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INTRODUCTION 

 

 

 

 

 

What is strongest than the stone or softest than water? Nevertheless, soft 
water corrodes the stone so strong. The perseverance.  

Ovide 
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Introduction and Aim 
 
 

Introduction 
 
 The range of research into the so-called stimuli-responsive polymers, also referred to as 

smart polymers, has been considerably extended in recent years. Investigations in this area are 

at the leading edge of modern science [1-7]. Smart polymers are polymers that undergo 

reversible sharp physical or chemical modifications in response to specific changes in their 

environment (figure I1, table I1). The microscopic changes are apparent at the macroscopic level 

as precipitation formation in a solution or an order of magnitude decrease or increase in hydrogel 

size or solvent content. As living processes are based on such responses to stimuli, these smart 

macromolecules are the compounds of choice to study and mimic biological systems. Therefore, 

a lot of research work has been devoted to the conception of stimuli-responsive polymers used in 

composite systems responding to temperature, pH, ionic strength, chemicals, electric or magnetic 

fields, light, etc.  

 

 
 

 
 
 
 
 
 
 

 
Figure I1. Sketch of smart behaviour of polymers. 

 
  
 The practical importance of smart polymers is extremely wide and versatile. They can 

radically change quite a variety of technological processes. Smart polymers are sometimes called 

materials of the XXI century and have been extensively used in diverse fields, such as in 

membrane activities [5, 8], chromatography [3,6,9], fabrication of sensors and actuators [10] and 

artificial muscles [11]. They can also be used in the treatment and diagnosis of various diseases. 

They are employed for making polymeric systems for controlled release of drugs [12-16]  and 

their targeted delivery to a certain site of the human body [12,14-16], immobilization of various 

biologically active substances for the purpose of their storage and further utilization [12,15,17], 

removal of toxins from solutions [15,18], and creation of new effective systems for immune assay 
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(antibody-antigen interaction under homogeneous conditions) [19]. On the basis of smart 

polymers, controllable polymeric systems were created, which undergo transitions from a 

homogeneous to a heterogeneous state by the action of small changes in the environment. This 

made it possible to develop advanced technologies for isolating and purifying biologically active 

substances [1-2,20], which is of primary importance; concentrating metal ions [21]; separating 

organic substances [1,21]; and dewatering gels and suspensions [22]. Most of the polymers 

presented previously are responsive to only one kind of stimulus, but for some applications, 

independent responsiveness to several factors, such as temperature and pH, may be required. 

 

Table I1. Several types of stimuli used in the area of responsive polymers. 

Physical Chemical Biomedical 

Temperature pH Enzyme substrates 

Ionic strength Specific ions Affinity ligands 

Solvents Chemical agents Other biomedical agents 

Electric and magnetic fields   

Radiation (UV, visible light, ultrasonic)    

Mechanical stress and strain   

 

 Poly(methyl vinyl ether) (PMVE) is an example of a non-ionic polymer with thermo-

responsive behaviour and is easily transformed into a polymer gel by high energy radiation, such 

as γ-ray or electron beam. Moreover, PMVE can be synthesized by living cationic polymerization, 

allowing to combine it with a variety of other polymer segments in a controlled way (Chapter 1). 

An aqueous solution of PMVE exhibits phase separation in water at a Lower Critical Solution 

Temperature (LCST) equal to physiological temperatures (37°C). This means that PMVE is 

soluble in cold water, but precipitates upon heating above the cloud point temperature (Tcp). A 

PMVE gel also shows thermo-responsive characteristics: it swells below and shrinks above the 

Tcp. Water-swollen PMVE gels and PMVE fibrous gels having macroporous structure were used 

as an artificial muscle model, an automatic separation system, an artificial finger model and a 

photosensitive device [23]. Also, block copolymers with PMVE in water solutions have showed 

microphase separation [24] and thermo-responsive micellization behaviour. Amphiphilic block 

copolymers, in which PMVE has been combined with poly(isobutyl vinyl ether) (PIBVE) or 

poly(octadecyl vinyl ether) (PODVE), show high stabilization activity for aqueous dispersions of 

the hydrophobic organic pigments copper phthalocyanine and carbon black, as demonstrated in 

the own research group [25]. PMVE grafted on polystyrene (PS) surfaces caused temperature-

dependent surface properties [26]. Amphiphilic dendrigrafts with PMVE and PS could be used to 

complex or transport selectively compounds dispersed in water media and extract them by 

temperature increase [27]. 
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Aim 
 
  

 In our research group, PMVE was already studied in its linear form but also in 

combination with other polymer segments, such as block copolymers (PMVE-b-PIBVE and 

PMVE-b-PIBVE-b-PMVE) [25,32], and random copolymers (P(MVE-co-ODVE)) [33]. As in the last 

ten years, important research activity has been devoted to the design, synthesis, characterization 

and controlled self-organization of well-defined stimuli-responsive graft copolymer systems [28-

31], our study was undertaken to investigate possible routes to generate graft copolymers of this 

thermo-responsive PMVE. We describe herein the preparation of such PMVE graft copolymers by 

using both grafting onto (Chapter 5) and grafting from (Chapter 8) approaches to attach the 

copolymers as nearly monodisperse side chains of controlled molecular weight.  

 

The PhD thesis is divided in three parts, each of which is preceded by a theoretical part: 

 

1) In the first part of the research, the objective was to develop novel PMVE-based copolymers by 

means of cationic copolymerization techniques with the aim to produce a backbone for the graft 

copolymers with a statistical structure (Chapter 3). For this reason, random copolymerizations of 

MVE with a small quantity of 2-chloro-ethyl vinyl ether (CEVE) by living cationic polymerization 

techniques have been investigated. Poly(2-chloroethyl vinyl ether) (PCEVE) is a versatile reactive 

polymer that introduces functional groups capable of nucleophilic substitution reactions of its 

pendent groups with a variety of functionalized polymers. Controlled/‘living’ polymerization 

methods offer the best way to prepare well-defined polymers, i.e. with controlled molecular 

weights, low polydispersities and terminal functionalities, in systems with small contribution of 

side reactions. 

 

2) In the second step, it was the aim to achieve grafting the PMVE backbone via the grafting onto 

procedure, which is based on the covalent binding of preformed linear PEO chains to the main 

chain. This first route to hydrophilic branched polymers containing a PMVE backbone consists in 

grafting amino-terminated PEO chains onto reactive chlorine pendent groups located on the 

backbone (Chapter 5). Compared to the grafting from procedure, this strategy based on the 

linking of an elementary macromolecular backbone allows a more accurate characterization of 

the resulting copolymers since the building blocks can be characterized separately. Thus, these 

polymers are well-defined with regard to the molecular weights of the backbone and the 

branches, as well as the number of branches. They can have narrow molecular weight 

distribution and the branches are randomly distributed over the PMVE chain. 

Then, the thermo-responsive properties of these new graft copolymers with hydrophilic side 

chains were studied as a function of different parameters such as length and number of the side 

chains (Chapter 6). Thus, these graft copolymers could function as simple, fast and reversible 
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smart systems (see scheme A1). Although the application of these systems was not part of this 

research, they could be applied as surfactants, dispersants and stabilizers for colloidal 

suspensions or controlling the rheology of aqueous formulations, as was already demonstrated 

for a variety of other segmented polymer structures in our research group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme A1. Possible modes of aggregates formation for thermo-responsive PMVE graft 
copolymers in aqueous solution with PEO hydrophilic and PS hydrophobic side chains. 
 

 

3) In the last part, two different graft copolymers on PMVE backbone were performed via the 

grafting from procedure, which consists in growing PS or PtBMA grafts directly from the backbone 

(Chapter 8). Following the second approach, graft copolymers with PS or PtBMA branches have 

been prepared from poly(methyl vinyl ether-co-(2-chloroethyl vinyl ether)) (P(MVE-co-CEVE)) 

with a suitable atom transfer radical polymerization (ATRP) initiator. ATRP [34] is a process, 

which has been used to prepare graft copolymers by both grafting through and grafting from 

methods, where complexes of transition metals such as copper [35], ruthenium [36], iron [37]  or 

nickel [38], are utilized in conjunction with alkyl halides (Chapter 7). In our synthesis, the 

 

T > Tcp 
Aggregates or 
precipitation ? 

T ≥ Tcp 

PMVE hydrophobic core 

PEO hydrophilic corona 

T < Tcp 

PMVE hydrophilic corona 

PMVE-g-side chains 

PS hydrophobic core 
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remaining pendant chlorines, substituted by 2,2,2-tribromoethanol (TBE) as ATRP initiator, were 

reacted with a stoechiometric amount of N,N,N’,N”,N”-pentamethyldiethylene-triamine (PMDETA) 

and copper (Cu(II)) catalyst system on one hand, and with nickel dibromide triphosphine 

(NiBr2(PPh3)2) metal catalyst on the other hand, giving rise to ATRP initiating sites for styrene and 

tert-butyl methacrylate (tBMA) polymerization. After activation of TBE via ATRP, it is the goal to 

prepare thermo-responsive graft copolymers. One main drawback of the grafting from procedure 

lies in the impossibility to characterize precisely the structure of the resulting copolymers since 

neither the exact number of branches added nor their molar mass can be accurately determined.  

Note that PMVE graft copolymers with PS side chains (as PEO, see above) will undergo solubility 

changes in water in response to temperature changes. 

Finally, the thermo-responsive properties if these novel graft copolymers were studied (Chapter  
9). From specifically designed graft copolymers, containing a thermo-responsive backbone and 

hydrophobic side chains, we should expect that they would be able to generate micelles or 

aggregates with thermo-responsive core or corona (see scheme A1). 
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PART I 

 

 

 

 

Functionalized Random Copolymers of Hydrophilic 

and Hydrophobic Vinyl Ether Monomers  

Obtained by Living Cationic Copolymerizations 

 
 
 
 
 
 
 
 
 
 
 
Parts of these chapters have been published as articles: 
1 Confortini O., Verdonck B., Goethals E.J., e-polymers, 2004, no. 43. 
2 Confortini O., Du Prez F.E., Macromol. Chem. Phys., 2007, 208, 1871. 
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Abstract 

This present study focuses on the new living cationic random copolymerization of  
methyl vinyl ether (MVE) or isobutyl vinyl ether (IBVE) and 2-chloroethyl vinyl ether 
(CEVE) to obtain functionalized poly(isobutyl vinyl ether) (PIBVE) and thermo-
responsive poly(methyl vinyl ether) (PMVE). The random copolymers poly(IBVE-co-MVE), 
poly(MVE-co-CEVE) and poly(IBVE-co-CEVE) were synthesized in toluene using 1,1-
diethoxyethane (DEE) and 1,1,3,3-tetraethoxypropane (TEoP) as mono- and bi-functional 
initiator respectively. The acetal was added to trimethylsilyliodide (TMSI) to form the 
initiating system, and then copolymerizations were activated by zinc iodide (ZnI2). The 
kinetics of copolymerization were investigated for each monomer from series of at 
least nine reactions for which the initial monomer molar ratios ranged from 0.1 to 0.9. 
The copolymer compositions were determined by NMR. The copolymerizations were 
found to be living under specific conditions. 

The monomer reactivity ratios for the copolymerization were determined using 
linearization methods such as Fineman-Ross, Kelen-Tüdõs and extended Kelen-Tüdõs 
methods. Also, non-linear methods were employed by the use of the COPOINT program 
and the reactivity ratios obtained were compared. The values of the monomer reactivity 
ratios showed that poly(IBVE-co-MVE) copolymers have a moderate gradient-type 
structure with a strong tendency to alternate whereas the poly(MVE-co-CEVE) 
copolymers have a tendency toward an alternating structure. Moreover, the glass 
transition temperatures (Tg’s) of copolymers were determined and the theoretical Tg’s 
of homopolymers were deduced. Solubility of the homopolymers and copolymers were 
also studied using different solvents at 20°C. 
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Chapter 1 
 

 
 

Theory of Living Cationic  
Polymerization of Vinyl Ethers 

 

 
 

1.1. Poly(Vinyl Ethers) 
1.1.1. Introduction 
Poly(vinyl ethers) (PVEs) are compounds with the general formula:  

OR

OR

n

 
where R is an alkyl group such as methyl (MVE), ethyl (EVE), isobutyl (IBVE) or octadecyl. MVE, 

EVE, IBVE and n-butyl vinyl ether (nBuVE), are the commercially available VEs for reason of 

physical and chemical properties [1-3]. PVEs are produced exclusively by polymerization of vinyl 

ether monomers [4].  

 In 1878, the first reaction of PVEs (prepared by Wislicenius) was recognized as a chain 

reaction involving a cationic polymerization initiated by I+ and chain growth via carbonium ions. In 

the 1920’s, the monomeric vinyl ether became readily available by Reppe vinylation of alcohols 

with acetylene (under basic conditions at temperature of 120-180°C [5-7], scheme 1.1) and grew 

in industrial importance. After 1930, VEs and PVEs were produced on an industrial scale, initially 

at the Ludwigshafen works of the I.G. Farbenindustrie (now BASF), and since 1940 at the 

General Aniline and Film Corporation (GAF) in the United States, and later also by Union Carbide 

(UCC) in the United States. 

Today, PVE homopolymers are only produced by BASF and Polymer Source in Canada; UCC 

and GAF have ceased production.   

 

 

 
 

HC CH

ROCH CHM

ROM

ROMROH

+

++

ROCH CHM

ROCH CH2 (eq. 1b )

(eq. 1a )

 
Scheme 1.1. Synthesis of VE: vinylation of alcohols. A likely mechanism for the reaction involves 
addition of the metal alcoholate to the triple bond (eq.1a) in the rate-controlling step followed by 
metal-alcohol exchange (eq.1b) [5]. 
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1.1.2. Physical Properties 
1.1.2.1. The Homopolymers 

The physical properties of the PVEs depend on molecular weight, the nature of the alkyl 

group, the nature of the initiator, stereospecificity and crystallinity. They may be formed as 

viscous, sticky liquid, rubbery or brittle solids. PVEs with long alkyl side chains are waxy. The 

economically most important use of PVEs is in the adhesives industry, mostly as modifying 

additives for other (cheaper) raw materials. PVEs find wide application as adhesives, surface 

coatings, lubrificants, greases, elastomers, melting compounds, fibers and films as well as in 

chemical processing.  

 

Properties of PCEVE [1, 8-11]:  

PCEVE is used as X-Ray-beam resist; chlorine substituents on the alkoxy side chains improve 

sensitivity and resolution. PCEVE is hydrophobic, elastomeric and particularly used to be 

substituted (Tg = -35 °C). 
 

Properties of PIBVE [1,5,10-11]: 

 This polymer is used either in the dry state or as a solution in an organic solvent. It has excellent 

adhesion to plastics, metals, and coated surfaces and finds applications as an adhesion promoter 

and plasticizer in pressure-sensitive tapes and labels, as well as in various adhesive 

compositions and surface coatings. PIBVE is produced as a highly viscous oil and as a soft resin, 

but also as a secondary emulsion in water for mixing with other aqueous polymer emulsions. 
 

Properties of PMVE [1,5,10-12]:  

PMVE is a polymer that undergoes a LCST (see Chapter 6) (37°C) governed by the hydrophilic-

hydrophobic-balance (HLB). Such polymer is sometimes referred to as “thermo-shrinking”, and 

gets particular interest because of the abrupt nature of its phase transition and the fact that the 

transition is reversible, which allows repeated “thermal-switching”. PMVE has extensive uses in 

adhesives and coatings, as a non-migrating plasticizer, and as tackifier [5]. It can be used as a 

hot-melt adhesive, as a pigment-wetting agent, and as a plasticizer for printing inks. The polymer 

also has uses as a stabilizer in emulsion polymerization. The three important commercial 

applications for PMVE are for viscosity control and dry-film flexibility in UV photoresist coating 

solutions; as tackifier and adhesion promoter for acrylic pressure-sensitive adhesives used as 

tapes, labels and decals; and as semipermeable membrane for reverse osmosis [12]. 

 
1.1.2.2. The Copolymers 

PVEs are compatible with a wide variety of other polymers and copolymers. Principle 

applications for the most important commercial alkyl VEs with one or two other monomers that 

have appeared in the literature since 1970-1971 are listed in table 1.1. They are used as auxiliary 

materials for adhesives and paints, and in many industries [13-14]. 
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Table 1.1. Some Commercial VE Copolymers. 
Polymer Supplier Application 

Poly(MVE-co-maleic anhydride-co- 
divinyl ether of 1,4-butanediol) 

GAF Textile print paste 
Thickener 

Poly(MVE-co-MA) 
 

GAF 
ICI 

Adhesives, coatings, pharmaceuticals 

Poly(MVE-co-monobutyl maleate)  Thermographic copying material 

Poly(MVE-co-monoethyl maleate)  Printability 

Poly(IBVE-co-vinyl chloride) BASF Marine paints, electrostatic image-
developing powders, binding resin 

Poly(IBVE-co-monoethyl maleate)  Aerosol, hairspray, resin 

Poly(CEVE-co-N-vinylpyrrolidone)  Photochemical cross-linking of 
polymers to immobilize enzymes 

 
 
 1.1.3. Health and Safety Factors 

For the common PVEs known for nearly 50 years (MVE, EVE, IBVE and ODVE), no 

effects which are hazardous to health have so far been found. In animal experiments, they are 

classified as non-irritating to the skin and non-mutagenic.  

PMVE is not a primary irritant or a sensitizer. White rats and guinea pigs tolerate 90-100 cm3/kg 

of a 25% aqueous solution in oral toxicity tests. Oral toxicity values for white rats are 29g/kg body 

weight for the polymers tested.  

 

1.2. The Classical Carbocationic Polymerization 
The polymerization of alkyl VEs has been known for a long time [15], and several 

polymers are or have been produced commercially. The polymerization of VEs is possible only by 

cationic mechanism from the electron-donating nature of the ether substituent. The systematic 

study of the kinetics of VE polymerization was started in 1947 by Eley and co-workers [16] who 

polymerized n-BuVE with SnCl4 [15], iodine [17], AgClO4 [18] and PhCCl [18]. The British 

research group eventually established the cationic chain polymerization mechanism for VEs, 

consisting of initiation, propagation, chain tranfer and termination. 

 

1.2.1. The Initiation 
 The initiation step in the cationic polymerization of VEs is an electrophilic addition of a 

cation A+, derived from an initiator A+B-, across a VE double bond, to form a monomeric 

carbocation (scheme 1.2). 
 

 
 

Scheme 1.2. Formation of a carbocation by the initiation step. 
 

CH2 CH

OR

A B + BACH2 CH

OR
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Because of their high reactivity, VEs can be polymerized by a variety of acidic compounds, 

including those which are too weakly acidic to initiate cationic polymerization of styrene, 

isobutene and other less reactive vinyl monomers. Typical examples are summarized in table 1.2. 

 
Table 1.2. The initiators. 

Initiator Examples References 

Protonic acids (Brønsted acids) CF3SO3H, HclO4, CF3COOH 28 

Metal halides (Lewis acids) SnCl4, FeCl3, ZnCl2, BF3, BF3OEt2 29 

Halogenated metals alkyls RAlCl2, R2AlCl, RMgX; 

R = alkyl, X = halogen 

 

Cation-forming salts Ph3C+SnCl5-, C7H7
+SbCl6-, 

MeCO+ClO4
- 

30-31 

Halogens I2, IBr 30, 32 

Modified Ziegler-Natta catalysts Et3Al-VCl4-iBu3Al-THF 3, 25 

Solid acids Cr2O3, Al2(SO4)3-H2SO4 33 

High-energy radiation γ-ray 23, 34 

 

 

1.2.2. The Propagation 
The propagating reaction in VE polymerization is assumed to proceed via a carbocation 

as a growing species (scheme 1.3, where B- is the counteranion derived from an initiator). 

CH2 CH

OR

kp+BCH2 CH

OR

BCH2 CH

OR

CHCH2

OR
 

Scheme 1.3. Propagation of PVEs. 
 

The reactivity of monomer with initiator and propagating cation depends on the electron-donating 

power of the pendant group through inductive effect (Me<Et<iPr<tBu). In general, the stronger 

electron donating effect of the alkyl group leads to higher propagating rate constant (kp). VE 

monomers with more branched alkyl group exhibit higher reactivity than those monomers with 

straight pendant chain (MVE<EVE<iPrVE<tBuVE). The alkyl substituents in VEs may affect their 

reactivity also through the resonance effect, mediated by the intervening ether oxygen (scheme 

1.4). 
 

 

 
 

Scheme 1.4. The resonance effect. 

 

 

CH2 CH

O

R

CH2 CH

O

R
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1.2.3. Chain Transfer, Termination and Others Side reactions 
1.2.3.1. The Chain Transfer and Termination 

Despite its long history over a century, cationic vinyl polymerization has been regarded as 

most difficult to control. This long-standing view stems from the fact that the chain carrier of 

cationic polymerization is an inherently unstable carbocation, which tends to undergo frequent 

chain transfer reactions among others. 

Before the discovery of living cationic polymerization, the cationic polymerization of VEs 

hardly ever produced high molecular weight polymers unless carried out at very low temperature. 

The major reason is the occurrence of chain transfer reactions as described in scheme 1.5, in 

which a β-proton is transferred to the counteranion (1) or an incoming  monomer (2) [30]. 

  

 

 

 

 

 
Scheme 1.5. Chain transfer reactions to counteranion (1) and an incoming monomer (2). 

 

 The chain transfer processes mostly involve the elimination of the cation’s β-proton, which 

is acidic due to the vicinal positive charge.  

 In contrast, the termination reaction is much less important in comparison with transfer 

reaction, which means that the polymerization will be controllable if the chain transfer reactions 

can be hampered or eliminated. 

Thus, conventional cationic polymerizations, such as that of styrene with boron trifluoride 

etherate, are too poorly reproducible and controllable to give polymers with well-defined 

architectures and molecular weights. 

 

1.2.3.2. Side Reactions due to the Presence of Water 
 Moreover, residual water in the reaction medium can result in some other side reactions 

[31]. It is well-known that unavoidable water traces are present in TMSI, which is the initiator used 

in our syntheses of VEs in Chapter 3 [32]. The formation of side products of low average-number 

molecular weight (Mn) during the living cationic polymerization of VE with a phtalimide [33] and 

benzoate [34] pendant group was found, and the structure of the oligomers were determined. 

Kodaira et al. have proposed a mechanism for these side reactions (scheme 1.6) where the 

formation of the side products originates in the reaction of the growing end with impurity water [E].  

 The HX/ZnI2 (HX is a Lewis Acid) initiator produced living polymer (4). However, some of 

the propagating species (2 and 3) reacted with water as an impurity and caused the pendant 

elimination via a hemiacetal compound (5) to give an alcohol (6) [35]. An oligomer (7) was formed 

by the reaction of the monomeric propagating species (2 and 3), with 6 thus produced. 6 also 

CH CH

H OR
B

CH CH

OR

CH3 CH

OR

B CH CH

OR

HB

CH2 CH

OR

+ +

H-
(1)(2)
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terminated some of 4 and formed an acetal terminal (8) similar to that of (7). The rest of the living 

polymer chains (4) terminated with methanol as a terminating agent to give the polymer with the 

methoxide-type acetal terminal (9). Both reactions leading to 7 and 8 (eq. 3 and 4, respectively) 

originated in the reaction of the propagating species (2 and 3) with casual water that produced 6. 

The reactions shown by eq. 2-4 are essentially chain-transfer reactions. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 1.6. Side reactions due to the presence of water traces during the initiation step of the 
VEs polymerization. 
 
 On the other hand, Deffieux et al. [36], in the syntheses of high molar mass of PCEVE, 

have provided the evidence for the occurrence of a monofunctional side initiation. In line with this 

observation, the latter has been attributed to the hydrolysis of TMSI by protonic impurities which 

leads to the in situ formation of HI (scheme 1.7, eq. a). It is worth mentioning that for IBVE and 

styrene polymerizations initiated by trimethylsilyl trifluoromethanesulfonate [37] and trimethylsilyl 

II: aldehyde formation in the presence of water traces

III: termination of group chains by alcohol (chain transfer reaction)

I: initiation with L.A. and activation with ZnI2

(1)

4

CH2 CH

OR

CH3 CH

OR

X CH3 CH

OR

X ZnI2
ZnI2HX

1 2 3

CH3 CH

OR

CH2 CH CH2

OR

CH

OR

X ZnI2n

CH2 CH

OR

(2)

hemiacetal aldehyde

CH3 CH

OR

OH HX CH3CHO2   and    3 H2O HOR+ +

5 6

(3)

(4)

(5)CH3 CH

OR

CH2 CH CH2

OR

CH

OR

OCH3n
4 CH3OH

(NH4OH)

9

regenerated initiator

CH3 CH

OR

OR2   and    3
HOR (6)

+ HX ( and ZnI2 )

7

alcohol terminated PVE

+
HOR (6)

4 CH3 CH

OR

CH2 CH CH2

OR

CH

OR

ORn
HCl

8
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diphenylphosphate [38], it has been shown that inititation does not proceed by direct electrophilic 

addition of TMSX on the monomer unsaturation, but involves protonic acids species formed 

through the hydrolysis of TMSX by residual moisture. In that case, the present hydrogen iodide 

would add onto the VE monomer and inevitably induce the formation of monofunctional chains 

(scheme 1.7, eq. b) in addition to the expected bifunctional ones.  

 

 

 

 

 

 
Scheme 1.7. Hydrolysis of TMSI (eq. a), HI initiation of VEs: formation of the monofunctional 
initiation by the presence of adventitious water present in the bulk (eq. b) [36]. 
 

1.2.4. Role of a Proton Trap: the THA 
 Deffieux proved that, despite the rigorous drying conditions used, the formation of a 

fraction of monofunctional initiation by HI, generated by a partial hydrolysis of TMSI by water [36], 

can not be avoided under conventional conditions (as it will be explained in Chapter 3).  

In order to control the polymerization and to suppress the side reactions (formation of second 

chain transfer with a monofunctional initiatior), tetrahexylaluminium (THA) was added as a proton 

trap, which reacts rapidly with water [39] and protonic acids [40], as exemplified in scheme 1.8.  
 

 
 
 
 
 
 
 
 
 

Scheme 1.8. Reaction of trialkylaluminium (AlR3) with water (a) and with protonic acids (b) [39]. 
 
Although the living character of the polymerizations is preserved, another side reaction can exist, 

namely the reaction between AlR3 and ZnI2, which reduces the efficiency of the ZnI2 [41] (scheme 

1.9). Consequently, the highest DPn for the homopolymer PCEVE, which could be obtained, was 

equal to 300 [41]. 

ZnI2 AlR3 IAlR2+ 2 +ZnR3 2
 

Scheme 1.9. Ligand exchange between zinc iodide and trialkylaluminium. 
 
1.2.5. The Interplay Among Basic Elements of a Cationic System 

For a given cationic polymerization system of VEs, the nature and the whole process of 

polymerization will be governed by four or five basic elements: the initiator system, the monomer, 

H2O HIMe3SiI O SiMe3Me3Si2 2+ + (eq. a)

CH2 CH

OR
CH3 CH

OR

IHI +
ZnI2

CH2 CH

OR

CH2 CH
OR

I ZnI2CHCH3

OR n
(eq. b)

a)

AlR3 H2O Al (OH)3 RH+

Al2O3 RH+AlR3 H2O+2 3 6

AlR3 H2O

AlR3 H2O

RHOR2Al AlR22

+

+

+

+

2

2

1/n RHOAl

R
n

+ 3 3

b) AlR3 HI IAlR2+ + RH
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the solvent, the reaction temperature and a fifth, less precise one, namely the concentration of 

possible impurities, mainly residual water [42].  

The variable associated with the initiator is its electrophilicity or acidity, but also its 

stability and leaving properties of the counteranion of the active species, or both. With respect to 

living cationic polymerization, the optimized matching of the initiator, the activator and (or) a third 

useful component in the initiating system should be another important variable. The role of the 

solvent is reflected by its polarity and the possible specific solvating properties. Generally, high 

polarity of the solvent will lead to uncontrollable polymerization. Even the change in the 

concentration of monomer in the system can influence the nature of the cationic polymerization, 

which results from the change in polarity of the system. Changes in temperature can result in the 

purely kinetic modification and the nature of the initiating and propagating species in the 

polymerization process. Finally, the amount of residual moisture must be considered, and 

recently there have been some studies about its influence on the living polymerization [2,43]. 

Thus, the cationic initiators require high-purity monomers and solvents, clean apparatus, 

and the absence of water is particularity important [19,36]. It is recommended that the VEs are 

stored under a nitrogen atmosphere to minimize contact with air and moisture. VEs are 

hydrolyzed in the presence of aqueous acids to acetaldehyde and the respective alcohols. The 

reaction is acid catalyzed, and the VEs are comparatively stable in the presence of base. In 

general, if protected from contact with water and acidic materials, or if properly stabilized, the VEs 

may be stored using the safety precautions. 

 
1.3. Living Cationic Polymerization 
1.3.1. Definition and Characteristics of Living Polymerization 

The term living polymerization was original used to describe a chain-growth polymerization 

free in which chain-breaking reactions are absent [42]. In such an ideal system, after initiation is 

completed, growing or propagating chains would only propagate and would not participate in 

transfer or termination, with the consequence that all macromolecules in the system are capable 

of growth as long as monomer is present. Therefore, the living process is one of the best 

methods thus far available for precise control of polymer structure and molecular weight. But 

practically, it is impossible for a polymerization to be perfectly living. Polymerizations are 

considered living if they retain their capacity of growth for a time needed for the completion of a 

desired task. 

 It has been proposed, by IUPAC Macromolecular Division, that the following experimental 

criteria should be applied in diagnostic characteristics for living polymerization [30,42,44]: 

 the number-average molecular weight (Mn) of the polymer is directly proportional to the 

conversion of the monomer 

 the polymerization proceeds until all of the monomer has been consumed, further addition of 

monomer results in continued polymerization 
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 the number of polymer molecules (and active centers) is constant, which is sensibly 

independent of monomer conversion 

 the molecular weight can be controlled by the stoechiometry of the reaction 

 the produced polymer has narrow molecular weight distribution (Mw/Mn) when initiation is fast 

 block copolymers can be prepared by sequential monomer addition 

 chain end functionalized polymers can be prepared by end-capping reactions. 
 

The major experimental evidence of a living polymerization is the linear increase of the Mn with 

polymer yield. 
 

1.3.2. Discovery 
Following some findings [45], Higashimura and Sawamoto reported in 1983 the first truly 

living cationic polymerization of alkyl vinyl ethers initiated with the combination of the HI/I2 

initiating system [24,30,46-47]. 

Besides the common features of living polymerizations, such as the direct proportionality of 

the Mns of polymers and the resumption of polymerization and further growth of polymer 

molecular weights upon addition of new monomer feeds, the characteristics of the HI/I2-mediated 

living polymerization include the following: 

 Hydrogen iodide alone does not initiate polymerization but quantitatively forms a dormant 

adduct (scheme 1.10). 

 An efficient polymerization takes place when molecular iodine is added to a mixture of 1 and 

excess monomer 

 The number-average degree of polymerization (DPn) of the polymers depends on monomer 

conversion and, more importantly, the molar ratio of monomer to HI. 

 The concentration of iodine does not affect polymer molecular weight, but its increase 

accelerates the polymerization.  
 

 From these and other facts, the living polymerization with the HI/I2 system is now 

understood to proceed, as shown in scheme 1.10 [47]. 

