, depending on the modifications that are present.
Acetylation of certain amino acids will relax the chromatin structure, making transcription pos-
sible, whereas other modifications can result in the silencing of the genes in that region.
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Figure 2.2: Overview of translation and transcription of the central dogma of molecular biology (based on
http://csls-text.c.u-tokyo.ac.jp/active/03_02.html).

RNA interference Whenever cells detect dsRNA they will try to break it down due to the
resemblance to viral dsRNA. The cell also uses this mechanism to regulate the expression
of its own genes by producing small strands of RNA, including miRNA, which can bind to
mRNA present in the cell, forming dsRNA (Bartel et al., 2004). This process is called RNA
interference (RNAi). The dsRNA will be recognised by the cell as alien and will be degenerated
in the same way as if it were viral dsRNA. The dsRNA, whether originating from viruses or
from endogenous miRNA, will be cut into smaller pieces. Each strand can subsequently bind
to multiple proteins and form an RNA-induced silencing complex (RISC). This complex can
bind to target mRNAs that are complementary to the miRNA strand incorporated, allowing the
proteins of the complex to cleave these mRNAs.
Binding of miRNA to mRNA can also lead to inhibition of translation. In this case the mRNA-
miRNA duplex is not degraded, but normal translation in the ribosomes cannot occur due to
the hindrance of protein binding to the mRNA. This mRNA will thus not be translated and will
be degenerated.
Since some miRNA targets are genes needed for chromatin structure remodelling like DNA
methylation and histon modification, miRNAs can indirectly regulate these processes (Sato
et al., 2011). Regulation also works the other way around: the regions of the DNA that encode
miRNAs can be made accessible or not, due to the structure of the chromatin in that region, and
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thus DNA accessibility regulates miRNA formation. An overview of the epigenetic regulation
by miRNAs and their own epigenetic regulation can be seen in Figure 2.3.

2.5 Measuring miRNA expression

To analyse miRNAs one needs to be able to measure their levels in a cell. However, this is
not enough to grasp their effects. To actually detect the regulation due to miRNAs one needs
to measure the difference in concentration of the mRNAs or proteins it regulates. An analysis
generally goes as follows: one must first measure the level of mRNA or protein in the relative
absence of the miRNA. Secondly, the miRNA must be overexpressed in the cell, after which
the measurement of the mRNA or protein levels need to be repeated, allowing some time for
the regulation to take place. If only the level of miRNA is changed in this second setting, the
observed difference in mRNA or protein level is due to the regulation by miRNA. Note that
the measurement of mRNA will only show the influence due to mRNA degradation, whereas
protein measurement will also show the influence due to blocking of transcription.

2.5.1 RNA-based techniques

The techniques used to detect miRNAs and mRNA are generally the same, although the detec-
tion of miRNA is harder due to its size and lower stability (Cissell and Deo, 2009).

Northern blot A sample containing RNA is loaded on a gel and separated by electrophore-
sis. After separation, the RNA is transferred to a blotting membrane. Bands of RNA can be
visualised by hybridisation with a marked RNA strand, complementary to the RNA that has to
be detected. Notwithstanding a simple technique, northern blotting is labour intensive and not
suitable for high throughput analysis.

qRT-PCR Polymerase chain reaction (PCR) is generally used to amplify DNA. This method
consists of multiple cycles in which a selected part of the DNA present in the original sample
is exponentially amplified. To deal with RNA, however, reverse transcriptase PCR (RT-PCR) is
needed. Since only DNA is stable enough to be used in PCR, the RNA needs to be transcribed
to complementary DNA (cDNA) by a reverse transcriptase enzyme. This cDNA can then be
amplified as normal DNA would be during PCR. If quantification is wanted however, a normal
RT-PCR is not enough, since it will only show the presence of an RNA molecule. Quantita-
tive reverse transcriptase PCR (qRT-PCR) however makes this possible. Levels of cDNA are
measured in real time during amplification, using fluorescent probes that are only detectable
if incorporated in a synthesised DNA strand. Based on this information, the original level of
RNA can be determined through comparison to the result of known levels of a DNA standard.

Microarray In order to measure many RNA molecules at the same time, microarrays are a
good option. For each RNA molecule that has to be testes, small complementary DNA (cDNA)
strands are generated. All these cDNA types are fixed on a substrate while making sure that
the exact spot of every type of cDNA is known. A sample containing labelled RNAs is brought
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Figure 2.3: Overview of the role of miRNAs in epigenetic regulation. Starting at the top and evolving clockwise:
miRNAs are transcribed from DNA by RNA polymerase II, resulting in a pre-miRNA stemloop. This loop is
processed and cut by Dicer, after which it is included in an RNA-induced silencing complex (RISC). This complex
can now target mRNAs complementary to the embedded miRNA, resulting in post-transcriptional regulation by
mRNA cleavage, transcriptional repression or destabilisation. If the targeted mRNAs are coding for epigenetic
regulators, such as proteins that perform DNA methylation, miRNA can indirectly regulate DNA availability. To
complete the circle, the DNA regions coding for miRNAs have to be available and the right transcription factors
(TF) have to be present in order for the miRNA to be transcribed (based on Sato et al. (2011)).

onto this microarray. After some time in which hybridisation can take place, the microarray is
washed and only the molecules with strong interactions, indicating full complementarity, will
be retained. By analysing the strength of the signal on each spot of the microarray, one can
determine the level of each RNA present in the sample for which there was a cDNA on the
microarray.

2.5.2 Protein-based techniques

To grasp the full influence of miRNA-mediated regulation of gene expression, the proteins
encoded by the gene of interest need to be quantified. However, one has to keep in mind that
there is a time gap between miRNA expression and the visibility of its influence. Multiple
detections in time might be needed.
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General techniques Many techniques can detect total protein level of a sample. There is for
example the Bradford assay, which uses a dye called Coomassi Blue that changes colour when
bound to proteins. By spectroscopically analysing the colour of the sample, one can determine
the total level of proteins. If one wants to measure the level of a specific protein however,
purification is needed before these methods can be uses. This can be very time consuming and
labour intensive and good results cannot always be obtained.

Using antibodies Antibodies are proteins made by the cell to specifically bind antigenes,
which are recognizable parts of other proteins. The cell can use these antibodies to, for example,
recognize proteins of pathogens. Antibodies can also be used to detect proteins of interest in
research. Methods using this principle are for example sandwich-ELISA and western blot.
In a sandwich-ELIAS essay, antibodies that bind the protein of interest are fixed to a substrate.
The sample is added and if the target protein is present, it binds to the antibodies. This result
is the capture of the protein of interest, but to detect it a second antibody that binds this protein
needs to be added. This antibody is tagged with an enzyme, that can catalyse a reaction chang-
ing the colour of a substrate. After proper washing and addition of the substrate, the level of
protein can be determined based on the colour of the sample.
The second method mentioned, western blotting, is the protein equivalent of northern blotting,
described above. In this case however, the protein of interest is visualised by the interaction
with a labelled antibody instead of a labelled nucleotide sequence. Although these methods
might be able to selectively detect a protein of interest, design and production of the needed
antibodies is very costly.

Using a reporter gene To prevent the use of costly consumables like antibodies, one can use
a reporter gene, which has easily detectable gene products such as enzymes that can catalyse
reactions like producing light signals. If a reporter gene, under influence of the same regulatory
sequences as the gene of interest, is introduced in the cell, the reporter gene will have the same
expression as the gene of interest. By measuring the signal generated by the proteins derived
from a reporter gene, one can determine its expression level.

2.5.3 Bioinformatics-aided testing

Although all methods have their strong and weak points, good wet lab experiments are either
labour intensive, expensive or time consuming, and often all of these. This limits the pos-
sibilities to detect new miRNA targets or perform other large-scale experiments. Thanks to
bioinformatics, more sensible experiments can be designed, performing only the tests that ac-
tually have potential according to in silico predictions. However, the performance of these
algorithms depends on the quality of the data used to build them, which originate from wet
lab experiments themselves. This brings us to the challenge of collecting informative data and
making good, reliable predicting algorithms, since the success of the resulting research will be
determined by their performance.
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2.6 Applications in miRNA research

Recent years have witnessed an explosion of miRNA research. In this section a few topics and
applications will be highlighted to illustrate the diverse functions of miRNA.

Plants and viruses In plants, the miRNA pathway is part of a very efficient defence mech-
anism against pathogens. When a cell is infected with a virus and dsRNA is formed, the cell
will recognise this viral dsRNA and degenerate it. In this way the virus can be stopped from
reproducing before spreading. This process occurs in both animal and plant cells, but since the
latter have plasmodesmata, small channels connecting neighbouring cells, its impact is larger
in plants. Here, the produced miRNAs can diffuse through the plasmodesmata and spread
throughout the whole plant, preventing other infections from the same virus anywhere in the
plant (Voinnet, 2001). Obviously, evolution has resulted in viruses that can fool plants and are
not targeted by certain processes, resulting in a never ending battle to be one step ahead of the
other.

Metabolism miRNAs have been shown to have widespread regulatory influence on multiple
aspects of the metabolism (Heneghan et al., 2010). The presence or absence of some miRNAs
can lead to health problems and have been linked to diabetes, because of their role in insulin
production and uptake (Poy et al., 2007). Other miRNAs can regulate the differentiation of fat
cells, and thus influence fat storage and obesity (Esau et al., 2004).

Memory and behaviour The idea that gene regulation facilitated the creation of memories
and influences our behaviour is not new (Blaze and Roth, 2013). However, the underlying
mechanisms are still not very clear. Recent research has shown that experiences can influ-
ence epigenetic regulation by miRNAs and remodel DNA. For example, this adaptation can be
observed in rodents after exposure to different behavioural tests, involving fear conditioning,
novel object recognition and spatial memory tasks.

Cancer Because of the major interest of public health, most of the research concerning
miRNA has some connection to cancer. As mentioned in the previous paragraphs, miRNA
and other epigenetic mechanisms can influence the expression of many kinds of genes. Since
cancer is a state in which the cell loses control of its division rate, it is easy to see that this
can also be mediated by altering gene expression (Croce, 2008). Specific genes of interest
are genes promoting growth and division on one the hand, and gene controlling the cell cycle
on the other hand. The first are called oncogenes, although their expression is also needed in
healthy cells, because of the tendency to induce cancer if overexpressed. The second type are
tumor suppressor genes, since the presence of their gene products reduce the chance of cancer
induction. Research has shown that multiple mRNAs regulate the activity of these genes, and
thus can induce or prevent cancer (Iorio and Croce, 2012).

Medicine Since one miRNA regulates multiple mRNAs and even whole pathways, miRNAs
find more general application in biotechnology than siRNAs, which only regulate one gene.
This is both an advantage and a disadvantage compared to siRNA. An advantage, because
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complex processes involving multiple genes and pathways can now be influenced, which is
nearly impossible with siRNAs. But also a disadvantage, since great caution has to be taken
only to influence the desired processes. Different approaches are possible, since miRNAs can
be used as a biomarker, a target and a tool.

• Biomarker A molecule is called a biomarker if its presence or absence can be linked
to a specific type, state or outcome of, for example, a disease. It is often very hard to
determine the exact cancer type, the responsiveness of a patient to a specific type of
therapy and the overall survival expectancy. Multiple miRNAs have been shown to be
good biomarkers, indicating for example poor survival chances (Yanaihara et al., 2006)
or relapse free recovery (Li et al., 2010) in cancer therapy if present.

• Target of therapy If the overproduction of mRNA causes cell disregulation resulting
in an illness, degradation of this mRNA by the introduction of antisense RNA can re-
store normal functioning (Iorio and Croce, 2012). This application is based on the RNAi
mechanism discussed earlier, in which dsRNA is degraded. Breaking down miR-21, for
example, has been shown to reduce tumor development and spreading in breast cancer
tissue (Si et al., 2007).

• Therapeutic tool If a miRNA is down regulated or just not present in a specific cell type,
resulting in illnesses, it can be introduced as therapeutics. Reintroduction of miR-15a or
miR-16-1, for example, results in the programmed cell death of leukaemic tumor cells in
mice (Calin et al., 2008).
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Chapter 3

Machine learning overview

In this chapter we will give an intuitive introduction to machine learning, using examples where
possible. After the explanation of some basic machine learning concepts, we explain the algo-
rithms used in this work. The most important part of this chapter is the introduction of some
terminology, tools and tricks to estimate the performance of a model.

3.1 Introduction

The term “machine learning‘” has received many definitions, but one of the first was made by
Arthur Samuel, being: “Field of study that gives computers the ability to learn without being
explicitly programmed" (Samuel, 2000). Given the ambiguity of what the terms “thinking" and
“machines" actually imply, Turing proposed not to ask ourselves “Can machines think?", but
“Can machines do what we (as thinking entities) can do?". This detachment results in more
formal definitions, like the one by Mitchell: “A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P, if its performance at
tasks in T , as measured by P, improves with experience E" (Mitchell, 1997).

3.2 Learning types

The type and availability of the data will greatly influence the type of learning and methods one
will use, but before we come to this, we explain some machine learning terminology used in this
work. When one has a dataset on which to use machine learning methods, every observation or
record in this dataset is called an instance. The variable we want to predict is called the label or
output, while all other variables are features or inputs (Hastie et al., 2009). These features hold
the information that we want a model to learn in order to make predictions for the label. The
first thing to ask oneself is whether the label that has to be predicted actually is available for all
instances in the dataset. Depending on this availability, two main groups of machine learning
algorithms can be defined: supervised and unsupervised learning algorithms (Larranaga, 2006).
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3.2.1 Supervised machine learning

Supervised algorithms need the observed label of every instance in order to learn, since they
will use this label to build a model. This makes supervised learning very similar to how we
learn ourselves. To illustrate this, consider the following example: you want to predict whether
it will rain tomorrow, based on the weather of today. To do this, you daily check if it rains
and whether this can be linked to the weather of the day before, making every day an instance
with as label: “rain” or “no rain”. In other words, you use the label of a particular day to
see if there is a link with the features regarding the weather on the previous day, making this
supervised learning. From your own experience, you have made up some rules on which you
base your predictions: there is a good chance that the weather of tomorrow will be the same
as that of today. However you have noticed that there is a higher chance on rain the following
day if the wind is coming from the west. And finally, you consider the season, somehow you
feel like there is more rain in autumn and spring than in the rest of the year. This way, you
have actually made your own model to predict whether it will rain tomorrow, which is the
label, based on three features: whether it rains today, the direction of the wind and the current
season. However, it is doubtful whether this particular invented model will result in very good
predictions. The good thing about leaving this task to a computer is that you can gather huge
amounts of data on all kinds of features which might be important, and let the algorithm decide
how to use and combine them, probably resulting in better and more complex models than the
one you would build yourself. Depending on the type of label, i.e. categorical or quantitative,
different approaches are needed, which will be illustrated by the rain prediction example.

Classification If the label that one wants to predict is categorical, one will use a classification
model. In this case, the label can take on two or more values, representing the class of an
instance. The terms binary classification and multi-class classification are used when the label
has respectively two or more than two classes. Consider again the rain prediction problem: we
want to make predictions for a label with two classes, in this case: “rain” or “no rain”, and
thus we will use binary classification. However, if we would like to discriminate between rain,
snow and hail, this example becomes a multi-class classification problem with four classes: “no
precipitation”, “rain”, “snow” and “hail”.

Ranking A ranking model will, as the name suggests, rank all instances for which it has
to make predictions. Assume the rain prediction model is valid for different locations, for
example: quite accurate predictions can be made regarding the rain in Paris, Brussels and
Amsterdam. You want to go on a last-minute city trip tomorrow and the city you will visit
will be the one with minimal rainfall. So you use a ranking model to rank the expected rainfall
in each of the three cities and the one which ends up as the bottom ranked city will be your
destination. Note that this model does not tell you whether it will actually rain in that city
tomorrow and it might be sunny or rainy in all three of them.

Regression A regression model predicts a quantitative label, so actual continuous values can
be predicted. With such a model, you could not only decide where to go on your city trip,
but also see how much the expected rainfall will be. The output could be the expected rainfall
in cm/m2, showing you whether it will rain and how much. Although this is very attractive,

14



it is also the hardest model to train, and a lot of data and insight in weather forecasting will
be needed. Weather is also inherently chaotic, making this a complicated problem for any
prediction algorithm.

3.2.2 Unsupervised machine learning

For the rain prediction problem, daily observations were made to see whether it rained or not,
making the label available. In other cases, the true labels might be unknown and these will
thus have to be handled with unsupervised machine learning methods. This can be the case
when one has data on the shopping behaviour of customers in a supermarket, and one wants
to categorise all customers in customer types based on related shopping habits. In this case,
every customer is an instance, the label is the type of customers this person belongs to and the
features might be related to shopping frequency and purchases. No customer categories are
defined upfront, which makes it impossible to assign a category to each person in the dataset,
even if one would be willing to spend a lot of time to do so. This also makes it impossible
for an algorithm to use the real label in order to build a model, an thus unsupervised machine
learning methods, such as clustering, will have to be used.

3.3 Main methods used

For this work, we have considered multiple machine learning methods such as linear regres-
sion, logistic regression, decision trees, random forests, boosting and support vector machines.
However, only logistic regression and random forests will be discussed here, since these are the
ones used in the final models.

3.3.1 Logistic regression

Logistic regression will fit a linear model by assigning weights to every feature, in such a
way that the made predictions reflect a probability for the outcome (Hastie et al., 2009). We
will explain some of the mathematics for a binary classification problem with one feature, x,
where the label of an instance can either be 0 or 1. The feature x receives a weight: β1, while
the intercept, the value if x = 0, receives a value β0. The linear combination thus becomes
β0 +β1x. Now, the logistic function must be applied, which looks as follows:

σ(t) =
1

1+ e−t (3.1)

which is visualised in Figure 3.1 for β0 = 0 and β1 = 0.5. If we replace t by our linear combi-
nation of x, this becomes:

y = σ(β0 +β1x) =
1

1+ e−(β0+β1x)
(3.2)

The outcome, y, is now the probability that the class for a given instance is 1.
In case of the rain prediction example, the model holds three features, i.e. the rain, direction
of the wind and season today, which makes the model slightly more complex. However, since
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Figure 3.1: Logistic function for β0 = 0 and β1 = 0.5, which results in y = σ(
x
2
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a real-life problem is easier to imagine, we will illustrate the same reasoning for this example,
where ‘rain” is class 1 and “no rain” class 0. Each of the three features will receive coefficients,
respectively β1, β2 and β3, which represent the influence of a feature on the chance of rain the
following day. The linear combination of these features thus results in β0 +β1rain+β2wind+
β3season. Applying the logistic function gives the final model:

y =
1

1+ e−(β0+β1rain+β2wind+β3season)
(3.3)

The predictions made by the model indicate the predicted probability that it will rain the fol-
lowing day.

3.3.2 Random forests

In order to explain random forests, we will first introduce the classification tree, which is a
machine learning algorithm on itself and can be combined to form random forests.
A classification tree makes subsequent binary splits of the dataset, based on the available fea-
tures, in order to find rules that result in a good classification (Mitchell, 1997). The groups
resulting from a split are called leaves, the full grown model a tree, due to the resemblance
in structure. We will illustrate this with the rain prediction example. The data of all days is
gathered in one big group, representing the stem of the tree. Now the algorithm will try to split
this group according to the features. Splitting by whether or not it rained during the previous
day, for example, results in one group where all instances have “rain” for this feature, and a
second group where this feature is “no rain”. When the algorithm has tried to split the data for
all three features, it will actually use the feature that gives the “best” split. There are multiple
measures that can be used in order to decide which split is best, but generally the “pureness” of
the leaves, how well the two classes of the label are separated, is important. This principle will
be repeated, and now the season might be most informative for a group. The algorithm will
stop when no further splitting is possible or when every training instance is classified correctly.
In a tree, every decision depends on the previous splits, making this algorithm very susceptible
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Figure 3.2: General architecture of a random forests model (Verikas et al., 2011). All models, B in total for this
example, make predictions for an instance, denoted by kb for the bth model. A majority vote is made on all these
predictions, which results in the final class prediction denoted by k. For example: if three models are considered
for a binary classification problem, the predictions made by these trees for a given instance might be k1 = 0, k2 = 1
and k3 = 1. The random forests model will thus predict the outcome k for this instance to be 1.

to errors in the data: one instance misclassified in the dataset can result in a totally different
tree. To solve this, the idea of democracy is used: build multiple models and let them vote in
order to decide on the outcome, as illustrated in Figure 3.2. Of course, something has to be
done to prevent all models from being exactly the same. Instead of allowing the model to select
any of the given features to make a split, only a randomly selected subsection of the features
will be considered in each split (Hastie et al., 2009). Since splits are forced to be different,
the resulting trees will also differ. All these trees together, linked by a final vote to decide
the overall outcome for every instance, is a random forests model. Instead of making a final
majority vote, one could also consider the fraction of trees that classify an instance as “1”,
which gives some kind of scaled probability of this outcome.

3.4 Performance estimation

This section will handle questions like how the data should be used in order to build a model
and how the performance of the resulting model can be estimated.

3.4.1 Performance measures for binary classification

Since the problem considered in this work is approached as a binary classification problem
with ranking, we will discuss two performance measures that can be used to estimate the per-
formance of this type of model.

Accuracy The accuracy represents the percentage of correctly classified instances. To see
whether an accuracy can be considered as good or not, one can compare it to the accuracy of
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a random classifier, which will randomly assign “rain” or “no rain” to every instance. This is
just random guessing, giving the classier a 50% chance to be correct if it rains about half of the
time, resulting in both an accuracy and AUC of 0.5. The more the accuracy of a model differs
from the one by a random model, the more it has learned from the data. As an example, we will
calculate the accuracy for a fictive outcome of the rain prediction problem, given in Table 3.1.
The first row represents the true label for the five days considered in this example, while the
second row shows the prediction scores resulting from a model. The third and fourth row show
whether the model classified the instance correctly if a threshold of respectively 0.5 and 0.4 is
applied to the predictions score. A correct classification is represented by “V” and an incorrect
one by “X”. When the threshold is set to 0.5, the algorithm is correct in 3 out of 5 days, resulting
in an accuracy of 0.6. If a cutoff of 0.4 is considered, the accuracy rises to 0.8. This shows
the first problem related to using accuracy: it greatly depends on the threshold set, and since
random forests give a scaled probability that the label will be “rain”, it is very plausible that the
ideal threshold is not 0.5. The second problem with using accuracy as a performance measure
is that it can give an incorrect view if the dataset is very unbalanced. If 90% of the days in our
dataset happened to be rainy days, a model that always predicts rain will have an accuracy of
0.9. A model with an accuracy like this would be considered to perform well, even though this
is clearly not the case since it only has one rule: “always predict rain”. Notwithstanding these
problems, the accuracy of a model might be exactly what one wants to know.

ROC curves and AUC In order to avoid the need of setting a threshold, one can use a re-
ceiver operating characteristic (ROC) curve to analyse the performance of a model, where the
information for all possible thresholds is represents (Fawcett, 2004). A ROC curve is the result
of plotting the true positive rate (TPR) as a function of the false positive rate (FPR). The true
positive rate is the percentage of positives for which the model made a correct prediction:

True positive rate =
true positives

positives
(3.4)

=
true positives

true positives + f alse negatives
(3.5)

The false positive rate is the percentage of negatives for which the model made an incorrect
prediction:

False positive rate =
f alse positives

negatives
(3.6)

=
f alse positives

f alse positives + true negatives
(3.7)

A typical ROC curve is visualised in Figure 3.3. The more the ROC curve tends to the top left,
the better the performance of the model, since the true positive rate will increase more rapidly
than the false positive rate. A random classifier shows a ROC curve coinciding with the first
bisector. The area under the curve (AUC) is, as the name suggests, the area under this curve,
which is greater with better performances and is 0.5 for a random classifier.
To illustrate this with a real example, Figure 3.4 represents the ROC curve for the rain prediction
problem. Since this example only contains five instances, this curve is not as smooth as the one
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Table 3.1: Toy data used for accuracy calculation on the rain prediction problem. This example considers five days,
or instances, for which the prediction scores, the model outputs, are compared to the true label. This coparison is
done for a cutoff of 0.5 and 0.4 in row three and four respectively, where correct predictions are represented by
“V” and incorrect prediction by “X”. It illustrates that the accuracy depends on the threshold set on the prediction
scores.

Day 1 Day 2 Day 3 Day 4 Day 5
True label rain rain no rain rain no rain
Model output 0.9 0.6 0.5 0.4 0.1
cutoff 0.5 V V X X V
cutoff 0.4 V V X V V

in the previous plot. As mentioned before, the ROC curve represents the performance for
all thresholds, starting with a threshold equal to the maximum prediction score and in turn
considering each following score as the next threshold. For a threshold of 0.9, the first day is
classified as positive, giving a rise in the TPR. The same happens for the next threshold, being
0.6, but when the threshold is set to 0.5, the associated instance is a negative instance. If one
considers all instances with prediction scores equal or above this threshold as interacting, this
is a false positive, resulting in an increase of the FPR. To illustrate this, we calculate the TPR
and FPR for this threshold, which can also be read from the ROC curve:

T PR =
3

3+1
= 0.75 (3.8)

FPR =
1

1+1
= 0.5 (3.9)

At a threshold of 0.4, we again encounter a positive instance, causing a rise in the TPR, followed
by a rise in the FPR for a threshold of 0.1. The AUC for this example is 0.833, giving a measure
for the overall performance of the model instead of just a reflection for a given threshold, as is
the case with the accuracy.

3.4.2 Data usage

Since a model is fitted to make a good prediction for an instance on which it is trained, it is eas-
ier to make predictions for such an instance than it is for a previously unseen instance following
the same distribution. As a result, one cannot make a good assessment of the performance of
a model if all available data is used to train this model: no data is left to make a realistic as-
sessment of its performance. To avoid this, the dataset is split in a training and a test set during
model-building, and the model is trained only on the training set. Since the instances of the test
set are previously unseen by the model, the performance on these instances gives a good idea
of the actual performance of the model. For the same reason, a third set is needed if hyper-
parameters of a model have to be tuned: the validation set. In this case, the model is trained
on the training set and the performance for different hyper-parameter settings is calculated on
the validation set. The parameters that result in the best performance on this set will be used in
the final model, for which the performance is estimated on the test set. However, in order to do
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Figure 3.3: Representation of a typical ROC curve. The green curve shows a ROC curve of a realistic model,
tending to the top left of the graph, and the light green area under the ROC curve represents the AUC. The red
curve represents the ROC curve of a random classifier, which coincides with the first bisector since TPR and FPR
increase proportionally.

this, the dataset has to be big enough, since the number of instances that can be used to train
the model becomes smaller.
By splitting the dataset, one only makes predictions for a small part of the data. In order to
make predictions for all instances in the data, which also gives the possibility to calculate a
performance on the complete dataset, one can use cross-validation. Here, the data is split into
n folds and each fold in turn is used as a test set, while the other n−1 folds form the training
set. After n cross-validation runs, each fold has been used as training set n−1 times and once
as test set, which results in predictions for all instances.