CH2 CHH

OR

I I2CH2 CH

OR
CH2 CHH I

OR

HI I2

1, dormant adduct

CH2 CHCH

OR

I I2CH2

OR

H
n

Living  
Scheme 1.10. Living polymerization with HI/I2 as initiating system. 
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Thus, the initially formed adduct 1 acts as an initiator, whose dormant carbon-iodine bond 

is activated electrophilically by molecular iodine to begin living propagation. In this regard, the 

iodine is a Lewis acid (L.A.) called the “activator” or “coinitiator”. Collectively, we call such 

combinations of an initiator and activator “initiating systems”. According to this polymerization 

mechanism, the living nature and fine control of the polymerization are attributed to the 

stabilization of the growing carbocation by the nucleophilic interaction of the iodine-based binary 

counteranion, which decreases the positive charge at the growing cation, thereby reducing the 

acidity of its β–proton and eventually suppressing chain transfer (scheme 1.11). 

CH2 CHH

OR

I ZnI2 CH2 CH

OR

I ZnI2
k1

k-1
+

active species dormant adduct  
Scheme 1.11. Equilibrium between active and dormant species. 

 
1.3.3. Initiating Systems: Three General Approaches 
 A wide variety of initiating systems have been developped on the basis of the principal of 

nucleophilic stabilization of growing carbocations. More specifically, three methodologies have 

emerged that employ different “nucleophiles” in order to stabilize the otherwise unstable 

carbocationic intermediates (scheme 1.12): 

 Initiating Systems Based on Nucleophilic Counteranions: Protonic Acid/Metal Halide Systems 

(HB/MXn ) (eq. A) 

 Added Lewis Bases (eq. B) 

 Added Onium Salts (eq. C) 

 

The first method, based on ”nucleophilic counteranions”, is particularly suited for the 

synthesis of bifunctionally growing living polymer [48] and also for polymerization of VE and these 

graft copolymers used for our work in Chapter 3. 

The generalization of the initiator/activator mechanism for the HI/I2-initiation system (scheme 

1.10) leads to the design of variety of initiating systems that can also induce controlled/living 

cationic polymerization of vinyl ethers and related monomers via the “carbocation stabilization by 

nucleophilic counteranions” [42] (scheme 1.12 , eq. A). The carbocation species 2 is considered 

to be stabilized via the nucleophilic interaction of a counteranion (Cl-ZnCl2-) derived from the 

initiating system. These mechanistic considerations also provide us with some guidelines to 

select initiators and activators suitable for the HCl/ZnCl2 initiating systems. 
 

Thus, the initiator, the protonic acids HCl should be such that they carry nucleophilic anions 

Cl- which form dormant adduct (like 1) quantitatively with vinyl monomers but should not initiate 

uncontrolled polymerization by themselves. Such protonic acids include hydrogen halides and 

carboxylic acids. 
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Scheme 1.12. Three general methods for living cationic polymerization based on the “nuceophilic 
stabilization of growing carbocations”. (scheme taken from [30]) 
 

 

The activator, the metal halides ZnCl2 should be mild Lewis acids that do not initiate cationic 

polymerization, even in the presence of water but are electrophilic enough to activate the carbon-

Cl terminal to give stabilized growing species [49].  

When compared with the now classical HI/I2 counterpart, an advantage of these HB/MXn 

initiating systems is that some of them (HI/ZnI2, in particular) permit living cationic polymerization 

to proceed at room temperature [50], as well as easy handing and commercial availability of the 

components. An alternative synthesis of another initiator, α-iodo-ether, for the living cationic 

polymerization, is the reaction between an acetal and trimethylsilyl iodide activated with ZnI2. 

which will be used in our work for the PVE copolymerizations (Chapter 3). 

 

1.3.4. The Propagation  
 The propagation center during the monomer insertion process, which leads to 

polymerization [51], has an ionic character. 

 The α-halogeno ether polymer ends are to be inactive for the polymerization, and can be 

partially ionized and enable the propagation. The reaction between ionic and covalent forms of 

the polymer ends is a fast equilibrium. 
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1.3.5. The Termination 
 It may be seen that, in cationic polymerization, as in human life, polymers are born 

(initiated); grow (propagation) into longer molecules by reacting with numerous monomers, and 

are killed (by chain-transfer and termination). In contrast, there is a reaction where polymers 

remains “alive” for a long time, and this is accordingly called “living polymerization’, that is, a 

chain-growth polymerization that is free from chain transfer, termination and other undesirable 

side reactions. 
   

1.3.6. The Quasi-Living Polymerization 
 Kennedy et al. developed a ‘quasi-living polymerization’ method. When a vinyl monomer 

is added slowly but continuously to an initiator solution, a polymerization reaction occurs. Due to 

low concentration of monomer, the chain transfer and other side reactions are effectively 

suppressed, resulting from a polymerization phenomenologically similar to living polymerization. 

 
1.4. Design of Macromolecular Architectures by Living Cationic 
Polymerization 

The VE family consists of a large group of members ranging from the highly hydrophobic 

monomer such as CEVE or IBVE, to thermo-responsive water-soluble monomer such as MVE 

and to the crystallizable ODVE. On the other hand, the living polymerization method can provide 

us PVEs with well-defined architecture, Mn and narrow Mw/Mn. Through the simple initiation, 

termination and further reaction for the polymeric products, various functional groups can be 

introduced to the chain ends or the pendant groups of polymer. Based on the combination of the 

versatility of monomer properties and convenient manipulation of the living polymerization of VEs, 

many efforts have been made to synthesize and develop PVEs with new architectures. 

 

1.4.1. End-Functionalized Polymers 

The absence of chain transfer and termination in living polymerization provides 

straightforward and versatile methods to attach a variety of functional groups to polymer chain 

ends. The synthesis of end-functionalized polymers by living polymerization is usually achieved 

via either an initiation or a termination reaction [52]. 
 

* The “Initiator Method” 

The first method, the “initiator method”, utilizes an initiator, the hydrogen iodide-vinyl ether 

adduct (8), that induces living polymerization of VEs (other than 7) in the presence of iodine via 

the activation of its C-I bond. The product (9) carries a functional “head” (α-end) group X derived 

from the initiator (scheme 1.13). The “initiator method” has thus led to a variety of α-end 

functionalized polymers [53]. 
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Scheme1.13. The “initiator method”. 

 

* The “Termination Method” 

The second method, the “terminator method”, employs an end-capping :NuX (a 

nucleophilic terminator) with a functional group to be attached to the ω-end (tail) of the polymer 

(10). Under suitable conditions, the living end of (10) is so stable and selective that it combines to 

:NuX without forming an alkenic by-product (~~CH═CHOR) via β-proton elimination [54-55] 

(scheme 1.14). 
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Scheme 1.14. The “Termination method”. 
 

* Telechelic Polymers 

As readily expected, combination of the initiator and the terminator methods yields 

telechelic (α, ω-bifunctional) polymers of VEs [54,56] and p-methoxystyrene [57], where the two 

terminal groups may be identical (homotelechelic) [54,57-58] or different (heterotelechelic) 

[57,59].  

 

1.4.2. Macromonomers 
        A polymerizable functional group can be attached to the end of the PVE [56,58,60-61] chain 

either by initiation or termination. For example, quenching the HI/I2-initiated living polymer (10) 

with functional anion (14) leads to VE-capped PVEs (15) [62] (scheme 1.15). Macromonomer 

(13) with a methacrylate end is prepared by living polymerization of VEs with the initiator (12) 

derived from methacrylate vinyl monomer [63] (scheme 1.16). The macromonomers (13) and (15) 

are characterized by their perfect number-average end-functionality (Fn ≈ 1.0), narrow Mw/Mn and 

controlled Mn. 
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Scheme 1.15. Macromonomer with end-capping. 

 
 
 
 
 

Scheme 1.16. Macromonomer with a methacrylate. 

 
1.4.3. Pendant-Functionalized Polymers 

One of the best methods to synthesize well-defined polymers with pendant functional 

groups is the living polymerization of monomers carrying appropriate substituents (sometimes in 

protected forms). Scheme 1.17 presents some examples of VEs from commercially available 

CEVE by substitution reactions of its chloroalkyl group [9,64]. These processes provide the basis 

of the synthesis of amphiphilic, block or graft copolymers. 
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1.4.4. Block Copolymers 
 Living polymerization is most frequently employed for the synthesis of block copolymers 

where two or more monomers are polymerized sequentially [46,54,62]. This use of bifunctional 

initiating systems leads also to amphiphilic AB [46,49,65-66] and ABA [15,49-50] block 

copolymers, which may be soluble in water and surface active. Depending on the order of 

addition in the sequential living polymerization, triblock copolymers containing a hydrophobic 

center block and hydrophilic outer blocks, or vice versa, are obtained. It is known [67] that ABA-

type triblock copolymers differ in solubility characteristics from the corresponding AB diblock 

copolymers having the same A/B composition ratio. 

It is also possible to apply the sequential monomer addition method for the synthesis of 

block copolymers containing blocks from different types of monomers [68-70]. 
 

1.4.5. Multi-Armed and Star-Shaped Polymers 
Besides the controlled architectures of linear and functionalized polymers, increasing 

interest has recently been focused on macromolecules with unique three-dimensional structures 

or spatial shapes, especially multi-armed and star-shaped polymers [58,71-72]. A typical case for 

the successful use of multi-functional initiator is the preparation of tri-armed PIBVE [48,52].  
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Chapter 2 
 

 
 

Theory of the Determination of the 
Reactivity Ratios of Random 

Copolymers 
 

 
 

2.1. Introduction 

 Copolymerization is a term which is usually restricted to the polymerization of two or more 

vinyl monomers to give chains that contains all the monomer units arranged along the chain in a 

random manner. Only the case of two monomers is described here because our work is 

concerned with the synthesis of two vinyl monomers. These systems are mostly described 

theoretically for radical copolymerizations, but Kennedy is the only one who also described it for 

the cabocationic copolymerization [1]. In all cases, it could be also directly applied for cationic 

and anionic copolymerizations. 

 

2.2. Types of Copolymerization Behavior 

 The properties of copolymers depend not only on the comonomer composition but also on 

the sequence distribution of the constituent comonomers which can range from alternating 

through random to blocky: 

 

Alternating:     r1 = r2 = 0,                    
Random:         r1 r2 = 1,                      
Blocky:              r1 r2 > 1,        

Gradient:         (r1 < 1 and r2 >1) or (r1 > 1 and r2 <1)             
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Of course, these copolymer types represent ‘extremes’ of structure. In practice, many so-called 

statistical copolymers actually show some tendency for their individual comonomers to alternate 

or block together.  

The copolymerization curves are calculated from the Lewis-Mayo equation (eq. 2.1) for various 

values of the parameters r1 and r2.  
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                                       (eq. 2.1) 

The ordinate (F1) represents the composition of the increment of copolymer formed from the 

monomer mixture having the composition (f1) given along the abscissa axis (figure 2.1). 
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Figure 2.1. Copolymer curves with different reactivity ratios: (1) r1 = r2 = 1, (2) r1 = 0.35 and r2 = 
2.05, (3) r1 = 20 and r2 = 0.015, and (4) r1 = 0.048 and r2 = 0.238. 
 

* The straight line for r1 = r2 = 1 represents the trivial case in which k11 = k12 and k22 = k21, for 

which the two monomers are equally reactive with each radical. 

* Wall introduced the term ideal copolymerization for the case r1r2 = 1, in recognition of the 

analogy to vapor-liquid equilibria for ideal liquid mixtures. It is also apparent that the sequence of 

monomer units in an ideal copolymer must be necessary random. That is to say, the likelihood of 

occurrence of an M1 unit immediately following an M2 unit is the same as for an M1 to follow an 

M1 unit. The probability of either unit at any place in the chain is always equal to its mole fraction 

in an ideal copolymer. 

* If both r1 and r2 are very small (r1 < 1 and r2 < 1), a copolymer is obtained in which the 

monomers alternate with near perfect regularity along the chain. 

* In the case in which both ratios are greater than unity (r1 > 1 and r2 > 1, and therefore also        

r1 r2 > 1), there is a tendency to form a block copolymer in which there are blocks of both 

monomers in the chain.  

* In the case that one of the reactivity ratios exceeds unity while the other is less than unity (r1 > 1 

and r2 < 1), no critical (azeotropic) composition exists. 

* If one of the monomers is very much more reactive than the other (r1 >> r2), the two monomers 

tend to polymerize consecutively. 

1

2

3

4
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2.3. Estimation of Monomer Reactivity Ratios  
 Monomer reactivity ratios are used to predict sequence distributions as discussed in the 

previous section. A variety of methods have been developed to determine the reactivity ratios, 

which can be divided in two classes: the linear and non-linear methods. Recently, some reviews 

have been reported [2-6]. Due  to the complex mathematics, only the main ideas have been 

summarized in this section. 

 

2.3.1. The Linear Methods [2-3, 5, 7-10] 

 Most of these methods are based on the assumption that for conversions up to 

approximately 5% the ratio of the two monomers in the feed does not change appreciably. Well-

known procedures of this kind are the Mayo-Lewis [7], the Fineman-Ross [8] as well as the 

Kelen-Tüdõs method [9] and its extended one [10]. 
 

1) The Fineman-Ross Method [8] 
Fineman and Ross reformulated the Mayo-Lewis equation (eq. 2.1) to give                                           

 
                                                                                                                                              (eq. 2.2) 
 

 

with                       and 

        

In the Fineman-Ross method, (ρ-1)/R is plotted against (r1 - r2ρ/R2), and r1 and r2 are obtained as 

the slope and the intercept on the abscissa of the straight line, respectively. 
 

2) The Kelen-Tüdõs Method [9] 

Using the equations of Fineman-Ross, the experimental points are often not equally distributed 

on the resulting curve, but are rather concentrated at the initial part, which can result in rather 

large uncertainties in the estimate for the reactivity ratios. Kelen and Tüdõs suggested an 

alternate form of the copolymerization, introducing two new parameters G and F to obtain  

G = r1F - r2 , where the transformed variables are 

                             and                               (with x = ρ and y = R) 

 

The disadvantage of the Fineman-Ross method may, however, be abolished by the following 

graphically valuable linear equation    

                                                                                                                                                                                    

where α (α > 0) is the geometrical mean value of the smallest Fm, and the largest FM, (F-values) 

which gives                   . By introducing                            and                         , equation (eq. 2.3)  

 

                                                                                                                                                                        

The variable ξ cannot take any positive values, only those in interval [0.1]. Thus plotting the η 

yields: 
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values calculated from the experimental data as a function of ξ, we obtain a straight line, which 

extrapolated to ξ = 0 and to ξ = 1 gives –r2/α and r1 (both as intercepts).  
 

3) The Extended Kelen-Tüdõs Method [10] 

The Extended Kelen-Tüdõs method considers the drift in the comonomer and copolymer 

compositions with conversion. This method is the most reliable since one may simply use the 

reactivity ratio values with a small error up to 60% conversion. The Extended Kelen-Tüdõs 

method is expressed by the equation (eq. 2.4) introducing two new values to F and G: 

                        

 

where ζ1 and ζ2 represent the molar conversion of each monomer  

                                                           

 

 

with x and y defined as                             and  

 

In these relations, w denotes weight conversions of the copolymerization, and μ = μ2/μ1 is the ratio 

between the molecular weights of the two monomers (e.g., MMVE = 58.08 g.mol-1 and            

MCEVE = 106.55 g.mol-1). 
 

2.3.2. The Non-Linear Methods [3-7, 11-15] 

 Because the ‘independent’ variable of these linear equations is not really independent, 

and the variance of the dependent variable is not constant [16], the statistically soundest method 

to determine r1 and r2 is to fit the copolymerization equation by means of non-linear least square 

difference procedures [2]. A widespread version of this method is the ‘error-in-variable’ model 

(e.g., Tidwell and Mortimer model [12], terminal model [3, 7, 11], penultimate model [13], 

depropagation model [14] or complex participation model [15]) that performs a decent statistical 

analysis on the presented data and calculates error limits and confidence intervals of the 

obtained copolymerization parameters [17].  

An overview of all models and used equations is given in table 2.1. A non-linear method is the 

only proper way to analyze copolymer composition data and to determine reactivity ratios and has 

thus also been applied in our research. 
 

1) Tidwell and Mortimer Model [12] 

Tidwell and Mortimer non-linear least-square method is only valuable at low conversions (< 10%) 

in contrast to the other non-linear methods. Tidwell and Mortimer model compares several 

calculation methods with the following sum of squares (SS) criterion for the suitability of a set of 

reactivity ratios to fit an experiment with n points: 

 

 

and                          ,                          with 

and 
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r1 = k11/k12 
r1’ = k11/k1C1 
r1” = k11/k1C2 
r2 = k22/k21 
r2’ = k22/k2C2 
r2” = k22/k2C1 

rA = K [M1] 
rB = K [M2] 

M° refers to uncomplexed monomer

Table 2.1. Copolymerization equations and copolymerization parameters for non-linear methods. (Table taken from ref. [6])
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where           stands for the copolymer composition determined experimentally for experiment i 

and         stands for the copolymer composition calculated with the estimated reactivity ratios at 

M10/M20 for experiment i. 

The joint confidence intervals (JCI) [18], within which the correct values are believed to exist, 

conveys some idea of the reliability of the experiment and data. The approximate 95% JCI are 

delimited by the set of values rij which satisfy the following equation:  

 

 

The curve-fitting method involves calculating differences                        and searching for 

reactivity ratios by plotting ri taking Δ  0. The theoretical curves are computed on the basis of an 

initial rough estimate of r1 and r2 (using Fineman-Ross and/or Kelen-Tüdõs methods) and its 

refinement is made by successive iterations, so as to minimize the sum of mean-square 

deviations from the theoretical curve of the experimental points ( exp
1im ): 

 
 

 

2) Terminal Model (or the First-Order Markov) [3, 7, 11] 

In this model, copolymers composition is only dependent on the identity of the monomer unit at 

the growing end, and independent of the chain composition preceding the last unit.  

[feed]0 ≠ [feed]t1 ≠ [feed]t2… 

N.B.: good method when r1 and r2 are not so different: 

r1< 1 and r2 < 1 or 0 < r1r2  ≥ 1 (ideal, alternation tendency or gradient tendency toward 

alternation). 
 

3) Deviations from Terminal Copolymerization Model (the Penultimate Behavior, the 

Depropagation Model and the Complex Participation Model) [5-6, 13-15] 

 The derivation of the Terminal (of first-order Markov) copolymer composition equation is based 

on two important assumptions: one of a kinetic nature and the other of a thermodynamic nature. 

The first is that the reactivity of the propagating species is independent of the identity of the 

monomer unit, which precedes the terminal unit. The second is the irreversibility of the various 

propagation reactions. 
 

• Penultimate Behavior (or the Second-Order Markov) [13] 

The behaviour of some comonomer systems indicates that the reactivity of the propagating 

species is affected by the next-to-last (penultimate) monomer unit. If one of the comonomers (or 

both) has stronger polar substituents, the reactivities of the growing free carbocations can be 

affected by the penultimate unit. According to Coote and Davis [19], the penultimate model 

provides an improved description of the copolymer compositions and sequences. There are eight 

possible chain propagation reactions: 
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r1 = k11/k12 
r1’ = k11/k1C1 
r1” = k11/k1C2 
r2 = k22/k21 
r2’ = k22/k2C2 
r2” = k22/k2C1 

rA = K [M1] 
rB = K [M2] 

M° refers to uncomplexed monomer

Table 2.1. Copolymerization equations and copolymerization parameters for non-linear methods. (Table taken from ref. [6])
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where           stands for the copolymer composition determined experimentally for experiment i 

and         stands for the copolymer composition calculated with the estimated reactivity ratios at 

M10/M20 for experiment i. 

The joint confidence intervals (JCI) [18], within which the correct values are believed to exist, 

conveys some idea of the reliability of the experiment and data. The approximate 95% JCI are 

delimited by the set of values rij which satisfy the following equation:  

 

 

The curve-fitting method involves calculating differences                        and searching for 

reactivity ratios by plotting ri taking Δ  0. The theoretical curves are computed on the basis of an 

initial rough estimate of r1 and r2 (using Fineman-Ross and/or Kelen-Tüdõs methods) and its 

refinement is made by successive iterations, so as to minimize the sum of mean-square 

deviations from the theoretical curve of the experimental points ( exp
1im ): 

 
 

 

2) Terminal Model (or the First-Order Markov) [3, 7, 11] 

In this model, copolymers composition is only dependent on the identity of the monomer unit at 

the growing end, and independent of the chain composition preceding the last unit.  

[feed]0 ≠ [feed]t1 ≠ [feed]t2… 

N.B.: good method when r1 and r2 are not so different: 

r1< 1 and r2 < 1 or 0 < r1r2  ≥ 1 (ideal, alternation tendency or gradient tendency toward 

alternation). 
 

3) Deviations from Terminal Copolymerization Model (the Penultimate Behavior, the 

Depropagation Model and the Complex Participation Model) [5-6, 13-15] 

 The derivation of the Terminal (of first-order Markov) copolymer composition equation is based 

on two important assumptions: one of a kinetic nature and the other of a thermodynamic nature. 

The first is that the reactivity of the propagating species is independent of the identity of the 

monomer unit, which precedes the terminal unit. The second is the irreversibility of the various 

propagation reactions. 
 

• Penultimate Behavior (or the Second-Order Markov) [13] 

The behaviour of some comonomer systems indicates that the reactivity of the propagating 

species is affected by the next-to-last (penultimate) monomer unit. If one of the comonomers (or 

both) has stronger polar substituents, the reactivities of the growing free carbocations can be 

affected by the penultimate unit. According to Coote and Davis [19], the penultimate model 

provides an improved description of the copolymer compositions and sequences. There are eight 

possible chain propagation reactions: 
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Chapter 3 
 

 
 

Synthesis of Vinyl Ether Copolymers 
by Cationic Copolymerizations 

 

 
 

3.1. Introduction 
 The chemical structure of a copolymer depends not only on the two monomer units 

forming the macromolecule, but also on how such units are distributed along macromolecular 

chains [1]. This distribution is a direct consequence of each monomer’s reactivity in the 

copolymer molecule [2]. In radical copolymerization, the reactivity of a free radical depends on the 

nature of the side groups linked to the radical carbon. With respect to this structural feature, there 

are three important factors influencing the monomer reactivity ratio in radical copolymerization of 

vinyl monomers: electronic delocalization, polarity and the volume of the side group. All these 

factors can be studied by analyzing the reaction between functionalized vinyl monomers to obtain 

the corresponding functionalized vinyl copolymers, which are understood as macromolecular 

compounds formed by monomer units containing groups of different nature.  

 

 Copolymerization is one of the important techniques adopted in effecting systematic 

changes in the polymer properties and is especially employed in the production of commercial 

polymers. In the commercial use of copolymerization it is usually desirable to obtain a copolymer 

with the narrowest possible distribution of compositions, since polymer properties (and therefore 

utilization) are often highly dependent on copolymer composition. Two approaches are 

simultaneously used to minimize heterogeneity in the copolymer composition. One is the choice 

of comonomers. Choosing a pair of monomers whose copolymerization behaviour is such that F1 

is not too different from f1 is highly desirable as long as that copolymer has the desired properties. 

The other approach is to maintain the feed composition approximately constant by the batchwise 

or continuous addition of the more reactive monomer. The control composition differs from the 

feed. 

 A number of studies have reported on the copolymerization of VEs with other vinyl 

monomers by cationic mechanism. However, there have been few reports on the 
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copolymerization of VEs with other VEs [3-6]. Dunphy [4] has copolymerized CEVE with IBVE 

and ODVE using stannic chlorine as catalyst and determined the monomer reactivity ratios. 

Khomutov [5] has determined the monomer reactivity ratios in the copolymerization of nBVE with 

ethyl and isopropyl VE in the presence of sulfuric acid-aluminium sulfate. Fueno [7] has 

copolymerized substituted phenyl VEs by stannic chlorine to study the Hammett’s relations in the 

copolymerization. 

 

 In a paper from our research group, preceding my PhD, the copolymerization of ODVE 

with IBVE has been reported [8]. The crystallinity of the PODVE fraction was slightly decreased 

by the incorporation of the hydrophobic IBVE. In our case, a well-known example belonging to the 

class of thermo-responsive polymers, PMVE, was choosen because it sustains its water solubility 

up to 37°C [9]. The fact that MVE is a gas at room temperature and the high heat of 

polymerization (1400kJ.kg-1) are probably the reasons why only few studies on the living cationic 

polymerization of MVE have been reported. Thermo-responsiveness has also been observed for 

other copolymers containing hydrophilic and hydrophobic units such as partially hydrolyzed 

poly(vinyl acetate) [10], poly(diacetone acrylamide-co-hydroxyethyl acrylate) [11],              

poly((N-phenylacrylamide)-co-(N,N-dimethylacrylamide)) [12], poly((methyl 2-acetamidoacrylate)-

co-(methyl methacrylate)) [13] produced by free radical polymerization, which can be regarded as  

copolymers because of their random sequences of hydrophilic and hydrophobic moieties [14].  

The thermo-responsive PMVE, widely studied by ourselves [15-18] and others [19-21], 

features not only excellent thermo-responsitive properties but has also a predetermined structure 

with control over molecular weight and narrow polydispersity. However, until now, only a few 

random copolymerizations of VEs under suitable conditions for living polymerization have been 

described [8,22]. In spite of the uncontrolled distribution of monomer units in statistical 

copolymers, random copolymerization may be important because of its simplicity and practicality. 

None of them contained reactive groups that would allow for further modification or the 

construction of segmented copolymer structures. 

One of the objectives of this study was to synthesize new thermo-responsive random 

copolymers combining thermo-responsiveness of PMVE with other physical properties in 

subsequent studies such as the addition of hydrophobic units of IBVE and CEVE. The other 

objective of this preliminary study was to develop a method to introduce reactive groups in PMVE 

and PIBVE. This will allow us in a later stage to introduce other polymer segments on the PVE 

backbone. For that reason, the copolymerization of MVE or IBVE with IBVE or CEVE was 

considered (scheme 3.1), through living cationic polymerization.  

 A series of studies dealing with the controlled cationic polymerization of VEs has shown 

the important possibilities offered by this procedure for the synthesis of mono-and bi-functional 

initiators [23-24]. Two different approaches have been used. In the first one, the VE 

polymerization is performed in the presence of a mono-functional initiator [23], and in the second 

method, by a bi-functional initiator [24]. Thus PVE chains can grow in two ways. In the present 
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study, the living cationic copolymerizations of VE (MVE or IBVE) with other VE (IBVE or CEVE)  

with the use of these initiating systems have been investigated, leading to new copolymers 

(scheme 3.1).  

 
 

 

 

 

 

 

Scheme 3.1. Structure of poly(methyl vinyl ether-co-isobutyl butyl vinyl ether) (P(MVE-co-IBVE)), 
poly(isobutyl vinyl ether-co-(2-chloroethyl vinyl ether)) (P(IBVE-co-CEVE)) and             
poly(methyl vinyl ether-co-(2-chloroethyl vinyl ether)) (P(MVE-co-CEVE)). 

   

 This chapter first describes the preparation of VE copolymers with low molecular weight. 

In the second part, the synthesis of higher Mn using the same strategy is examined, providing 

experimental evidences for the occurrence of side reactions during the polymerization. Their 

characterization, the search for experimental conditions that allow their control and their 

livingness are also presented. In the third part, the monomer reactivity ratios of MVE, IBVE and 

CEVE comonomers have been evaluated using not only linearization methods (Fineman-Ross 

[25], Kelen-Tüdõs [26] and Extended Kelen-Tüdõs [27] methods) but also non-linearization 

methods (Tidwell and Mortimer model [28], terminal model [29], penultimate model [30], 

depropagation model [31] or complex participation model [32]). And finally, the physical 

properties, glass transition temperature (Tg) and solubility, were studied. 
 

3.2. Mechanism of the Copolymerizations 
 The last 15 years, two initiating systems were developed that has led to a breakthrough in 

the synthesis of VEs. This has made the synthesis of VE much easier than in the past. In 1994, 

Haucourt and Goethals [23, 33-34] have developed a new initiating system based on a        

mono-functional acetal, the DEE, TMSI and ZnI2 which provided the possibility to polymerize VEs 

in a living way. This initiating system is preferred over the originally used HI/I2 system because of 

its easier purification procedure and higher stability.  

In our work, the living random copolymers of IBVE or CEVE with MVE are synthesized with this 

mono-functional initiating system. The complete copolymerization is presented in scheme 3.2.  

On the other hand, the bifunctional initiating system based on a reaction of bis-acetal TEoP with 

TMSI was also used for the random cationic copolymerizations of MVE or IBVE with CEVE 

(scheme 3.2). The last system, which leads to living bi-functional chains, was also investigated by 

Deffieux et al [24] for the homopolymerization of CEVE. 
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Scheme 3.2. Reaction scheme for the synthesis of VEs with mono and bi-functional initiators by 
living random cationic copolymerizations; R1 = CH3, R2 = CH2-CH-(CH3)2 or CH2-CH2-Cl, R3 = 
CH2-CH2-Cl and R4 = CH3 or CH2-CH-(CH3)2. 
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 In general, the copolymers have been synthesized by living cationic copolymerization of 

two monomers. The initiator was formed by the reaction of an acetal (DEE) or a bis-acetal (TEoP) 

with TMSI at – 40°C in toluene (see details in experimental part). Their combination with TMSI 

enables to make an α-iodoether or a bis-iodoether initiator. A related experimental detail which 

should be noted is that, because of the highly active nature of this initiator, a rather low 

temperature (-40°C) was used for both procedures. Since it has been reported that TMSI is not 

able to initiate alone the polymerization of VEs [33,35],  the latter compound was introduced in 

slight excess, about 1.2 equivalent per acetal function, to ensure a complete conversion of the 

acetal group.  

The copolymerization is then triggered by ZnI2, which leads to mono-functional and 

bifunctional living chains by adding successively the monomers. In order to suppress the 

formation of side end groups, which would inevitably lead to a decrease of the polymer 

functionality, the PVEs active ends were deactivated by adding the living polymer solution into a 

large volume of lithium borohydride (LiBH4) in tetrahydrofurane (THF) at low temperatures           

(-20°C). This produces non-reactive, stable end-groups. As a precaution, an excess of 

borohydride was decomposed with water before the temperature was increased. 

 It was reported that living/controlled cationic polymerizations of VEs with polar functional 

groups involved some chain transfer reactions that led to the broadening of the Mw/Mn’s of the 

polymers [36]. These chain transfer reactions via β-proton elimination [37-38] are described in 

Chapter 1. In the case of VE polymerization, transfer cannot be detected at a low polymerization 

degree but is clearly observed for higher Mn (co)polymers. 

 

3.3. Compositions of the Copolymers by 1H NMR 
 In this section, the starting group (DEE or TEoP) analysis by 1H NMR was used to 

determine the DPn of the copolymers and their compositions. There is one characteristic group in 

the initiator residue that can be used for this determination: the starting methyl group (protons i, 

figure 3.1). The DPn of the homopolymer and copolymer was calculated from the ratio of the 

normalized areas of a characteristic group of the monomer repeat unit divided by either of this 

initiator. Before presenting the 1H NMR spectra of the copolymers, the 1H NMR spectra of the 

three homopolymers were introduced to indicate the characteristic groups in each monomer 

repeat unit. The composition of the copolymers was also determined by the 1H NMR spectra of 

P(MVE-co-IBVE), P(MVE-co-CEVE) and P(IBVE-co-CEVE).  1H NMR spectra of PMVE, PCEVE 

and PIBVE homopolymers are presented in figure 3.1, and their copolymers in figure 3.2. The 

spectra of these copolymers are a combination of their homopolymers spectra, indicating the 

successful copolymerization of the two monomers. 
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Figure 1. 1H NMR spectra of  PCEVE (A), PMVE (B) and PIBVE (C) in CDCl3. 
 

 

 

 

 

 

 

 

 

 

Figure 3.1. 1H NMR spectra of PCEVE (A), PMVE (B) and PIBVE (C) in CDCl3. 
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3.3.1. Homopolymers      
 Each spectrum in figure 3.1 contains the six terminal methyl protons i at 1.1 – 1.2 ppm. 

The methylene unit of the three homopolymers (protons a) appears in the area ICH2 between     

1.5 – 2.0 ppm. The β-methyl protons adjacent to the oxygen atom, as an ether function, of PMVE 

(protons b and c) give rise to the signal area IMVE between 3.2 – 3.55 ppm, while those adjacent 

to the oxygen of PCEVE (protons b, d and e) appear in the range area ICEVE between                

3.5 – 3.9 ppm, while also those of PIBVE (protons b and f) appear in the range area IIBVE between 

3 – 3.6 ppm. Moreover, IBVE units are also characterized in area ICH3 by a single peak (protons 

h) at 0.9 ppm.  The DPn of the homopolymers was calculated by both methods in the case of the 

bi-functional initiator: 

* DPn PMVE = m = ((IMVE – 4H) / 4H)/IH = ((ICH2 – 2H) / 2H)/IH, number of the repeating units of MVE 

* DPn PCEVE = n = ((ICEVE – 4H) / 5H)/IH = ((ICH2 – 2H) / 2H)/IH, number of the repeating units of 

CEVE 

* DPn PIBVE = o = ((IIBVE – 4H) / 3H)/IH = ((ICH2 – 2H) / 3H)/ICH2 = ICH3 / 6H / IH, number of the 

repeating units of IBVE 

with IH = i/6H, IH : one proton integration (i: area of the signal at 1.18 ppm). The DPn’s calculation 

from the mono and bi-functional intiators, and replacing the IH value by i/6H are summarized in 

table 3.1. 
 

Table 3.1. DPn of PMVE, PCEVE and PIBVE determined by 1H NMR. 

DPn DEE/TMSI initiator TEoP/TMSI initiator 

MVE 
26 3 3

4
MVE CHI i Im

i i
−

= =
 

23 2 3
2

MVE CHI i I im
i i
− −

= =
 

CEVE 26 3 3
5

CEVE CHI i In
i i
−

= =
 

26 4 3
5

CEVE CHI i I in
i i
− −

= =
 

IBVE 2 32 2IBVE CH CHI i I Io
i i i
−

= = =
 

2 36 4 6 2
3 3

IBVE CH CHI i I i Io
i i i
− −

= = =
 

 
 
3.3.2. Copolymers 

The copolymer composition profile for the comonomer CEVE (MVE or IBVE) can be 

defined as the instantaneous molar fractional incorporation of CEVE into the growing polymer 

chains, FCEVE, inst:   

 

Commonly, the copolymer composition and the Mn were determined by the 1H NMR 

spectra of the copolymers (figure 3.2). As for the homopolymers, all spectra contain the same 

signal at 1.1-1.2 ppm (i), which corresponds to six protons of the β-methyl as an ether function, 

derived from the DEE/TMSI or TEoP/TMSI initiator residue. As there is only a slight overlap 

between the peaks of both polymers, it is possible to calculate the composition of the copolymer 

based on the following relation:                           and        

and 
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Figure 3.2. 1H NMR spectra of  P(MVE-co-IBVE) with 44/56 ratio (A), P(IBVE-co-CEVE) (B) and 
P(MVE-co-CEVE) with 50/50 ratio (C) in CDCl3.  
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102 2n MVE CEVEM m M n M= × + × + +
 

73 1n MVE CEVEM m M n M= × + × + +
 

 Moreover, Mn was calculated by                                                             with 73 and 1 being 

the molecular weight of the starting-group of DEE/TMSI and that of the end-group; or by 

                                                              with 104 and 2 being molecular weight of the starting-

group of TEoP/TMSI and that of the end-group. 
 

The details of these caculations are described in Part IV. The results are summarized in table 

3.2. 
 

Table 3.2. DPn of the copolymers determined by 1H NMR. 

DPn DEE/TMSI initiator TEoP/TMSI initiator 

 

P(MVE-co-CEVE) 
23 CHIm n

i
= −

 

( )2
3 2 8
2 MVE CEVE CHn I I I i
i

= + − −
 

23 1CHIm n
i

= − −
 

( )2
6 2MVE CEVE CHn I I I
i

= + −
 

 

P(MVE-co-IBVE) 
3CHIo

i
=

 

3
3 12 2
4 MVE IBVE CHm I I I
i i
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠  

3CHIo
i

=
 

3
3 22
2 3MVE IBVE CHm I I I
i
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠  

 

P(IBVE-co-CEVE) 
3CHIo

i
=

 

( )3
6 2 3 3
5 IBVE CEVE CHn I I I i
i

= + − −
 

3CHIo
i

=
 

( )3
6 4
5 IBVE CEVE CHn I I I i
i

= + − −
 

 

 

3.4. Synthesis of copolymers of Isobutyl Vinyl Ether and                  

2-Chloroethyl Vinyl Ether with Methyl Vinyl Ether, Starting from a 

Mono-functional Initiator 

 The procedure developed in this work for preparing functional vinyl ether copolymers 

involves first forming a DEE-TMSI adduct as the initiator, then adding the VE, MVE or IBVE for 

example, with CEVE comonomers in conjunction with ZnI2 for the propagation  steps. Some 

previous studies showed that low temperatures (0°C for PMVE [15-18,39-41], – 40°C for PCEVE 

[42-45] and – 5°C for PIBVE [15,17,39]) are best suited for the living cationic 

homopolymerizations of MVE and CEVE by DEE/TMSI/ZnI2 initiator system (table 3.3). 
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Table 3.3. Results of homopolymerizations of PMVE and PCEVE in toluene by DEE/TMSI/ZnI2. 

Polymer Treaction  DPn [A]0/[I]0 Mn th
a 

(gmol-1) 
Mn SEC

b 

(gmol-1) 
Mw/Mn

b References

 

PMVE 

 

0°C 

64 

64 

153 

1/10 

1/5 

1/4 

3 800 

3 800 

8 900 

3 600 

3 700 

7 800 

1.10 

1.20 

1.14 

[19] 

[55] 

[21] 

 

PCEVE 

 

- 40°C 

15 

40 

100 

1/10 

1/10 

1/10 

1 680 

4 350 

10 770 

1 710 

3 220 

5 100 

1.08 

1.05 

1.26 

 

[30] 

 

PIBVE - 5°C 

0°C 

61 

81 

1/200 

1/200 

6240 

8260 

6100 

8160 

1.05 

1.08 

[19] 

[12] 

a) Mn theor = ([A]0/[I]0)×M0 + 73 + 1 (M0: the molecular weight of CEVE (106.55 gmol-1) , of MVE 
(55.08 gmol-1) and of IBVE (100.15 gmol-1); 73 the molecular weight of starting group and 1 that 
of the end group) in g.mol-1. b) Measured by SEC calibrated with polystyrene standards. 
 

3.4.1. Experimental Conditions for Synthesis of P(MVE-co-IBVE) 
The composition, Mn and Mw/Mn of copolymers obtained from different monomer feed 

compositions with a [M]0/[I] = 100 and isolated after 4 h polymerization, are summarized in table 

3.4. It was observed that, for polymerizations with high MVE fraction, considerably higher 

amounts of the activator ZnI2 were necessary to ensure high conversions, compared to 

polymerizations with low MVE fraction. This is believed to be due to the higher tendency of ZnI2 to 

complexation of MVE and/or PMVE compared to IBVE and/or PIBVE.  
 
Table 3.4. Copolymerization of MVE and IBVE: Mn and Mw/Mn copolymers obtained after 4 h. 
IBVE/MVE [I]0/[A]0

a Yieldb o/mc DPn
d Mn  Mw/Mn

f 

mole ratio  %   1H NMR SECe  

10/90 10 70 11/54 65 4 310 5 050 1.16 

20/80 10 72 16/50 66 4 580 5 250 1.12 

30/70 10 75 23/45 68 4 990 5 500 1.16 

40/60 10 74 31/39 70 5 440 5 900 1.08 

50/50 20 80 40/33 73 6 000 6 400 1.08 

60/40 40 79 55/24 79 6 970 7 250 1.06 

70/30 50 86 65/18 83 7 620 7 950 1.04 

80/20 100 91 74/14 88 8 290 8 500 1.06 

90/10 100 98 89/7 96 9 390 9 550 1.07 

a) [DEE]0/[ZnI2]0. b) Yield = end weight / theorical weight, calculated for complete conversion of 
both monomers. c) o: PIBVE units, m: PMVE units; values determined by 1H NMR. d) Total 
degree of polymerization with DPn = o + m. e) Calibrated by polystyrene standards. f) Determined 
by SEC. 
 

Values of Mn, obtained from SEC, are systematically somewhat higher than those 

determined from 1H NMR analysis, especially for copolymers with high MVE content. This is 

attributed to the fact that polystyrene was used as standard for SEC calibration. The values 
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obtained from NMR are in reasonable agreement with the values calculated assuming fast and 

quantitative initiation followed by a living copolymerization. The polydispersities of the copolymers 

are lower than 1.16, which is in accordance with a living polymerization mechanism. 

 

3.4.2. Experimental Conditions for Synthesis of P(MVE-co-CEVE)  
 The experimental conditions for the synthesis of the P(MVE-co-CEVE) copolymers had be 

optimized in order to obtain a copolymer structure with high degree of randomness and 

livingness.  
 

* Choice of the Temperature 

A first series of copolymerization experiments was performed, varying the temperature from         

- 40°C to 0°C, with constant initial concentration of monomer ([M]0 = 1.036 M). From these results 

listed in table 3.5, the influence of the temperature on the final composition of the copolymer and 

the Mn can be observed.  
 

Table 3.5. Synthesis and characteristics of poly(MVE-co-CEVE) with feed ratio of        
MVE/CEVE = 95/5 (mol-%) and theoretical molecular weight Mn theor = 3 000 g.mol-1 for 100% 
conversion with [M]0/[DΕΕ]0  = 50 and [DEE]0/[ZnI2]0 = 50. 
T °C Overall 

conva (%) 
Time of 

polymerization
(min) 

m/nb Mn theor 
(g/mol) 

Mn NMR
c 

(g/mol) 
Mn SEC

d 
(g/mol) 

Mw/Mn
d 

-40 13 380  86/14 400 550 900 1.06 

-20 76 375  88/12 2 360 1 900 2 850 1.10 

-15 89 390  88/12 2 760 2 100 3 000 1.12 

0 75 135  94/6 2 330 2 300 3 350 1.16 

a) Conversion = final weight/ initial weight. b) m/n = (molar ratio of MVE / molar ratio of CEVE) in 
copolymer, composition determined by 1H NMR at the end of the reaction. c) Determined by      
1H NMR at the end of the reaction. d) Determined by GPC calibrated on PS standards. 
 

The products exhibited narrow average molecular weight distributions at all temperatures with the 

same concentration of activator ([DEE]0/[ZnI2]0 = 50), which is in apparent agreement with a 

clean and well-controlled polymerization process. Attempts to polymerize P(MVE-co-CEVE) with 

this initiating system at - 40°C, such as for the PCEVE homopolymerization, yielded only 13% 

conversion after a long reaction time (380 min). Increasing the temperature to -15°C improved the 

polymerization, resulting in polymers with polydispersity lower than 1.2 and in high conversions 

(89%). Between - 20°C and - 40°C, CEVE always polymerized faster than MVE. When the 

polymerization temperature was increased to 0°C, the reaction becomes three times faster while 

keeping the polydispersity low. The Mn NMR was found to be close to Mn theor, and the copolymer 

composition (94/6) was near the monomer feed composition (95/5), indicating a random 

copolymerization with living characteristics. 
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* Effect of the Concentration of the Activator ZnI2 

A series of kinetic experiments has been carried out with different concentrations of activator. 

Table 3.6 shows the results of a representative set of experiments.  
 

Table 3.6. Mn and Mw/Mn variations versus [I]0/[A]0, of poly(MVE-co-CEVE) with m/n = 60/40, in 
toluene at 0°C, Mn theor = 3 950 g.mol-1, [M]0 = 1.036M. 

  After 1 min   After 2 h 15 min  

[DEE]0/[ZnI2]0 a Conv b 

(%) 
Mn NMR 

b 
(g.mol-1) 

Mw/Mn c Conv b 
(%) 

Mn NMR 
b 

(g.mol-1) 
Mw/Mn c 

10 56 2 000 1.33 65 2 550 1.41 

20 28 1 100 1.18 56 2 200 1.27 

50 18 700 1.03 75 2 960 1.14 

a) [DEE]o/[ZnI2]o . b) Determined by 1H NMR. c) Determined  by SEC calibrated with polystyrene 
standards. 
 

Polymerization rates, Mn and Mw/Mn appeared to be directly related to the concentration of the 

activator [ΖnΙ2]0 and was governed by the [DΕΕ]0/[ΖnΙ2]0 ratio. In general, the reaction decreases 

for lower concentrations of activator, leading to a better control of the polymerization. The best 

conditions have been identified for [DΕΕ]0/[ΖnΙ2]0 = 50 because at this concentration, the required 

fast and quantitative initiation results in lowest Mw/Mn (1.14) for a conversion of 75%. As Mw/Mn is 

smaller for the lower activator concentration, it can be deduced that progressive deactivation 

controls the Mw/Mn. Nevertheless, experiments were undertaken to confirm the rapid initiation 

process. 
 

* Kinetics 

Figure 3.3 shows the plot of ln([M]0/[M]) versus time for the copolymerization of MVE and CEVE 

for a composition m/n = 90/10 with the ratio [DEE]0/[ZnI2]0 equal to 50.  

0

0.2

0.4

0.6

0.8

1

0 50 100 150
Time (min)

ln
([

M
0]

/[M
])

 
Figure 3.3. Semilogarithmic kinetic plot of poly(MVE-co-CEVE) with m/n = 90/10,     
[DEE]0/[ZnI2]0 = 50, in toluene at 0°C with [M]0 = 1.036M. 
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This experiment indicates that the polymerization proceeds to 86% conversion within 140 min. 

These data compare well with the results presented by Ohmura et al. [46], and by Armes et al. 

[19] for the homopolymerization of MVE. In the first stage, the speed of the initiation was very fast 

and high conversions (37% corresponding to ln[M]0/[M] = 0.16) were reached in less than 30 

seconds. This demonstrates that the equilibrium between the activated/deactivated species (see 

eq. 2 in scheme 3.3) is not yet obtained and that the rate of initiation is much higher than the 

propagation rate in the presence of a small quantity of ZnI2. This acceleration suggests that the 

added halogen interacts with the iodine atom at the propagating end formed by DEE/TMSI and 

thereby weakens its interaction with the terminal carbon (eq. 1 in scheme 3.3). In the second 

stage, the polymerization slows down and the conversion increases linearly with time. 

I

OR OR
m+n

k a

k
OR OR

I
ZnI2

m+n + ZnI3

OR OR
m+n

dormant adduct active species

d eq.1
eq.2

 
Scheme 3.3. Equilibrium between dormant adduct and active species (R = CH3 or CH2CH2Cl). 

 

The Mn versus conversion curve shown in figure 3.4 presents two set of Mn data for the 

copolymers, respectively determined from SEC and from 1H NMR spectroscopy. The conversion 

in this plot represents the total consumed amount of both monomers. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Variation of Mn NMR (○), Mn SEC (□) and Mw/Mn (▲) with conversion for the 
copolymerization of MVE and CEVE with Mn theor = 2 500 g.mol-1, in toluene at 0°C,   
[DEE]0/[ZnI2]0 = 50, [M]0 = 1.036 M. The solid straight line indicates the calculated Mn for living 
polymers from the monomer/initiator ratio.  
 

The Mn of the copolymer increases in direct proportion to monomer conversion. The 

polydispersities are narrow and decrease from 1.12 to 1.09 with increasing conversion, indicating 
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the livingness of the copolymerization. The Mn values determined from the starting-group analysis 

by 1H NMR spectroscopy are close to the expected Mn. The discrepancy between the Mn’s 

derived from size exclusion chromatography (SEC) and the expected values are ascribed to 

hydrodynamic differences between P(MVE-co-CEVE) and polystyrene standards for SEC 

calibration.  

In principle, this result could also be explained by partial dimerization of these copolymer chains 

during the termination step. This has been observed earlier by Loontjens et al. [47] for poly(ethyl 

vinyl ether) (PEVE) chains during the termination reaction, and also for PMVE chains by Armes et 

al. [19]. They showed that, when the concentration of the terminating reagents was dramatically 

reduced, a bimodal molecular weight distribution was observed by SEC. However, the SEC 

traces for the P(MVE-co-CEVE) copolymers are unimodal and narrow, which suggests that 

dimerization did not occur in a detectable amount. 

 

The molecular characteristics of the poly(MVE-co-CEVE) copolymers with different degree of 

polymerization (DPn) have been collected in table 3.7.  
 

Table 3.7. Copolymerization of poly(MVE-co-CEVE) at 0°C, at different Mn with [M]0/[I]0 = 50. 
MVE/CEVE 

Ratio(mol/mol) 
DPn theor

a Time of 
polymerization 

(min) 

Overall  
conv 
(%) 

DPn exp
b DPn NMR

c Mw/Mn
d 

10/90 50 120 55 28 33 1.08 

90/10 50 120 75 37 36 1.10 

90/10 100 390 86 86 39 1.20 

90/10 150 480 90 136 40 1.28 

a) Calculated by DPn theor = ([MVE]0 x MMVE  + [CEVE]0 x MCEVE) / [DEE]O. b) Determined by 
gravimetry. c) Determined by 1H NMR. d) Polydispersity determined by SEC calibrated with 
polystyrene standards 
 

DPn NMR of the copolymers remained in good agreement with DPn exp until DPn theor = 50. After two 

hours, the conversion with the copolymers synthesized with a high content of CEVE (90%, entry 

1) is smaller than the one with 90% of MVE (entry 2). This already indicates that MVE is more 

reactive than CEVE according to Chapter 1.   

For higher values of DPn theor, the DPn NMR differs significantly from DPn exp values, while 

polydispersity and reaction time increase. Thus, the polymerization becomes less controllable 

and higher molecular weight copolymers can not be obtained. In fact, the same behaviour was 

observed for the homopolymerization of CEVE [42] and is ascribed to the occurrence of transfer 

reactions [41,48].  
The reason for such transfer reactions is the acidity of the β-H atoms next to the carbocationic 

centre [37-38] (see Chapter 1). Because of their electron deficiency, the protons can readily be 

abstracted by monomers, counteranions or other basic components, which is clearly observed for 

higher molecular weight polymers. Moreover, Sherrington [49] has also observed that the polymer 

yield of PCEVE is always low and another termination reaction must be present. This most likely 
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involves the readily ionisable chlorine atom in the alkoxy substituent. In the polymer the electron 

pairs of the oxygen are no longer conjugated as in the unsaturated monomer, and are therefore 

much more basic. As a result, these may participate in a neighbouring group type reaction to 

produce a chloride ion (scheme 3.4). The latter is highly nucleophilic and will readily terminate 

electrophilic active centres. The oxonium ion so formed is likely to be inactive in the kinetic 

lifetimes of these vinyl polymerizations. Clearly, this termination process must compete with 

transfer mechanisms as the main chain limiting reaction. The same phenomenon was observed 

for the polymerization of CEVE with cycloheptatrienyl haxachloroantimonate [49], hydronium ion 

[50] and dichlorocarbene [51] as catalysts. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Scheme 3.4. Side reaction of PCEVE by ionisable chlorine atom. 
 

From these data, it is concluded that P(MVE-co-CEVE) with predictable Mn and narrow Mw/Mn 

can be prepared up to a DPn equal to 50. 
 

 After determining the experimental conditions, a series of copolymerizations has been 

carried out, using various MVE/CEVE molar ratios from 90 to 10, and a constant 

monomer/initiator molar ratio equal to 50.  

 

 Table 3.8 compares the experimental Mn NMR and the theoretical Mn theor values 

corresponding to the actual monomer conversion. The experimental data summarized in table 3.8 

clearly indicate a well-controlled copolymerization process with narrow Mw/Mn (1.03-1.16) and a 

good agreement between the Mn theor and the Mn NMR. 
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Table 3.8. Monomer composition in the feed and in the copolymers of MVE and CEVE, 
[DEE]0/[ZnI2]0 = 50, [M]0/[DEE]0 = 50 and  [M]0 = 1.036 M. 
Feed ratio Copolymer Ratio Overall  Mn (g.mol-1) after 2 hours   

MVE/CEVE 
(mol/mol) 

MVE/CEVE 
(mol/mol)a 

conversion
(%) 

Theorb 1H NMR SECc Mw/Mn
c 

10/90 7/93 68 3 500 3 300 4 000 1.10 

20/80 12/88 66 3 240 3 250 3 900 1.12 

30/70 21/79 64 2 990 3 200 3 850 1.13 

40/60 38/62 65 2 880 2 640 3 750 1.14 

50/50 47/53 63 2 630 2 650 3 750 1.11 

60/40 54/46 64 2 520 2 300 3 600 1.18 

70/30 62/38 60 2 220 2 300 3 400 1.16 

80/20 74/26 58 2 000 2 200 3 100 1.03 

90/10 91/9 57 1 830 2 000 2 700 1.08 

a) fraction unit number of PMVE and PCEVE in copolymers, values determined by 1H NMR at the 
end of the reaction. b) Mn theor = (([MVE]0 x MMVE +[CEVE]0 x MCEVE) / [DEE]0) + S + E ( with         
S = 73 gmol-1 the initiator fragment, and E = 1 gmol-1 the hydrogen end-group).  c) Calibrated with 
polystyrene standards in chloroform. 
 

3.4.3. Livingness 
 The livingness of the copolymers was determined by SEC analysis. The SEC traces of 

the copolymer samples are shown in figure 3.5.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. SEC analyses in CHCl3, SEC 1 of P(MVE-co-IBVE) with MVE/IBVE = 56/44, after   
15 min (A), after 1 h (B), and after 4 h (C) ; and SEC 2 of P(MVE-co-CEVE) with 70/30, after      
15 seconds (19 % conversion, Mn = 700 g.mol-1, Mw/Mn = 1.09) (A), after 18 minutes (41 % 
conversion, Mn = 1 500 g.mol-1, Mw/Mn = 1.12) (B), and after 2 h 44 (84 % conversion,                
Mn = 3 100 g.mol-1, Mw/Mn = 1.16) (C). 

 

In order to confirm the livingness of this copolymerization, a series of copolymerizations has been 

carried out, using various MVE/CEVE molar ratios from 90 to 10, and a constant 

monomer/initiator molar ratio equal to 50.  The experimental data summarized in table 3.8 clearly 

C 

B 
A 

            SEC 1: P(MVE-co-IBVE)                                       SEC 2: P(MVE-co-CEVE) 
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indicate a well-controlled copolymerization process with narrow Mw/Mn (1.03 – 1.16) (figure 3.5), 

no ‘tailing’ to low molecular weight and the absence of any homo-PMVE, homo-PIBVE or homo-

PCEVE in the final products. 

As further evidence of living copolymerization of the mixture of MVE or IBVE with CEVE, a first 

batch of a mixture of MVE with CEVE (0.086 mol) is polymerized, and 2h50’ later, a second 

amount of this mixture of monomers (0.050 mol) was added. As a result, SEC traces, presented 

in figure 3.6, clearly show that, upon addition of the second batch of comonomers, the SEC peak 

shifts toward higher molecular weight. 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 3.6. SEC results of two-stage copolymerization with: SEC 1, an MVE/IBVE (70/30 mol 
ratio) second monomer addition 3h30’ after initiation of the first polymerization; and SEC 2, an 
MVE/CEVE (60/40 mol ratio) second monomer feed addition after 2h50’ after initiation of the first 
polymerization. 
 

 Moreover, the straight line in figure 3.7 shows that the DPn increases linearly with conversion, 

which is in agreement with the living character of the polymerization.  
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3.7. DPn of P(MVE-co-IBVE) ( ) and of P(MVE-co-CEVE) ( ) as a function of 
conversion. 
 
These criteria are also observed for the copolymerization of IBVE and CEVE. All these results 

evidence that the copolymerizations of MVE with IBVE and CEVE can be considered to be living. 

0

20

40

60

80

100

0 50 100

D
P n

Conversion (%)

            SEC 1: P(MVE-co-IBVE)                                       SEC 2: P(MVE-co-CEVE) 

10 12 1 4 1 6 1 8

R e te n t ion  t im e  (m in )

10 12 1 4 16 18

R e tention tim e  (min)

B 
End product
second feed
Mn = 8 336
Mw/Mn = 1.12

A
First stage 
product
Mn = 5 523
Mw/Mn = 1.05

B
2nd feed 
Mn = 3 900
Mw/Mn = 1.19

A
First stage product
Mn = 2 400
Mw/Mn = 1.14



Chapter 3 

 - 58 -

3.5. Synthesis of Copolymers of Methyl Vinyl Ether and Isobutyl 
Vinyl Ether with 2-Chloroethyl Vinyl Ether, Starting from a               
Bi-functional Initiator 
 Observing the low molecular weights by using the above mentioned initiating system, the 

next step of the research was to synthesize copolymers with higher Mn in order to increase the 

space between the chlorine groups and to permit the easier grafting of side chains on the 

backbone in a later stage (Chapter 5 and 8). For this, the same strategy was followed with a     

bi-functional acetal initiatior system (TEoP/TMSI/ZnI2) in the presence of a proton trap, THA (see 

Chapter 1). In the last decade, progress has been accomplished by Deffieux et al. [24] in the 

controlled cationic polymerization of CEVE with high Mn until 20 000 g/mol by adding THA. 
 

3.5.1. The Homopolymerizations 
 First, all homopolymerizations were compared in order to obtain the best reaction 

conditions for the random copolymerisations. In analogy with the polymerization of PCEVE by 

Deffieux [24], PMVE and PIBVE homopolymerizations were synthesized with a bi-functional 

initiator system TEoP/TMSI/ZnI2. As it can be seen in table 3.9, the homopolymers have 

experimental molar masses in agreement with the theoretical values and narrow Mw/Mn (> 1.2). 

Because of the presence of THA, this study resulted in a relatively high DPn. In the case of CEVE 

homopolymerization, high conversion was only obtained at 0°C, which means that at the same 

reaction temperature, IBVE is more reactive than CEVE.  
 

Table 3.9. Results of the homopolymerizations after 3 hours with DPn theor = 300 and  

[ZnI2]0/[TEoP]0=1/33. 

Polymer T a 
°C 

Mn theor 
b

 

g/mol 
Mn SEC c 
g/mol 

Mn 1H NMR 
g/mol 

Yield d 
% 

DPn exp 
e
 

 

Mw/Mn 
c 

 

PCEVE -30 32 080 7 480 8 730 23 81 1.14 

PCEVE 0 32 080 22 490 29 510 100 276 1.15 

PIBVE -30 30 150 37 500 33 604 100 335 1.19 

PMVE 0 17 000 15 650 16 076 75 275 1.13 

a) temperature of the reaction. b) Mn theor = 102+2+Mmonomer*[monomer]/[I]0 (102: starting-group of 
polymer, 2: end-group of polymer, Mmonomer: molecular weight of monomer (100 for IBVE and 
106.55 for CEVE, [I]0 = [TMoP]0)). c) determined with polystyrene standards in chloroform.         
d) yield = weight product/theoretical weight. e) DPn exp is determined by 1H NMR. 
 

After optimization of the reaction conditions for the homopolymerisations, this brings us to 

the syntheses of the statistical copolymers of CEVE with MVE or IBVE. 

 
3.5.2. The Copolymerizations  
* Copolymerization of P(IBVE-co-CEVE) 

Copolymers with different ratios were synthesized as shown in table 3.10.  
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Table 3.10. Results of the copolymerizations with DPn theor = 300. 

 CEVE/IBVE T c [A]0/[I]d Mn th 
e Mn SEC f Time g Yield h DPn exp 

i Mw /Mn f 

n0/o0 a n/o b °C  g/mol g/mol h %   

92/8 82.9/17.1 -30 1/20 30 300 5 570 4 17 55 1.19 

92/8 83.4/16.6 -15 1/33 30 300 14 230 3 46 141 1.16 

13/87 3.7/96.3 -30 1/33 30 400 35 640 4 77 366 1.34 

13/87 4.4/95.6 -30 1/33 30 400 28 770 3 59 288 1.20 

25/75 12/88 -30 1/33 30 630 23 750 3 42 238 1.21 

a) monomer feed with n0/o0 the initial ratio of CEVE/IBVE (mol/mol). b) o: PIBVE unit number,    
n: PCEVE unit number; values determined by 1H NMR.  c) temperature of the reaction.               
d) [A]0 = [ZnI2]0, [I]0 = [TMoP]0. e) Mn theor = 102+2+100*[IBVE]/[I0]*C1+106.55*[CEVE]/[I0]*C2    
(102: starting-group of polymer, 2: end-group of polymer, 100: molecular weight of IBVE,   
106.55: molecular weight of CEVE, C1 and C2 are defined as the IBVE and CEVE fractions, 
respectively, in the copolymer). f) determined with polystyrene standards in chloroform. g) time at 
the end of reaction. h) yield = weight product/weight theoric. i) DPn exp is determined by SEC.   
DPn exp = m + n ≈ Mn SEC/100. 
 

Even if the reaction temperature for the synthesis of PCEVE is 0°C, the copolymerizations were 

synthesized at – 30°C because of the higher reactivity of IBVE. For high IBVE concentrations 

(87%), it is concluded that P(IBVE-co-CEVE) with predictable Mn and narrow Mw /Mn can be 

prepared up to a DPn equal to 300. After 3 hours, the polydispersity of the copolymers with a 

large content of IBVE units was increased with the time of reaction. It was explained by the side 

reaction between THA and ZnI2, which occurs above a DPn of about 300 (see the double peak on 

the figure 3.8). The same phenomena have been observed for the PCEVE homopolymer by 

Deffieux et al. [24]. That is why the time of reaction was fixed at 3 hours (see the single peak on 

the figure 3.8). According to the SEC profile, this reaction limits the clean synthesis of high molar 

mass bifunctional   P(IBVE-co-CEVE). When the CEVE content increased, the DPn decreased 

slowly in direct proportion to the CEVE ratio until 55 for 92 CEVE mol-%. In order to increase the 

reactivity of CEVE, one experiment was made at  – 15°C (the average temperature reaction), but 

only 50% of monomers was polymerized. 
 

 

 

 

 

 

 

 

 

 

Figure 3.8. SEC chromatograms of P(IBVE-co-CEVE)  (13/87) prepared with THA, after 3 h,     
Mn = 28 770 gmol-1 (DPn = 286), Mw/Mn = 1.2 (A), and after 4 h,  Mn = 35 640 gmol-1 (DPn = 355), 
Mw/Mn = 1.34 (B). 
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Because the comonomers cannot be synthesized at the same temperature as a result of a high 

difference of reactivity, the monomer reactivity ratios were impossible to determine.  
 
* Copolymerization of P(MVE-co-CEVE) 

The characteristics of a series of P(MVE-co-CEVE) with different molar ratios ranging from 10 to 

90, are collected in table 3.11.  
 

Table 3.11. Results of the copolymerizations performed in the presence of THA (0.1 M) in toluene 
at 0°C, [ZnI2]0/[TMoP]0 = 1/33, [TMSI]0/[TMoP]0 = 1.2 eq., [M]0 = 0.83 M.  
MVE/CEVE Mn th  Mn exp DPn exp Yield Mw/Mn

c 

Mol ratio g/mol 1H NMRb SECc  %  

93/7 18 550 17 630 29 420 285 35 1.09 

78/22 20 730 19 890 28 410 288 34 1.17 

55/45 24 070 23 520 31 360 293 35 1.15 

36/64 26 840 26 460 33 070 296 31 1.18 

11/89 30 470 29 450 34 650 290 33 1.13 

a) DPn = ([M]0/[I]0) × conversion. b) DPn PMVE = m, DPn PCEVE = n. c) Determined by SEC with 
polystyrene standards. 
 