3.4.3 Under- and overfitting

The complexity of a model will influence its performance, where a complexer model will gen-
erally show a better fit to the training data. However, since real data is not perfect and noise can
be present, a perfect fit to the training data usually does not result in the best model. This con-
cept is illustrated in Figure 3.5, showing a classification problem and the decision boundaries
of three models with different complexity. All instances above such a boundary are in this case
predicted to be negative, represented by red circles, and the others to be positive, represented
by green discs. When looking at the data plotted with respect to two parameters, represented
in Figure 3.5, one might conclude that the best fit, following the general trend of the data, is
probably the one in Figure 3.5d. Figure 3.5c shows the decision boundary of a model that is too
simple: if all instances above the decision boundary are predicted to be negative and all other
positive, multiple instances are misclassified and the general trend of the data is not present
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Figure 3.4: ROC curve for the rain prediction example, based on the data in Table 3.1. The AUC for this example
is 0.833.

in the model. This model is underfit: a more complex model might make a better separation.
Figure 3.5c shows a model that classifies every instance of the training data correctly. However
it seems likely that the two positive instances that cause the decision boundary to make extreme
turns are actually just noisy data. Since this model focusses too much on the training data it is
unable to make a good generalisation: the model is overfit.
Underfitting can be amended by using a more complex method, like using random forests in-
stead of logistic regression, or adding features to the model. Overfitting is avoided by simplifi-
cation of a model, which can be done in different ways, depending on the method used to build
the model. In case of logistic regression, one can use regularisation. One kind of regularisation
is the Lasso or L1 regularisation, which will make a selection of features to use in the final
model and drop the others, thus simplifying the model. For tree-based methods, like random-
forests, the trees can be “pruned” by removing some of the terminal splits, which also simplifies
the model. The concept of random forests itself also reduces the chance of overfitting, since it
uses a vote of multiple trees, resulting in a more reliable prediction.

3.4.4 Settings for learning relations

Special considerations have to be made when one wants to predict relations between two ob-
jects. This is the case for our research question, since we want to predict the interaction between
a mRNA and a miRNA. We consider every mRNA-miRNA combination to be an instance for
which we want to predict whether it will interact or not, resulting in a binary classification
problem. When a model has to make predictions to be used in real research, we would like to
have an idea of the performance. As discussed previously, this can be assessed during model-
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(a) Classification data (b) Good fit

(c) Underfit (d) Overfit

Figure 3.5: Toy data to illustrate under- and overfitting for a classification problem.

building by checking the performance on a test set. However, this performance will depend on
whether the mRNA and miRNA are new to the model or whether some information on these
molecules was already present in the training set. In this light, we can consider four differ-
ent cases, which are discussed in the following paragraphs. These cases will form now on be
referred to as “the settings”. An overview of the data usage for each setting can be seen in
Figure 3.6, where an example for 6 mRNAs and 12 miRNAs is given.

Random combinations out In this case, predictions are made for mRNA-miRNA combina-
tions that where not present in the training set. However, information on how both molecules
interact with other mRNAs and miRNAs is provided. This means that the exact combination
which has to be predicted is new to the model, but the molecules themselves are not. In order
to assess the performance for this setting using cross-validation, every fold will contain a ran-

22



(a) Random combinations out (b) New mRNA

(c) New miRNA (d) New mRNA and new miRNA

Figure 3.6: Overview of the data usage in the different settings, represented for one run in the cross-validation.
All training data for this run is represented in grey, wile the test data is represented in green. The yellow mRNA-
miRNA combinations in the setting where both mRNA and miRNA are new cannot be considers in order to train
or test the model that will predict the interaction between the mRNA and miRNA in question.

dom selection of mRNA-miRNA combinations, as illustrated in Figure 3.6a. Since no specific
structure is present in the selection, the performance can be estimated on the pooled predic-
tions. This means we will no longer pay attention to the mRNA and miRNA a combinations
belongs to and just compare the true label and the prediction score for each instance.

New mRNA When predictions are made for a mRNA-miRNA combination of which the
mRNA is previously unseen by the model, this is considered to be the "New mRNA" setting. To
test this on our data, every fold of the cross-validation will contain the combinations involving
one mRNA, visualised in Figure 3.6b. As a result, every run in the cross-validation will build
a model on the data of all but one mRNAs, and make predictions for the instances involving
this unseen mRNA. In this setting, structure is present in the instances assigned to different
folds, complicating the performance estimation. Since every model is built per mRNA, the
resulting models are also optimised to make good predictions per mRNA, and the performance
measured per mRNA will hopefully be quite satisfying. However, this does not guarantee that
these models will not discriminate a certain miRNA, which can only be seen if the performance
is measured per miRNA. This is illustrated by the data in Table 3.2. The AUC of the pooled data
is 0.667 and the AUCs per mRNA are all 0.75. However, the AUCs per miRNA differ greatly
form one another, reaching form 1 all the way to 0. An AUC of 0 means that all instances
are systematically misclassified, where a model will predict interaction for all non interaction
combinations and vice versa. This illustrates that it is important to check both the macro AUC,
which is the AUC calculated on the pooled data, and the micro AUCs, which are calculated per
mRNA or miRNA. In the case of the "New mRNA" setting it is especially advised to check
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the AUC over the miRNAs. For good models, given enough data is available, micro and macro
AUCs will hardly differ from one another.

Table 3.2: Toy data used to illustrate the need of computiong both macro and micro AUCs. The number proceding
the slash symbol represents the true label, while the numer following the slash symbol represents the prediction
score made by a fictive model.

miRNA 1 miRNA 2 miRNA 3 miRNA 4 miRNA 5 AUC per mRNA
mRNA 1 1 / 1 1 / 0.5 1 / 0.75 1 / 0 0 / 0.25 0.75
mRNA 2 1 / 0.5 0 / 0.25 1 / 1 1 / 0 1 / 0.75 0.75
mRNA 3 0 / 0.5 1 / 0.75 0 / 1 0 / 0.25 0 / 0 0.75
AUC per miRNA 1 1 0.25 0 1 pooled AUC: 0.667

New miRNA The "New miRNA" setting is equivalent as the previous setting, but here a new
miRNA is considered instead of a new mRNA. The folds of a cross-validation must now be
based on the miRNAs, as can be seen in Figure 3.6c, and the performance should be estimated
per mRNA.

New mRNA and new miRNA In this setting, both the mRNA and miRNA are previously
unseen by the model. Since absolutely no information on the molecules of interest is present,
this is the hardest of the four settings. To make this happen in a cross-validation, all combina-
tions involving the mRNA and miRNA in question have to be removed form the training set
when predicting this mRNA-miRNA combination. This setting is visualised in Figure 3.6d,
where the mRNA-miRNA combinations that have to be removed in order to predict the green
instance are indicated in yellow. In this case, it is advised to check both the performance per
mRNA and per miRNA.

3.4.5 Testing with random data

A simple test to check whether a good performance is due to actual learning or a possible
mistake, is to replace the data by random information. One could for example replace a binary
label by a random sampling between 0 and 1. In this case there is no link between the features
and the random label, so a binary classifier should display an accuracy and AUC of 0.5 on
a test set. The same should be true when using randomly sampled features or when both
labels and features are random. If this is not the case, something is wrong. There might be a
“leak” between training and test data, making it possible for a totally overfitted model to predict
previously seen instances and thus do better than random.
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Chapter 4

The mRNA-miRNA dataset

In this chapter we will explore the characteristics of the dataset used in this work. Section 4.1
explains how the research questing can be translated into a machine learning questing, ex-
plaining the features which will be used. Section 4.2 discusses how the dataset was generated,
involving both wet-lab experiments an bioinformatics analyses. In the main section of this
chapter, Section 4.3, multiple statistical exploration techniques are applied to the data in order
to form a general idea of its characteristics.

4.1 A multi-level problem

The goal of this research is to predict interaction between mRNAs and miRNAs in humans.
However, to realise such predictions, one has to obtain a notion of what might cause this inter-
action. As mentioned in Chapter 2, the 3’ region of mRNAs may contain seed matches or sites
for a miRNA of interest, meaning there is a small patch of sequence complementarity. Different
types of sites are described, but the ones most frequently used are the 6mer, 7mer-A1, 7mer-m8
and 8mer sites, all positioned at the 5’ end (the beginning) of the miRNA. Figure 4.1 shows
the difference between these sites. The first number in the site name represents the number
of nucleotides in this site, for example: a 6mer consists of six subsequent nucleotide matches
between mRNA and miRNA. In the case of multiple sites of the same length, as with the 7mer
sites, the last part of the name gives additional information about the site. A 7mer-A1 site has
an adenine (A) nucleotide that does not have to be a match at position one of the site, whereas
a 7mer-m8 site has a matching nucleotide at position 8 of the site.
Note that the position of a site is defined for the miRNA, but the matching part on the mRNA
can occur anywhere in its 3’ regulatory region. Because of this, multiple site matches between
one mRNA and one miRNA can occur and can belong to different site types. To show the
complexity of this situation, a small example is given, which is also visualised in Figure 4.2 for
clarity. A given mRNA may have two 6mer sites and one 8mer site for a specific miRNA-1,
three 6mer sites for miRNA-2, no sites for miRNA-3 to 7, one 7mer-A1 site and one 7mer-m8
site for miRNA-8 and so on. To see how potent these sites are to induce interaction, information
on each site, like the conservation of the nucleotides over different animal species, can be used.
This results in information on two levels: the level of a mRNA-miRNA combination and the
site level. The first holds information on the interaction for a mRNA-miRNA combination,
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5' - N N N N N N N N N ... - 3'
         1   2   3   4   5   6   7   8   9    

                
               1   2   3   4   5   6   7   8 

3' - ... N N N N N N N N ... - 5'      8mer
3' - ... *  N N N N N N N ... - 5'      7mer.m8
3' - ... A N N N N N N  * ... - 5'      7mer.A1
3' - ... *  N N N N N N  * ... - 5'      6mer

mRNA

miRNA

Figure 4.1: Overview of seed site types used in this work. All sites start at the second nucleotide of the miRNA,
being position one of the seed site. A matching nucleotide is represented by the letter N, an adenine nucleotide
by the letter A and any non-matching nucleotide by a star. Three dots indicate that the RNA strand continues
in that direction. A 6mer site has six subsequently matching nucleotides, a 7mer-A1 site has the same matching
nucleotides and additionally holds an adenine nucleotide at position 1 of the site. A 7mer-m8 site has seven
matching nucleotides and a 8mer site has eight.

mRNA miRNA 6mer 7mer-A1 7mer-m8 8mer mRNA miRNA site type … features …

1 1 2 0 0 1 1 1 6mer … … …

1 2 3 0 0 0 1 1 6mer … … …

1 3 0 0 0 0 1 1 8mer … … …

1 4 0 0 0 0 1 2 6mer … … …

1 5 0 0 0 0 1 2 6mer … … …

1 6 0 0 0 0 1 2 6mer … … …

1 7 0 0 0 0 1 8 7mer-A1 … … …

1 8 0 1 1 0 1 8 7mer-m8 … … …

Figure 4.2: Example of the mRNA-miRNA data tables and their relation. The table on the left represents the
information of mRNA-miRNA combination level, the table to the right the information on the site level.

which is what we want to predict, and the number of sites of each site type occurring for this
combination. The second level has information on each occurring site, such as where on the
mRNA a site occurs and how conserved it is. This info cannot simply be added or mapped to
the mRNA-miRNA combination level, since multiple sites per combination may occur, and it
is not clear which of these induce a potential interaction. We will examine some solutions to
this problem in Chapter 5, in order to be able to use as much of the available information as
possible.

4.2 Generating the mRNA-miRNA dataset

All data is generated by Gert Van Peer as a part of his research at UZ Gent. Both wet-lab tests
and bioinformatics analyses were performed.

Wet-lab tests HEK 293T cells, which originate form transformed human embryonic kidney
cell cultures, were seeded and grown in 96-well plates. After 24 hours, these cells were co-
transfected with three nucleotide fragments. The first is a 3’UTR reporter construct, which is
a combination of the 3’UTR of the gene for which interaction has to be tested (the mRNA),
followed by the Firefly luciferase gene that functions as reporter gene. The second fragment
is a control reporter construct, holding only a Renilla luciferase gene. This results in a Firefly
reporter gene, which is regulated as the mRNA of interest would be, and an unregulated Renilla
reporter gene. The third fragment introduced in the cells is the miRNA of interest, which
is introduced as a miRNA mimic. A miRNA mimic is a dsRNA molecule with the mature
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miRNA of interest as one of its strands, which can immediately be integrated in the RISC
complex to induce silencing. This type of co-transfection was performed 7990 times, each in a
different well and with a different combination of the 17 mRNA 3’UTR sequences and the 470
miRNA mimics of interest. After transfection, the cells were incubated for 48 hours, followed
by the measurement of the reporter gene activities. This was done by adding the required
substrates, i.e. luciferine and ATP, to the wells and measuring the produced light signals with
a luminescence plate reader. The signal resulting from the Firefly luciferase is proportional
to the level of the mRNA of interest, whereas the signal resulting from the Renilla luciferase
represents the level of expression of this mRNA in case no regulation can occur. The difference
between these two signals is a measure of the interaction between the mRNA and miRNA for
that particular co-transfection. If interaction has occurred, the light signal resulting from the
Firefly luciferase is weaker than the one resulting from the Renilla luciferase.