 

As it can be observed, a satisfactory agreement is observed between the experimental Mn and 

the theoretical values calculated on the basis of one chain formed per precursor molecules.    

P(MVE-co-CEVE) of DPn up to 300 with narrow Mw/Mn were synthesized. Besides, the Mw/Mn’s 

are narrow in apparent agreement with a well-controlled bi-functional polymerization process. 

Therefore, in the presence of THA, it is possible to obtain a clean bifunctional polymerization up 

to relatively high Mn.  
 

* Livingness 

As shown in tables 3.10 and 3.11 in the majority of cases, the Mw/Mn are lower than 1.2, as 

expected for a living polymerization. A series of experiments were carried out to determine the 

livingness of the copolymerization. The same procedure was used as for the synthesis with the 

mono-functional initiator (see above). In all cases, the Mn increased in direct proportion to 

monomer conversion with narrow Mw/Mn, even after the second monomer feed addition. The 

straight line in figure 3.9 shows that the Mn increases linearly with conversion, which is in 

agreement with the living character of the polymerization. 



Chapter 3 

 - 61 -

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

Time (min)

M
n (

g.
m

ol
-1

)

 
Figure 3.9. Conversion dependence of the Mn for P(IBVE-co-CEVE) ( ) and (PMVE-co-CEVE) 
( ) with the conversion before and after the second monomer addition. 

 

Knowing that well-defined copolymers could be obtained, it was studied how the MVE and 

CEVE units were distributed over the copolymer chains. 
 

3.6. Determination of the Monomer Reactivity Ratios 
 For determining the monomer reactivity ratios, a series of copolymerizations with varying 

monomer feed compositions, has been carried out and terminated at lowest conversion as 

possible (between 5 and 40 %). The composition of copolymers, as a function of comonomer 

feed ratio, was acquired from their 1H NMR spectra. The results were used to determine the 

copolymerization reactivity parameters by linear and non-linear methods. To understand the 

copolymerization behaviour, the monomer reactivity ratios of IBVE, MVE and CEVE were 

estimated first by graphical methods according to Fineman-Ross [25], Kelen-Tüdõs [26] and 

Extended Kelen-Tüdõs [27] methods (see Chapter 2). Secondly, monomer reactivity ratios were 

determined by non-linear least-square methods (Tidwell and Mortimer model [28], terminal model 

[29], penultimate model [30], depropagation model [31] or complex participation model [32]) (see 

Chapter 2). 
 

3.6.1. Monomer Reactivity Ratios of P(MVE-co-IBVE) 
3.6.1.1. The Linear Methods 
 In case of P(MVE-co-IBVE), monomer feed compositions were obtained at low conversion 

( > 8%). For that reason, the two linear methods, the Fineman-Ross [25] and the Kelen-Tüdõs 

methods [26] were chosen to determine the reactivity ratios rMVE and rIBVE. 
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* Fineman-Ross Method 

Figure 3.10 shows the Fineman-Ross plot where the reactivity ratios r1 and r2 for the monomer 

pair M1 (IBVE) and M2 (MVE) can be determined by the linear equation : (F-1)/f = r1 – r2 F/f2 (see 

Chapter 2). The values obtained by the Fineman-Ross method are rIBVE = 0.98 and rMVE = 0.38. 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3.10. Determination of reactivity ratios by the Fineman-Ross method: (F-1)/f =r1 - r2 F/f2. 
 

* Kelen-Tüdõs Method 

The Kelen-Tüdõs method (see Chapter 2), which is considered to be more reliable, was also 

applied. A plot of the data according to the Kelen-Tüdõs method is shown in figure 3.11. The 

reactivity parameters obtained are rIBVE = 1.08 and rMVE = 0.43.   
 

 

 

 

 

 

 

 

Figure 3.11. Determination of monomer reactivity ratios by the Kelen-Tüdõs method. 
 

3.6.1.2. The Non-Linear Methods 
The monomer reactivity ratios determined by conventional linearization methods are only 

approximate and are usually employed as good starting values for non-linear parameter 

estimation schemes. Several non-linear methods have been attempted to determine more reliable 

values of monomer reactivity ratios [28-32]. Hence the computer program COPOINT [52] is used 

to determine more reliable values of monomer reactivity ratios (Appendix I). Moreover, the 

Tidwell and Mortimer model [28] could also be resolved by an EXCEL Visual Basic program 

(Appendix II). For the Tidwell and Mortimer model, the starting values rMVE and rCEVE obtained by 

Kelen-Tüdõs method were chosen to run the Visual Basic program. The 95% JCI region for the 

determined rMVE and rCEVE values using the Tidwell and Mortimer model is shown in figure 3.12. 

The JCI was used as a measure of the accuracy to which the values obtained by the linearization 

methods compare with respect to the theoretical values predicted from the experimental data. 
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This plot indicates good agreement between the different calculations used to determine the 

monomer reactivity ratios.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. 95% JCI region of estimated rMVE and rCEVE values by EXCEL Visual Basic program 
for P(MVE-co-CEVE). 
 

The results obtained by these programs are listed in table 3.12. 
 
Table 3.12. Results of reactivity ratios obtained by COPOINT and EXCEL programs of non-linear 

methods with             being the square difference error sum from experimental and the calculated 

copolymer compositions.  

Method Error sum  

 

Copolymerization parameters 

Tidwell and Mortimer model 4.90 * 10-3 1.00 < r1 = 1.42 < 2.00 
0.40 < r2 = 0.83 < 1.40 

Terminal model (6.32  +/- 2.96) * 10-6 0.95 < r1 = 1.44 < 2.10 
0.81 < r2 = 0.82 < 0.84 

Penultimate model 7.54 * 10-6  +/- 2.71 * 10-4 1.36 <  r1 = 2.71 < 3.42 
4.92 < r1’ = 5.02 < 5.13 
1.17 < r2 = 1.20 < 1.22 
3.68 < r2’ = 3.76 < 3.83 

 

On the basis of the values listed in table 3.12, both reactivity ratios changed with the method 

used. Depending on the user’s choice COPOINT equations (1) to (5) (Appendix I), the reactivity 

ratios are different. The larger the estimated error of a data point, the lower its contribution to  

as well as to the final copolymerization parameters. COPOINT enables us to decide which of the 

selected models give the best numerical approximation. These reactivity ratios values were 

compared according to results obtained by COPOINT and EXCEL programs in table 3.12. It is 

clear that the best model according to the error sum is the terminal model which gives similar 

results as the Tidwell and Mortimer model.  
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3.6.2. Monomer Reactivity Ratios of P(MVE-co-CEVE) 
3.6.2.1. Extended Kelen-Tüdõs Method 
 Since the composition information was gathered over a narrow composition range, neither 

linearization methods for the determination of reactivity ratios could be used at low conversions. 

The Extended Kelen-Tüdõs [27] method considers the drift in the comonomer and copolymer 

compositions with conversion. This method is the most reliable since one may simply use the 

linear graphic technique to calculate the reactivity ratio values with a small error up to 50% 

conversion. Because for the living cationic copolymerizations, only data at relatively high 

conversion (~ 40%), already after 30 seconds, could be obtained due to the high initiation rate, 

the Extended Kelen-Tüdõs method has been applied. 

 

Table 3.13 summarizes the monomer compositions in the feed ([M1], [M2]), and the resulting 

copolymer ([dM1], [dM2]) and the corresponding x, y, η and ξ parameters obtained from the 

following equation (Chapter 2):  η = (rCEVE + rMVE/α)ξ – rMVE/α. 
 

Table 3.13. Characterization data for the copolymerization of P(MVE-co-CEVE) by Extended 

Kelen-Tűdõs method, at 0°C, [I]o/[A]o = 50 and  α = 1.269. 

[M1]/[M2]a [dM1]/[dM2]b Mn NMR
c (g.mol-1) Conversiond % ξ η 

1/9 1/5 700 21 0.940 0.376 

7/3 6/10 1 500 46 0.739 0.201 

4/6 4/5 850 32 0.598 0.097 

5/5 7/6 1 050 39 0.489 -0.068 

6/4 8/5 900 40 0.363 -0.202 

3/7 7/3 600 26 0.252 -0.337 

9/1 7/1 500 21 0.060 -0.477 

a) [M1] and [M2] are respectively the comonomer concentrations in the feed of MVE and CEVE. 
b) [dM1] and [dM2] are respectively the comonomer concentrations of MVE and CEVE in the 
copolymer after about 30 seconds, [dM1]/[dM2] is determined by 1H NMR. c) Mn calculated at the 
beginning of the reaction (between 15 and 30 seconds) by 1H NMR. d) Conversion of the 
copolymer at the beginning of the reaction (between 15 and 30 seconds). 
 

The composition of the copolymers is close to that of the reaction mixture when the copolymers 

are rich in MVE. The reactivity ratios obtained are rCEVE = 0.48 ± 0.04 and rMVE = 0.76 ± 0.05. 
 

3.6.2.2. The Non-Linear Methods 
 The monomer reactivity ratios of P(MVE-co-CEVE) were also calculated using the 

computer COPOINT program. Only the most reliable results are compiled in table 3.14. 
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Table 3.14. Results of reactivity ratios obtained by COPOINT program of non-linear methods with                         

being the square difference error sum from experimental and the calculated copolymer 

compositions.  

Method Error sum  
 

Copolymerization parameters 

Terminal model (1.14  +/- 2.02) * 10-6 0.62 < r1 = 0.72 < 0.94 
0.44 < r2 = 0.45 < 0.53 

Penultimate model 1.61 * 10-5  +/- 1.07 * 10-4 0.90<  r1 = 0.92 < 0.94 
4.92 < r1’ = 5.02 < 5.13 
0.31 < r2 = 0.52 < 0.74 
3.68 < r2’ = 3.76 < 3.83 

Depropagation model  

CASE I 

1.72 * 10-5  +/- 1.11 * 10-4 0.80 < r1 = 0.98 < 1.16 
0.51 < r2 = 0.52 < 0.53 
9.20 < r3 = 9.39 < 9.58 
1.69 < r4 = 1.73 < 1.76 

 

It seems that the terminal model with r1 = 0.72 and r2 = 0.45 yields the lowest error sum          . 

Moreover, these values are the closest to the Extended Kelen-Tüdõs method, which prove that is 

a also good model. Also the penultimate and the depropagation CASE I models give values close 

to the terminal one.  
 

3.6.3. Copolymerization Curves: Evolution of the Composition with the Overall 
Conversion 
 

* Curve of P(MVE-co-IBVE) 

The copolymerization curve, obtained from rMVE = 0.82 and rIBVE = 1.43, is shown in figure 3.13.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13. Plot of the variation of copolymer composition (FIBVE) with comonomer composition 
(fIBVE) with rIBVE = 1.43 and rMVE = 0.82 obtained by the terminal model.   
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Due to the living character of the copolymerization and taking into account the rMVE and rIBVE 

values, the P(MVE-co-IBVE), obtained after complete conversion, should show a moderate 

gradient-type structure toward strong tendency to alternate. 
 
* Curve of P(MVE-co-CEVE) 

The best reactivity ratios obtained are rCEVE = 0.45 and rMVE = 0.72 determined by the terminal 

model, which indicates that the sequence distribution of the product is random. The higher value 

for PMVE originates from the higher relative stability of the propagating species of MVE 

compared to the one of CEVE that contains an electron withdrawing group. As a result of the 

changing concentrations of each monomer, FCEVE, inst varies in the course of the reaction, thus the 

average local fraction of one comonomer varies along the length of the chain. Figure 3.14 shows 

the composition of the copolymer as a function of the CEVE fraction in the feed.  
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Figure 3.14. The curves plot the variation of the copolymer composition FCEVE with comonomer 
composition fCEVE. Curve ( ) is drawn with rCEVE = 0.45 and rMVE = 0.72 from the terminal model, 
and the curve ( ) with rCEVE = 0.52 and rMVE = 0.92 from the penultimate model. 
 
 

The plot of copolymer composition versus initial monomer composition is gigmoidal and it crosses 

the ideal line at FCEVE = fCEVE = 0.3. The values of the reactivity ratios obtained involve that the 

copolymerization has an azeotropic concentration at 30 mol-% of CEVE in the reaction mixture 

with the Extended Kelen-Tüdõs and terminal models, whereas an azeotropic concentration is 

observed at 10 mol-% of CEVE with the penultimate and depropagation CASE I models. For both 

concentrations, polymerization proceeds without change in composition during the reaction, 

meaning that the average local concentration of the comonomers does not vary along the length 

of the chain. Moreover, the curve is close to the Bernoullian (or random) case before the 

azeotropic point and tends to the gradient type for higher CEVE content. The product                  

Azeotropic composition 10-mol% 
with rCEVE = 0.52 and rMVE = 0.92 

Azeotropic composition 30-mol% 
with rCEVE = 0.45 and rMVE = 0.72 
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R O CH

r1 * r2 = 0.365, higher than 0, is closer to zero than to unity. Hence, random copolymers have 

been formed with a greater tendency for monomeric units to alternate in the copolymer chain. 

Thus, comonomer units in CEVE/MVE copolymers are incorporated in random fashion and the 

copolymer sequences have a tendency toward alternation. 
 

* Reactivity of Comonomers 

Considering the available information, it appears that reactivity increases in the series:         

CEVE < MVE < IBVE. The same conclusion was made by Sherrington et al. [49] who studied the 

reactivity of VE monomers at 0°C by adiabatic calorimetric techniques. In case of MVE and 

CEVE, both exhibit a reactivity one order of magnitude less than the one of IBVE (kp: rate 

constant of propagation).  

The greatly enhanced reactivities of alkyl VEs arises from resonance delocalization and the 

contribution of the dipolar canonical structure has the effect of increasing rotational barriers 

around the                          linkage (scheme 3.5).  
 

 

 

 

Scheme 3.5. Resonance delocalization of VEs. 

 

Owen and Sharp [53] established that alkyl VEs exhibit s-cis/s-trans conformational equilibria. For 

MVE the planar s-cis form is the dominant form at ambient temperatures even in solutions. 

Certainly, as confirmed by molecular models, branched alkyl VEs cannot adopt the planar s-cis 

conformation. A major exception is possible in the case of CEVE, which like MVE may adopt such 

a planar s-cis form because of a significant contribution from a favorable gauche interaction 

between the chlorine and oxygen atoms (scheme 3.6). That explains why the reactivity ratios of 

MVE and CEVE are not so different, and why the one of IBVE is higher. 
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Scheme 3.6. The planar s-cis conformation of CEVE. 
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3.7. Physical Properties 
3.7.1. The Glass Transition Temperature 

All copolymers were sticky, viscous materials at room temperature as was expected from 

the Tg of the homopolymers. The experimental Tg’s of PMVE, PIBVE and PCEVE are 

respectively Tg PMVE = -41°C, Tg PIBVE = -19°C and Tg CEVE = 35°C. The Tg of copolymers and 

homopolymers were determined by differential scanning calorimetry (DSC). Nine samples of 

copolymers showing different compositions of comonomer 1 and comonomer 2 were analyzed. 

All the copolymers show a single Tg, which is located at the temperature predicted by the Fox 

equation [54] for random copolymers. Plots of the Tg's of the P(MVE-co-CEVE) versus 

copolymer composition are shown in figure 3.15.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.15. Plots of experimental (■) and theoretical Tg (▲) versus copolymer composition 
(XCEVE = weight fraction of CEVE in the copolymers). The theoretical Tg was determined by the  
 
Fox equation [54]: 
 

 

3.7.2. Solubility 
 
The compositions of the copolymers are important for their solution properties. 
 

* Solubility of the Homopolymers 

The solubility of the homopolymers was tested in different solvents. Table 3.15 shows some 

solubility properties of the homopolymers. PIBVE and PCEVE are insoluble in polar solvents 

(water, methanol). PMVE, on the contrary, is soluble in polar solvents (in the range from 0 to 

37°C in water). PIBVE, which is more hydrophobic than PCEVE, is soluble in the apolar solvents 

like cyclohexane or dimethylformamide in contrast to PCEVE. 
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Table 3.15. Solubilities of the homopolymers (at 20°C) (+: soluble, 0: insoluble, ±: partially 

soluble) 
Solvents PMVEa PIBVEb PCEVEc 

Water + 0 0 

Methanol + 0 0 

Ethanol + +/- 0 

Diethyl ether +/- + 0 

Acetone + + + 

Dimethylformamide + + 0 

Cyclohexane 0 + 0 

Pentane 0 + 0 

Dichloromethane + + + 

Chloroform + + + 

Toluene + + + 

Tetrahydrofurane + + + 

a) Mn NMR (PMVE) = 3 000 g.mol-1. b) Mn NMR (PIBVE) = 7 000 g.mol-1.  
c) Mn NMR (PCEVE) = 4 500 g.mol-1. 
 
Table 3.16. Solubilities of the copolymers (at 20°C) (+: soluble, 0: insoluble, ±: partially soluble) 
 

Solvents Copolymers Ia Copolymers IIb Copolymers IIIc Copolymers IVd 

Water 0 0 0 0 

Methanol + + 0 0 

Ethanol + + 0 +/- 

Diethyl ether 0 + + + 

Acetone + + + + 

Dimethylformamide + + 0 + 

Cyclohexane 0 + 0 + 

Pentane 0 + 0 + 

Dichloromethane + + + + 

Chloroform + + + + 

Toluene + + + + 

Tetrahydrofurane + + + + 

a) P(MVE-co-CEVE) with molar ratio m/n = 21/79 (Mn NMR = 3 200 g.mol-1) and 91/9                  
(Mn NMR = 2 000 g.mol-1). b)  P(MVE-co-IBVE) with mole ratio m/o = 32/68 (Mn NMR = 4 990 g.mol-1) 
and 70/30 (Mn NMR = 6 970 g.mol-1). c) P(IBVE-co-CEVE) with molar ratio o/n = 75/25                
(Mn NMR = 23 750 g.mol-1). d)  P(IBVE-co-CEVE) with molar ratio o/n = 87/13                         
(Mn NMR = 28 770 g.mol-1). 
 

* Solubility of the Copolymers 

The solubility of the copolymers was checked in a variety of solvents. Table 3.16 collects solvents 

and non-solvents of various copolymers. The copolymers are soluble in all organic solvents but 

are insoluble in water. Therefore, the increment of CEVE in the copolymer has an influence on 
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the solubility of P(IBVE-co-CEVE). A copolymer with a high content of IBVE becomes soluble in 

the apolar solvents. Moreover, it was observed that the P(MVE-co-IBVE) starts to be soluble in 

water when the IBVE molar fraction is smaller than 10%, and even for P(MVE-co-CEVE) when 

CEVE molar fraction is smaller than 3%. 
 

3.8. Conclusion  
 

In conclusion, well-defined random copolymers with hydrophilic and hydrophobic units 

were prepared by living cationic copolymerization using first the DEE/TMSI/ZnI2 mono-initiating 

system. This system enabled us to synthesize, in a direct and simple way, well-defined 

copolymers, which exhibited a narrow molecular mass distribution together with a narrow 

composition distribution. Secondly, the preparation of the homopolymers of MVE, IBVE and 

CEVE, and their copolymers (MVE or IBVE with CEVE) with relatively high Mn has been obtained 

with success via TEoP/TMSI/ZnI2 as a bi-functional initiating system. In the presence of THA in 

the polymerization medium, it is possible to synthesize monodisperse P(MVE-co-CEVE) and  

P(IBVE-co-CEVE)  with high Mn (18 000 and 30 000 g.mol-1 respectively), suggesting that the 

effect of adventious water largely predominates over other possible side reactions such as 

transfer reactions. The livingness of the cationic copolymerization has been demonstrated for 

both initiators. 

 The monomer reactivity ratios of the monomers were determined from linear and non-

linear methods. As expected, the best-fit reactivity ratios were obtained with the non-linear 

methods, and in both cases with the terminal model. The monomer reactivity ratios are            

rMVE = 0.82 and rIBVE = 1.44 for P(MVE-co-IBVE), and rMVE = 0.72 and rCEVE = 0.45 for        

P(MVE-co-CEVE). In the case of P(IBVE-co-CEVE), the monomer reactivity ratios could not be 

determined because the reactivity of both monomers is too different. Therefore, the copolymers 

obtained at high conversion have a moderate gradient-type structure toward strong tendency to 

alternate for P(MVE-co-IBVE), and a random tendency toward alternation for P(MVE-co-CEVE).  

 

 The randomness of the copolymers is also indicated by the correspondence of the Tg’s to 

the one calculated from the Fox equation.  
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Design of Novel Thermo-responsive 

Poly(Methyl Vinyl Ether)-g-Poly(Ethylene Oxide) 

Graft Copolymers via the ‘Grafting onto’ Method 
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Abstract 
 
Thermo-responsive poly(methyl vinyl ether)-graft-poly(ethylene oxide) (PMVE-g-PEO) 
graft copolymers were prepared by a grafting process with a varying content of PEO 
onto the PMVE backbone. Graft copolymers have been prepared by first generating a 
statistical poly(methyl vinyl ether-stat-2-chloroethyl vinyl ether) P(MVE-stat-CEVE) 
backbone (see Chapter 5). In this way, the pendent chlorine groups can be used for the 
coupling reaction with telechelic PEO, making use of the grafting onto method. In order 
to investigate the reactivity of the chlorine groups for the grafting process, model 
reactions were first performed with benzylamine and triethylene glycol (TEG). Finally, 
PMVE-g-PEO copolymers were obtained by substituting the chlorine groups of P(MVE-
stat-CEVE) with amino-functionalized PEO. The molecular characteristics of the 
resulting copolymers are discussed, using size exclusion chromatography (SEC), 1H NMR 
and elemental analysis (E.A.). The synthesis conditions used gave rise to 
functionalization degrees varying from 60% to 92%, determined by E.A.  

First, the water-solubility of these copolymers was studied by modulated temperature 
differential scanning calorimetry (MT-DSC) (see Chapter 6). The observed LCST phase 
behaviour is influenced by the copolymerization process: the solubility of the graft 
copolymer is worse than the PMVE homopolymer. This observation is linked to the 
immiscibility of the copolymer constituents (PMVE and PEO). Furthermore, in dilute 
solution, the Tcp depends not only on the presence of the chlorine group but also on the 
grafting degree of PEO. Thus, a combination of DLS and high sensitive microcalorimetry 
was employed to study PMVE-g-PEO in the vicinity of the transition.  PMVE-g-PEO 
forms loose aggregates in water at room temperature and undergoes a reversible phase 
transition upon heating above the Tcp between 25 and 39°C, depending on the grafting 
degree. At temperatures higher than Tcp, the polymer main chain collapses and 
multimolecular aggregates with a hydrophobic PMVE core and a hydrophilic PEO shell 
are formed. The role of the grafts and the influence of the remaining chlorine groups 
on the solution properties and colloidal stability have been investigated. The thermal 
response of the graft copolymers was compared to that of the PMVE homopolymer and 
P(MVE-stat-CEVE). 

 
 
 
 
 
 
 
 
 



Chapter 4 

 

 - 79 -

Chapter 4 
 

 
 

Theoretical Aspects of Graft 
Copolymers 

 

 
 

4.1. Introduction 

 Graft copolymers represent a valuable class of polymeric materials, since a variety of 

molecular parameter can be varied: i) main and side chain polymer type, ii) DPn and Mw/Mn of 

main and side chain, iii) grafting density (average spacing in-between the side chains) and iv) 

distribution of the grafts (graft uniformity). The branches are usually randomly distributed along 

the backbone. The simplest case of a graft copolymer can be represented by scheme 4.1 where 

a sequence of A monomer units is referred to as the main chain or backbone, the sequence B 

units is the side chain or graft, and X is the unit in the backbone to which the graft is attached. 

 

 

 

 

 

 
Scheme 4.1. Structure of graft copolymer. 

 

 Graft copolymerization is a common method for modifying polymer properties. Using 

special polymerization techniques tailor-made graft copolymers can be afforded according to 

specific needs. These techniques were mainly based on free radical polymerization techniques 

because of their simplicity. More elaborate techniques were developed later to produce more 

homogeneous and well characterized graft copolymers. Since the possibilities for producing new 

monomers at low cost have been diminishing, many scientists and engineers are striving to 
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create specialized high performance materials from existing monomers by making copolymers of 

various compositions and/or architectures [1-2]. 
 

4.2. Techniques of Grafting 

 Graft copolymers are polymers with a linear backbone to which macromolecular side 

chains are connected. They can be prepared by three different methods: ‘grafting onto’, ‘grafting 

from’ and ‘grafting through’ copolymerization of macromonomers [1-2]. 
 

4.2.1. ‘Grafting onto’ Methods 

 ‘Grafting onto’ method is widely used for the preparation of graft copolymers. ‘Grafting 

onto’ mechanisms involve the coupling reaction of pre-formed polymers having reactive ends with 

the backbone bearing functional groups (scheme 4.2).  
 

 

 

 

 

Scheme 4.2. ‘Grafting onto’ technique. 
 

 This method provides the advantage that both the backbone and the grafted chains can 

be characterized separately. If, in addition, the side chains are prepared by anionic 

polymerization methods, which provide the best control over Mn and Mw/Mn, the resulting graft 

copolymers have controlled structures and are well defined. The most common case is the 

reaction of anionic living polymers with backbone electrophilic functionalities such as anhydrides, 

esters, nitrile, pyridine or benzyl halide groups [3]. A common procedure is the chloromethylation 

of PS [4] and the subsequent reaction with living polymers. Using this method, Rempp et al. 

prepared polystyrene-graft-poly(ethylene oxide) (PS-g-PEO) copolymers [5] and Deffieux [6] the 

polystyrene-graft-poly(2-chloroethyl vinyl ether) (PS-g-PCEVE).  

Several graft copolymers have also been synthesized with PEO side chains [7]. Wesslen and 

Wesslen prepared amphiphilic comb-shaped copolymers by the polymerization of 2-ethyl-hexyl 

acrylate with glycidyl methacrylate, followed by transesterification of monomethoxy poly(ethylene 

glycol) (mPEG) [8]. Derand and Wesslen conjugated mPEG onto the copolymers of styrene and 

maleic anhydride for preparation of anionic comb-shaped PEG graft copolymers [9]. Twaik et al., 

Thierry and Skoulios synthezized PEG have grafted copolymers in a similar manner [10]. 

Jannash et al. initiated the grafting polymerization of ethylene oxide on the ionized poly(styrene-

co-acrylamide) backbone by potassium t-butoxide or potassium naphthalene [11].  

In the following section (Chapter 5), the synthesis of a new graft copolymer, poly(methyl vinyl 

ether)-graft-poly(ethylene oxide) (PMVE-g-PEO) will be presented. 
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4.2.2. ‘Grafting from’ Methods 

 The ‘grafting from’ procedure requires the generation of active sites on the main polymer 

chain which are capable of initiating the polymerization of a second monomer (scheme 4.3). 

Based on this definition, the linear precursor polymer can be considered as a multifunctional 

macromolecular initiator.  
 

 

                                        

 

Scheme 4.3. ‘Grafting from’ technique. 

 

 Free radicals can be created by several methods such as irradiation of a polymer in the 

presence of oxygen [12], chain transfer to the backbone [13] or redox reactions [14]. Several 

commercial products have been produced by these methods because they are simple and rather 

easy to perform. Several examples of controlled radical grafting have been reported in the 

literature since few years [15-16]. Polymer chains having labile halogen atoms in combination 

with various catalysts have been used. Some examples of well-defined graft copolymers utilize 

the ATRP (see Chapter 7) of vinyl monomers from polyethylene (PE). In one example, a 

commercial copolymer of ethylene with glycidyl methacrylate was used [17].  The epoxy groups 

were transformed into the α-bromoesters, which initiated ATRP of styrene (St) and 

(meth)acrylates. In the second example, PE or its copolymer with St was brominated and the 

generated alkyl bromides initiated the ATRP process, which was catalyzed by CuBr/PMDETA 

[18]. In a similar way, syndiotactic polystyrene was brominated and grafted with poly(methyl 

methacrylate) (PMMA), poly(methacrylate) (PMA) and PS [19].   

 A practical application of amphiphilic graft copolymers has been disclosed in the area of 

personal care products. Various (meth)acrylates, methacrylic acid (MAA) and p-

chloromethylstyrene were copolymerized by a conventional free radical copolymerization. 

Grafting from the chloromethylphenyl groups within polysiloxane or PS chains with either MAA, 

tert-butyl acrylate       (t-BA) or 2-(trimethylsilyloxy)ethyl methacrylate (HEMA-TMS) by ATRP 

yielded amphiphilic graft copolymers. When HEMA-TMS was used, deprotection was required 

[20]. 

 Recently, a novel well-defined amphiphilic graft copolymer of PEO as main chain and 

PMMA as graft chains was successfully prepared by combination of anionic copolymerization with 

ATRP [21]. The protected glycidol were randomly copolymerized with EO to form the backbone 

and then deprotected in the acidic conditions. The recovered main chain with multi-pending 

hydroxyls was esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator to 

initiate the polymerization of MA. 
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In our research, ATRP grafting techniques were used for the preparation of poly(methyl 

vinyl ether)-graft-polystyrene (PMVE-g-PS) and PMVE-g-PMAA graft copolymers in a next 

session (Chapter 8). 
 

4.2.3. Graft Copolymers via Macromonomers: ‘Grafting Through’ Methods 

The ‘grafting through’, also referred to as the macromonomer method, is the most applied 

for the preparation of graft copolymers [16,22]. A macromonomer is an oligomeric or polymeric 

chain bearing polymerizable end groups (scheme 4.4). Copolymerization with another monomer 

provides graft copolymers.  
 

 

 

 
 

Scheme 4.4. ‘Grafting through’ technique. 
 

  However, the macromonomer method is still deficient in controlling the spacing of side chains. 

For example, in scheme 5.5, polymers A and B have the same backbone length, the same branch 

length, and the same number of branches. Polymer A has homogeneously distributed branch 

spacing, while polymer B has heterogeneously distributed branch spacing structures. 
 

 

 

 

 

 

 

Scheme 5.5. Graft copolymers A and B with different distributions. 

 

 The spacing distribution is determined by the reactivity ratios of the macromonomer and the 

low molecular weight comonomer. The reactivity ratios, rA and rB, are influenced by many factors, 

especially i) the inherent reactivity of the macromonomer and the comonomer based on their chemical 

structure, ii) the diffusion or kinetic excluded volume associated with the large size of the 

macromonomer and iii) propagating comonomer chain due to thermodynamic repulsive interactions 

[23]. These parameters determine how random the produced graft copolymer will be. A common 

problem is that the copolymerization is not homogeneous throughout the course of the reaction, since 

phase separation often occurs in these systems, leading to compositionally heterogeneous products. 

Müller et al. found for a copolymerization of n-butyl acrylate (nBA) and PMMA macromonomer that 

this diffusion control effect was reduced by using ATRP (Chapter 7) in which the time scale of 

monomer addition is much slower than in a conventional radical polymerization [24]. Similar results 

were obtained for PDMS macromonomers, which in ATRP had reactivity ratios much closer to MMA 

than a conventional process under similar conditions [26]. Another example made by ATRP involved 
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graft copolymers of PS with N-vinyl-2-pyrrolidone (VP). The method of graft copolymer formation was 

the copolymerization of VE terminal PS macromonomers with VP by a conventional free radical 

polymerization. Synthesis of the macromonomers was achieved by the ATRP of St initiated by vinyl 

chloroacetate. 

Several difficulties arising for the characterization of the graft copolymers, in addition to the 

possible chemical and compositional heterogeneity, make it necessary to use a combination of 

different characterization methods in order to prove whether the final products are well-defined or not.  
 

4.3. Factors Influencing the Grafting Procedure 

 In the following sections, several of the many variables that control grafting are presented, 

including the nature of the backbone, monomer, solvent, initiator, additives, temperature, etc. 
 

* Role of Additives on Grafting 

Grafting yield or the extent of graft copolymerization depends on the presence of additives such as 

metal ions, acids and inorganic salts. Thus, the reaction between the monomer and the backbone 

must compete with any reactions between the monomer and additives. Although some additives may 

enhance the monomer/backbone reaction to increase  the grafting efficiency, the reverse will be true if 

the reaction between the monomer and the additive is dominant. 

The role of acid additives is important in some grafting processes [27-28]. However, the nature of 

acids is important. Among the mineral acids, only sulfuric acid is effective, depending on the nature of 

the backbone. 

The addition of acids and alkali can affect the nature of the backbone, solvent as well the initiator, so 

that it can influence the grafting. 

The enhancement of grafting is also been established by partitioning phenomena in the presence of 

an inorganic salt (e.g. LiClO4 or LiNO3) [29]. Metal salts such as LiClO4 are more efficient than acids in 

enhancing photografting due to overall monomer partitioning effect. 

Generally, the presence of a metal ion (e.g. Fe2+, Cu2+) and Mohr’s salt preferentially reduces 

homopolymer formation, thus enhances grafting efficiency [30]. 

 

* Nature of the Backbone 

As grafting involves covalent attachment of a monomer to pre-formed polymeric backbone, the nature 

of the backbone (e.g. physical nature, chemical composition) plays an important role in the process 

[27,31]. There are various reports regarding the role of chemical composition on grafting [32].  The 

presence of functional groups in the backbone also influences the grafting [33]. 
 

* Effect of Monomer 

As with the nature of the backbone, the reactivity of the monomer is also important in grafting. The 

reactivity of monomers depends on the various factors, viz. polar and steric nature, swellability of 

backbone in the presence of the monomers and concentrations of monomers. It is reported that 
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monomer reactivity ratios for the grafting process are completely different from values observed for 

conventional solution polymerization [34]. This could be explained by steric considerations [35]. 

Another reason is that the monomer is susceptible to monomer transfer reaction and tends to 

terminate the growing grafted chain, resulting in poor grafting efficiency [35] or suppressing grafting 

[36]. The grafting could depend upon the stability of the radical [37-38], during radiation grafting 

certain substituents activate monomers whereas others deactivate. In general, the grafting efficiency 

will depend on the monomer concentration [39]. It is often reported that the grafting efficiency 

increases with monomer concentration up to a certain limit and then decreases with further increase 

in the monomer concentration [40]. This behavior may reflect an initial increase of the monomer 

concentration in close proximity to the backbone. After a certain limit, the increase in monomer 

concentration accelerates the homopolymerization reaction rather than grafting. 
  

* Effect of Solvent 

In grafting mechanisms, the solvent is the carrier by which monomers are transported to the vicinity of 

the backbone. The choice of the solvent depends upon several parameters, including the solubility of 

monomer in solvent [41], the swelling properties of the backbone [42-43], the miscibility of the solvents 

if more than one is used [43], the generation of free radical in the presence of the solvent [38,44], etc 

 

* Effect of Initiator 

In general, the chemical grafting reactions require an initiator, and its nature, concentrations, solubility 

as well as function need to be considered. The nature of the initiator has a profound effect on grafting. 

For example, azo-(bis)-isobutyronitrile (AIBN) exhibits resonance stabilization whereas it is not the 

case with conventional peroxides [45]. 

The rate of grafting is dependent on initiator concentration as well as the monomer and the backbone. 

There are various empirical relationships regarding the dependence of grafting efficiency on the 

initiator concentration [46]. It is apparent from the observations that once a certain initiator 

concentration is reached, higher levels of initiator do not increase the conversion of grafted monomer 

[47].  

The solubility of the initiator in the grafting medium is another prime factor. Ideally, the initiator should 

be fully soluble, so that it can initiate the grafting reaction. 
 

* Effect of Temperature 

The temperature is one of the most important  factors that control the kinetics of graft 

copolymerization. In general, grafting yield increases with increasing temperature, until a limit is 

attained. One factor in this can be faster monomeric diffusion processes in the backbone increases 

with increasing temperature, facilitating grafting [40].  
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4.4. Applications 

By controlling the molecular parameters, one can obtain impact resistant materials by 

combining a hard polymer backbone with soft polymer side chains;  thermoplastic elastomers, where 

a soft polymer backbone is grafted with hard polymer segments; or amphiphilic copolymers for 

applications as hydrogels, stabilizers, surface-modifying agents, dispersants, emulsifiers and 

compatibilizers in polymer blends [48]. Moreover, they generally have lower melt viscosities because 

of their branched structure, which is advantageous for processing. Since graft copolymers have many 

structural variables (composition, backbone length, branch length, branch spacing, etc.), they have 

great potential to realize new properties [1-2,49].  
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Chapter 5 
 

 
 

Synthesis and Molecular 
Characterization of Poly(Methyl Vinyl 

Ether)-g-Poly(Ethylene Oxide) Graft 
Copolymer 

 
 

 

5.1. Introduction  

The synthesis of thermo-responsive amphiphilic copolymers has attracted much interest 

in the past decades, since these materials are capable of forming micelles or aggregates in 

aqueous solution [1]. Among this class of smart materials, graft copolymers were shown to be 

applicable as surfactants, stabilizers, surface modifiers and compatibilizers in polymer blends [2]. 

Although recently such graft copolymers have also been quite extensively investigated [2], there 

is still a strong need in this research field for the design of well-defined graft copolymers in which 

hydrophilic grafts are attached to a uniform hydrophobic or thermo-responsive backbone. 

In this study, PMVE has been chosen as the backbone of the graft copolymers because 

of its thermo-responsive properties. While PMVE is known to have a LCST about 37°C in water 

[3] (see further Chapter 6), PCEVE is a hydrophobic polymer chain in which the chlorine group 

can be substituted to form other functional groups. Several substitution reactions were performed 

with the anions of pyrrolidone [4], succinimide, imidazole and pyrazole [5]. Hashimoto et al. [6] 

used CEVE as a starting material to prepare 2-vinyloxyethyl phtalimide by substitution of the 

chlorine atom with potassium phtalimide. Out of this monomer, the synthesis of poly(aminoethyl 

vinyl ether) (PAEVE) was reported by polymerizing 2-vinyloxyethyl phtalimide with HI/I2 as 

initiator, followed by hydrazinolysis of the imide functions. In our research group [7], another 

efficient route for the synthesis of PAEVE was reported, consisting of the synthesis of PCEVE 

after which the chlorine groups were substituted into phtalimide groups, followed by 

hydrazinolysis.  

In the previous section (Chapter 3), we demonstrated the possibility to copolymerize 

MVE with CEVE in a living way, where chlorine functional groups are statistically distributed along 
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the PMVE chain, allowing the introduction of another polymer by a grafting onto process. By the 

grafting of hydrophilic chains onto PMVE, thermo-responsive graft copolymers with well-defined 

backbone and side chains will be obtained. Their demixing behavior in water will be compared in 

the next section (Chapter 6). 

PEO has often been used as hydrophilic side chain in graft copolymers, owing to its 

unique physical and biomedical properties [12]. The grafting of PEO onto vinyl polymers 

containing backbones has been performed by various methods, like carbanionic initiation of PS 

[8-9,11], alkaline transesterification onto PMMA [13] or poly(ε-caprolactone) [14], and radical 

polymerization of NIPAAm using cerium(IV) redox initiation [15]. Recently, a method was 

developed by Stöver to attach α-methoxy-ω-hydroxyl-PEO (CH3-PEO-OH) to copolymer 

precursors being alternating copolymers of poly(styrene-alternating-maleic anhydride) (P(St-alt-

MA)) and poly((4-tert-butylstyrene)-alternating-maleic anhydride) (P(tBS-alt-MA)) [16].  

A crucial issue in obtaining well-defined graft copolymers is the quantitative introduction of 

the branching points, which requires highly selective branching reactions of the peripheral groups. 

In general, the modification by grafting could be carried out using three synthetic routes: grafting 

onto (coupling attachment of the side chains onto the main chain), grafting from (direct grafting 

polymerization of the monomer to form side chains from active points on the backbone), and 

grafting through (homopolymerization of macromonomers) (see Chapter 4). Therefore, in this 

chapter, we will introduce a relatively simple and effective method to prepare thermo-responsive 

graft copolymers of interest, generating a series of PMVE-g-PEO copolymers. Thus, the pending 

chlorine groups will act as reactive moieties by substitution along the PMVE backbone, to give a 

new functionalized graft copolymer carrying PEO side chain via a grafting onto process. The 

hydroxyl end group of PEO has first been transformed by a primary amine. Preliminary ‘model 

reactions’ with benzylamine and triethylene glycol (TEG) instead of PEO have been synthesized 

with different bases.  

The preparation procedure of well-defined PMVE-g-PEO copolymers is based on three 

steps consisting of (1) the synthesis of a statistical P(MVE-stat-CEVE) backbone as mentioned in 

Chapter 3, (2) the end-group functionalization of the PEO side chains, and finally (3) the 

synthesis of the desired PMVE-g-PEO copolymers via a grafting onto process. This methodology 

is illustrated in scheme 5.1, also clarifying the nomenclature of the different compounds used. 

Only PMVE backbones with a small content of CEVE (< 10 mol-%) were synthesized to keep the 

thermo-responsiveness of the PMVE. 
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Functionalization of the PEO side chains

Synthesis of PMVE-g-PEO
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Scheme 5.1. Synthesis of the PMVE-g-PEO graft copolymers in three steps with m = m1 + m2 
and    n = n1 + n2. 
 

5.2. Model Reactions 

The direct synthesis of hydroxyl-PEO grafted onto the chlorine groups is not possible 

because of the relative low leaving capacity of chlorine groups. Indeed, the amino end groups on     

α-amino-ω-monomethyl ether-poly(ethylene oxide) (CH3-PEO-NH2) are more reactive towards 

acylating agents than the hydroxyl groups that are present on conventional PEO’s [17-18]; hence, 

the choice of the nucleophilic substitution of the chlorine by a primary amine seems to be more 

suitable. First, two model reactions were investigated to know if this grafting process could work. 

A first reaction model was carried out with benzylamine, containing a primary amine group and 

easily observable (by NMR) phenyl groups. On the other hand, TEG that has a similar structure 

as the PEO chain, was used for a second model reaction.  
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5.2.1. Analogous Reaction with a Primary Amine 

The first reaction model was made by the substitution of benzylamine in two different 

ways: the Finkelstein and Nuyken’s methods. For the Finkelstein method [19], the iodide, which 

replaces the chlorine, is interesting because it is a better leaving group than chloride. In the 

second step, the iodide is substituted by the benzylamine (scheme 5.2). The second reaction 

model was already used by Nuyken for the nucleophilic substitution of PCEVE homopolymers by 

the anion pyrrolidone [5], and of poly(isobutyl vinyl ether)-block-poly(2-chloroethyl vinyl ether) 

(PIBVE-b-PCEVE) copolymers by the anions of succinimide, imidazole or pyrazole [4]. This 

reaction takes place in one step with 1,1,5,5-tetramethyl piperidine (TMP) as base in 

dimethylformamide (DMF) (scheme 5.2).  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 5.2. Model reactions of the substitution of the chlorine pendent group by benzylamine 
with the Finkelstein and Nuyken’s methods. 
 
 
 
 The 1H NMR of the resulting product is shown in figure 5.1. The signal between 7.2 – 7.4 

ppm, which is absent in the P(MVE-stat-CEVE), belongs to the aromatic protons of the 

benzylamine. The degree of substitution can be calculated by comparing integration of this signal 

with that of the initiator group i at 1.2 ppm (see Chapter 3). The calculation revealed that the 

substitution degree depends on the choice of the method, respectively 60 (Finkelstein) and 81% 

(Nuyken). 
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Figure 5.1. 1H NMR spectrum of the P(MVE-stat-CEVE), where the chlorine groups were 
substituted with benzylamine (in CDCl3). 
 
 
Because the nucleophilic substitution is not complete, it should be better to use a stronger base 

such as n-butyl lithium (nBuLi) (see below). Moreover, as the solvent DMF is impossible to 

remove completely and thus interferes with the elemental analysis, THF was chosen for further 

experiments. Indeed, the results obtained in the presence of THF with nBuLi gave better results 

with respectively 72 (Finkelstein) and 94% (Nuyken) substitution. 
 

5.2.2. Analogous Reaction with Triethylene Glycol (TEG) 

The second reaction model was made by the substitution of the chlorine groups by the 

hydroxyl end group of TEG. Because the nucleophilicity of the hydroxyl is weaker than an amine, 

nBuLi was used. The 1H NMR of the resulting product is shown in figure 5.2. Comparison with the 

NMR-spectrum of P(MVE-stat-CEVE) shows the characteristic CH2 signals of TEG at 5.1 ppm 

from which the substitution of chlorine was calculated.  It was found that 98% of chlorine atoms 

were substituted. 
 

5.3. Functionalization of PEO with a Terminal Amine 

PEG was used as a carrier polymer for the attachment, via end groups, of drugs such as 

penicillin [20], aspirin [21], amphetamine [22], quinidine [23] and atropine [24]. To attach the 

drugs to PEG, use was made of the terminal hydroxyl groups. These can be reacted with drugs 

containing suitable groups such as carboxylic ones (esterification). But in order to realize the 

attachment of drugs having other functional groups there was a need for preparing PEG having 
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other functional end-groups. Indeed, PEO chains with primary amino groups at the termini are 

very useful functionalized polymers [17-18].  

Also in our research, we found that the functionalization with PEO (molecular weights 

2000 and 5000 g.mol-1) was not successful with grafting degrees lower than 60%. Several 

methods, all of them based on three-step procedures, were therefore developed for converting 

the terminal hydroxyl groups of PEO into amino groups [17-18,25-27]. For our purpose, because 

of low yields and non quantitative functionalization, one unpublished two-step procedure with 

higher yields, earlier developed in our department, was selected for the functionalization of PEO-

OH in PEO-NH2.  
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2. 1H NMR spectrum of the P(MVE-stat-CEVE), in which the chlorine groups were 
substituted by TEG (CDCl3). 
 

 
5.3.1. Studies of the Functionalization of the Precursor PEO-OH 

For the grafting process, the hydroxyl groups of the semi-telechelic CH3-PEO-OH have been 

converted in the more reactive primary amine groups. For this purpose, it is of primary importance 

that the polymers made are truly semi-telechelic, as the presence of bi-functional PEO would 

unavoidably lead to the formation of a polymer network.  The precursor end-group of both CH3-

PEO-OH with Mw 2000 and 5000 g.mol-1 was analyzed by 1H-NMR in order to determine its 

functionality as illustrated in figure 5.3 (A and B). In order to perform such end-group analysis, the 

monomethyl ether precursor was treated with trichloroacetyl isocyanate (TAIC) (scheme 5.3). 

This reagent transforms the hydroxyl end-group into a trichloroacetyl urethane end-group, 

causing a shift of approximately 1 ppm for the methylene protons in the α position of the OH end-

group [28]. 
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Scheme 5.3. Reaction of the PEO-OH end-group with TAIC. 
 

Figure 5.3 shows the 1H-NMR spectrum of a polymer having a molar mass of 2000 g.mol-1, which 

allows differentiating the end-standing methoxy protons (peak a in figure 5.3) from the methylene 

protons of the polymer chain (peaks d1, d2 and d3). The [CH2(OH)]/[OCH3] ratio can be 

determined by integrating the intensity of the methoxy methylene peak a and of the urethane 

methylene peak d2, respectively. In case of pure monomethyl ether, this ratio should be 2/3. The 

observed ratios are, however, much larger, up to 10% for PEO 2000 and up to 25% for PEO 

5000, indicating that these polymers contain considerable amounts of bi-functional PEO, which of 

course may generate undesired reaction products. The same observation was done by others 

and no purification methods with sufficient yields are available. It should be noted that nowadays 

monofunctional PEG with higher purities are available. 
 

5.3.2. Synthesis of PEO-NH2 Side Chains 
To obtain the required amino functionalized PEO, the CH3O-PEO-NH2, we followed a more 

efficient two-step procedure that has already been developed in our department. It consists of a 

tosylation of the hydroxyl-terminated PEO, followed by a reaction with ammonia (scheme 5.1 (2)). 

This substitution reaction was carried out for both monomethyl ethers studied (i.e. 2000 and 5000 

g.mol-1). Note that all reactions have to proceed as quantitatively as possible, because of the 

inherent difficulties in separating the reacted from the unreacted polymers. For that reason, a 

large excess of reagents was used. α-tosylate-ω-monomethyl ether poly(ethylene oxide) (CH3O-

PEO-OTs) was synthesized by reaction of CH3O-PEO-OH with p-toluene sulfonyl in 

dichloromethane (CH2Cl2) in the presence of pyridine. Hence, a complete substitution of the 

terminal hydroxyl groups by tosylate could be achieved.  

The obtained CH3O-PEO-OTs was converted into CH3O-PEO-NH2 by stirring a solution of CH3O-

PEO-OTs with ammonia (25% in water) at elevated temperature and pressure using a glass 

autoclave. The nucleophilic substitution efficiency was monitored by 1H-NMR, also shown in 

figure 5.3 (spectra C and D). These spectra show a complete end-group transformation of CH3O-

PEO-OH (spectrum B, peak d2) into CH3O-PEO-OTs (spectrum C, peaks  c3 and d3). Finally, the 

quantitative reaction from CH3O-PEO-OTs to CH3O-PEO-NH2 (spectrum D, peak d4) could also 

be confirmed. The effectiveness of the nucleophilic substitution was also monitored and 

confirmed by elementary analysis in the next section. 

This CH3O-PEO-NH2 exhibits properties similar to CH3-PEO-OH: soluble in CH2Cl2, DMF, water, 

and insoluble in diethyl ether, cold methanol (MeOH) and ethanol (EtOH). 

 

 

 

3.6 ppm

CH3 O CH2 CH2 O CH2 CH2 OH
1n-

3.37 ppm ~

CH3 O CH2 CH2 O CH2 CH2 OCNHCC

O O

1n-

3.37 ppm 4.43 ppm

TAIC



Chapter 5 
 

 - 96 -

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3. 1H-NMR spectra of PEO (2 000 g.mol-1) with different end-groups in CDCl3: (A) CH3O-
PEO-OH, (B) CH3O-PEO-TAIC, (C) CH3O-PEO-OTs and (D) CH3O-PEO-NH2.  
 

5.4. Synthesis of PMVE-g-PEO via the Grafting onto Method 

5.4.1. Synthesis 

Throughout the experiments from the previous section (Chapter 3), the composition of the 

backbones used for the synthesis of the graft copolymers, are summarized in table 5.1. By 

regulating the feed amount ratio of the two monomers, hence the graft number of the final graft 

copolymer could be well controlled. 
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Table 5.1. Overview of the P(MVE-stat-CEVE) backbone compositions. 

Name MVE  

unit 

CEVE 

unit 

CEVE  

(mol-%) 

DPn
a Mn (gmol-1) 

1H NMR 

Mn (gmol-1) 

SEC 

Mw/Mn
b 

B1 284 5 1.73 289 16 840 32 490 1.17 

B2 320 12 3.61 332 19 970 33 940 1.20 

B3 303 19 5.90 322 19 620 26 650 1.18 

a) DPn = MVE unit + CEVE unit, the degree of polymerization of P(MVE-stat-CEVE) determined 
by 1H NMR. b)  Calibrated with polystyrene standards. 
 

The graft copolymers were made via a grafting onto process, in which the amino functionalized 

PEO-chains (scheme 5.1 (2)) are used to substitute the chlorine moieties on the PMVE 

backbones (scheme 5.1 (1)). The grafting was performed in THF and nBuLi. In all cases, the 

reaction went to completion after three days. Note that the PEO chains were added in excess. 

Effectively, Stadler [29], and also Rempp [8], in following the grafting onto methodology to 

prepare polybutadiene-graft-poly(ethylene oxide) (PB-g-PEO) and PS-g-PEO copolymers 

respectively, demonstrated that the use of  an excess of the polymers to be grafted is a necessity. 

These authors acknowledged that this technique requires a tedious fraction step meant to get rid 

of unreacted PEO chains and they also conceded that graft copolymers obtained in this way 

exhibit a fluctuation in composition. Thus, the resulting graft copolymers (scheme 5.1 (3)) have 

been purified via dialysis (in water) and analyzed by 1H-NMR and elemental analysis (E.A). 
 

5.4.2. Characterization 

As illustrated in figure 5.4, the SEC traces of the backbone, the PEO (2000 gmol-1) and G4 graft 

copolymers demonstrated, as expected, that the molar mass increased after the grafting process, 

and exhibit a sharp, symmetrical peak. The peaks b of the backbone and a of the PEO side chain 

disappeared after the graft copolymerization and a new peak c, corresponding to the resulting 

graft copolymer, emerged. The non-symmetrical shape of curve c can be explained by the 

presence of small PEO-fractions that cannot be removed.  
 

 

 

 

 

 

 

 

 

 

 
Figure 5.4. SEC chromatograms of the PEO side chains (a), the backbone (b) and the PMVE-g-
PEO graft copolymer (c). 
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5.4.3. Determination of the Grafting Degree 

 As the NMR-signals of PEO, characterized by the methylene protons in the EO units 

located at 3.5-3.8 ppm, and P(MVE-stat-CEVE) at 3.1-3.9 ppm, partially overlap (figure 5.5), the 

grafting degree t of the graft copolymers (PMVE)m-(P-Cl)1-t(P-NH-CH2-CH2(O-CH2-CH2)pOCH3)t 

has been determined from experimentally obtained elemental mass fractions, using a 

mathematical nonlinear least-squares procedure [30-31] reported in Appendix III.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5.5. 1H-NMR spectrum of the PMVE-g-PEO copolymers in CDCl3. 
 
 

 E.A. allows detecting the wt-% of C, O, H, and Cl, possibly indicating small amounts of 

unreacted chlorine groups inside the synthesized graft copolymers. Major attention was paid to 

the calculation of the grafting degree t using these data, especially because of the results 

obtained were not always easy to understand.  For this, the mathematical analysis provides t as a 

function of the mass fraction of all elements involved. It reveals that even when the wt-% of all 

determined elements by E.A. are accurate, the values of t found from the system of equations 

associated with the considered functionalized polymer can deviate dramatically from the actual 

ones. From equation eq.11 in Appendix III, Willem et al. found that a small difference in the value 

of γi results in a rather large confidence on the value obtained for t.  Thus, a small uncertainty in 

the E.A. data results in a huge confidence interval on the value obtained for t. Common use of 

E.A. results in structural chemistry makes confidence ranges of ± 0.3 % for C, of ± 0.04 % for H, 

of ± 0.5 % for C and ± 0.2 % for Cl acceptable. In order to use this method correctly and self-

consistently for all compounds, all the graphs should be plotted.  

 Figure 5.6 shows an example of a simulation of such function for the G4 graft copolymer 

for the mass fractions of C, O, H and Cl around their expected values and illustrates that 
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predetermined uncertainty margins on the mass fraction data can lead to very widespread 

uncertainty margins of the t values, depending on the element used. Moreover, the determination 

of the t values should be calculated more precisely due to its incertitudes from E.A.. Thus, there is 

a large error bar on the value of t using the equation for the mass fraction of all elements giving 

an important change in the value of t. This justifies the use of the statistical non-linear least-

squares approach, minimizing the impact of the elements that lead to larger uncertainty margins. 

 Table 5.2 recapitulated the compositions of the PMVE-g-PEO graft copolymers. In 

general, a certain number of chlorine groups, depending on the reaction conditions and 

copolymer composition, did not react with PEO-chains. The molecular mass of the graft 

copolymers was determined from t and the knowledge of the molar mass of the backbone and the 

side chains. 
  
Table 5.2. Overview of the PMVE-g-PEO copolymer compositions. 

Sample Starting Number of   PEO Mn SEC Mw/Mn 

code polymer Cl-groups Mn 

(g.mol-1) 

PEO graft 

(E.A.) 

content 

(wt-%) 

t 

(%)

(gmol-1)  

G1 B1 5 178 4 4 80 37 060 1.40 

G2 B2 12 178 4 3 33 36 210  1.30 

G3 B1 5 2000 3 26 60 39 430 1.31 

G4 B2 12 2000 11 52 92 44 030 1.25 

G5 B3 19 2000 17 63 89 34 740 1.24 

G6 B1 5 5000 3 47 60 51 700 1.24 

G7 B2 12 5000 5 55 42 52 100 1.22 

G8 B3 19 5000 12 75 63 42 920 1.20 

 

 As it can be observed, the degree of functionalization t never exceeds 92 mol-%. Even if 

the t values are determined, the following difficulties need to be pointed out. Only one 

functionality should be grafted onto the chlorine group. Too large amounts of additional 

functionalities due to incomplete reactions or side-reactions make the calculation of t from the 

weight determination questionable. Indeed, using this method, only one equation is available 

allowing the calculation of only one single functionalization parameter. In this calculation, the 

amount of PEO was determined, neglecting the formation of cross-linking of PEO. Therefore, 

SEC/LS measurements were made for a better understanding. Taking into account the number of 

amines (nb(N)) present in the graft copolymers, the value of the functionality Fn can be calculated 

by the formula: 

( )
,

, ,

w graft
n

w backbone w PEO

M
F

M M nb N
=

+ ×
 

where Mw graft, Mw backbone and Mw PEO are respectively the molecular weight of the graft copolymers, 

the precursor backbone and the PEO side chains. Fn values are recapitulated in table 5.3.
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Figure 5.6. Charts of the grafting degree t as a function of the mass fraction of each element in (PMVE)m-(P-Cl)1-t(P-NH-CH2-CH2-(O-CH2-
CH2)pOCH3)t. Only the physically possible range of the graphs (0 ≤ t ≤ 1) is displayed; for the mass fraction from elemental analysis the uncertainty 
margins are given (C ± 0.3%; H ± 0.04%; O ± 0.5%, and Cl ± 0.2%). 
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Table 5.3. SEC/LS results of copolymers in THF as eluent. 

Name Mw SEC (g.mol-1) dn/dc Mw/Mn nb (N) Fn  ± 0.05 

B1 19 700 0.056 1.16 / / 

B3 23 960 0.055 1.19 / / 

PEO 2000 2 120 0.060 1.12 / / 

G1 20 400 0.052 1.21 / / 

G2 23 980 0.020 1.40 3 0.92 

G3 45 390 0.020 1.27 11 0.96 

 

 In all cases, the average molar mass of the backbones and the graft copolymers are narrow 

(Mw/Mn < 1.5). Moreover, in the case of the PMVE-g-PEO, the dn/dc values are smaller than their 

precursors due to the higher hydrophilicity of the grafts, which were absorbed on the column. This is 

also explained by their higher values of Mw/Mn. So, even if the Fn values are close to 1, few cross-

linking polymers are still present in the pure graft copolymers.  

All graft copolymers prepared were completely soluble in water and in organic polar solvents, and did 

not contain any gel. They remained soluble after more than two years of storage. 
 

5.5. Conclusion 

The aim of the present study was the synthesis and characterization of well-defined PMVE-

based graft copolymers having PEO side chains of predetermined molar mass. First, by making use 

of model reactions, it was shown that the chlorine groups of the backbone could be substituted by 

benzylamine and TEG.  

In conclusion, starting from CH3O-PEO-NH2, PMVE-g-PEO copolymers were obtained with 

well-defined structure, the grafting degree of which was determined by a statistical non-linear least-

squares approach. 
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Chapter 6 
 

 
 

Thermo-responsive Properties of  
PMVE-g-PEO Graft Copolymers 

 

 
 

6.1. Theory of Stimuli-responsive Micelles  

6.1.1. Micelles 

6.1.1.1. Definition 

 The association of amphiphilic block and graft copolymers, when they are dissolved in a 

selective solvent (e.g. water), leads to the formation of aggregates often called micelles because 

in most of their features they resemble those obtained with low-Mn-surfactants [1]. The micellar 

structure comprises the hydrophobic core, where the insoluble blocks are located, surrounded by 

a swollen protected corona of soluble blocks. The micelles formed by AB block or A-g-B graft 

copolymers can be classified into two main categories: the hairy (or starlike) micelles and the 

crew-cut micelles (scheme 6.1).  

 
 

 

 

 

 

 

 
 
 
 
Scheme 6.1. Schematic view of AB diblock or A-g-B graft copolymer micelles in a selective 
solvent for the B block. Rc: micellar core radius; L: shell or corona thickness formed by the soluble 
blocks. 
 
 In the former case the insoluble blocks that form the micellar core are short compared to 

the soluble blocks located in the corona, whereas the opposite ones characterize the second 
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case. The association of the hydrophobic parts of the block copolymers occurs at a given polymer 

concentration, often regarded as a critical micelle or aggregation concentration, which greatly 

depends on the HLB of the polymer. In aqueous solutions of stimulus-responsive, intelligent 

copolymers, the interaction of one or several parts of the copolymer can be triggered by changes 

in the surroundings of the parts of the spherical core-shell structures [2-4]. They are switchable 

amphiphiles in which the solubility properties of each block can be altered by changing the 

solution pH [5-6], ionic strength [6], temperature [7-12] or by interaction with added substrates 

[13]. 
 

6.1.1.2. Thermodynamics 

 Micellization in aqueous solutions is caused by the hydrophobic effect driven by an 

enthalpic process [14]. The negative standard free energy change to transfer 1 mol of amphiphile 

from the solution to the micellar phase, ΔGm
0, is given in terms of the dominant standard enthalpy 

ΔHm
0, and the negative standard entropy ΔSm

0 of micellization per mol of surfactant as :    

ΔGm
0 = ΔHm

0 - T ΔSm
0 

The micellization free energy values are negative, since thermodynamically stable micelles are 

formed spontaneously. The presence of the hydrophobic moieties in water induces an increase in 

the degree of structuring of water molecules, owing to cavity formation and causes a significant 

decrease in the water entropy. When hydrophobic groups aggregate in the aqueous solution to 

form micelles, the random hydrogen-bonding structure in the water is to large extent restored, 

and the water entropy increases. This overcomes the loss of entropy due to localization of the 

hydrophobic groups in the micelles. The entropy contribution usually dominates the micellization 

process in aqueous surfactant solutions, with the enthalpy playing a minor role. For many 

nonionic surfactants ΔHm
0 is positive, indicating that the transfer of unimers from the solution to 

the micelles is an enthalpically disfavored endothermic process [15-16]. 

 

 Micellar aggregate formation occurs in dilute solutions of block/graft copolymers in a 

selective solvent at a fixed temperature above a critical micelle concentration (CMC), which is 

also called critical association concentration for polymeric micelles. This formation is 

accompanied by a sharp change in several solution properties (light scattering, viscosity, 

electrical conductivity, surface tension, solvent power for certain substances, etc.). The free 

energy of micellization for nonionic surfactants is directly proportional to the logarithm of CMC 

(when CMC is in mol fraction units) by the following relation [17]:     ΔGm
0 = RT ln(CMC) 

 

The magnitude of the hydrophobic effect increases with temperatures [15]. ΔGm
0 becomes more 

negative, indicating a larger driving force for micellization. 
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6.1.1.3. Behaviour of the Micelles 

 During the last decade, stimuli-responsive micelles, as a function of temperature or pH or 

both, have been studied world-wide, such as by Tenhu [7,18], Armes [19], Okano [20], Webber 

[21], Kim [22], Aoshima [23], and Gohy and Jérôme [24-25]. 
 