Bioinformatics analyses To generate the information on the site level, bioinformatics anal-
yses were performed. The presence of miRNA seed site matches in the mRNA 3’UTRs was
detected by alignments, resulting in information on the presence and position of the sites. For
each site, the percentage of adenine and uracil nucleotides in the region flanking the site was
computed, since this is believed to influence the probability of interaction. In addition, the
level of conservation of each nucleotide in these 3’UTR site matches was determined by align-
ments of the corresponding 3’UTR regions of different animal species. This was done with
two different methods, i.e. phastCons (Siepel et al., 2005) and phyloP (Pollard et al., 2010),
and computed with respect to different animal groups. These conservations are believed to be
a measure for the importance of a site.
A cutoff was defined in order to be able to interpret the interaction score in a binary way. This
results in interacting and non-interacting mRNA-miRNA combinations instead of a measure for
the probability of interaction. A set of validated interactions was extracted form literature by
text mining. Since validated non-interactions are hard to find, these were generated by screen-
ing a library of reporter genes without 3’UTR regulatory sequences, which are expected to be
unregulated by miRNAs. The optimal cutoff was found to be -1.77: with 95% specificity and
50% sensitivity, all mRNA-miRNA interactions scores equal or below this cutoff are interacting
and all others non-interacting.

4.3 Exploring the mRNA-miRNA dataset

The mRNA-miRNA dataset used for this work consists of 17 mRNAs and 470 miRNAs, result-
ing in 7990 observed interactions. If the cutoff of -1.77, discussed in Section 4.2, is applied on
the interaction score, 5.7% of the mRNA-miRNA combinations interact. This results in a very
unbalanced dataset, where the majority of mRNA-miRNA combinations does not interact.
As can be seen in Figure 4.3, 30% of the mRNA-miRNA combinations have sites, of which
14% interact. In these combinations, a total of 3726 sites occur: 51% 6mer, 21% 7mer-A1,
20% 7mer-m8 and 8% 8mer sites. Of the mRNA-miRNA combinations that do not contain
sites (70% of the total number of combinations), only 2% interact. All mRNAs have multiple
interacting miRNAs, whereas 194 miRNAs (37%) have no interacting mRNAs. All mRNAs
have multiple sites for the included miRNAs, but 14 miRNAs (3%) have no sites for the in-
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cluded mRNAs.

Label distribution The lower the interaction score the higher the probability of interaction.
Interpretation is easier if this score is converted to a binary label: interaction or non-interaction.
This is possible by using the cutoff for interaction defined in Section 4.2: all mRNA-miRNA
combinations with interaction scores equal to or below −1.77 are said to interact, all others not.
The lowest interaction score in the dataset is −7.19, the highest 6.26, with an average around
0. The distribution resembles a normal distribution but with a slight negative skew and skinny
tails, as can be seen in Figure 4.4.

Influence of sites The presence of sites influences the interaction score of a mRNA-miRNA
combination, resulting in different distributions for the part of the data where a site type is
present and where it is absent. The resulting shift in interaction score is illustrated in Figure 4.5,
where the influence of different site types can be seen. For each site type the shift in distribution
is significant, with 8mer sites having the biggest influence, followed by 7mer-m8, 7mer-A1
and 6mer sites. This justifies the use of site presence as a feature to predict mRNA-miRNA
interactions.

PCA A Principal Component Analysis (PCA) is performed on the data to see if the data can
be represented in fewer dimensions. The data can be represented as a 470 x 17 matrix of the
interaction scores, with miRNA as rows and mRNA as columns. The goal is to reduce to 17
columns and still withhold most of the information. The output of the PCA can be seen in
Table 4.1 and shows that we need 10 Principal Components (PC) to be able to explain 80 % of
the variance (or information) present in the data, and that the first two PC only explain 26%.
It can thus be concluded that PCA is not very effective in this case, since dimensions cannot
be dramatically reduced, and mRNAs are probably not highly correlated. To check this, a heat
map of the correlation between mRNAs based on their interaction score is shown in Figure 4.6.
Yellow and red shades indicate negative correlations, while green shades represent positive
correlations. The more intense the colour, the more correlated the mRNAs are. However, the
figure shows that most mRNAs are only slightly correlated, explaining why PCA might have a
hard time reducing the dimensions.

Table 4.1: Output of the Principal Component Analysis: importance of the 17 components. Notice that only 26%
of the variance, and hence of the information present in the data, is captured in the first two Principal Components.
The ten first Principal Components are needed to explain 80% of the variance.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
Standard deviation 1.6216 1.4701 1.3572 1.28859 1.17598 1.10665 1.06765 1.01264 0.95572
Proportion of Variance 0.1433 0.1178 0.1004 0.09048 0.07535 0.06673 0.06211 0.05587 0.04977
Cumulative Proportion 0.1433 0.2610 0.3614 0.45188 0.52723 0.59396 0.65607 0.71195 0.76172

PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17
Standard deviation 0.92545 0.8395 0.78564 0.74068 0.71972 0.66336 0.60187 0.57078
Proportion of Variance 0.04667 0.0384 0.03363 0.02989 0.02822 0.02398 0.01974 0.01775
Cumulative Proportion 0.80839 0.8468 0.88042 0.91031 0.93853 0.96251 0.98225 1.00000
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miRNA-miRNA combinations
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Figure 4.3: Overview of some aspects of the mRNA-miRNA dataset, including interaction and presence of sites.
In total, 7990 mRNA-miRNA combinations are present in the dataset, 2452 of which (30%) have sites and 5538
(70%) do not. Among the combinations that have sites, 351 (14%) interact and a total of 3726 sites occur:
1883 (51%) 6mer, 799 (21%) 7mer-A1, 746 (20%) 7mer-m8 and 298 (8%) 8mer sites. Of the mRNA-miRNA
combinations that do not contain sites, only 104 (2%) interact.

Cluster analysis To see which mRNAs are related with respect to their interaction score for
miRNAs, the 17 mRNAs were clustered using hierarchical clustering based on the Ward crite-
rion. Figure 4.7a illustrates this clustering. In order not to overcomplicate the interpretation,
we will only look at the initial split in two clusters. The leftmost cluster holds mRNAs that
generally participate in more interactions than those in the cluster on the right, as can be seen
by comparing Tables 4.2a and 4.2b. This also holds for the number of sites these mRNA have
with the included miRNAs, again justifying the use of sites as features to predict interaction.
Figure 4.7b shows the two initial clusters of mRNAs, plotted with respect to their number of
interacting miRNAs and their number of sites. If one knows that most mRNA-miRNA com-
binations only have a few sites, one can notice that the presence of sites does not guarantee
interaction, as can be seen by the big difference between the number of interacting miRNAs
and the number of sites.
Clustering of the mRNAs was also performed based on the total number of sites and the number
of individual site types, showing comparable results. Two specific mRNAs, MYT1L and PHF6,
always cluster together based on their number of sites. Table 4.2a shows that these are the
mRNAs with the highest number of sites, 534 and 483 respectively.
Clustering can also be done to group the miRNAs, but due to the large number of resulting clus-
ters, a dendrogram plot of the clustering is harder to interpret. To see if clustering is relevant,
the within group sum of squares after clustering was plotted for k-means clustering ranging
from 2 to 200 clusters. Since no “elbow” could be seen, no ideal number of clusters can be
determined. Due to the lack of information in the first two principal components (26% of
variance), plotting possible clusters with respect to these principal components has no added
value.
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Figure 4.4: The distribution of the interaction score in the mRNA-miRNA dataset resembles a normal distribution
but with a slight negative skew and skinny tails

Heat maps Heat maps are very useful for visualising information. Figure 4.8 consists of
two heat maps of the mRNA-miRNA dataset. The first shows the interaction score for every
mRNA-miRNA combination, while the second shows the number of sites for these combina-
tions. When looking at the first heat map, Figure 4.8a, it can be seen that most mRNA-miRNA
combinations do not interact, resulting in green shades on the plot. Interaction scores below
the cutoff for interaction, thus meaning the mRNA and miRNA in question do interact, are
indicated by shades of yellow, orange and red. Scores close to the cutoff, which do not clearly
interact or not, are represented as white. In the second heat map, Figure 4.8b, shades of green
show the number of sites for the mRNA-miRNA combinations, where darker tones indicate
more sites and white indicates the absence of sites. On can see that multiple mRNA-miRNA
combinations have no sites, and for the others the number of sites is usually low. When compar-

Table 4.2: Overview of number of interacting miRNAs and number of sites for the two initial clusters of mRNAs
based on their interaction scores.

(a) Table of mRNAs in the green cluster.

mRNA PHF6 NOTCH1 RB1 MYB MYT1L ZEB2 FBXW7 PHOX2B
nr of interactions 30 22 31 41 39 55 48 23
nr of sites 483 272 273 264 534 246 288 241

(b) Table of mRNAs in the red cluster.

mRNA MYCN EZH2 MYC BRCA1 PALB2 ALK HRAS BRCA2 TP53
nr of interactions 31 21 25 35 10 13 6 18 7
nr of sites 203 76 84 217 41 68 46 121 269
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Figure 4.5: Distribution of the interaction score in function of the presence of 6mer, 7mer-A1, 7mer-m8 or 8mer
sites. The red curve represents the distribution of the interaction score when the specified site is not present, the
green curve if one or more sites of the specified site type are present. The grey vertical line represents the cutoff for
interaction at -1.77, mRNA-miRNA combinations with interaction scores left of this line are assumed to interact.

ing the two heat maps, some links can be seen. The mRNA MYCN, for example, will interact
with the first miRNAs, resulting in the yellow band at the top of the first heat map. In the
second heat map, the same position is green, showing that this mRNA also has sites for these
miRNAs and indicating that the presence or number of sites can be linked to interaction. This
is not a rule however, which can be seen by looking at the mRNA to the left, MYC. In this case
there is interaction, shown by the yellow band in the first heat map, but no sites are present.
One can thus conclude that other factors may influence interaction. The opposite case occurs as
well, where a high number of sites does not result in interaction. In this case more information
on these sites is necessary to determine whether the presence of sites will lead to interaction.
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Heatmap of mRNA interaction score correlations
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Figure 4.6: Heat map of correlation between mRNAs based on their interaction score. Green shades represent
positive correlation, red shades negative correlation. The intensity of the colour represents the intensity of corre-
lation, resulting in very soft shades for hardly correlated mRNAs.
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(a) Ward’s hierarchical clustering of mRNAs based on interaction score.
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Figure 4.7: Clustering of mRNAs. As can be seen in the scatterplot (b), mRNAs present in the red and green
cluster in (a) clearly show differences in number of sites and interacting miRNAs. The mRNAs in the green
cluster generally show more interacting miRNAs and more sites than the mRNAs in the red cluster.
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Heatmap of interaction score
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(a) Heat map of interaction score. Most mRNA-miRNA combinations do not interact and are represented by
shades of green. Interacting combinations apprear yellow, orange or red.
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(b) Heat map of number of sites. Since the intensity of green represents the number of sites, it can be seen that
most mRNA-miRNA combinations have a low number of sites.

Figure 4.8: Heat maps to compare interaction score and number of sites for the same mRNA-miRNA combina-
tions. The presence of sites might coincide with the presence of interaction, but this is not a rule.
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Chapter 5

The models and their structure

Now that we have an idea of how the data is distributed, we turn to our real purpose: predicting
interaction. Given the structure of the data, with information on two levels as discussed in
Chapter 4, this is not straightforward. We will examine different models and gradually increase
their complexity and the amount of information used. Regardless of the model type, we will
split the data in a training set to build the model, and a test set for which we make predictions
to check the performance of the model. In order to make predictions for all mRNA-miRNA
combinations we use cross-validation, as explained in Chapter 3.

5.1 Single-model approach

Most of the time, machine learning techniques are applied as stand alone models: they receive
the data, build a model and make predictions. However, depending on the complexity of the
data and the actual goal of the analysis, practical complications may arise. In our case, predic-
tions have to be made at the level of mRNA-miRNA combinations, whereas most features are
site dependent, and thus present at site-level.

5.1.1 Site Count model

The most simple model type considered in this work is the “Site Count” model. The only
features considered here are the number of sites, resulting in five features: one for each of
the four site types described in Chapter 4 and one for the total number of sites. Note that no
additional information on the sites is incorporated, resulting in a model solely based on the
level of mRNA-miRNA combinations. Figure 5.1 shows the structure of this model, the usage
of data and the flow of information. As discussed in Chapter 3, the data is split in a training
and test set. Using the training set, the model is trained, after which this part of the data is
no longer used. Subsequently, the test data is given to this model and the interactions of the
mRNA-miRNA combinations present in the training set are predicted.

Strong points
• Simplicity in data: no effort is made to incorporate site-level information. Only the

number of sites has to be determined by alignment, no additional features have to be
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computed.
• Simplicity in structure: only one model has to be trained.
• Fair data usage: all site types are treated equally in terms of amount of information.

Weak points
• Information loss: no information of the site-level is used, ignoring a lot of potentially

decisive data.