Temperature as External Stimulus 

Whenever a constitutive block is temperature sensitive, with e.g. a LCST, an appropriate 

temperature can trigger reversible micellization in water. Two types of micellar structures 

containing thermo-responsive polymers (e.g. PNIPAAm) can be considered; thermo-sensitive 

outer corona and thermo-sensitive inner core (scheme 6.2). In the former case, PNIPAAm block 

has been usually copolymerized with hydrophobic blocks [26]. In the latter case, PNIPAAm 

segments were combined as a hydrophilic block copolymer [27]. Note that in our work, PMVE 

was combined on one hand with hydrophilic PEO segments, and on the other hand with 

hydrophobic PS segments (see scheme A1 in Introduction). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 6.2. Two types of the micellar structure of a block copolymer containing a thermo-
responsive polymer segment. Figure taken from [26-27]. 
 
An interesting thermo-responsive switching system was developed by Laschewsky [28] from 

sequential controlled free radical polymerization of non-ionic and zwitterionic monomers. The 

resulting block copolymers showed one thermo-responsive segment in aqueous solution with one 

block exhibiting a LCST and the other an upper critical solution temperature (UCST). At 

intermediate temperatures both blocks were soluble, but an increase or decrease of the 

temperature provoked the formation of colloidal polar aggregates with one or the other block 

constituting the core. Kim and coworkers [29] prepared triblock copolymers poly(ethylene oxide)-

block-poly(lactic-co-glycolic acid)-block-poly(ethylene oxide) (PEO-b-PLGA-b-PEO) that formed 
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micelles in water due to the hydrophobicity of the PLGA block. They demonstrated that the CMC 

decreased with increasing temperature.  
 

pH as External Stimulus 

Block copolymers with one block, which is either a polyacide or a polybase, can self-assemble 

into micellar structures upon changing pH. The originally ionized block becomes hydrophobic, 

either by protonation of anionic groups, or deprotonation of cationic groups, whereas the second 

hydrophilic remains water-soluble.  

Addition of a base to an acidic aqueous solution of glycopolymers based on cyclic sugar-

methacrylate hydrids triggers micellization [30]. An excess of base led to deprotonation of the 

second block and, consequently, to precipitation of the copolymer. Acidification from pH 8 to 3 of 

poly(sodium 4-vinylbenzoate)-block-poly(ethylene oxide methacrylate) is also efficient in forming 

micelles in water [31]. 
 

Ionic Strength as External Stimulus 

Although poly(2-(N-morpholinoethyl)methacrylate) is water soluble at low pH, it precipitates upon 

addition of electrolytes. Therefore double hydrophilic block copolymers that contain this 

constitutive block can form micelles by tuning the ionic strength. An example is poly(2-(N-

morpholino) ethylmethacrylate)-block-poly(diethylaminoethylmethacrylate) (PMEMA-b-

PDMAEMA) that forms micelles reversibly upon the proper adjustment of pH and salt addition [3]. 

Micelles with PDMAEMA core can be formed at pH ranging from 4 to 8.5, whereas reverse 

micelles with a PMEMA core can be prepared at pH 6-6.7 upon addition of Na2SO4. 
 
Multi-responsive External Stimuli 
Several examples of self-assembled structures with multi-stimuli responsive aptitude have been 

described in the literature. As a result of changes of temperature, pH and ionic strength, block 

and graft copolymers can self-assemble into micelles or vesicles (scheme 6.3).  
 
 
 
 
 
 
 
 
 
Scheme 6.3. Reversible micellization of diblock and graft copolymer under the influence of 
external stimuli. 

 
 

For instance, Armes et al. described ‘schizophrenic’ diblock copolymers that form direct and 

inverse micelles in the same solvent. One example is a more complex zwitterionic diblock of                 

poly(4-(vinylbenzoic acid))-block-poly(2-(N-morpholino) ethylmethacrylate) (PVBA-b-PMEMA) 

that can respond to pH, ionic strength and temperature, and form normal as well as inverse 

micelles [32]. At low pH, they obtained micelles with a 4-vinylbenzoic acid (VBA) core, and at high 

pH and in the presence of salt, or at high temperatures, micelles with a 2-(N-morpholino) 

pH, T, ions pH, T, ions 
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ethylmethacrylate (MEMA) core. A versatile system as proposed by Nowakowska [33] who 

synthesized a series of amphiphilic terpolymers based on sodium 2-acrylamido-2-methyl-1-

propansulfonate (AMPS), NIPAAm, and cinnamoyloxyethylmethacrylate (CEMA). The 

terpolymers were soluble in water, prone to self-assemble into micelles, and sensitive to three 

stimuli: i) temperature, due to the NIPAAm block that imposed a LCST, ii) UV-light, due to the 

presence of the CEMA block, and finally iii) ionic strength, that at elevated concentration 

provoked loss of the temperature-sensitivity. The size of the micelles formed, as indicated by 

DLS, was found to vary with temperature and UV irradiation. 
 
6.1.1.4. Applications of Stimuli-responsive Micelles 

 Current and potential application possibilities of copolymer colloidal assemblies are their 

use as stabilizers, flocculants, nanoreservoir in, among others, controlled delivery of bioactive 

agents, catalysis, latex agglomeration and stabilization of non-aqueous emulsion.  
 

Solubilization of Active Components in Block Copolymer Micelles: Biomedical Applications 

In addition to their applications as biomaterials, such as implants, block copolymers have found 

since four decades a strong interest in their colloidal form especially as control drug delivery 

systems [34], as carriers of diagnostic agents and more recently in gene therapy [35].  
 

Adsorption and Surface Modification by Block Copolymer Micelles 

Block copolymers, like homopolymers, are known to adsorb on solid surfaces. A great number of 

experimental and theoretical studies have been published concerning the surface modification by 

adsorption or chemical attachment of polymer micelles in order to promote specific 

characteristics, e.g. wetting, dispersibility [36] and stabilization of solid pigment particles in a 

liquid or in a solid phase, improved biocompatibility, etc.  
 

Dye Stabilization 

Recently, our research group has developed a series of amphiphilic PMVE-b-PIBVE copolymers, 

showing remarkable thermo-adjustable surfactant properties [37]. In addition, these polymers are 

very well suited to create colloidal dispersions of organic pigments, displaying stabilities that can 

be tuned as a function of temperature [38]. 
 

Miscellaneous Applications 

The variety of block copolymers which are available, offer different applications as emulsifiers 

[39-40], as stabilizer in latex technology [39,41-42], as compatibilizers in polymer blends [39,43] 

and as active component in separation processes [44]. Thus the ability of micelles to solubilize or 

encapsulate various compounds for biomedical applications [45], can also be employed for 

purification and separation processes as well as for specific chemical reactions. For example, if 

removal of oil and organic polluants in waste water was already achieved with conventional 

surfactants, the use of block copolymers such as Poloxamers, Pluronics (BASF) or Superonics 
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(ICI) (PEO-PPO) could significantly improve these processes [44,46]. Ion complexation by block 

copolymers is not only attracting interest in biomedical applications, but also in catalysis [47], in 

solar energy-conversion and photoinduced electron transfer processes [48]. Block copolymers 

are of practical use as viscosity improvers of motor oil, which may be related to association-

dissociation of their micelles as a function of temperature [49], and also efficient dispersants and 

stabilizers for carbon black, a good model for sludge [50]. The platelet structures generated from 

PEO-PEP diblock copolymers by crystallization of their PEO sequence are efficient pour-point 

depressing additives for fuel oils [51]. Such platelets are further claimed as efficient stabilizers for 

polymeric oil-in-oil emulsions of large particle size [52].   
 

6.1.2. The Theory of the Lower Critical Solution Temperature (LCST) 

 Thermo-responsive polymers have attracted much attention for applications such as drug 

delivery, membranes and cell culture [53-54]. The LCST is the temperature at which aqueous 

solutions or hydrogels undergo a transition from a soluble to an insoluble or opaque state or from 

a swollen hydrogel to a contracted shape as the temperature increases [54-55]. The relative 

magnitude of the hydrophobic effect increases as the temperature of the aqueous solution is 

increased [56], and the unfavorable contribution of entropy is enhanced. This may lead to the 

chain contraction, and eventually to a phase separation if the balance between hydrophobic and 

hydrophilic groups is appropriate. This type of phase behavior is typical for a large number of 

non-ionic water soluble polymers [57], such as PNIPAAm [58-59], poly(N-vinyl caprolactam) 

(PVCL) [60-62] , PMVE [25,60-69], PEO (LCST = 95°C) [70], poly(2-ethyl-2-oxazoline) (PEtOx) 

[71-72] and poly(2-(N,N-dimethylamino) ethylmethacrylate)) (PDMAEMA) [72-73]. Scheme 6.4 

represents the chemical structures of these polymers that are known to exhibit a LCST-type of 

demixing behavior. 

 

 

 

 

 

 
 

Scheme 6.4. Structures of thermo-responsive polymers, from left to the right: PMVE, PNIPAAm, 
PVCL, PDMAEMA and PEtOx. 
 

 The large difference in LCST between these materials results from a different HLB in 

water. Among these polymers, PNIPAAm is definitely the most studied one, because its phase 

separation in water is very abrupt and completely reversible with temperature [58]. Other 

polymers of interest are PVCL and PMVE. The former material, in contrast to PNIPAAm, is 

biocompatible and has therefore attracted much attention in recent years. For that reason the 

Food and Drug Administration (FDA) has approved this material for biomedical use. In this work, 
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we will focus on PMVE-system that phase separate at physiological temperatures, as these are 

promising towards biomedical applications. 
 

6.1.2.1. Thermodynamics 

Under certain thermodynamic conditions, a homogeneous polymer solution or mixture 

can separate into two or more liquid phases that differ in composition. For example, a binary 

polymer solvent mixture can separate into a dilute and a concentrated phase when the 

temperature increases. This phenomenon is called temperature-induced phase transition. Figure 

6.1 represents a schematic phase diagram of a polydisperse polymer solution having UCST and 

LCST behavior with the concentration as a function of the temperature, in which UCST and LCST 

are the maximum and the minimum temperature respectively, in the phase separation curve. 
 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.1. Scheme of phase diagram for binary polymer mixtures: spinodal (----) and        
binodal (——) lines of: UCST-type of phase diagram (left) and LCST-type of phase diagram 
(right). Figure taken from [69]. 

 

In the low temperature region of the diagram the system is stable, which means that the 

polymer and solvent are compatible in every ratio, leading to one homogeneous concentrated or 

dilute phase. An increase in temperature will encounter the miscibility gap and induce the 

formation of two-phase emulsions after some delay which is due to the need for droplets of a new 

phase to be nucleated. The onset of phase separation is the so-called cloud point of the solution 

and the temperature Tcp varies with the concentration resulting in the cloud point curve. At high 

temperature, the system will spontaneously phase separate by a kinetic mechanism. Approaching 

the temperature of the metastable region allows the irregular fluctuation regions of the spherical 

droplets leading to the formation of an emulsion. Another special point in the phase diagram is 

the critical point, where both curves touch each other and share a common tangent as required 

by thermodynamics. The temperature at which this occurs can either be situated at the lowest 

temperature where two phases can coexist LCST or at the highest temperature UCST. The latter 

situation defines a mixture in which miscibility improves by increasing the temperature (figure 6.1 

left), while the opposite occurs in the former situation (figure 6.1 right). 
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The LCST phenomenon has been observed in strongly interacting polar mixtures of small 

molecules as well as interacting non polar polymer mixtures, especially hydrogen bonding. Even 

though LCST behavior can be caused by strong interactions or compressibility effects, or a 

combination of both, the separation is always entropically driven. This can easily be 

demonstrated via thermodynamics. For compressible mixtures it is convenient to work with the 

Gibbs free energy according to the second law of thermodynamics [74]:    ΔGm
  = ΔHm

  - T ΔSm < 

0 

with ΔGm the Gibbs free energy change upon mixing at constant temperature and pressure, ΔHm 

the enthalpy of mixing, ΔSm the entropy of mixing. Large negative contributions to both ΔHm and 

ΔSm are caused by the ordering of the aqueous solution with the polymer. When the polymer 

chains are mixed at low temperature, heat is released (ΔHm < 0) owing to the preferentially 

favorable attractions. When the temperature reaches the LCST (or Tcp), ΔHm increases and the 

entropy contribution of ΔGm will overcome the negative enthalpy solution. Thus, ΔGm takes a 

positive value, and the phase separation of the polymer solution begins.  
 

6.1.2.2. The Phase Diagrams: Type I, II, III 

 Solutions of water-soluble polymers in water can be described by phase diagrams with 

LCST or UCST [57]. To facilitate the description of the phase-separation phenomenon of 

aqueous polymer solutions, it is useful to classify them according to the phenomenological 

analysis of their critical miscibility with water in three types. The three types of phase behavior are 

schematically illustrated in figure 6.2; they were calculated with the ΔGm developed by Flory [75], 

Huggins [76], Staverman and Van Sante [77]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2. Scheme of three types of phase diagram of linear polymers with a LCST-behavior 
with increase of molecular weight (MG) (the full curve is the equilibrium of the polymer with ∞ 
MG). Figure taken from [69]. 
 

 Polymers of Type I follow the classical Flory-Huggins behavior, which means that the 

LCST of polymers of this type shifts upon increasing the polymer molar mass towards lower 
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polymer concentrations and lower temperatures (figure 6.2 left). Type I, also called the ‘classical’ 

demixing behaviour, exhibits the usual Θ behavior and is characterized by a limiting critical 

concentration, for infinite molar mass, ΦL = 0 (volume fraction). With Type II, a single off-zero 

limiting critical concentration, ΦL ≠ 0, occurs at non-Θ-conditions. Type II demixing refers to a 

miscible gap with a single extremum, the location of which in temperature/concentration space is 

equally insensitive to molar mass and occurs at a polymer weight fraction around 0.5 (figure 6.2 

middle). Type III is characterized by two off-zero limiting critical concentrations and one zero 

limiting critical concentration (figure 6.2 right). Hence, three different two-phase areas can be 

distinguished: α, β and γ. The critical point at low polymer concentration again represents the 

classical Flory-Huggins demixing behavior, while the β-domain displays Type II demixing 

behavior. Both areas are separated from the γ-domain by a three-phase equilibrium. 

  According to this classification, the solution properties of these three thermo-responsive 

polymers, PVCL [78-79], PNIPAAm [80-81] and PMVE [64-67] can be described by different 

phase diagrams, Type I, Type II and Type III respectively. 
 

6.1.2.3. PMVE Phase Diagram 

Aqueous solutions of PMVE are known to cloud in a temperature window ranging from 32 

to 40°C, depending on molar mass and concentration [82]. This LCST-behaviour is more complex 

than can be expected from ‘classical’ theoretical considerations. The phase diagram of PMVE in 

water, identified by a Type III, is bimodal and the two minima show a different molecular mass 

dependence [65]. The minimum of lower polymer concentration (5 wt-%) corresponds to Type I 

behavior, according to the phenomenological classification of Berghmans [65], whereas the one 

of higher concentration (75 wt-%) is transition of Type II (figure 6.3) and is molar mass 

independent [64-67,81]. 
 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 6.3. Schematic phase diagram for PMVE-water mixture that exhibits two LCST’s. Figure 
taken from [69]. 
 
From the structural considerations, it is obvious that in the system PMVE/water, complex 

formation between the water molecules and the ether functions of the repeating units may be 

responsible for the non-classical phase behavior. Experimental evidence was already brought by 

Maeda et al. in the 90’s [67,83]. The formation of a stable molecular complex with 2.7 molecules 
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water per chain repeat unit was proposed. At higher overall water content, a higher degree of 

hydration was suggested with up to five water molecules per repeat unit. Moreover, in 2001, the 

PMVE/water interactions during the phase transitions were studied by another Maeda with IR 

spectroscopy [84], and more recently by Van Mele with MTDSC technique [85-87]. This technique 

provides detailed information on the hydration states of individual functional groups of PMVE 

below and above the Tcp. In solutions below the phase transition, the ether oxygens of the 

polymer units form hydrogen bonds with water molecules. This enthalpic contribution to the free 

energy of solution overrides the unfavorable decrease in entropy due to the formation of a layer of 

organized water around the hydrophobic moieties of the polymer chain. With increasing 

temperature, from about 33 to 40 °C, the hydrogen bonds between water molecules and the 

polymer ether oxygens are broken and, at the same time, nonpolar groups are dehydrated. This 

is accompanied by an endothermic heat effect and a rising opacity of the PMVE/water solution 

[63-67,84-85,88-89]. These changes in PMVE/water interactions are reflected by changes in the 

IR bands attributed to the vibration modes of the PMVE backbone bonds and the methoxy 

groups. Maeda concluded that most of the methyl groups of PMVE are dehydrated above the 

transition temperature, whereas the ether groups are only partially dehydrated.  

 In the last decade Spěváček et al. used 1H NMR spectroscopy to investigate changes in 

the dynamic structure during temperature-induced phase separation in PMVE solutions in a broad 

range of concentrations (c = 0.1 – 30 wt-%) [90]. The phase transition is manifested by line 

broadening for a major part of PMVE units, indicating the formation of more compact globular-like 

structures. While for dilute PMVE solutions the transition as detected by NMR is virtually 

discontinuous for semidilute and concentrated solutions, the transition sets in at lower 

temperatures and is several Kelvin broad.  

 
6.1.2.4. Applications 

 The temperature dependent solubility of this type of polymers has fascinated scientists 

both in academia and industry since the first observations of the thermo-sensitivity of PNIPAAm 

[91], PVCL [61] and PMVE. Based on controllable change of conformation of a polymer, various 

smart structures may be created that are sensitive to external stimuli, in this case to temperature.  
 

Thermo-responsive Membranes 

For example, a thermally responsive polymer can be cross-linked to form a responsive hydrogel, 

or a porous surface can be grafted with smart polymers to have controllable porosity and be used 

as thermally responsive filter unit [92]. 
 

Temperature-responsive Chromatography 

A new packaging material for High Performance Liquid Chromatography (HPLC) was developed 

by grafting PNIPAAm onto silica beads. As a result the hydrophilic-hydrophobic nature of the 

surface can be varied with temperature, which changes the interaction with solutes in the 
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continuous aqueous phase. At low temperatures, the surface is hydrophilic and the separation 

selectivity of for example steroids is not that good [93]. However, by increasing the temperature 

the hydrophobic interaction between PNIPAAm and the steroids is favored, which results in 

longer retention times for more hydrophobic steroids and a better separation selectivity. 

Recently, in our research group, columns were packed with a temperature responsive stationary 

phase based on PNIPAAm attached to aminopropyl silicagel [94]. The temperature responsive 

properties of the coupled phase were demonstrated using only water as a mobile phase, whereby 

an increase in retention is observed with raising temperature. Such temperature responsive 

stationary phases open perspectives for green chromatography. 
 

Biomedical Applications 

Based on the thermo-responsiveness, several applications are proposed in drug delivery, 

bioseparation, diagnostics, etc [95]. PNIPAAm has been used, for example, in drug targeting for 

solid tumors with local hyperthermia [94], in thermo-responsive coatings or micelles for controlled 

release of the drug [96], and as a cell attachment/detachment surface [97]. The use of PVCL and 

PMVE instead of PNIPAAm is however considered advantageous because of their assumed 

lower toxicity [98].     
 

Thermo-precipitation Separation 

A recognition biomolecule or receptor ligand such as a cell receptor peptide or an antibody is 

conjugated to an intelligent polymer and used in a precipitation-induced affinity separation 

process. When mixed with a complex solution, the conjugate will selectively complex its binding 

partner and then it can be readily and cleanly separated by providing a thermo-stimulus, which 

causes the polymer-ligand/receptor conjugate/complex to precipitate [99]. 
  
At the moment, the number of studies on PMVE is still low, at least compared to those on 

PNIPAAm and PVCL. 
 

6.2. ‘Cloud Point’ Studies of the Thermo-responsive Random 

Copolymers 

6.2.1. Introduction 

The stimulus that has been most important in these studies is temperature. For this, 

PMVE has been chosen as the backbone of the graft copolymers because of its thermo-

responsive properties. Recently, in our research group, linear and palm-tree block copolymers 

containing the PMVE as thermo-responsive segment have been explored for emulsion properties 

and micellization [25,37-38,100]. Similar observations were made for poly(methyl vinyl ether)-

block-poly(vinyl alcohol) (PMVE-b-PVA) where micellization was reported to occur near the Tcp of 

the PMVE homopolymer at 29°C [101]. A more detailed study of poly(methyl vinyl ether)-block-
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poly(methyl tri(ethylene glycol)vinyl ether) (PMVE-b-PMTEGVE) showed that micellization 

occurred in a limited temperature range only between the Tcp‘s of homopolymers PMVE and 

PMTEGVE with the latter having the higher Tcp [19]. At temperatures above the Tcp’s of both 

homopolymers, the whole block copolymer became insoluble and precipitation occurred as 

determined by turbidimetry. Block copolymer Tcps strongly depend on the relative block length of 

the two blocks and can thus be adjusted between the values for both homopolymers. These 

thermo-responsive properties in aqueous environment originate from the LCST behaviour of the 

incorporated PMVE segments [63,66-67,88,102]. 

 

 The Tcp‘s of the PMVE statistical copolymers with a small amount of hydrophobic units 

IBVE or CEVE in aqueous solution, were studied by turbidimetry and modulated temperature 

differential scanning calorimetry (MTDSC).  
 

6.2.2. Determination of the ‘Cloud Point’ Temperature of P(MVE-co-IBVE) 

 The Tcp’s were determined for each copolymer using two methods: visually when the 

solution becomes cloudy and by UV-VIS spectrophotometry. Both methods provided the same 

Tcp values within experimental error range. The Tcp’s of the homopolymer and the copolymers 

with different IBVE ratios are displayed in table 6.1.  

 

Table 6.1. Comparison of the Tcp of PMVE and P(MVE-co-IBVE) in water solution as a function of 

their composition with 0.25 wt-% aqueous solution. 

Polymers Mn NMR (g.mol-1) MVE units Tcp (°C) 

PMVE70 4140 70 36 

PMVE30 1820 30 40 

P(MVE-co-IBVE) (94/6) 3280 50 10 

P(MVE-co-IBVE) (93/7) 3470 52 / 

 

The first observation is that the Tcp’s of P(MVE-co-IBVE) are lower than those of PMVE70. This 

results from the decrease with increasing hydrophobic units in the hydrophilic PMVE. 

Concordantly, the LCST phenomenon, typical for PMVE, disappears when the copolymer 

contains more than 7% weight fraction (i.e. 6% molar fraction) of IBVE. It may be concluded that 

the LCST of PMVE of molecular weight 3000 g.mol-1 is already strongly influenced by the 

presence of one or two IBVE units in the PMVE-chain. With 6 mol-% of IBVE (i.e. a polymer 

consisting of 50 MVE units and 3 IBVE units), the cloud point was determined to be 10°C (0.25 

wt-% aqueous solution). Moreover, the strong influence of the presence of small fractions of 
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hydrophobic groups on the LCST-properties was reported earlier by Du Prez, Van Mele and 

others for PMVE’s containing hydrophobic end groups [85,103]. 

 

6.2.3. Influence of Incorporating CEVE Units in PMVE Backbone 

 It was found that the grafting process was not quantitative, causing some chlorine groups 

to be present in the PMVE backbone (see Chapter 5). Because of its hydrophobic character, the 

remaining CEVE units will most likely affect the thermo-responsive properties of the synthesized 

graft copolymers. Therefore, we will first evaluate the thermo-responsiveness of P(MVE-stat-

CEVE) in aqueous solution. 

 

6.2.3.1. UV-VIS Transmission 

 In order to estimate the effect of PEO-grafting on the LCST phase behaviour of PMVE in 

water, we should first investigate the water solubility of the backbone material, used to synthesize 

the graft copolymers. LCST behaviour of the statistical copolymers was tested by preparing a 

series of   2 mL solutions with varying concentrations, placing then at 4°C in darkness overnight 

and then determining the Tcp by UV-VIS spectrophotometry. The easiest method to determine the 

Tcp of a polymer solution consists of measuring the changes in turbidity as the solution is heated 

at a constant rate. The temperature of turbidity onset is defined here as the Tcp. 

An example of such a measurement is given in figure 6.4 for different concentrations of 

B1. The temperature was changed in the range from ambient temperature up to 50°C, and the 

copolymer concentrations varied between 1 and 15 mg.mL-1. As can be observed, the turbidity 

increased sharply as the temperature exceeds this onset value and the transparency changes 

rather continuous because of the thermo-sensitivity of the copolymers decreased with the 

concentration.  

0

0.5

1

1.5

2

2.5

3

3.5

20 25 30 35 40

Temperature (°C)

A
bs

or
ba

nc
e 

(%
)

 
 
Figure 6.4. UV-VIS measurements as a function of temperature (0.2 °C.min-1) for different 
concentrations of B1 with 15 mg.mL-1 (×), 10 mg.mL-1 (Δ), 5 mg.mL-1 (□) and 1 mg.mL-1 (○). 
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At such concentrations (< 15 mg.mL-1), the absorbance of the copolymer solutions sharply 

increased on heating, which reflects the decrease in the solubility of the copolymer resulting in an 

aggregation process. Above the cloud point, water is a thermodynamically poor solvent and 

interaction between the repeating units of the polymers is attractive. This results in a macroscopic 

phase separation of concentrated polymer solutions followed by intermolecular aggregation. No 

precipitation was observed at higher temperature, but the solution remained cloudy over a long 

period (two months). For all the samples, an increasing concentration leads to a lower value of 

the Tcp. This is in correspondence to the general accepted LCST principle for dilute solutions: a 

higher water content leads to more polymer/water interactions, thus more thermal energy is 

needed to break the water structure and consequently to let the hydrophobic polymer/polymer 

interactions rule out the polymer/water interactions.  

To ascertain the reversibility of the phase transition, polymer solutions heated to 45°C 

were brought to room temperature at constant cooling rate. The solutions became clear in all 

cases comparable to the initial solution, and the LCST was the same as the Tcp recorded during a 

heating scan.  

 In addition, the phase behaviour curve of PMVE homopolymer and P(MVE-stat-CEVE) 

backbones has been plotted in figure 6.5. In this study, the Tcp’s are ranged from 27 to 39°C. A 

remarkable observation is that the Tcp of the copolymers is already much affected by a small 

content of hydrophobic CEVE units. When the molar fraction of CEVE is above 3 mol-% of the 

total molar number of monomer units, the copolymers are completely insoluble in water. The 

Tcp’s, determined by UV-VIS, were plotted versus the concentration (up to 15 mg.mL-1) in figure 

6.5. 
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Figure 6.5. Cloud points temperature curves of the homopolymer PMVE206 (12 000 g.mol-1) (◊), 
the statistical copolymers B1 (1.73 mol-%CEVE) (□) and B2 (3.61 mol-%CEVE) (Δ). 
 

 It was found that the incorporation of CEVE-groups in the PMVE chain leads to decrease 

of the Tcp (from 35.9 to 33.3°C with 1.73 mol-% CEVE for a 10 g.L_1 aqueous solution). For that 

reason, statistical copolymers were synthesized with a small number of chlorine in order to keep 
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the thermo-responsive properties of the PMVE. The presented results establish that the system 

P(MVE-stat-CEVE)/water behaves like the demixing curve of PMVE with a shift depending on the 

composition of CEVE present in the copolymers.  

 

6.2.3.2. Modulated Temperature Differential Scanning Calorimetry (MTDSC) 

 The MTDSC measurements were made by El Ouaamari and Dr. Van Durme with the 

collaboration of Prof. Van Mele (VUB) in Brussels [104-105]. For the theoretical description of the 

technique, we refer to the experimental section (Part IV).  

Figure 6.6 illustrates the influence of incorporating CEVE units on the LCST phase 

behaviour of PMVE in water. The incorporation of CEVE units clearly lowers the Tdemix of the 

PMVE-based polymer, indicating that the hydrophobic CEVE groups partially destroy the 

hydration structure surrounding the PMVE chains. The observed decrease in Tdemix becomes 

more pronounced as the amount of CEVE units increases, independent of the polymer 

concentration (figure 6.6, compare P(MVE-stat-CEVE) with 1.73 mol-% (●) and 3.61 mol-% 

CEVE (○)). Hence, the initial hydrophilic polymer becomes insoluble in water at room 

temperature, especially at high polymer concentration, thus limiting the number of potential 

applications. In addition, it seems that the characteristic bimodal shape of the type III LCST 

demixing curve is also influenced by the copolymerization with CEVE.  
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Figure 6.6. LCST demixing curve of PMVE/water (x), P(MVE-stat-CEVE) with 1.73 mol-% 
CEVE/water (●) and with 3.61 mol-% CEVE/water (○). Figure taken from [105]. 
 

 

 



Chapter 6 

 

 - 120 -

6.3. Effect of the Temperature on the PMVE-g-PEO 

6.3.1. Introduction 

The most well-known water-soluble polymer is probably PEO, which is discussed in detail 

e.g. by Kjellander and Florin [106]. Various thermo-responsive copolymers containing PEO grafts 

have been synthesized and studied widely over the recent years. Copolymers consisting of 

thermo-responsive PNIPAAm and PEO blocks or grafts are one of the most investigated over the 

recent years because of their stabilization of dispersions and emulsions [58,107]. Below the Tcp 

of the PNIPAAm block, either poly(ethylene glycol)-block-poly(N-isopropylacrylamide) (PEG-b-

PNIPAAm) or poly(ethylene glycol)-graft-poly(N-isopropylacrylamide) (PEG-g-PNIPAAm) is highly 

soluble in aqueous solution, while above the Tcp, the thermo-responsive PNIPAAm block 

precipitates and the copolymer self-assembles into polymeric micelles, which consists of a 

PNIPAAm core and a hydrophilic shell of PEG [9,108-110]. Tenhu et al. studied the aggregation 

of PEG-b-PNIPAAm in water by fluorescence spectroscopy and light scattering [9]; Zhu and 

Napper studied the gelation of PEG-b-PNIPAAm [111]; Wu et al. studied the formation of core-

shell nanoparticles of PEG-g-PNIPAAm through the coil-to-globule transition of the PNIPAAm 

block [108]; Feijen et al. studied the thermosensitive micelle formation of PEG-b-PNIPAAm [110]. 

 

The properties of thermo-responsive PNIPAAm or PVCL with PEO, block and graft 

copolymers have recently attracted a lot of attention by Tenhu [7,11-12,108,112-114] and Du 

Prez [10,62,79,81], because of its intrinsic and technological significance, in particular the 

temperature-responsive micellization. The interest in these thermo-responsive polymers comes 

from the fact that their demixing temperature can be tuned closed to body temperature. In 

contrast to PVCL (Type I) and PNIPAAm (Type II), limited number of studies have been carried 

out on PMVE containing copolymer structures. To our knowledge, only block and random 

copolymers based on PMVE have been investigated until now. On the other hand, PMVE-g-PEO 

graft copolymers are of particular interest for reasons of comparison. 

 

By grafting hydrophilic chains of, for instance, PEO on the PMVE backbone, well-defined 

thermo-responsive graft copolymers are obtained (see Chapter 5), the thermal behavior in water 

of which has to be compared with previously described analogues based on either PVCL 

[8,10,12,62,114-115] or PNIPAM [7,116-117]. The PMVE-g-PEO graft copolymers, dihydrophilic 

at room temperature and amphiphilic above the Tcp, should exhibit interesting thermo-responsive 

aggregational behaviour at their Tcp, which depends on the polymer concentration, such as for the 

aqueous solutions of PMVE homopolymer, and on the number of PEO side chains.  

 

 The influence of the number and length of the PEO grafts, as well as of the presence of 

the unreacted chlorine-group on the Tcp of graft copolymers and on the formation of the micelle-
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like aggregates was examined. The thermo-responsiveness of the PMVE-g-PEO copolymers and 

the miscibility between PMVE and PEO were studied by MTDSC for a large range of 

concentrations. Also a new method, namely high sensitive-differential scanning calorimetry (HS-

DSC or microcalorimetry) was used to study the influence of hydrophilic grafts on the 

temperature-induced phase separation of PMVE. Generally, this technique is used for 

biomolecular interactions with proteins. But since a few years, this technique was also applied on 

investigations on polymers solutions. Few groups that are active in this field are the groups from 

Winnik in Montreal [118] and Tenhu in Helsinki [7,12,112,119]. Moreover, DLS has been proven 

to be a powerful technique to investigate the particle size and the shape of polymers in water as a 

function of temperature.  