5.1.2 Extended Site Count model

In order to include more information on site-level, we take a closer look at the data. Four
site types are present, each described by six conservation methods, the relative position on the
3’UTR of the mRNA and the percentage of adenine and uracil in the flanking regions. The
easiest way to add this information to the data on the mRNA-miRNA combination level is by
simply adding the columns with the site-level features to the table with mRNA-miRNA com-
binations. However, multiple problems arise, making this simple addition impossible. To start
with, different sites have different lengths: they are made up of six, seven or eight neighbouring
nucleotides. Since the conservations are computed for each nucleotide, different sites also have
a different number of features. If one would like to add one type of conservation of an 8mer
site to the mRNA-miRNA combination table, one would have to add eight features, each rep-
resenting the conservation for one nucleotide position in the site. However, if one wants to add
the information of a 6mer, which only had six nucleotides, the last two features are undefined.
A straightforward solution is to impute these features with the mean of the column, but this is
not relevant for this problem, since these nucleotides are simply not part of the 6mer site and
their conservation cannot be considered in the same way. So, to avoid this problem one could
just add the features of each site separately, resulting in the addition of a lot of features. In this
case, 38 features of the 6mer site, 44 features of the 7mer-A1 and 7mer-m8 and 50 features of
the 8mer site. In total, 176 features would be added. However, this only makes the problem
worse, since we now have even more columns that are irrelevant in case a certain site type is
not present. For example: if only a 6mer site is present, only these features are available and
relevant, while the other 138 features on site-level are not relevant since none of these sites are
present. The complete dataset only holds a few hundred sites of each type, as a consequence
most of the 7990 mRNA-miRNA combinations will have multiple irrelevant features. As a
matter of fact, only 11 mRNA-miRNA combinations will have no irrelevant features. Since
no imputation can be done and most machine learning techniques do not consider records with
unavailable entries, only these 11 records can be used to train the model. To make thing worse,
the resulting model will only be able to make predictions for mRNA-miRNA combinations
with at least one site of each type, which hardly ever occurs. Clearly, this is not acceptable, but
there is yet another problem. On mRNA-miRNA combination level, there is only one record
for each combination. Even if one could easily incorporate different kinds of sites, what has to
be done with multiple sites of the same type? One could try to find the most important site, but
there is no way to know which of the sites are responsible for a possible interaction. One could
also take the average for each features and include this, but for some features, like the relative
position on the mRNA, averaging does not make sense.
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ModelTraining data

Predictions

Test data

Figure 5.1: Structure and information flow of the “Site Count” model. The model is trained on the training set,
after which the latter is no longer used. In a second stage, the test set is provided to the model, which predicts the
interaction for each mRNA-miRNA combination present in this test set.

Other researchers have chosen to include only the 7mer-m8 site in their analysis, avoiding
problems with different site types, and this only if exactly one site is present, avoiding the
issue of multiple sites. This approach is used in MirTarget2 (Wang and El Naqa, 2008), one
of the leading methods in predicting mRNA-miRNA interaction, which will be discussed in
Section 5.3.1. Site type 7mer-m8 is chosen because of the balance between influence of the
site, as can be seen in Figure 4.5, and number of occurrences of it. The site type with maximal
influence is the 8mer, but since this is also the least occurring site, this limits the number of
mRNA-miRNA combinations considered. For the “Extended Site Count” model, we have cho-
sen to use a similar approach, and only add information to the table holding the information on
mRNA-miRNA level if a single 7mer-m8 site is present. The structure of the model is exactly
the same as in case of the “Site Count” model, represented in Figure 5.1. The resulting dataset
has 7400 records with only the number of sites as features, and 590 with all available informa-
tion present. If no 7mer-m8 site is present, the site features are set to zero, even though this is
not entirely correct. Without this, the algorithm would only be able to use or predict mRNA-
miRNA combinations with exactly one 7mer-m8 site, and all others would be considered not
to interact.

Strong points
• Simplicity in structure: only one model has to be trained.
• Data usage: it is possible to include some information on the site level, showing the

importance of a site if present.

Weak points
• Unfair data usage: Only info on the 7mer-m8 sites is included, resulting in an overem-
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phasis on the importance of this site type.
• Information loss: no data on other site types or multiple 7mer-m8 sites is used.

5.2 Stacked model approach

The goal of the “Stacked” model is to use all information provided, in a way which is biolog-
ically and technically sound. To do this, the idea of using a single prediction model is aban-
doned. Since the data naturally has two levels of information, the mRNA-miRNA combination
level and the site-level, these will also be present in the stacked model approach. We start on
the site-level and split the dataset by site type, resulting in four datasets with one record per
site. Since there are no issues with different numbers of features nor with presence or absence
of other sites, a straightforward prediction of the interaction of the mRNA-miRNA combina-
tion linked to a given site is possible. Note that all sites present for a specific mRNA-miRNA
combination are assigned the same interaction score, because it is not clear which of these sites
mediate a possible interaction. This results in four models, called the “bottom” models, all
predicting a scaled probability of interaction for all sites of their own site type, covering all
sites present in the dataset. The next step is to incorporate this information in a “top” model,
essentially similar to the “Site Count” model described in Section 5.1.1. The predicted chance
of interaction provided by the “bottom” models can be used as a feature for a mRNA-miRNA
combination. In this case, differing site lengths is not an issue, since they all have their own
model with their own number of features, and only the result is considered on the mRNA-
miRNA combination level. We have nevertheless chosen to make a different feature for each
site type, since they may have other influences or importances on the mRNA-miRNA level.
This results in a model with five features on the number of sites, as in the “Site Count” model,
and four features with predictions form the “bottom” models. Sadly, the problem of multiple
sites of the same type still exists. In order to avoid selecting a site to incorporate without a
decision rule, the minimum, median and maximum predictions per site type are included in the
“top” model. The final data table of this model holds five features for the number of sites and
12 features for the predictions of the “bottom” models.
The general structure and information flow of the “Stacked” model is represented in Figure 5.2.
It can be seen that the basic structure of Figure 5.1 is used as a building block, and occurs five
times, once for each model. Normally, no predictions are made for the training set, since these
predictions are too optimistic because the model was optimised to make good predictions for
these cases and the actual label was considered. However, in order to train the “top” model we
need training data, so the predictions on the training set made by the “bottom” models have to
be used. In this case the information flow is as follows: the “bottom” models are trained on their
own training set, resulting in four trained “bottom” models. Predictions of the training data are
made with these models, and minimum, median and maximum per site and per mRNA-miRNA
are added as features of the training set for the “top” model. This “top” model is trained and
all training data is discarded. In a second stage, the “bottom” models receive their respective
test sets and predictions for these sites are made. The minimum, median and maximum per
site and per mRNA-miRNA are added to the test set of the “top” model, which makes the final
predictions for the mRNA-miRNA combinations present in the test set.
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Strong points
• Data usage: all available information is used.
• Fair data usage: all site types are treated equally in terms of amount of information.

Weak points
• Complexity in structure: two levels, five models have to be trained.
• Information condensation: the “top” model only receives a summary of the actual site

features, resulting in possible loss of information.

5.3 Other prediction algorithms

In order to construct our models and check their performance, some other algorithms developed
to predict mRNA-miRNA interaction will briefly be discussed in this section. The choice of
which algorithms to compare with was based on performance of the algorithms, frequency of
use and availability of predictions for our dataset.

5.3.1 MirTarget2

MirTarget2 (Wang and El Naqa, 2008) is a machine learning based prediction algorithm, pub-
lished in 2008. The main idea of MirTarget2 greatly resembles the “Extended Site Count”
model discussed in the previous section. It focusses on mRNA-miRNA combinations with ex-
actly one 7mer-m8 site, all other combinations will be considered non-interacting. The training
set was made up of 6 miRNAs and 3027 mRNAs, but since only mRNA-miRNA combina-
tions that have 7mer-m8 sites were considered, this resulted in only 1461 combinations: 454
interactions and 1017 non-interactions. A total of 131 features were used, spanning the same
categories as those used in our work: conservation of nucleotides in the seed site, nucleotide
composition in the flanking regions and position on the mRNA. MirTarget2 also considered
the accessibility of the seed site region, which will only be introduced in a later version of our
models. However, the presence of other sites is hardly included: one feature describes whether
this site is actually a 8mer site, and also has a match at nucleotide nine of the miRNA, or not.
Besides this, only the number of 7mer-A1 sites is included. The most predictive features where
selected and included in a SVM model. Although it is not stated which features are included,
it is mentioned that the conservation over different species was most decisive.

5.3.2 MiRanda

MiRanda (John et al., 2004), published in 2004, does not use any machine learning techniques,
and is thus independent of a training set. It is based solely on the seed site matches between
the mRNA and miRNA for which the interaction as to be predicted. A site is said to induce
interaction if it passes three thresholds. The first is a matching score threshold, which means
that the alignment between mRNA and miRNA has to be good enough in order to count as a
match. The second is a free energy of the duplex formation threshold, taking into account that
a mRNA-miRNA match and fold have to be stable enough to be possible. The third threshold
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Figure 5.2: Structure and information flow of the “Stacked” model. All training data is represented in grey, test
data and trained models are represented in green. The four “bottom” models, each considering one site type, are
trained on their own training set. With these models, predictions for this same training set are made. For each
mRNA-miRNA combination and site type, minimum, median and maximum of the predictions are computed and
added as features to the “top” model training set. After training of this “top” model, all training data is discarded.
In a second stage, the “bottom” models receive their respective test sets and predictions for the sites in these
test sets are made. In the same way as in case of the training set, the minimum, median and maximum of these
predictions are incorporated in the test set of the“top” model, allowing this model to make the final predictions for
the mRNA-miRNA combinations present in this test set.

is a conservation threshold, representing the notion that highly conserved seed sites have more
chance to be mediating interaction. How these thresholds are set is not explained, but they are
probably based on wet-lab experience. Since the code is freely available under an open-source
license, one can set one’s own parameters if preferred.

5.3.3 PITA

PITA (Kertesz et al., 2007), published in 2007, is a parameter-free thermodynamic model. It
does not use machine learning techniques and is based on the accessibility of the seed sites. It
considers seed sites similar to the ones we consider, but somewhat less strictly defined. PITA
decides whether interaction will take place by calculating an energy score based on the ac-
cessibility of the mRNA and the binding energy of the miRNA-mRNA complex. In order to
bind, the mRNA must be accessible in the region of the site. Additional, the mRNA-miRNA
bond has to be stable enough in order to exist. The energy score considered by PITA is thus
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the difference between the energy needed to make a site accessible and the energy gained by
binding to a mRNA. All possible sites for one mRNA-miRNA combination are mathematically
combined to one final interaction score.

5.4 The settings: set-up and data usage

The four settings described in Chapter 3 can be used by model-builders in order to assess the
performance of the model in situations were the user wants to make predictions for mRNAs or
miRNAs that were not included in the dataset on which the final model is trained. A general
overview of the data usage for each setting is given in Figure 5.3 and will be discussed in the
following paragraphs.

Random combinations out The most straightforward interaction to predict is one between
a mRNA and a miRNA present in the dataset, for example the interaction of mRNA-1 with
miRNA-1. Since we want to make predictions for this combinations, it is included in the test set.
As a result, the training set obviously does not contain any information on this mRNA-miRNA
combination, but it does contain information on how mRNA-1 interacts with other miRNAs and
miRNA-1 with other mRNAs. To test this setting, we used 10-fold cross-validation, resulting
in 799 mRNA-miRNA combinations included in each fold. Consequently, every run had a
training set with 7191 combinations to predict the remaining 799 interactions. After all 10 runs
were executed, the resulting 7990 predictions were pooled and performance assessment was
done on this collection. Note that the prediction of a mRNA-miRNA combination included in
the dataset is not very interesting to a researcher, since it is not useful to predict an interaction
for which one already knows the true interaction form wet-lab tests.

New mRNA If a researcher is working with a mRNA not included in the dataset, he or she
might want to know how well the model can predict interactions of a new mRNA with the
included miRNAs. Since only a limited number of mRNAs are present in the dataset, we used
leave-one-out cross-validation to test this setting, which results in 17-fold cross-validation. In
each run, predictions are made for one mRNA, based on the data of the remaining 16 mRNAs.
As shown in Figure 5.3, this results in 7520 mRNA-miRNA combinations in the training set and
470 combinations in the test set of each cross-validation run. After all 17 runs, all predictions
were pooled and the performance was estimated on this set. In Chapter 3 we explained that
this might give an over optimistic result, and AUCs have to be calculated for each miRNA.
However, these AUCs where very similar to the pooled AUC, indicating that we can use the
pooled results from our models.

New miRNA If a new miRNA is discovered, researchers might be interested to know if this
miRNA will interact with any of the mRNAs included in the dataset. In this light, we want to
know how well the model can predict interactions of the included mRNAs with a new miRNA.
To test this setting we used 10-fold cross-validation, where each fold considered 47 miRNAs,
which results in 47 miRNAs in the test set and the remaining 423 miRNAs in the training set
of each run. Figure 5.3 shows that this corresponds to 7191 mRNA-miRNA combinations in
the training set and 799 combinations in the test set of each run in the cross-validation. Note
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Figure 5.3: Overview of how the different settings were applied in this work. Training data is indicated in grey,
test data in green and unused data in yellow. The bar at the bottom represents all the available data, indicating the
number of mRNA-miRNA combinations used in the training and test set during each run of the cross-validation. In
the “Random combinations out” setting, all mRNA-miRNA combinations are randomly categorised in 10 folds.
During each run of the 10-fold cross-validation, nine folds are used as training set and one as test set. In the
“New mRNA” setting, leave-one-out cross-validation is applied, resulting in 17 folds, each containing the 470
mRNA-miRNA combinations related to one mRNA. For the “New miRNA” setting, the 470 miRNAs are randomly
assigned to 10 folds, resulting in 47 ∗ 17 = 799 combinations in each fold, on which 10-fold cross-validation is
performed. The “New mRNA and new miRNA” setting is tackled with a kind of leave-one-out cross-validation,
where each mRNA-miRNA combination in fact has its own fold. As explained in Chapter 3, all records involving
the mRNA or miRNA of a mRNA-miRNA combination, indicated in yellow, have to be discarded when training
the model for this combination.
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that we could also have chosen to use leave-one-out cross-validation, but this was not needed
since the training set already contained 423 miRNAs, which is enough for the model to make
generalisations. All predictions were pooled and the performance determined on this set. In
line with the previous paragraph, the AUC was also computed per mRNA, which again hardly
differed from the pooled AUC.

New mRNA and new miRNA As described in Chapter 3, this is the hardest setting for a
machine learning algorithm, since it has to make predictions on mRNA-miRNA combinations
of which it has never seen any information. The ability to make good generalisations is of
utmost importance, but as mentioned in one of the previous paragraphs, this is hard due to the
limited number of mRNAs. To test this setting, we also used leave-one-out cross-validation,
even though this is very computationally expensive compared to the other setting. In this case,
the model has to be built 7990 times, once for each mRNA-miRNA combination in the dataset.
However, since both the mRNA and miRNA have to be new to the model after it has been
trained, all records involving either of these have to be removed from the training set prior to
the building of the model. Figure 5.3 shows that this results in the removal of 485 mRNA-
miRNA combinations for every run in the cross-validation. All 7990 predictions were pooled
and used to asses the performance.
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Chapter 6

Results and discussion

In this chapter, we will analyse the performance of the models described in Chapter 5. We
tested the different models with multiple machine learning methods, but only two methods are
withheld: logistic regression and random forests. In order to get a realistic idea of the perfor-
mance of these models, we used the different settings for testing, as discussed in Chapter 3.
An overview of the layout of this chapter can be seen in Figure 6.1. We will start by giving a
general discussion of the performance of each model in Section 6.1, covering both the use of
logistic regression and random forests. This will be followed by a comparison of the perfor-
mance of the different models in Section 6.2, for which random forests is used. The chapter
will be concluded with more detailed discussions of the performance of the “Stacked” model
using different methods and different settings in Sections 6.3 and 6.4 respectively.

6.1 General model performance

When one wants to estimate the performance of a model, it has to be clear what is actually
expected of this model, which performance measures are appropriate to check this goal and
what is considered to be a good performance. We first tried to make a model with the best
overall performance, which seems logical when building a model, but one has to keep in mind
how the models will be used by researchers. Probably, these models will be used to make
predictions for a mRNA or miRNA of interest, after which the most promising combinations
can be tested in wet-lab experiments. In other words, researchers might be more interested in a
model which performs well on the top scoring predictions, rather than one with a good general
performance which happens to make a lot of mistakes in the top predictions. Consequently, this
discussion will focus on two performance measures: the AUC, which gives an overall idea of
the performance, and the accuracy in the top n predictions. Unless stated otherwise, the AUC
and accuracy in the top 10 predictions are calculated on the pooled predictions, giving an idea
of the performance over all mRNA-miRNA combinations in general. The only exception is
Section 6.2.3, where the average top accuracy over the mRNAs is calculated. This gives the
most realistic idea of the accuracy that can be expected when the interactions for a new mRNA
and its 10 top scoring miRNAs are tested in web-lab experiments.
Figure 6.2 shows the distributions of the predictions made by the different models considered
in this work. The x-axis represents the prediction score, the y-axis the frequency. The blue
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Figure 6.1: Overview of the content of this chapter. The “Site Count” model will be discussed in Section 6.1.1,
where both the use of logistic regression (LR) and random forests (RF) will be considered. Section 6.1.2 includes
a similar discussion for the “Extended Site Count” model. The “Stacked” model is discussed in Section 6.1.3,
giving a general discussion of the four combinations of logistic regression and random forests in the “top” and
“bottom” models. For this model, we provide a more detailed discussion on the influence of the methods and
the different setting in respectively Section 6.3 and Section 6.4. The performance of the models from literature,
i.e. PITA, miRanda and MirTarget2, is discussed in Section 6.1.4. All models, including the ones from literature
considered in this work, are compared in Section 6.2.

bars represent the true interactions, whereas the red bars represent the non-interacting mRNA-
miRNA combinations. When comparing the different models, two silhouettes can be distin-
guished: a first one with bell-shaped functions and a second one with a high peak at zero and
a moderate spread for all other prediction values. Generally, the methods with high accuracy
in the top scoring predictions follow the second silhouette, and are machine learning based
algorithms.
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Figure 6.2: Histograms of the prediction score distributions made by the different models.
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6.1.1 Site Count model

This is our model of minimum information, including only the number of sites of each type.
Since this model has no notion of the site level features, it might overestimate the importance
of the sites that are present and might consider any mRNA-miRNA combination with sites as
"likely to interact". However, since the dataset holds mRNA-miRNA combinations that have
sites but do not interact, this model mainly focuses on the presence of 8mer sites, which have
the highest influence on interaction. When logistic regression is used, this is reflected in the
loadings the different features of the model receive: the highest loading is assigned to the
number of 8mer sites, followed by the number of 7mer-m8 sites and the total number of sites
present. The number of 6mer and 7mer-A1 sites are not withheld in the regularised logistic
regression model. Notwithstanding the simplicity of this model, it can reach a nice overall
performance with an AUC of 0.79. When the “Site Count” model is built using random forests,
its overall performance drops significantly, resulting in an AUC of 0.61. Although the same
features receive high importance, the use of this more complex method reduces the overall
performance, probably due to overfitting.
However, if we look at the distribution of the predicted scores resulting from this model, only
17 mRNA-miRNA combinations reach a score higher than 0.5 with logistic regression. This
is not really a problem, but a lack of spread in the predictions is not a desirable trait. In this
light, random forests perform better, having 46 predictions with a score higher than 0.5. More-
over, the accuracy on the top 10 scoring predictions is 0.6 with logistic regression, whereas
this is 1 with random forests, making the latter the preferred method if one is interested in the
top scoring predictions, even if its AUC is clearly lower. Figure 6.2a shows the score distri-
butions resulting from the predictions made by the “Site Count” model using random forests
in the “New miRNA” setting. Although this model makes predictions for all mRNA-miRNA
combinations, a lot of those combinations receive the minimal score, representing a very low
possibility of interaction. This is good for the non-interacting combinations, but almost 370
combinations are interacting and still receive this minimal score. One can conclude that only
using the number of sites from each site type is clearly not sufficient to make accurate pre-
dictions for these mRNA-miRNA combinations. However, when looking at the top scoring
predictions, this method performs surprisingly well. The accuracy on the top 10 scoring pre-
dictions is 1, since the first 13 predictions are true positives, and permanently drops beneath 0.5
when more than the top 40 is considered.

6.1.2 Extended Site Count model

As the name suggests, the ‘Extended Site Count” model adds extra information to the features
in the “Site Count model”, in this case the site features of the 7mer-m8 sites. Since more in-
formation is included, this model is given the possibility to assess the importance of a present
site and thus to perform better. However, the algorithms decide for themselves which features
to include in the model, in case of regularised logistic regression, or to assign high importance
to, in case of random forests. When we take a look at the features used in the regularised
logistic regression, only the percentage of adenine and uracil in the region flanking a site (AUs-
core) is added to the features already used in the “Site Count” model. So even though they
are present, the model seems unable to extract information from these features in order to en-
hance its performance, and since they are not useful, the model will just drop the features due
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to regularisation. This is probably linked to the way the added features are imputed when no
7mer-m8 site is present: all added features are set to zero. In order to overcome this, we tried
to impute with the mean or median, but the results only got worse. Since this model hardly
includes more information than the “Site count” model, the AUC is identical: 0.79. When ran-
dom forests are used, however, also the relative position of the site and the conservations of the
fourth nucleotide in the site are added as features. This is interesting, especially since the algo-
rithm seems to have a preference for a specific position. Observations like these show a useful
trait of machine learning models: since the algorithm is not explicitly programmed and learns
from the data, it can find links humans are not able to find on sight. In this way, researchers
can test different features of which the influence is not known and deduce their importances.
Here, the two features with striking importance are phyloP_Mammal.4 and phyloP_Primate.4,
representing the conservations of the fourth nucleotide within mammals and within primates,
calculated with the phyloP algorithm. Including these features results in an AUC of 0.7, which
is a 0.09 rise compared to the “Site Count” model.
Regarding the score distributions, the same conclusions can be made as with the “Site Count”
model: random forests give a higher accuracy in the top scoring predictions and a clearer
spread on the scores. As before, this makes the random forest method the preferred method if
one is interested in selecting a limited number of promising mRNA-miRNA combinations. The
prediction score histograms of the “Extended Site Count” model with random forests under the
“New miRNA” setting are represented in Figure 6.2b. The peaks at zero contain 7049 non-
interactions and 276 true interactions, which is a quarter less than in case of the “Site Count”
model.

6.1.3 Stacked model

As described in Chapter 5, the “Stacked” model is able to include all available information.
Due to the two level structure and five models, interpretation is not as straightforward. We will
start by analysing the “bottom” models, since their output will be used as features in the “top”
model.

Bottom models In contrast to the previously discussed models, random forests performs bet-
ter than logistic regression in terms of AUC, reaching respectively 0.77 and 0.64 as mean AUCs
of the four “bottom” models. The importance of the features shows that logistic regression in-
cludes no features at all in the 6mer and 7mer-m8 models, predicting non-interaction for all
these sites. The logistic regression models of the 7mer-A1 and 8mer sites include the AUs-
core, favouring higher AUscores in sites from interacting mRNA-miRNA combinations. The
7mer-A1 model also includes some phyloP conservations, a few of which even have negative
loadings, indicating that lower conservations in these positions might increase the chance on
interaction. However, one has to be careful when interpreting these loadings: the sores should
always be considered as a whole, since loadings might change dramatically if one feature is left
out. In this case, some conservations might have a negative influence on interactions, given that
all other features have the loading they are assigned. They might, for example, add a nuance to
the high loading assigned to the AUscore. Additionally, the loadings for these ambiguous polyP
conservations are so small that it is not clear how much attention should be granted to them. If
the models are built with random forests, more features receive high importances. Generally,
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the AUscore and most phyloP conservations seem important, with a preference for the fourth,
fifth and sixth nucleotide position in the site. The fact that this model is able to deduce infor-
mation from the same site features that were hardly used in the “Extended Site Count” model
shows the advantage of treating each site type separately: all features are easily interpretable
for the models, since there is no ambiguity on how to handle or impute the irrelevant features
of different site types.

Top model The “top” model includes the number of sites of each type and the minimum,
median and maximum predictions of each “bottom” model. The good thing of these features
is that it is not wrong to impute them with zero if no sites are present, since they resemble a
scaled probability that these sites will cause the interaction, which is zero if no sites are present.
All combinations of logistic regression and random forests in “top” and “bottom” models give
comparable performances. However, logistic regression in the ‘top” and random forests in the
‘bottom” models performs slightly better than the others, with an AUC of 0.8. The combination
with the lowest AUC is the one were all models are built with random forests, resulting in an
AUC of 0.74.
In terms of feature importance, all method combinations prefer the features coming from the
“bottom” models over the site count features, although the number of 8mers and the total
number of sites are sporadically included. This can be explained by the fact that the features
resulting from the “bottom” models also include a big part of the information present in the
site count features. If the three features, i.e. minimum, median and maximum, resulting from
one “bottom” model are present, there is at least one site of this type. In other words, if these
features are not zero in the dataset of the “top” model, the feature holding the number of sites
from this site type will at least be one. If minimum, median and maximum are different from
one another, there are multiple sites of this type. Since more information can be deduced
form the features resulting from the “bottom” models, which also give an indication of the
importance of a site, most site count features are no longer used. There is no real preference
between the minimum, median or maximum scores and most models include a few of each.
The most frequently used features are the minimum and maximum of the 7mer-m8 model,
accompanied by the maximum of the 8mer model, which are present in almost all of the “top”
models.

6.1.4 Models from literature

This section contains a general score distribution for the three methods from literature consid-
ered in this work. A further comparison to our models is made in Section 6.2.

PITA Although the AUC of this algorithm, being 0.71, is quite high, it is not suited for the
selection of a small subset of promising mRNA-miRNA combinations. The distribution of the
predictions made by the PITA algorithm can be seen in Figure 6.2d. It is striking to see that
the distribution of true interactions falls fully within the distribution of non-interacting mRNA-
miRNA combinations. This results in an accuracy of 0 for the top 10 predictions, since the
first 11 predictions are false positives. Over 1900 mRNA-miRNA combinations of our dataset
do not receive a score, since they do not contain sites regarded by PITA, and the algorithm
cannot make predictions for these combinations. However, only 34 combinations display true
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interaction, which is not a great loss compared to the issue that all top scoring predictions are
false positives.

MiRanda When considering the AUC, miRanda performs best compared to the other two
methods form literature, reaching an AUC of 0.76. The histogram of the predictions made by
miRanda is shown in Figure 6.2e. Like in the case of the PITA algorithm, the plot displays
two bell-shaped functions. However, since the means of both distributions differ more than
in case of the PITA algorithm, the distribution of the true interactions is not fully included in
that of the non-interacting mRNA-miRNA combinations. As a result, the performance on the
top scoring predictions is better, reaching an accuracy of 0.5 on the top 10 predictions. The
accuracy permanently drops beneath 0.5 when more than the 24 top scoring predictions are
considered.