 

6.3.2. UV-VIS Transmission 

 The LCST behaviour of the graft copolymers was determined in the same way as the 

backbone. Likewise, the reversibility of the phase transition behaviour was observed after heating 

and cooling. In this study, the Tcp is ranging from 21 to 36°C. The Tcp of the graft copolymers 

differs slightly from the homopolymers because of the presence of the PEO side chains. Tcp‘s for 

different concentrations of the water-soluble PMVE-g-PEO graft copolymers are displayed as a 

function of the concentration for different PEO content in the graft copolymers in figure 6.7 and 

6.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 First, the effect of the PEO chain length was investigated. Both graft copolymers present 

the same number of chlorine (2) and the same distribution of the side chains (3 PEO chains), 

corresponding respectively to G3 and G6. Only the length of PEO differs with 2000 and 5000 

gmol-1. For the same concentration, the Tcp‘s are similar, so no significant effect of the length of 

the PEO chains was observed.  
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Figure 6.7. Cloud points temperature 
curves of the graft copolymer G6 (3 PEO, 
47 wt-%) (◊), G7 (5 PEO, 55 wt-%) (□) and 
G8 (12 PEO, 75 wt-%) (Δ) with PEO 5000 
g.mol-1. 
 

Figure 6.8. Cloud points temperature 
curves of the graft copolymer G3 (3 PEO, 
26 wt-%) ( ), G4 (12 PEO, 52 wt-%) ( ) 
and G5 (17 PEO, 63 wt-%) (▲) with PEO 
2000 g.mol-1. 
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 The influence of the distribution of the side chains attracted more attention. From figure 

6.7 and 6.8, it is observed that the Tcp of the graft copolymer decreased as a function of the 

solution concentration as already expected from the behaviour of the homopolymer and the 

statistical copolymers. The figures also indicate that the Tcp decreases for higher amounts of 

hydrophilic PEO relative to the PMVE backbone. This is opposite to the conventional accepted 

idea for random copolymers, stating that the incorporation of a hydrophilic comonomer raises the 

Tcp, whereas a hydrophobic comonomer leads to lower Tcp values [120]. One can suppose that, 

because there are still chlorine groups present in the graft copolymers, they should influence the 

Tcp
 of the graft copolymers by their hydrophobic nature. In fact, it is not the case. Regarding G3, 

G4 and G5 in figure 6.8, where the number of PEO chains is between 3 and 17, the Tcp’s 

decreased with the number of hydrophilic PEO chains, even if the number of remaining chlorines 

is only 1 or 2. These results may be explained by the competition between PEO and PMVE for 

water molecules. Also for AB-block copolymers based on PNIPAAM and PEO, a decreasing Tcp 

was observed with increasing amount of PEO [121]. The authors proposed that the PEO-

segments increased the hydrophobic interactions (the hydrogen bonds are broken) during phase 

separation and stabilize the dehydrated PNIPAAm-segments. This phenomenon was also 

observed by Verbrugghe in the PVCL-g-PEO graft copolymers [10,115]. Therefore, the 

hydrophobic PMVE-interactions dominate from lower temperatures. This effect increases with the 

PEO content as observed from the series G3-G4-G5 (figure 6.8) and G6-G7-G8 (figure 6.7).  

 

 Because of the limited accuracy of UV-vis transmission to determine Tcp for different 

concentrations, the MTDSC technique was used to determine the phase diagram of the           

PMVE-g-PEO in the whole range of the polymer solution. This study was investigated by Dr. Van 

Durme in collaboration with the research group of Prof. Van Mele (VUB) in Brussels. 
 

6.3.3. Modulated Temperature Differential Scanning Calorimetry (MTDSC) 

Measurement 

* Thermo-responsive Properties of Aqueous PMVE-g-PEO Solutions 
 Three PMVE-g-PEO graft copolymers were introduced into water to reach concentrations 

between 20/80 and 90/10 polymer/water solution. In this section, the effect of PEO-grafting on the 

thermo-responsive properties will be described. Figure 6.9 illustrates that the improved water 

solubility relates to the amount of PEO attached, i.e. it becomes more significant when increasing 

the PEO molar mass (left, compare ○ with ●) or when the number of PEO-grafts increases 

(compare left with right). Figure 6.9 (right) shows that the LCST of the graft copolymer (G4, 11 

PEO-chains) increases compared to the random copolymer. On the other hand, a much higher 

increase could be expected taking into account the hydrophilic nature of PEO. In fact, this can be 

ascribed to the phase behavior between PEO and PMVE, as will be explained in the next section. 
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This behavior is in contrast to graft copolymer systems of PEO with PNIPAAm and PVCL 

[117,79], as a result of different demixing kinetics (see below). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9. LCST demixing curve of: (left) P(MVE-stat-CEVE), 1.73 mol-% CEVE/water (Δ), G1 
(○) and G3 (●); (right) PMVE (Mw = 20 000 g.mol-1) (x), P(MVE-stat-CEVE), 3.61 mol-% CEVE) 
water (Δ) and G4 (○). Figure taken from [105]. 

 

* Quasi-isothermal demixing/remixing: phase separation kinetics  

The phase separation kinetics of an aqueous polymer solution can be evaluated in more detail via 

quasi-isothermal MTDSC experiments [79,81,117]. By doing so, at temperatures above Tdemix, 

cp
app becomes time-dependent until a final excess contribution is attained, illustrated in Figure 

6.10 for a 40/60 G4/water mixture. Note that similar results were obtained for both other 

compositions and other PMVE-g-PEO graft copolymers. The observed evolution with time (which 

typically lasts up to 5000 min) reflects the ongoing interphase development (i.e. morphological 

changes) within the phase separating polymer solution, which apparently is hardly influenced by 

the incorporation of PEO-grafts, unlike what was observed for both PVCL and PNIPAM where the 

final excess contribution was immediately attained at each temperature within the demixing 

region [79,117]. These inconsistencies between PMVE and other amphiphilic polymers is most-

likely linked to the (im)miscibility of the polymer constituents, which will therefore be evaluated in 

following section. 

5

15

25

35

0 20 40 60 80 100
wt% POLYMER

Te
m

pe
ra

tu
re

 (°
C

)

5

15

25

35

0 20 40 60 80 100
wt% POLYMER

Te
m

pe
ra

tu
re

 (°
C

)



Chapter 6 

 

 - 124 -

5 15 25 35 45
Temperature (°C)

c p
ap

p  (J
 g

-1
 K

-1
)

0.5 J g-1 K-1

0 1500 3000 4500
Time (min)

 

Figure 6.10. Overlay of cp
app during non-isothermal heating and quasi-isothermal demixing at 

29.33°C (starting from a homogeneous mixture at 5°C heated at 0.2°C.min-1 to the quasi-
isothermal condition) for 40/60 G4/water. Time-evolution is given by the vertical line and the inset, 
– denotes final value of cp

excess. Figure taken from [105]. 
 

* Miscibility Behaviour of PMVE with PEG/PEO of Different Molecular Mass 

 It was shown that PEO influences the phase behavior of PMVE in water, although in a 

different manner as was observed for other amphiphilic polymers [79,117], possibly linked to the 

(im)miscibility of PEO with the polymer backbone. In order to prove this assumption we will now 

investigate the miscibility of PMVE with PEO of different molar mass. Figure 6.11 shows the 

evolution of cp
app for PMVE/TEG blends spanning the entire concentration range. 

  

 Each blend exhibits two distinct Tg’s (nearly equal to those of the pure PEG and PMVE), 

independent of its composition. Hence, despite the similar chemical structure of both structures, 

PMVE and TEG appear to be immiscible in the temperature range studied. Although the 

miscibility of the constituents is not likely to improve when increasing the polymer molar mass, we 

also examined blends containing PEO of higher molar mass (up to 2000 g.mol-1), as these were 

used during the synthesis of the graft copolymers. Most blends, especially those with a high 

amount of PEO, again display two glass transition temperatures (not shown). Moreover, these 

kinds of blends exhibit crystallization of PEO upon (slow) cooling, inevitably causing 

crystallization induced phase separation. The observed crystallization process is not influenced 

by the amount of PMVE present in the blend, again suggesting immiscibility of both polymers. 

Consequently, one observes the melting of PEO in the subsequent heating.  
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Figure 6.11. cp
app during non-isothermal heating of different PMVE/TEG blend compositions. 

Curves are shifted vertically for clarity. Figure taken from [105]. 

  

6.3.4. High Sensitive-Differential Scanning Calorimetry (HS-DSC) 

 The phase behaviour of the aqueous polymer solutions of PMVE, P(MVE-stat-CEVE) 

backbones and PMVE-g-PEO graft copolymers were also studied by microcalorimetry (table 6.2, 

figure 6.12) in collaboration with Dr. Laukkanen and Prof. Tenhu from the university of Helsinki. 

The differences in the graft copolymers may be detected by studying calorimetrically the collapse 

of the PMVE backbone. In water PMVE is surrounded by highly organized water molecules that 

dissociate with increasing temperature to free water molecules due to enhanced hydrophobic 

interactions of the PMVE segments [67,84,85-86,122-123]. The dissociation of the water clusters 

is an endothermic process and can be detected by microcalorimetric measurements. 

 

 The changes with temperature of the partial excess heat capacity Cp of aqueous 

solutions of several copolymer samples (5 g.L-1) are presented in figure 6.12. The copolymers 

show interesting differences in their thermal behaviour.   
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Figure 6.12. Microcalorimetric endotherms for aqueous solutions of PMVE 12 000 homopolymer 
(H), the backbone B1 (B) and the graft G5 (G). Cp is expressed per J.mol-1.K-1 (per gram) of dry 
polymer. The polymer concentration is in all cases 5 g.L-1 and the heat rate is 90°C/h. 
 

All thermograms, shown in figure 6.12, are endothermic, narrow, and symmetric, with a 

sharp increase in heat capacity Cp on the low temperature side (onset of the transition, Tonset) 

and a continuous decrease of Cp for temperatures higher than a maximum temperature Tpeak. 

The sharp endothermic peak of Cp is followed by a well-defined plateau. The difference between 

the heat capacities of the coil and the globular states can be measured as the difference between 

Cp(T) curves extrapolated from both sides of the transition (i.e. from the coil and the globular 

states) to its middle point at Tpeak. It is clearly seen in this figure that the heat capacity of 

copolymers at high temperature is smaller than that at low temperatures, thus a negative change 

in heat capacity due to the transition can be detected. For PMVE, the value of ΔCp was -74 J.mol-

1.K-1.  

Spartly observation was also detected for cooling scans from 100 to 10 °C, although the 

sign of ΔCp was opposite. A similar negative change in Cp has also been observed for PVCL 

(ΔCp –70 Jmol-1K-1) [10] and for PNIPAAm (ΔCp –63 J.mol-1.K-1) [122-123]. This negative heat 

capacity change was explained by the dehydration of MVE units during the coil-to-globule 

transition. A similar lowering of the heat capacity can also be detected for low molar mass 

surfactants during micelle formation [124] and for protein refolding [125], as well as for phase 

transitions of various pluronic-type block copolymers [126]. Such a negative heat capacity 

change during the phase transition may be taken as an indication of diminished interaction 

between water molecules and polymer chains. Correspondingly, the present decrease of Cp(T) 

reflects the collapse of the polymer upon heating. 

  

From plots of the partial heat capacity of copolymer solutions versus temperature, one 

can extract three thermodynamic parameters: Tonset, Tpeak and ΔH, the enthalpy of the transition. 

H

B

G
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The values of Tonset and Tpeak follow the same trends as the values of Tcp. Table 6.2 shows the 

difference between the Tcp’s of the graft copolymers derived from the PMVE-stat-CEVE.  

 

Table 6.2. Summary of microcalorimetry DSC results in H20 with 5.00 g.L-1 concentration. The 

heating rate is 90°C/h and the enthalpy is given in kilojoules per mol MVE repeating units. 

Sample PEO wt-% Tonset (°C) Tpeak (°C) ΔH (kJ mol-1) 

PMVE 12000 / 31.2 37.5 5.00 

B1  / 25.7 33.9 1.83 

B2 / 23.9 32.8 1.87 

G1 TEG 4 24.3 34.5 0.79 

G3 2000 26 28.0 35.0 0.03 

G4 2000 52 23.1 31.0 0.59 

G5 2000 63 17.4 27.1 0.69 

G6 5000 47 27.7 34.6 0.17 

G8 5000 75 17.0 27.7 0.47 
 

The peak temperatures of the collapse were 31.0°C and 27.1°C for G4 and G5, 

respectively. The difference in Tcp is of the same order of magnitude as was observed by UV-

spectrophotometry. The Tcp of the graft copolymers prepared from PMVE-stat-CEVE with high 

PEO contents are shifted to ~ 28°C while PMVE-stat-CEVE has a Tcp at ~ 34°C, so we can 

conclude that the presence of PEO decreases the Tcp of the graft copolymers. For that reason, 

the effect of the grafting degree was studied. 

 The enthalpy of transition, as well, exhibits a significant dependence on the PEO grafting 

degree. The effect of the number of PEO chains on the Tcp and on the corresponding enthalpy 

change is clearly seen in figure 6.13.  
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Figure 6.13. Dependence of the heat of transition on the mass fraction of PEO in PMVE-g-PEO 
with PEO 2000 (■), PEO 5000 (□) and TEG(*). Enthalpy is given in kilojoules per mol MVE 
repeating units. 
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In figure 6.13, the heats of transition of PMVE-g-PEO, obtained from the thermograms in 

figure 6.12, are shown as a function of the number of the PEO grafts. From this, it becomes clear 

that the heat of transition results from the PMVE segment as the enthalpy change is almost 

constant regardless of the degree of grafting. However, the average ΔH (kJ.mol-1) is smaller than 

those reported for homopolymer PMVE and the statistical copolymers P(MVE-stat-CEVE). This 

could be explained by the fact that PMVE is less surrounded by water because of the presence of 

chlorine groups and PEO grafts (see earlier). 

 

6.3.5. Dynamic Light Scattering (DLS) 

6.3.5.1. Effect of the Length of PEO 

A temperature scan of the apparent hydrodynamic radius Rh and the intensity of light I of 

the three graft copolymers were conducted by DLS (see PART IV.: Experimental Part). As 

expected from the thermo-responsiveness of PMVE, the solution behaviour of PMVE-g-PEO 

copolymers differs below and above Tcp and discussed separately. The apparent Rh and I 

scattered from the aqueous polymer solutions with a constant concentration (1.0 g.L-1) are plotted 

versus temperature in figure 6.14 for different grafting degree of PEO. For all the samples, the 

light scattered intensity increases significantly at Tcp and stabilizes above this temperature. This 

means that no precipitation occurred above the Tcp. This is also confirmed by the high Rh values, 

which do not decrease after the Tcp. The colloidal stability will be discussed later.  

 

Moreover, the temperature dependant behaviour of polymers with varying PEO amount                  

(Mn PEO = 5 000 g.mol-1) is plotted in figure 6.14. The amount of PEO has indeed an influence on 

the Tcp. I scatters at lower temperature when the number of PEO side chains increases, in other 

words the more PEO side chains are present in the graft copolymers, the less they are soluble in 

water. This conclusion is in agreement with the one obtained from the previous techniques. 
 

DLS was used to study the aggregation behaviour of the graft copolymers in water as a 

function of temperature, and was compared to the homopolymer and the backbone. The results 

are recapitulated in table 6.3.  
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Figure 6.14. Temperature dependencies of apparent hydrodynamic radius Rh (open symbols) 
and intensity of scattered light I (filled symbols) obtained at 90° scattering angle. Data collected 
for equilibrium heated G6 (3 PEO) (Δ, ▲), G7 (5 PEO) (○, ●) and G8 (12 PEO) (□, ■) with 1.00 
g.L-1 copolymer concentration. 
 
 

Table 6.3. Results of the size distribution of hydrodynamic radius on the PMVE 12 000, the 

backbone B1 and the graft copolymers with 1.0 g.L-1 concentration at different temperatures.  

Sample Code Tcp (DLS) Rh at 20°C (nm) Rh at Tpeak (nm) Rh at 50°C (nm) 

PMVE 12000 39 110 225 150 

B1 35 125 146 114 

G1 34 113 149 101 

G3 35 114 176 131 

G6 36 136 166 124 

G7 33 106 141 126 

G8 30 114 137 103 

 
 

For all polymers, a Rh of about 115 nm was measured at room temperature due to 

interchain interactions or microscopic phase separation. At Tcp, an increase in Rh was found, due 
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to the increase of the size of the interchain aggregates. Further heating of the solutions leads to 

the formation of stable aggregates, which shrink with increasing temperature (see below). 

 

 When the number of PEO side chains increased, I decreased, which confirms the 

hypotheses made by Ikeda [121] and Verbrugghe [10,115] (see before). As was already 

observed previously with other techniques (see 6.3.2. UV-VIS transmission and 6.3.4. HS-DSC), 

the length of the PEO chains does not really affect the Tcp of the graft copolymers (G3 and G6) 

for the same number of chlorine groups and the same number of PEO side chains. Moreover, for 

PMVE-g-PEO (G6, G7 and G8) in aqueous solutions, a decrease of Tcps was found with 

increasing PEO graft content (table 6.3). This was expected, again because of the competition 

between PEO and PMVE to interact with water and their immiscibility. 

The change of Rh can be divided into three stages: 1) when temperature increases from 

20 to 32°C, water progressively becomes a poor solvent for the PMVE chain backbone, resulting 

in a slight decrease of Rh; 2) in the range ~32-34°C, the PMVE chain backbone undergoes the 

intrachain ‘coil-to-globule’ transition so that Rh rapidly increases; and 3) at temperatures higher 

than 34°C, the PMVE chain backbone is already in its fully collapsed state, so that a further 

increase of temperature has little effect on Rh.  
 
6.3.5.2. Size Distributions of Hydrodynamic Radius (Rh) 

The size distributions of Rh can be observed in figure 6.15.   
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Figure 6.15. Size distribution of Rh displayed by intensity I obtained for G3 for selected 
temperatures above (○), at Tpeak (□) and below (Δ ) the Tcp with 1.00 g.L-1 concentration. 
 

According to this, the particle size is constant below the LCST and upon heating above T 

> 45 °C, but differs at the Tcp. Below the Tcp, even if the particle size is constant (table 6.3), the 

size distribution is broad and the high Rh values refer to aggregate formation (figure 6.15). This 

could be explained by the specific PMVE behaviour. Arndt [127] and Tenhu [123] have concluded 

that PMVE does not exist as isolated chains in water, but forms stable mesoglobules (Rh = 200 - 
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220 nm). Even if the Rh values increase at the Tcp, the size distribution of Rh is still broad and a 

slight variation could be observed. Above the Tcp, the size distribution of the copolymers becomes 

narrow. Thus, we can conclude that the graft copolymers follow the same trends as the PMVE 

chains in aqueous solution. These swelling and shrinking aggregates below and above the Tcp 

are represented in scheme 6.5.   

 
 

 

 

 

 

 

 

 

 
 
 
Scheme 6.5. Formation of an aggregate and the dependence of its average hydrodynamic radius 
Rh on temperature. Model describing the steps for the formation of an aggregate and its shrinking 
upon slow heating from 20°C to 35°C and to 50°C. 
 

6.3.5.3. Studies on Colloidal Stability 

 In order to study the colloidal stability of the copolymers, the behaviour of I was observed 

from figure 6.14 in aqueous solutions from the polymer concentration range of 0.02 to 1.00 g.L-1 

at 50°C (above Tcp). Above the Tcp, the solutions are cloudy, which can be seen by the increase 

of I. The high turbidity at elevated temperatures was caused by colloidal particles formed by the 

aggregates PMVE-g-PEO. The distribution of Rh of the aggregates is monomodal and narrow 

(figure 6.15). The particles were remarkably stable against further aggregation and no 

precipitation was detected for several weeks. Although the aggregates are large enough to be 

observed visually, they do not precipitate. After leaving the aqueous solutions at 50 °C during two 

years, a precipitation was observed after two months for the concentration higher than 0.5 g.L-1 

but they did not precipitate for lower polymer concentration.  
 

6.3.6. Surface Tension Measurement 

 It was shown in the previous section by DLS measurements that below the Tcp, even at 

low concentration (1 g.L-1), no micelles but stable aggregates are formed. So, it would be 

interesting to know at which concentration the aggregates start to be formed. Surface tension 

measurements were made to determine the critical aggregate concentration (CAC) (see figure 

6.16). 

 As it can be seen in figure 6.16, the surface tension decreases when micelles or single 

chains are present in aqueous solution. When the surface tension is stabilized, which can be 

defined as the start of the plateau, aggregates are formed. According to this figure, CAC is 

T <<  Tcp                                             T ∼ Tcp                                           T > Tcp 

Rh Rh 
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determined at 0.00026 mg.mL-1. Because of this low value, we could wonder if this value is a 

good one according to the loss of accuracy of the apparatus at such low concentrations. The 

same observations were also done above the Tcp (45°C). 

 

 
Figure 6.16. Surface Tension measurement of PMVE-g-PEO in water at 25°C. 
 

 

6.3.7. Ultrasonic Treatment for Pigment Surface Modification in Pigment 

Dispersions 

The process of surface modification of hydrophobic organic pigments (copper 

phthalocyanine (CuPc) as well as a hydrophilic inorganic pigment (titanium dioxide (TiO2) in 

aqueous dispersions by employing tailor-made thermo-responsive PMVE-g-PEO, and the 

colloidal stability have been studied as a function of temperature. The pigment surface 

modification is achieved by conventional adsorption and by thermoprecipitation. The effect of 

mechanical treatment of the pigment dispersion by ultrasonic power alone or in combination with 

the LCST property was investigated by Nicolaï Bulychev in the University of Stuttgart in Germany 

in collaboration with Professor Eisenbach [128]. The course of the pigment surface coating 

process was followed by the Electrokinetic Sonic Amplitude (ESA) method (not further explained, 

outside the scope of this thesis).  

 

It was found that ultrasonic treatment together with LCST thermoprecipitation is a 

promising method for the surface modification of pigments with regard to dispersion stability. It 

was shown that, depending on the temperature, those graft copolymers can be adsorbed on both 

hydrophilic and hydrophobic pigment surfaces. Below the LCST, all grafts are hydrophilic and 

thus act as efficient stabilizers of TiO2 aqueous dispersions. Above the LCST, a fast coagulation 

occurs. A subsequent cooling below the LCST in combination with ultrasonic action allows to 

redisperse the system. In the case of CuPc aqueous dispersions, reverse stabilization behavior is 

observed: above the LCST, all grafts copolymers act as stabilizers of CuPc aqueous dispersions, 

while fast coagulation is observed below LCST. ESA measurements proved the absence of 
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adsorption below the LCST; however above the LCST, PMVE-g-PEO is able to adsorb on the 

CuPc surface in aqueous dispersions. 

 

This allows for the use of these PMVE graft copolymers as universal smart surfactants for 

surface modification of both polar inorganic and non-polar organic pigments and for temperature-

controlled interaction. 
 

6.4. Conclusion 

 It was found that phase separation of PMVE copolymers in aqueous solution depends on 

the structure of the second monomer (IBVE or CEVE) and the composition of the copolymer. In 

graft copolymers, where hydrophilic and hydrophobic groups are not randomly located, well-

defined self-organized structures are formed. However, in statistical copolymers the tendency of 

self-organization would be considerably reduced, especially when the segregation tendency of 

both groups is not very large. The presence of a small content of hydrophobic PCEVE and PIBVE 

in the random copolymers influences the solubility of the PMVE. P(IBVE-co-MVE)  is  only water-

soluble if the IBVE content is  7 mol-% or lower. Moreover, the Tcp of PMVE decreases very much 

until 10°C when only 6 mol-% IBVE units are present in the copolymer. Also, in the case of 

P(MVE-stat-CEVE) where CEVE is less hydrophobic than IBVE, the incorporation of CEVE units 

clearly lowers the Tcp of the PMVE up to a complete loss of the water-solubility for copolymers 

with CEVE content higher than 3 mol-%.  

 

 PMVE-g-PEO aqueous solutions were evaluated for their thermo-responsive behaviour. 

The influence of polymer concentration, the presence of chlorine groups, the grafting degree and 

the length of the PEO side chains was monitored by UV-spectrophotometry, microcalorimetry and 

MTDSC measurements of the solutions as a function of temperature. All the copolymers share a 

number of characteristics when dissolved in water: they undergo a reversible heat-induced phase 

transition when brought to a temperature beyond a critical value. This temperature, detectable by 

changes in the absorbance of the solution, or more accurately measured by DSC, depends on 

the number and the distribution of the PEO grafts. PEO grafts form a hydrophilic shell stabilising 

the hydrophobic PMVE and some PEO in the core. DLS shows that the graft copolymers tend to 

form well-defined polymeric aggregates but never micelles below and above Tcp. Moreover, the 

grafting degree has no effect on the particle size. Furthermore, the water solubility of the PMVE-

g-PEO was much improved with the incorporation of PEO side chains. Both PMVE and PEO 

were found to be immiscible in water, which results in a ‘phase-separated’ water-soluble polymer.  

 

Polymeric aggregates are well investigated transport systems for drugs, and the 

combination with thermo-responsivity is now being explored for ‘intelligent’ drug delivery systems. 

Besides, it has been demonstrated that PMVE-g-PEO could be used as smart surfactants for 

surface modification of both polar inorganic and non-polar organic pigments. 
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Abstract 
 
Smart copolymers with thermo-and/or pH-responsive properties were prepared by 
grafting polystyrene (PS) or poly(methacrylic acid) (PMAA) of different molecular 
weights from the thermo-responsive PMVE. First homopolymerizations of styrene, and 
also of tert-butyl methacrylate (tBMA), which is the protected monomer of methacrylic 
acid (MAA), were investigated with a new ATRP-initiator, 2,2,2-tribromoethanol (TBE), 
and two catalyst systems: NiBr2(PPh3)3 and PMDETA/CuBr. From the results of these 
homopolymerizations, macromolecular graft copolymers with a statistical side chain 
spacing along the PMVE backbone have been synthesized by the ‘grafting from’ 
approach. For this, a macroinitiator was prepared by transforming the statistical 
P(MVE-stat-CEVE) copolymers into PMVE-g-TBE by the nucleophilic substitution of the 
chlorine groups.  
From this macroinitiator, PMVE-g-PS, and also PMVE-g-PtBMA graft copolymers were 
synthesized by ATRP (see Chapter 8). In the case of PMVE-g-PtBMA conditions to 
control the grafting process could not be found, thus the synthesis of PMVE-g-PMAA 
was not further investigated. For PMVE-g-PS, NiBr2(PPh3)3 was found to be the best 
catalyst system, resulting in narrow polydispersity index and longer side chains.  
 
MTDSC was applied to study the influence of the presence of PS grafts on the 
solubility behavior of PMVE backbone in water (see Chapter 9). The presence of PS 
grafts diminishes the solubility of PMVE until a complete immiscibility occurs in water 
at room temperature. The phase diagram showed that the LCST of PMVE disappears. 
These graft copolymers were used to prepare aqueous aggregates. The morphological 
characterization of the aggregates was performed by DLS and atomic force microscopy 
(AFM). The larger structures were the result of micelle-like aggregates.  
Besides, the thermo-responsiveness of the novel PMVE-g-PS graft copolymers was 
compared to those of the conventional aqueous PMVE solutions. The behavior of 
aggregates of PMVE-g-PS resembles the one of the mesoglobules of the PMVE 
homopolymer. Large aggregates collapses upon heating, whereas collapse occurred slowly 
within a broad temperature range in the case of micelle like structures. However, with 
microcalorimetry the collapse of the PMVE chain was observed to take place in all 
samples, suggesting that the shells of the micellar particles are crowded in a way that 
hinders the compression of the PMVE backbone. 
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Chapter 7 
 

 
 

Theory of Controlled Radical 
Polymerizations 

 

 
 

7.1. Introduction 

 Radical polymerization is industrially the most widespread method to produce materials 

such as plastics, rubbers and fibers [1]. The advantages of radical polymerizations over ionic 

polymerizations are numerous: a large variety of vinyl monomers have been polymerized or 

copolymerized and the reaction conditions require only the absence of oxygen. The major 

drawbacks of free radical polymerization are related to the lack of control over the polymer 

structure. 
 The development of ionic polymerization methods allowed for the preparation of well-

defined polymers with controlled chain end functionalities and the synthesis of well-defined block 

and graft copolymers [2]. However, these polymerizations have to be carried out with nearly 

complete exclusion of moisture and often at very low temperatures. Moreover, only a limited 

number of monomers can be used, and the presence of functionalities in the monomers can 

cause undesirable side reactions. 

 More than a decade ago, a relatively new method to synthesize well-defined polymers, 

called Controlled Radical Polymerization (CRP) [3-5], was developed by several groups. There 

are now several procedures for controlling the radical polymerization, and corporations are 

introducing products based on CRP into numerous high-value markets [6]. One of the most 

successful methods is atom transfer radical polymerization (ATRP), introduced by Matyjaszewski 

and Sawamoto in 1995 [4-7]. As the ATRP-process will be used in this research, it will be 

presented in detail in this chapter. 
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7.2. Controlled Radical Polymerization (CRP) 

7.2.1. Mechanism 

A Controlled Radical Polymerization (CRP) is a polymerization based on an equilibrium 

between growing ‘active species’, growing polymer chain with an active radical at the end, and a 

‘dormant species’ [5,8]. A deactivator reacts with growing chains to deactivate them, forming 

dormant species which prevent from termination reaction as shown in scheme 7.1. 

C X C X
activation

k a

deactivation
k d

dormant species active species

+

deactivator

no polymerization polymerization  
Scheme 7.1. Mechanism of activation-deactivation for CRP. 

 

Radicals formed during the initiation in CRP are present in the reaction mixture during 

several hours, while in free radical polymerization, the lifetime of a radical is very short, in the 

order of a second during which the initiation, propagation and termination take place. The 

initiation step of a CRP has to be very fast compared to the propagation step so that all the 

radicals are formed at the same time, and thus the propagation of the polymer chains can occur 

simultaneously. 

  

Propagating species are produced by an activation process (with rate constant ka in which 

the radical is being formed). The active species are deactivated reversibly (with a deactivation 

rate constant kd) by the deactivator X. Only active species can polymerize with propagation rate 

constant kp.  

 

 Because of the equilibrium between active and dormant species, the concentration of the 

radicals (active species) during the polymerization is very low, leading to a slow propagation and 

the reduction of the termination or transfer reactions. The dynamic equilibrium between the active 

and dormant chains influences the concentration of the radicals and thus the speed of the 

reaction. The more the equilibrium is shifted to the left (dormant species), the more the reaction is 

controlled [3-4]. Every polymer chain grows over a long period of time repeating 

activation/deactivation cycle. The time interval between each cycle is typically in the range of 0.1 

to 10 ms.  
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7.2.2. Characteristics of Controlled Polymerization Processes 

 A radical polymerization is considered to be controlled if it is conform to certain criteria, for 

which the evolutions during the polymerization are shown in figure 7.1. 

 

 

Figure 7.1. Influence of slow initiation step, termination and transfer on (a) kinetic plot and on (b) 
molecular weight. Figures taken from ref [4]. 

 

CRP differs from free radical polymerization by [3-4,7,9]: 
 

 Internal first-order kinetics with respect to monomer 

The evolution of ln[M]0/[M] as a function of time has to be linear, if the reaction is of first order, 

proportional to the monomer concentration [M] (eq. 7.1) (figure 7.1a). This provides that initiation 

is fast. Equation (7.2) of the propagation rate (Rp) shows that if Rp is first-order with respect to 

monomer concentration [M], the propagation rate constant kp is constant throughout the reaction, 

and hence the termination reactions are neglected. 