MirTarget2 If one wants to make a selection of promising mRNA-miRNA combinations
for wet-lab experiments, this is by far the best algorithm from literature that is considered in
this work. However one has to keep in mind that this algorithm will only consider combina-
tions with one 7mer-m8 site. MirTarget2 also displays the lowest AUC of the models form
literature, being 0.67, although we have discussed that this might not be the most relevant per-
formance measure for researchers. Figure 6.2f represents the score distributions resulting from
this model. It can be seen that the silhouettes of these distributions shows closer resemblance
to the ones resulting from our models than to those of PITA or miRanda. The peaks at 0 are due
to the fact that no predictions are made for the 7132 mRNA-miRNA combinations without a
7mer-m8 site, which were imputed with the minimum prediction score. Note that this includes
more than 250 true interactions, which will never be detected by the algorithm. The accuracy in
the top scoring predictions is 1, since the top 14 predictions are all true positives. When more
than the top 82 predictions are considered, the accuracy permanently drops beneath 0.5.

6.2 Comparing the models

In order to compare the models, we will fix the setting to “New miRNA” and the method to
random forests. This is not ideal, since the previous section showed that some models perform
better with one method and other models with a second method. Still, it will give us the
possibility to compare some aspects of the different models. We will start by a comparison if
all data is used, followed by a specific case when all data on 7mer-m8 sites is not considered.
Finally, we also look at the performance per mRNA, which might be of interest to researchers
working on a specific mRNA.

6.2.1 Comparison on all data

In this main comparison we will consider the model performances on all the available data.
Figure 6.3 visualises the performance of the different models developed for this work, also
including the three published methods described in Chapter 5. Since the models will probably
be used to make a selection of promising mRNA-miRNA combinations to be tested in wet-lab
experiments, the performance in the top scoring predictions is of special interest.
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Figure 6.3: Performance plots for comparison of the different models. In this case, our models are built for the
“New miRNA” setting and use random forests.
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Performance in top scoring predictions Figure 6.3a shows the percentage of true positives
in the top n predictions of each model, which also resembles the accuracy in this selection. As
can be seen, the “Extended Site Count” model performs best on the top 50 predictions, making
this the preferred model if one is mainly interested in the very top. If more predictions are
considered, the “Stacked” model has the highest percentage of true positives, making this the
best overall model. At first, it may seem quite surprising that the “Extended Site Count” model
outperforms the “Stacked” models in the top predictions, since the latter uses all available
information, including that integrated in the former. However, the structure of the models is
very different and the “top” model in the “Stacked” approach only receives a kind of summary
of the site features, whereas the “Extended Site Count” model receives the exact site features.
On the long run however, when one considers more than the top 50 predictions or looks at the
overall performance, the “Stacked” model outperforms the “Extended Site Count” model, since
it receives extra information on all site types instead of just the 7mer-m8 sites. As expected, the
“Site Count" model is a weaker version of the “Extended Site Count”, since it has exactly the
same structure as the latter, but does not include any site features. When comparing the methods
from literature, MirTarget2 performs best, but is still slightly weaker than the “Extended Site
Count” model. This similarity was expected, since the concept of MirTarget2 greatly resembles
that of the “Extended Site Count” model and also focusses on 7mer-m8 sites. However, it does
not include the number of sites as extensively as our model does and only makes predictions
if 7mer-m8 sites are present. Our model, on the other hand, makes predictions for al mRNA-
miRNA combinations. If no 7mer-m8 sites are present, the “Extended Site Count” model will
act as the “Site Count” model and make predictions based on the number of 6mer, 7mer-A1
and 8mer sites. miRanda and PITA have a low accuracy in their top predictions for the mRNA-
miRNA combinations in our dataset.

Overall performance: ROC Figure 6.3b shows the ROC curves of all models considered
in this work. To assess their performance, one can look at a few different things, including
the shape of the curve and the area under the curve (AUC). As explained in Chapter 3, ROC
curves which are positioned more to the top left corner of the graph represent a better overall
performance, resulting in a higher AUC. The slope in the bottom left of the curve represents
the performance on the top scoring predictions, resulting in high slopes for high accuracies.
Clearly, two shapes of ROC curves can be distinguished: the ones with a nice arc, like most
common ROC curves, and the ones with a distinct kink that is connected to the top right corner
by a straight line. This arises when a vast number of the predictions have the same, minimal
score. In our models, this minimum score is zero, and reflects the predicted impossibility of
interaction for these mRNA-miRNA combinations. Since the majority of combinations in our
dataset in fact does not interact, this is a good thing. However, all interacting combinations that
receive a score of zero will never be expected to interact by our models. In order to reduce the
number of true interactions that receive a minimal score, more features might be needed. All
our models have this second shape and it can be seen that their AUC is linked to the amount of
information included, resulting in the highest AUC for the “Stacked” model since its ROC curve
tends most to the top left of the graph. Note that the MirTarget2 algorithm also displays this
kink, which is due to the fact that this algorithm only makes predictions for the mRNA-miRNA
combinations where 7mer-m8 sites are present. For all other mRNA-miRNA combinations, no
predictions are made and the interactions have been categorised as non-interacting by assigning
the minimal interaction score. The two other algorithms, PITA and miRanda, which are not
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based on a single site type and have a more flexible definition of sites, show a conventional
arched ROC shape. However, the slope in the bottom left of their curves is lower than these of
the other methods, showing their weaker performance on the top predictions.

6.2.2 Comparison if 7mer-m8 sites are left out

All algorithms seem to use different definitions of what a 7mer-m8 site is: we use it in a
very strict sense where 7 nucleotides need to match, but some algorithms, like MirTarget2,
allow less strict interpretations. This complicates the comparison between these algorithms,
since differences are not only due to the models themselves, but also due to the training data
used. MirTarget2 does not make predictions if no 7mer-m8 sites, according to their definition,
are present. Still, the accuracy drops only about 20% in the top scoring predictions when
the 7mer-m8 sites, according to our definition, are left out. As a result, MirTarget2 is still
better than the stacked model on the top 10 scoring predictions. It can be concluded that the
way in which the sites are defined has an influence on the performance of the algorithms.
However, our “Extended Site Count” model uses the more strict definition and, if all data is
used, outperforms MirTarget2 in the top scoring predictions. As a consequence, the more
strict definitions might be better if a high accuracy in the top predictions is what is wanted.
Note that for MirTarget2 this might not be feasible, since it does not consider the mRNA-
miRNA combinations without a 7mer-m8 site, making a broader definition necessary to cover
a reasonable amount of combinations. Our approach is to include more strictly defined site
types and give them the chance to have different influences, rather than using one broader site
type.

6.2.3 Comparison per mRNA

Researchers could be interested to make a selection of 10 miRNAs which might interact with an
mRNA of interest. Table 6.1 shows the accuracy in the top 10 predictions for each mRNA made
by the different models. For our models, the “New mRNA” setting is used, since this is what
we want to analyse. More information on this setting and the difference with other settings can
be found in Section 6.4. In order to avoid the need of setting a threshold, we assume that a good
model will rank all true interactions in the top, so as long as more than 10 interactios per mRNA
are present, the top 10 scoring predictions per mRNA should be true positives. However, the left
most column in the table, showing the true number of interactions for every mRNA, indicates
that two mRNAs have less than 10 interactions. For these mRNA, the accuracy can never
reach 1, altough this is not due to the model. However, since this is also possible for a new
mRNA, for which the total number of interactions with the considered miRNAs is unknown, we
have chosen to include them in this top 10 accuracy measurement. Clearly, not all top scoring
predictions of the models considered are true positives, resulting in accuracies smaller than 1,
and some mRNAs seem to be easier to predict than others. From the column means at the
bottom of the table, it can be seen that the “Site Count” model has the best mean performance,
where on average half of the top 10 scoring predictions per mRNA are true positives. The
“Stacked” and “Extended Site Count” model have an average performance comparable to that
of MirTarget2, while the others have a poorer performance. The fact that the most simple
model gives the best mean performance over the mRNAs is probably due to its ability to make
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Table 6.1: Overview of the accuracy in the top 10 predictions per miRNA for each model, using the “New mRNA”
setting for our models. The last column shows the total number of true positives of each mRNA in the dataset.

mRNA SC ESC S PITA miRanda MirTarget2 nr3of3interactions

ALK 1 0.4 0.4 0 0.1 0.3 13

BRCA1 0.3 0.1 0.1 0.1 0.2 0.3 25

BRCA2 0.7 0.1 0.2 0 0.2 0.4 18

EZH2 0.9 0.9 0.7 0.7 0.8 0.6 21

FBXW7 0.8 0.6 0.5 0.5 0.3 0.8 48

HRAS 0.6 0.3 0.3 0.2 0.1 0.2 6

MYB 0.4 0.8 0.8 0.4 0.4 0.4 41

MYC 0.7 0.3 0.5 0.2 0.2 0.3 25

MYCN 0.6 0.4 0.9 0.3 0.3 0.3 31

MYT1L 0.1 0.3 0.4 0.2 0.3 0.6 39

NOTCH1 0.1 0 0.1 0.4 0.5 0.5 22

PALB2 0.9 0.7 0 0 0.1 0.1 10

PHF6 0 0 0.3 0.2 0.2 0.1 30

PHOX2B 0.3 0.1 0.2 0 0.1 0.4 23

RB1 0.4 0.3 0.4 0 0.5 0.3 31

TP53 0.2 0.1 0.1 0.1 0 0.1 7

ZEB2 0.9 0.8 0.5 0.1 0.5 0.7 55

mean 0.524 0.365 0.376 0.200 0.282 0.376

good generalisations. The other models might systematically assign higher scores to some
mRNA and make good predictions for these instances, resulting in a high accuracy on the top
of the pooled data. However, when the mean of all mRNAs is considered, the influence of
mRNAs which are hard to predict can be seen, resulting in a lower mean accuracy on the top
10 predictions per mRNA.
A more general overview can be seen in Figure 6.4 showing the mean accuracy over the mRNAs
for all models, where the considered top for which the mean accuracy is computed ranges form
the top 1 to the top 10 predictions per mRNA. The previously made conclusion, that the “Site
Count” model performs best for the top 10 predictions per mRNA in the “New mRNA” setting,
can also be seen form this plot. However, when less than the top 5 is considered, MirTarget2
displays the best performance. Calculating the accuracy in the top predictions is a relevant test
to estimate the performance in a research setting where one does not know the true number of
interactions and a set number of promising combinations will be tested. However, it might be
interesting to know how many of the true interactions can easily be fount. This can be tested
by calculating how many of the n true interactions per mRNA are also in the top n predictions
made for this mRNA. In this case there are no issues with mRNAs or miRNAs that show less
than ten interactions. The results for this test are represented in Table 6.2, showing that the
difference between the performance of the “Site Count” model and the other models is even
bigger in this case.

Table 6.2: Average recall in the top n predictions per mRNA, with n the number of true interactions for this mRNA.

Site Count Extended Site Count Stacked PITA miRanda MirTarget2
0.6252091 0.3028160 0.2792296 0.1696495 0.2515049 0.3206957
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Figure 6.4: Overview of the mean accuracy over the mRNAs for the top n predictions made by the differnt models.
When less than the top 5 predictions are considered, MirTarget2 performs best. However, when a top selection of
more than 5 miRNAs per mRNA is considered, the “Site Count” model outperforms all others.

6.3 The methods

In Section 6.1, we have drawn some general conclusions regarding the performance of our
models when using logistic regression and random forests. In this section, we will further
discuss the influence if these methods on the “Stacked” model in the “New miRNA” setting.
An overview of the performances using different combinations of methods for the “top” and
“bottom” models can be found in Figure 6.5. The method of the “top” model is mentioned first,
followed by the method used in the “bottom” models, where logistic regression and random
forests are abbreviated as respectively “logr” and “rf”. The use of a random forests model
on at least one level clearly improves the performance in the top predictions, as can be seen
in Figure 6.5a. It is hard to decide which combination of methods will be optimal, since no
combination outperforms all others in the top 200 predictions. However the model that was
built exclusively with random forests might be preferred based on this plot, depending on the
demands of the researchers who will use the model.
In Figure 6.5b, the ROC curves of the method combinations are represented, given an overall
idea of the model performance. As mentioned in Section 6.2, all our models show the ROC
silhouette with a distinct kink. When comparing the methods, it can be seen that the ROC
curves of models with logistic regression are positioned higher, reflecting the higher AUCs. The
kink in the ROC curves of these models also appears higher and more to the right, indicating
that respectively more interacting ans non-interacting mRNA-miRNA combinations receive a
score differing form the minimum.
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Figure 6.5: Performance plots for comparison of the different methods for the “Stacked” model in the “New
miRNA” setting.
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6.4 The settings

As mentioned in Chapter 4, the used dataset contains 17 mRNAs and 470 miRNAs. Since
there are clearly more miRNAs than mRNAs, this will have its effects on the performance in
the different settings. To compare these settings, one has to consider a single model and method
by which this model is trained. Here, we have chosen to discuss the setting for the “Stacked”
model, trained with random forests. As mentioned before, the easiest setting is “Random com-
binations out”, which also reaches the highest AUC: 0.743. However, the performance in case
of the “New miRNA” setting is very similar, with an AUC of 0.737, and their ROC curves
can hardly be distinguished from one another in Figure 6.6b. Even though the model does not
receive any information on the new miRNAs during training in this setting, it is able to make
good predictions on their interactions with the 17 mRNAs included in the dataset. This is due
to the high number of miRNAs in the training set, giving the model the possibility to extract
a lot of information and enabling it to make good generalisation. If the model would be used
in practice, all information in the dataset will be used to train the model, giving it even more
miRNAs to learn from. Surprisingly, the “Stacked” model even performs better on the top
scoring predictions of new miRNAs than on random combinations out, as can be seen in Fig-
ure 6.6a. As expected, the model displays a poorer performance for the “New mRNA” setting.
Since only 17 mRNAs are present, the possibility of overfitting on specific traits of a mRNA
is high. This makes it hard for the model to generalise, which is exactly what is needed to
make good predictions for unseen cases. It reaches an AUC of 0.721, but as can be seen from
Figure 6.6a, the accuracy in the top scoring predictions is always about 50%, whereas this is
around 80% for the previous to settings. It must be mentioned that an accuracy of 50% can be
acceptable, since a random classifier would only reach 5.7%, which is the fraction of interact-
ing mRNA-miRNA combinations in the dataset. In case of the “New mRNA and new miRNA”
setting, the performance is comparable to the one of the “New mRNA” setting, resulting in an
AUC of 0.711. This shows that the additional novelty of an miRNA hardly has any influence
on the performance of the model.
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Figure 6.6: Performance plots for the comparison of the different settings. The model used is the “Stacked” model,
built with random forests.
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Table 6.3: Overview of the results. Some situations were not tested since the proceeding results showed that only
poor performances could be expected and the computational demands for these combinations is very high.

(a) Our models

model method random mrna mirna both random mrna mirna both

SC lr 0.789 0.775 0.784 0.760 0.6 0.4 0.4 0.4

rf 0.611 0.598 0.608 0.597 1 0.9 1 1

ESC lr 0.787 0.774 0.785 0.6 0.4 0.5

rf 0.694 0.697 0.697 0.677 1 0.4 1 0.4

S lr-lr 0.787 0.768 0.787 0.6 0.4 0.4

lr-rf 0.805 0.776 0.800 0.8 0.4 0.8

rf-lr 0.787 0.734 0.773 0.8 0.1 0.9

rf-rf 0.743 0.721 0.737 0.711 0.7 0.4 0.9 0.5

AUC top 10 accuracy

(b) Models form literature

model AUC top-108accuracy

PITA 0.710 0

miRanda 0.760 0.5

mirTarget2 0.680 1
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Chapter 7

Conclusions

All algorithms considered in this work can be evaluated in different ways, often resulting in
different conclusions regarding the performance. In this light, it is important to know exactly
what is expected of an algorithm in order to decide which is appropriate. The conclusions for
some approaches, illustrated in Figure 7.1, will be summarised.
In Chapter 6, most of the comparisons where made in light of examining the influence of a
given setting or method on the models. This gives us the possibility of trying to understand
how the models differ, relate to one another and what might be done to improve them. To make
this comparison as good as possible, these analyses were done on the pooled data in the “New
miRNA” setting. Due to the high number of miRNAs, the data was very suitable for this, and
it usually gives a more realistic view on the performance than when both mRNA and miRNA
are seen before. Based on these conditions, some general conclusions can be made. First, the
number of sites present form each site type gives an indication of mRNA-miRNA interaction. In
addition, these site types influence interaction in a different degree, making it important not to
focus on one site type. Secondly, when more information on these sites is added to the models,
the overall performance improves. However, the way in which this information is added to the
model greatly influences the performance. The “Stacked” model might lose information since
only a summary of the site info is included in the “top” model, but the “Extended Site Count”
model only considers one site type, losing a lot of information. When a general conclusion
has to be made, the “Stacked” model is best if one wants to do an extensive lab-test, involving
for example 200 mRNA-miRNA combinations, whereas the “Extended Site Count” is most
relevant if only 10 combinations will be tested. However, it is not very likely that a researcher
will be interested in any combination of mRNAs and miRNAs. When examining a disease
which is linked to a specific gene, researchers only want to make predictions for one mRNA.
This is not the same machine learning problem as previously described, since a model that
performs well in this case has to perform equally well for all mRNAs, even if this means the
overall performance is lower. This is the case considered in Section 6.2.3, from which it can be
concluded that the “Site Count” model performs best if this is your wet-lab research question.
When considering the methods form literature, MirTarget2 performs well when the top scoring
predictions are considered, both on the pooled data and per mRNA. However, for each of these
cases, the best performing models mentioned above are able to outperform MirTarget2.
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Figure 7.1: Overview of the different models and the conclusion on their performance.

Notwithstanding the complexity of predicting mRNA-miRNA interactions, the use of machine
learning algorithms seems very promising. Generally, further optimisation in function of the
exact expectations and applications of our model could lead to even more powerful predictors.

62



Bibliography

Bartel, D. P., Lee, R., and Feinbaum, R. (2004). MicroRNAs: Genomics, Biogenesis, Mecha-
nism, and Function. Cell, 116:281–297.

Blaze, J. and Roth, T. L. (2013). Epigenetic mechanisms in learning and memory. Wiley
Interdisciplinary Reviews: Cognitive Science, 4(1):105–115.

Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., Taccioli, C.,
Zanesi, N., Garzon, R., Aqeilan, R. I., Alder, H., Volinia, S., Rassenti, L., Liu, X., Liu, C.-g.,
Kipps, T. J., Negrini, M., and Croce, C. M. (2008). MiR-15a and miR-16-1 cluster functions
in human leukemia. PNAS, 105(13):1–6.

Calvo, B., Bengoetxea, E., and Larra, P. (2010). Bioinformatics Methods in Clinical Research.
Methods in Molecular Biology, 593:25–49.

Cissell, K. A. and Deo, S. K. (2009). Trends in microRNA detection. Analytical and Bioana-
lytical Chemistry, 394(4):1109–16.

Cooper, G. M. (2000). The Cell: A Molecular Approach. Sunderland (MA): Sinauer Associates.

Costa, F. F. (2010). Non-coding RNAs: Meet thy masters. BioEssays, 32(7):599–608.

Croce, C. M. (2008). Oncogenes and cancer. The New England Journal of Medicine, 358:502–
511.

Desouza, G. and a.C. Kak (2002). Vision for mobile robot navigation: a survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(2):237–267.

Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., Sun,
Y., Koo, S., Perera, R. J., Jain, R., Dean, N. M., Freier, S. M., Bennett, C. F., Lollo, B.,
and Griffey, R. (2004). MicroRNA-143 regulates adipocyte differentiation. The Journal of
Biological Chemistry, 279(50):52361–5.

Farazi, T. a., Spitzer, J. I., Morozov, P., and Tuschl, T. (2011). miRNAs in human cancer. The
Journal of Pathology, 223(2):102–15.

Fawcett, T. (2004). ROC graphs : notes and practical considerations for researchers. Machine
Learning, pages 1–38.

Fawcett, T. O. M. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery,
316:291–316.

63



Ferrucci, D., Brown, E., Chu-carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., Lally, A.,
Murdock, J. W., Nyberg, E., and Prager, J. (2010). Building Watson : an overview of the
DeepQA project. AI Magazine, pages 59–79.

Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape.
Cell, 128(4):635–638.

Gong, H., Liu, C.-M., Liu, D.-P., and Liang, C.-C. (2005). The role of small RNAs in hu-
man diseases: potential troublemaker and therapeutic tools. Medicinal Research Reviews,
25(3):361–81.

Guzella, T. S. and Caminhas, W. M. (2009). A review of machine learning approaches to spam
filtering. Expert Systems with Applications, 36(7):10206–10222.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning, Second
Edition: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer,
0002-2009. corr. 3rd edition.

Heneghan, H. M., Miller, N., and Kerin, M. J. (2010). Role of microRNAs in obesity and the
metabolic syndrome. Obesity Reviews, 11(5):354–361.

Iorio, M. V. and Croce, C. M. (2012). MicroRNA dysregulation in cancer: diagnostics, monitor-
ing and therapeutics. A comprehensive review. EMBO Molecular Medicine, 4(3):143–159.

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004). Human
microRNA targets. PLoS Biology, 2(11):e363.

Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007). The role of site acces-
sibility in microRNA target recognition. Nature Genetics, 39(10):1278–84.

Larranaga, P. (2006). Machine learning in bioinformatics. Briefings in Bioinformatics, 7(1):86–
112.

Li, X., Zhang, Y., Zhang, Y., Ding, J., Wu, K., and Fan, D. (2010). Survival prediction of
gastric cancer by a seven-microRNA signature. Gut, 59(5):579–85.

Lyons-Weiler, J., Patel, S., and Bhattacharya, S. (2003). A classification-based machine
learning approach for the analysis of genome-wide expression data. Genome Research,
13(3):503–12.

Mardis, E. R. (2011). A decade’s perspective on DNA sequencing technology. Nature,
470(7333):198–203.

Mitchell, T. (1997). Machine Learning. McGraw-Hill Education (ISE Editions), 1st edition.

Nayeem, A., Sitkoff, D., and Jr, S. K. (2006). A comparative study of available software for
high-accuracy homology modeling : From sequence alignments to structural models. Protein
Science, pages 808–824.

Pillai, R. S., Bhattacharyya, S. N., and Filipowicz, W. (2007). Repression of protein synthesis
by miRNAs: how many mechanisms? Trends in Cell Biology, 17(3):118–26.

64



Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., and Siepel, A. (2010). Detection of nonneu-
tral substitution rates on mammalian phylogenies. Genome Research, 20(1):110–21.

Poy, M. N., Spranger, M., and Stoffel, M. (2007). microRNAs and the regulation of glucose
and lipid metabolism. Diabetes, Obesity & Metabolism, 9 Suppl 2:67–73.

Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38
Suppl(June):S8–13.

Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, pages 206 – 226.

Sato, F., Tsuchiya, S., Meltzer, S. J., and Shimizu, K. (2011). MicroRNAs and epigenetics. The
FEBS journal, 278(10):1598–1609.

Sauder, J. M., Arthur, J. W., and Dunbrack, R. L. (2000). Large-scale comparison of protein
sequence alignment algorithms with structure alignments. Proteins, 40(1):6–22.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47.

Si, M.-L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y.-Y. (2007). miR-21-mediated tumor
growth. Oncogene, 26(19):2799–803.

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson,
H., Spieth, J., Hillier, L. W., Richards, S., Weinstock, G. M., Wilson, R. K., Gibbs, R. a.,
Kent, W. J., Miller, W., and Haussler, D. (2005). Evolutionarily conserved elements in
vertebrate, insect, worm, and yeast genomes. Genome Research, 15(8):1034–50.

Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M., and Mattick, J. S. (2010). Non-coding
RNAs: regulators of disease. Journal of Pathology, (October 2009):126–139.

Tong, a. W. and Nemunaitis, J. (2008). Modulation of miRNA activity in human cancer: a new
paradigm for cancer gene therapy? Cancer Gene Therapy, 15(6):341–55.

Verikas, a., Gelzinis, a., and Bacauskiene, M. (2011). Mining data with random forests: A
survey and results of new tests. Pattern Recognition, 44(2):330–349.

Voinnet, O. (2001). RNA silencing as a plant immune. Trends in Genetics, 17(8):449–459.

Waegeman, W., Pahikkala, T., Airola, a., Salakoski, T., Stock, M., and De Baets, B. (2012).
A kernel-based framework for learning graded relations from data. IEEE Transactions on
Fuzzy Systems, 20(6):1090–1101.

Wang, X. and El Naqa, I. M. (2008). Prediction of both conserved and nonconserved microRNA
targets in animals. Bioinformatics, 24(3):325–32.

Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R. M.,
Okamoto, A., Yokota, J., Tanaka, T., Calin, G. A., Liu, C.-G., Croce, C. M., and Harris,
C. C. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.
Cancer Cell, 9(3):189–98.

65



Zotos, P., Roubelakis, M. G., Anagnou, N. P., and Kossida, S. (2012). Overview of microRNA
target analysis tools. Current Bioinformatics, pages 1–14.

66


	Introduction
	Epigenetic regulation of gene expression mediated by miRNA
	Introduction
	Meet the molecules
	Nucleic acids
	Proteins

	Central dogma of molecular biology
	Epigenetic regulation of gene expression
	Measuring miRNA expression
	RNA-based techniques
	Protein-based techniques
	Bioinformatics-aided testing

	Applications in miRNA research

	Machine learning overview
	Introduction
	Learning types
	Supervised machine learning
	Unsupervised machine learning

	Main methods used
	Logistic regression
	Random forests

	Performance estimation
	Performance measures for binary classification
	Data usage
	Under- and overfitting
	Settings for learning relations
	Testing with random data


	The mRNA-miRNA dataset
	A multi-level problem
	Generating the mRNA-miRNA dataset
	Exploring the mRNA-miRNA dataset

	The models and their structure
	Single-model approach
	Site Count model
	Extended Site Count model

	Stacked model approach
	Other prediction algorithms
	MirTarget2
	MiRanda
	PITA

	The settings: set-up and data usage

	Results and discussion
	General model performance
	Site Count model
	Extended Site Count model
	Stacked model
	Models from literature

	Comparing the models
	Comparison on all data
	Comparison if 7mer-m8 sites are left out
	Comparison per mRNA

	The methods
	The settings

	Conclusions