                                                   

[ ]
[ ] .tk
M
M

ln '
p

0 =
   

                                          
[ ] [ ][ ]M.P.k
dt
MdR npp

•=−=
 

An accelerating plot is due to a slow initiation, and a decelerating plot is due to termination 

reactions.    
 

 Linear growth of DPn with conversion 

Fast initiation, at least as fast as propagation, gives control over Mn (the DPn is defined by the 

ratio of concentrations of the consumed monomer to the introduced initiator DPn = Δ[M]/[I]0). The 

evolution of the Mn as a function of conversion has to be linear (figure 7.1b). A higher Mn than 

expected is obtained if the initiation step is not efficient or if some combination occurs. On the 

contrary, a lower Mn can be the result of transfer reactions (scheme 7.1).  
 

 

eq. 7.1,   with  kp’= [Pn
.][M] 

eq. 7.2 
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 Narrow Mw/Mn 

The Mw/Mn decreases with the conversion for systems with a slow initiation step and a slow 

exchange between dormant chain and active chains. 
 

7.2.3. The Different Controlled Radical Polymerizations 

 Currently, three methods appear to be most efficient and can be successfully applied to a 

large number of monomers: stable free radical polymerization (SFRP), best represented by 

nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer 

(RAFT), and metal catalyzed atom transfer radical polymerization (ATRP) along with other 

degenerative transfer processes.  

 All CRP techniques mentioned before use an agent that reacts with growing chains to 

‘deactivate’ them, and so preventing termination reactions. The main difference between the 

polymerization techniques is the nature of the deactivator X (scheme 7.2), apart from other 

specific reactants. For NMP, RAFT and ATRP, the deactivating species X are given in table 7.1. 

In ATRP, the radical at the active polymer chain end is trapped by an halogen [6]. 
 

Table 7.1. Deactivators used in CRP. 

CRP technique NMP RAFT ATRP 

 

 

Deactivator X 

Nitroxides    

       

N O

   

Dithioesters 

CS

C

SX=

 

Halogen metal ions 

 

X = Br, Cl + metal 

(CuIBr/2L, etc) 

 

 
 

 

Nitroxide Mediated Polymerization (NMP) [4,10] 

In this process, which is similar to ATRP, control is introduced by the use of a nitroxide. The 

polymerization process is a dissociation-combination mechanism where R-X is thermally or 

photochemically dissociated into R•, the growing chain polymer, and X•, the nitroxide. This is the 

initiation step. 

X• is a stable radical that can only react with R• to form a dormant species (alkoxyamine). X• 

radicals should not react between themselves, and should not initiate propagation. R• induces 

propagation by adding a monomer and the dissociation-combination process takes place until the 

end of the polymerization (scheme 7.2).  

X = 
  
 
                      TEMPO 
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+
ka

kd

X

+

NO

NO

R NO

R CH2 CH

X

R CH2 CH

X

O N

n
X

R

R CH2 CH

X

CH2 CH

X
n

R CH2 CH

X

CH2 CH

X

O N
n

Initiator 2 R

 

Scheme 7.2. Reaction of polymerization using TEMPO. 
 

Reversible Addition Fragmentation Transfer (RAFT) [4,11-12] 

This process makes use of a dithioester compound [12] to obtain a dynamic equilibrium between 

the dormant and the active species. The dithioester (table 7.1) undergoes a fragmentation to form 

an active radical P•
i (i = m or n) and a dormant species (scheme 7.3). After addition of monomer, 

addition occurs again, and the cycle can be repeated. 

 
+ +Pm Pn

Z

S S
Pn

Z

SS
Pmm n

Z

S S
P P

kadd

kfrag kadd

kfrag

MM  

Scheme 7.3. Reaction of polymerization by RAFT process. 
 

This technique can be used to polymerize all kinds of vinyl monomers such as styrenes, 

(meth)acrylates including acrylic acid and vinyl acetate which are not polymerizable by ATRP. 

Thioesters are revealed to be good transfer agents [13]. Some problems of RAFT are related to 

the dithioesters themselves. They are not commercially available and the resulting polymers are 

sometimes coloured. Furthermore, dithioesters and their reaction can give rise to unpleasant 

odour. 
 

Atom Transfer Radical Polymerization (ATRP) [3-5,7] 

As our research was focused on ATRP, its mechanism will be presented in more detail in the 

following section. 
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7.3. Atom Transfer Radical Polymerization (ATRP) 

7.3.1. Polymerization Mechanism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Scheme 7.4. Mechanism of ATRP. 
 

Because the key step in controlling the polymerization is atom (or group) transfer between 

growing chains and the catalyst, this process was called ATRP. In this mechanism, the active 

radical R˙ is formed by a transfer of the halide group X to a transition metal complex Mt
n. This 

radical can initiate the propagation of the monomer and form the propagating species P-M˙, the 

‘active species’ (scheme 7.4). 

 

ATRP is a catalytic process: the rate of polymerization depends on the concentration of 

the transition metal in its lower oxidation rate. It is one of the principal advantages of this method. 

The control over the polymerization depends on the equilibrium between the active and the 

dormant species. The active species reacts with the metal halide complex to form the ‘dormant 

species’ P-M-X. This is in fact a redox reaction. 

Mt
n: catalyst in low oxidation state            

Mt
n+1: catalyst in high oxidation state       

ka: rate constant of activation   

kdeact: rate constant of deactivation    

kp: rate constant of propagation 

kt: rate constant of termination by 

dissociation or by combination 

 Initiation:

R-X + Mt
n R .

Mt
nMt
n. .

+M

XMt
n+1

+M

+M

XMt
n+1

P-M-X ++

+
ka

o

kd
o

P ropagation:

P-M-X Mt
nMt
n+

ka

kd
P-Mn

. XMt
n+1

+

+Mkp kp

Term ination:

P-Mn R-Mm
..

+ kt P-Mn+m

Pn
H     +     Pm

=

sleeping specie deactivatoractive specie

initiator
X=Cl, Br

sleepin g specie active specie

P-Mn R-Mm
..

+ kt

combination

disproportion

P-M

disproportionation

dormant species

dormant species active species

active species
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7.3.2. Role of the Reactants in ATRP 

 All the ATRP systems consist of an initiator, a transition metal complex with a ligand and 

a monomer. The control over the polymerization process depends on the equilibrium between the 

active and the dormant species. In the following, each component of the ATRP system will be 

discussed in more detail. 
 

* Initiator  

Two parameters are important for a successful ATRP initiating system: 1) initiation should be fast 

in comparison with propagation; 2) the probability of side reactions should be minimized. The 

amount of the initiator determines the final Mn of the polymer at full monomer conversion. The 

initiator is generally an alkyl halide RX whose structure is analogous to the polymer. Its main role 

is to generate growing chains. The radical formed on the terminal structure is secondary or 

tertiary, dependent on the terminal structure of the polymer. For example, a secondary initiator 

will normally be used to polymerize acrylates, while a tertiary one will be used to polymerize 

methacrylates. The halide group must rapidly and selectively migrate between the growing chains 

and the transition metal. Chloride and bromide have been shown to be the best halides for this 

exchange. The bromide forms a weaker bond than the chloride, which permit to have faster 

initiation and propagation steps.  Fluorine is bound too strongly to the growing chain, and 

although iodine is a good leaving group for acrylate polymerizations, it is involved in side 

reactions in styrene polymerization. In this work, tribromoethanol (TBE) and derived products 

have been used as the initiator (scheme 7.5).  

 

OHBr
BrBr  

 
Scheme 7.5. Tribromoethanol (TBE). 

 
* Catalyst 

The catalyst is a transition metal that is complexed by one or more ligands in order to obtain an 

optimal control of the polymerization; it does not need to be used in one to one ratio with the 

initiator but can be used in smaller quantities. There are several prerequisites for an efficient 

transition metal catalyst:1) the metal center must have at least two readily accessible oxidation 

states separated by one electron; 2) the metal center should have reasonable affinity towards a 

halogen; 3) the coordination sphere around the metal should be expandable upon oxidation to 

selectively accommodate a (pseudo)-halogen; 4) the ligand should complex the metal relatively 

strongly. 

The catalyst is usually a copper (I) halide system. Cu (I) complexes are mostly used for the 

polymerization of styrenes, (meth)acrylates, acrylonitriles and dienes since they have been 

shown to be the most efficient catalysts. Also, various polydentate imine/amine ligands are used 

to solubilise the catalyst, as discussed below.  



Chapter 7 

 - 154 -

Moreover, a lot of others metals like Ni, Pd, Ru, Re… have been used. In this work, nickel (II) 

bis(triphenylphosphine) dibromide (NiBr2(PPh3)2) (scheme 7.6) was used. The particularity of this 

catalyst is to provide ATRP in the absence of any Lewis acid additive or ligand.  

Ni

Br

Br
Ph3P

Ph3P

 
Scheme 7.6. Nickel (II) bis(triphenylphosphine) dibromide (NiBr2(PPh3)2). 

 

At the end of the polymerization, the catalyst system introduces a halide end group to the 

polymer chains. The attractive flexible initiation with RX/transition metal catalyst is often 

overcompensated by the difficulties of catalyst removal from the polymer. Therefore, its industrial 

application is unlikely as long the toxic and coloured catalysts can not be removed from the 

polymers properly.  

After our research, processes with ppm amounts of copper have also been developed where the 

activators are regenerated by electron transfer (ARGET) ATRP. This method provides a 

continuous controlled polymerization with a significant reduction of the amount of copper based 

catalyst complex (down to ~ 10 ppm) due to a constant regeneration of the Cu(I) activator species 

by environmentally acceptable reducing agents, which compensate for any loss of Cu(I) by 

termination (scheme 7.7) [16]. In this way, higher Mw polymers were synthesized [14-15]. 

R X

R R

Cu X / LigandI

Cu X2 / LigandII

Cu X2 / LigandII+
k a

k da
R

+ M
k p

+

+

k t

Oxidized Agent

Reducing Agent  
Scheme 7.7. Proposed Mechanism for Activators Regenerated by Electron Transfer for ATRP 
(ARGET ATRP). 
 
 
* Ligand 

The role of the ligand is to solubilize the catalyst and to react in the redox reaction by forming a 

complex with the metal. The ligands influence the equilibrium between the active and the dormant 

species: the lower the redox potential of the Cu/ligand is, the more the equilibrium shifts from 

dormant species to active species, leading to more radicals in the system. Ligands may also 

facilitate the removal and recycling of the catalyst. 
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The most common ligands are 2,2’-bipyridine (bipy) and derivatives, N,N,N’,N”,N”-

pentamethyldiethylenetriamine (PMDETA) and N,N,N’,N”,N”-hexamethyl-tris (2 aminomethyl) 

amine (M6 TREN) (scheme 7.8). 

N
N N

             
N

N
N

N

                
N N

R R

 
 
           PMDETA                              Me6-TREN                                           R = H                         bipy 
           R = 5- nonyl           dNbipy 
           R = 7- heptyl          dHbipy 

 
Scheme 7.8. Typical ligands for Cu-based ATRP. 

 

* Monomer 

 By ATRP many kinds of vinyl monomers can be used such as styrenes, (meth)acrylates, 

acrylonitriles, acrylamides and dienes (scheme 7.9).  
 

 
 
 
     
   
 
 
      
  Styrene                         acrylate                               methacrylate                     acrylonitrile                        diene 
 

Scheme 7.9. Examples of monomers used in ATRP. 
 
 

 However, ATRP is not able to polymerize (meth)acrylic acid because of the sensitivity of 

the catalyst system to the acid functionalities. For example, CuBr2 quickly reacts with the 

monomer to generate Cu(acrylate)2, an efficient radical scavenger. To overcome these 

complications, protective derivatives of the acids can be used in the polymerization. This work will 

focus on styrene on one hand, and methacrylate on the other hand, specifically tert-butyl 

methacrylate in order to form methacrylic acid. 

 

 The advantage of ATRP compared to the other techniques is that it permits to polymerize 

a large variety of vinylic monomer in a large range of temperatures. The reaction can also be 

performed in bulk, solution, dispersion or emulsion. It allows easy control of chain topology, 

composition and functionality. 
 

7.3.3. Kinetics 

 According to scheme 7.4, the kinetics of ATRP are discussed here using an 

homogeneous catalyst system. First, initiation should be fast, providing a constant concentration 

of growing polymer chains; secondly, because of the persistent radical effect (PRE), termination 

becomes insignificant and the speed of activation and deactivation can be written as follow: 

O

O
R

R

O

O
R

CN
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act
eq

deact

kK
k

=
 

                                                              
[ ]0

n
act actR k I Mt⎡ ⎤= ⎣ ⎦                                                                   eq. 7.3 

                       
1n

deact deactR k P X Mt∗ +⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦                                                eq. 7.4 

with [I]0 = concentration of initiator 

[P*] = concentration of polymer radical 

[Mtn] = concentration of catalyst at low oxidation state 

[X-Mtn+1] = concentration of oxidized metal complexes as persistent radicals 
 

The rate of the polymerization is also influenced by the ratio of concentrations of the activator to 

deactivator, although this may change during polymerization. The rate law for ATRP can be 

derived as follows: 

  

[ ] [ ] [ ][ ]0 1

n

p p p eq n

Mtd M
R k M P k K M I

dt X Mt
∗

+

⎡ ⎤− ⎣ ⎦⎡ ⎤= = = ×⎣ ⎦ ⎡ ⎤−⎣ ⎦                          eq. 7.5 

with                          , the magnitude equilibrium constant determining the polymerization rate 

 

kact = rate constant of activation 

kdeact = rate constant of deactivation 

kp = rate constant of propagation 
 

 Results from kinetic studies of ATRP indicate that the rate of polymerization is first-order 

with respect to monomer, initiator and metal complex concentrations. These observations are all 

consistent with the derived rate law (eq. 7.5). The kinetically optimal ratio of ligand to copper in 

the polymerization of both St and MA was determined to be 2/1. Below this ratio, the 

polymerization rate was usually slower, and above this polymerization rate remained constant. It 

should be noted that the optimum ratio can vary with regard to changes in the monomer, counter 

anion, ligand, temperature and other factors [16].  

 

 The precise kinetic law for the deactivator (X-Mtn+1) is more complex due to the 

spontaneous generation of Mtn+1 via the PRE [17]. In the atom transfer step, a reactive organic 

radical is generated along with a stable Mtn+1 species that can be regarded as a persistent 

metallo-radical. If the initial concentration of deactivator Mtn+1 in the polymerization is not 

sufficiently large to ensure a fast rate of deactivation (kdeact[Mtn+1]), then coupling of the organic 

radicals will occur, leading to an increase in the Mtn+1 concentration. Radical termination occurs 

rapidly until a sufficient amount of deactivator Mtn+1 is formed and the radical concentration 

becomes low enough. Under such conditions, the rate at which radicals combine (kt[R1]2) will 

become much slower than the rate at which radicals react with the metal complex 

(kdeact[R1][Mtn+1]) in a deactivation process and a controlled/living polymerization will proceed. 

Typically, a small fraction (∼5%) of the total growing polymer chains will be terminated during the 

early stage of the polymerization, but the majority of the chains (> 90%) will continue to grow 
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successfully. If a small amount of the deactivator (∼10 mol-%) is added initially to the 

polymerization, then the proportion of terminated chains can be greatly reduced [18]. 
 

7.3.4. Graft Copolymers 

 Because of the control over Mn and functionality, ATRP has allowed for the synthesis of 

numerous materials with many novel topologies. With the exception of linear polymers, 

architectural differences lie in branched structures with regard to the number of branches and 

their relative placement in the macromolecules. However, these changes in composition may 

provide dramatic differences in their properties. The following examples serve as starting points 

for our next study (Chapter 8) that will concentrate on the synthesis of graft copolymers. Two 

methods, grafting from and grafting through, have been used in conjunction with ATRP in the 

design of graft copolymers and underscore the versatility of this controlled radical polymerization 

technique to synthesize a variety of copolymers. Some examples are already described in 

Chapter 4.2. In our case, the chlorine groups of PMVE backbone will be substituted by TBE to 

create a macroinitiator (Chapter 8). In that way, poly(tert-butyl methacrylate) (PtBMA), precursor 

of the PMAA, and in a second stage, PS, were grafted from the backbone via ATRP. 
 

7.4. General Features and Future Perspectives of CRP 

 Not only can linear polymers be synthesized with a high degree of control, but CRP also 

allows the polymer chemist to vary architecture of the polymer chains by relatively simple means, 

controlled compositions and functionalities. Thus, a variety of novel polymer materials with 

predetermined composition, topology and functionality, as illustrated in scheme 7.10, can be 

created.  

 
Scheme 7.10. Schematic representation of controlled topologies, compositions, functionalities 
and molecular composites prepared by ATRP. Figure taken from ref [4]. 
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There are so many interesting structures to be prepared that this technique should find 

commercial use and many new industrial applications in the very near future. It is possible to 

design novel surfactants, dispersants, lubricants, adhesives, gels, coatings, and many other 

materials which can only be prepared by controlled/living radical polymerization. 
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Chapter 8 
 

 
 

Synthesis of Poly(Methyl Vinyl Ether) 
based Graft Copolymers via the  

‘Grafting From’ Method 
 

 
 

8.1. Introduction 

 Among the methods of polymer modifications, grafting is one of the promising methods. In 

principle, graft copolymerization is an attractive method to impart a variety of functional groups to 

a polymer [1]. Until recently, new types of radical techniques have become available for the 

preparation of well-defined polymers. One of the most important types of controlled/‘living’ radical 

polymerizations is ATRP [1-3] (see Chapter 7) that has been used to prepare graft copolymers 

by both grafting through and grafting from methods (see Chapter 4).  

To make graft copolymers with specific properties, the structures must be controlled. For 

this reason, the grafting from method is one of the useful ways to design and get well-defined 

graft copolymers. This approach uses a macroinitiator that carries initiation groups to start a 

polymerization reaction of a monomer. The synthesis of the macroinitiator allows the control of 

the main chain parameters (DPn, Mw/Mn) as well as the pre-determination of side chain density 

and side chain distribution. The main difficulty in this approach is to ensure a uniform propagation 

of the side chains and furthermore to suppress chain coupling reactions. Hence, ATRP has been 

applied in the synthesis of several well-defined graft copolymers in which a polymer possessing 

ATRP-active halide atoms as side groups is used as a macroinitiator in the ATRP of a second 

monomer[4].  

 

 In the last decade, various grafting from copolymers with chlorine pendant groups have 

been synthesized by ATRP [5-7]. For example, graft copolymers of poly(methyl methacrylate) 

(PMMA) [5] or polystyrene (PS) [6] backbones with respectively poly(2-methyl-2-oxazoline) 

(PMeOXA) and poly(ethyl methacrylate) (PEMA) as branches were synthesized starting from 

some chloromethyl styrene groups present in the backbone by ATRP. 
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 In this chapter, the synthesis of graft copolymers composed of hydrophobic PS or              

pH-responsive PMAA as side chains, grafted from a thermo-responsive PMVE backbone, will be 

described. Chlorine pendant groups resulting from the CEVE-units in the P(MVE-stat-CEVE) (see 

Chapter 3) were used as starting points for the synthesis of a macroinitiator for ATRP. For this 

purpose, chlorine groups have been substituted by 2,2,2-tribromoethanol (TBE) as ATRP initiator 

(see scheme 8.1).  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 8.1. Strategy for the synthesis of PMVE-g-PMAA and PMVE-g-PS graft copolymers. 

 

 In a next step, poly(tert-butyl methacrylate) (PtBMA) side chains, precursor of PMAA, and 

PS were grafted from the PMVE backbone via ATRP. Indeed, ATRP is commonly not able to 

polymerize acidic monomers, such as AA or MAA due to a side reaction of the monomer with the 

metal complex and quaternization of the nitrogen ligands [8]. One strategy to overcome these 

complications is the ATRP synthesis of protected derivatives of the acidic monomers such as tert-

butyl (meth)acrylates [3], benzyl (meth)acrylates [9-10] and 1-ethoxyethyl acrylate [11], followed 

P(MVE-stat-CEVE) 
Transformation to macroinitiator 

P(MVE-g-TBE) ATRP copolymerization by 
grafting from approach 

 

PMVE-g-PtBMA precursor or PMVE-g-PS 

Deprotection 

PMVE-g-PMAA 
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by hydrolysis [9], debenzylation [12] or thermolysis [13], respectively. In first instance, the ATRP 

technique was developed with TBE as initiator for the polymerizations of tBMA and St with 

CuBr/PMDETA as metal/ligand catalyst. In an alternative approach, we have investigated a new 

supported catalytic system based on nickel dibromide triphenyl phosphine (NiBr2(PPh3)2),which 

does not required the addition of any complexes to give controlled ATRP. The combination of 

ATRP and LCP would permit us to control the structure of the graft copolymers: molecular weight, 

narrow polydispersity and length of the graft copolymers.  

To find a suitable catalyst system for the synthesis of graft copolymers with St and MAA 

via ATRP, we initially investigated the influence of the catalyst system (Cu- and Ni-based 

catalysts) on the homopolymerization of St and tBMA.  
 

8.2. Homopolymerizations of St and tBMA via ATRP 

 In ATRP, the choice of initiator is important to obtain good control over the polymerization. 

Polyhalogenated compounds of the general formula R-CX3, where X stands for halogen and R 

can be hydrogen, halogen or various organic substituents, were tested, in which at least one of 

the halogen atoms can be released and generate a primary radical capable of initiation of 

polymerization.  

These compounds are mostly commercially available, inexpensive and can be simply purified by 

common methods like distillation. In the case of polychloroalkanes, their reactivity increases with 

increasing number of chlorine atoms per molecule. Because of their moderate reactivity, very few 

examples of initiation by mono- [14] and dichlorocompounds [15] can be found in the literature.  

 

Destarac et al. studied ATRP of St [16] from both the kinetic and mechanistic point of 

view, initiated with various polychloroalkane-type initiators of the general formula RCCl3 such as 

methyl trichloroacetate, 1,1,1-trichloro-2,2,2-trifluoroethane,1,1,1-trichlorononane or 2,2,2-

trichloroethyl pivalate,  and catalyzed with CuCl in the presence of bipy ligand. It was found that 

all the compounds used are active initiators in ATRP of St. However, the type R group affects the 

rate of polymerization.  

Since few years, Masař et al. [17] synthesized a novel type of bifunctional ATRP initiator 

with two trichloromethyl groups as the active sites by reaction of an aromatic diisocyanate first, 

but also tert-butyl acrylate (tBuA) with 2,2,2-trichloroethanol (TCE). Only few research groups 

[11,17-19] used TCE initiator successfully to synthesize block copolymers of methacrylates and 

acrylates for ATRP.  

 

Matyjaszewski and co-workers [18] were the first to report the polymerization of MMA by 

ATRP using the CuCl/bipy catalyst system with TCE initiator. Recently, Klumperman et al. [19] 

reported the synthesis of AB and BA block copolymers of MMA and tBMA utilizing TCE with 

CuCl/HMTETA as catalyst system. Moreover, in our laboratory, Du Prez et al. [11] synthesized 



Chapter 8 
 

 - 164 -

poly((1-ethoxyethyl methacrylate) (PEEMA) and poly(1-ethoxyethyl acrylate) (PEEA) by ATRP 

with TCE, directly resulting in PAA and PMAA by thermolysis.   

 

 In examination of the atom transfer radical process, TCE containing the required primary 

alcohol for the substitution of the chlorine groups of CEVE, and an initiating functionality for 

ATRP, could have been used. However, tribromoethanol (TBE) was selected as our initial 

functional initiator, not only for its commercial availability and relatively low cost, but particularly 

for the presence of bromide end groups, which are more suitable to determine the number of 

initiating site compared to the chlorine groups of CEVE that are still present on the backbone.  

 

Initially, the efficiency of TBE to initiate the controlled free radical polymerization of vinyl 

monomers was investigated by Jérôme [17,20-22], Wooley [23] and Shimada [24].  Jérôme et al. 

[25] reported the synthesis of ABA triblock copolymers of methyl methacrylate (MMA) and BA 

using the homogeneous NiBr2(PPh3)2 ATRP polymerization of MMA with a bromide end-

functionalized poly(n-butyl acrylate) (nPBA) macroinitiator with TBE initiator. Under standard 

conditions [20], using CuBr/bipy as the metal complex, the homopolymerization of St with TBE 

was shown to be a living process. Similarly, the homopolymerization of MMA using TBE and 

NiBr2(PPh3)2 as metal catalysts was observed to be a living process [22].  

 

According to these literature data, ATRP syntheses of St and tBMA with TBE initiator 

were investigated first with CuBr/PMDETA catalyst system and secondly with NiBr2(PPh3)2 metal 

catalyst.   
 

8.2.1. Synthesis with a Copper Catalyst 

8.2.1.1. Homopolymerization of PtBMA 

 The overall rate of polymerization and level of control during the polymerization are 

influenced by several variables, such as initiator, catalyst, solvent, ligand, type of transferring 

halogen (X), and external variables such as temperature [26]. The choice of the appropriate 

initiator/CuX (X = Cl, Br) system is a key parameter, when polymerizing monomers such as tBMA 

to reduce the termination process (second order with respect to the concentration of radicals) and 

to establish the dynamic equilibrium between the dormant and active species [27]. Previously, 

Destarac et al. [16] showed that the use of TCE resulted in a fast and nearly quantitative initiation 

of MMA with a CuCl/bipy catalyst system. Although three chloride atoms are present per 

molecule, it is suggested in the literature that only one atom is viable for initiation [16]. In this 

work, PMDETA was selected because (a) this catalyst gave the best results for polymerization of 

tBMA with TCE and CuBr metal (85% conversion) [19], (b) easily available, (c) cost-effective and 

(d) the catalyst complex can be easily separated from the polymer [28]. As the backbone is 

viscous and sticky, it seems to be better to carry out the grafting reaction in solution with a large 
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amount of solvent (instead of bulk), in order to obtain a homogenous mixture with the backbone, the 

initiator TBE and the monomer.  
 

* Mechanism 

The ATRP mechanism of the homopolymerization is shown in the following scheme 8.2. The 

active radical (propagating species) is formed by the transfer of a bromide group from the initiator 

TBE to the metal complex CuBr(I)/PMDETA. This active radical initiates the propagation step. 
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Scheme 8.2. Mechanism of the homopolymerization of tBMA via ATRP. 

 

* Experimental Conditions 

In order to determine the best parameters for the homopolymerization of tBMA with TBE, a series of 

experiments were carried out. Our ATRP formulations are based on the one originally described by 

Klumperman [19]. As was already mentioned in the previous paper of Klumperman [19], the 

efficiency of PtBMA ATRP polymerization was tested in a combination with CuBr/PMDETA complex 

with TCE as initiator in toluene and methyl ethyl ketone (MEK) respectively at 90°C. Solvents, 

temperature and concentration of the reactants were varied to optimize polymerization conditions (see 

table 8.1 and 8.2). As can be seen in table 8.1 (entry 1 and 2), although Mw/Mn is narrow, only 

polymer traces are observed.  Conversions, which are very low, do not correspond to the expected 

one, meaning that TCE is a better initiator than TBE in these conditions.  
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Table 8.1. Results of the homopolymerization of tBMA in different solvents (VtBMA/Vsolvent = 1/1         

(50 vol-%)) with [tBMA]0/[TBE]0/[CuBr]0/[PMDETA]0 = 50/1/1/1 and Mn theoretical = 7 100 g.mol-1.  

entry solvent T (°C) reaction time a 

(min) 
conversion (%)b Mn 

c
 (g.mol-1) 

 

Mw/Mn
c 

1 toluene 90 165 6 620 1.14 

2 MEK 90 15 16 1 230 1.06 

3 n-butyl acetate 90 45 8 860 1.62 

4 acetone 50 17 14 1 100 1.02 

5 ethyl acetate 70 45 18 1 320 1.18 

6 THF 60 60 42 3 180 1.13 

a) time at which the conversion remains stable. b) Determined by GC. c) Determined by SEC with 
polystyrene standards. 
 

In order to improve these results, ATRP reactions were investigated with other solvents, first with 

‘green’ solvents such as n-butyl acetate (nBuAc) and ethyl acetate, but  also with THF and acetone 

that are known to be good solvents to dissolve the PMVE backbone. Moreover, polymerization of 

tBMA was already carried out in acetone [19] and in THF [29]. Polymerization in nBuAc resulted in 

uncontrolled polymerization with high Mw/Mn (table 8.1, entry 3). Because these reactions were 

carried out at 90°C (entry 1, 2 and 3), one can suppose that the reaction temperature is too high to 

control the polymerization, and thus termination reactions occurred. So, polymerizations at lower 

temperature were investigated in other solvents (table 8.1 entry 4, 5 and 6). Comparing the reactions 

in different solvents, the conversion in the presence of acetone and ethyl acetate is very low showing 

the bad efficiency of the catalytic system in these solvents.  

 

At 60°C, in the presence of THF, the polymerization is distinctly the best, reaching 42% monomer 

conversion within 1 hour and leading to a product with a narrow Mw/Mn (= 1.13) (table 8.1 entry 6).  

According to these results, it seems that the high reaction temperature has a strong impact on the 

controlled polymerization, meaning that TBE is more sensitive to the temperature than TCE. To 

improve the last results (table 8.1 entry 4, 5 and 6), a new set of experiments have been done at 

higher concentrations (25 vol-% solvent, see table 8.2). This concentration is still sufficient to keep the 

macroinitiator dissolved. 

 

Table 8.2. Results of the homopolymerization of tBMA in different solvents (VtBMA/Vsolvent = 3/1         

(25 vol-%)) with [tBMA]0/[TBE]0/[CuBr]0/[PMDETA]0 = 50/1/1/1 and Mn theoretical = 7 100 g.mol-1.  

entry solvent T (°C) reaction time a 

(min) 
conversion (%)b Mn 

c
 (g.mol-1) 

 

Mw/Mn
c 

1 acetone 50 60 46 3 400 1.17 

2 ethyl acetate 70 30 62 4 530 1.16 

3 THF 60 45 61 4 440 1.17 

a) time at which the conversion remains stable. b) Determined by GC. c) Determined by SEC with 
polystyrene standards. 
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Interestingly enough, in all cases, higher conversions were obtained with narrower Mw/Mn (< 1.2), 

which indicates a better controlled polymerization than in less concentrated solution. When 

polymerized in 25 vol-% ethyl acetate and THF (table 8.2 entry 2 and 3), tBMA conversion reaches 

about 61% within 30 and 45 min respectively, giving a polymer with the highest conversions and the 

highest Mn values.  

According to these results, TBE seems to be a good initiator for the polymerization of tBMA but looks 

more sensitive to the temperature, the concentration and the choice of the solvent than TCE.  After 

this initial study, kinetics of these three last reactions was studied to know if these polymerizations 

could be controlled. 
 

* Kinetics 

A kinetic run was made in order to know if the polymerization reaction is controlled or not and if the 

evolution of the Mn is in good agreement with the expected value. For a controlled polymerization, the 

following criteria have to be fulfilled: linearity of (i) ln ([M]0/[M]) as a function of time and of (ii) Mn as a 

function of conversion have to be linear, (iii) and a narrow Mw/Mn (see Chapter 7). 
 

A typical semilogarithmic kinetic plot of the homopolymerization of tBMA in different solvents, as 

studied by GC, is shown in figure 8.1. Additionally, the conversion versus Mn and Mw/Mn plots in figure 

8.2 shows that all polymerizations are controlled processes until a certain conversion. In all cases, the 

Mn increases during polymerization, and Mw/Mn is narrow (< 1.2). 
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Figure 8.2. Evolution of Mn SEC and Mw/Mn 
with conversion in the ATRP of tBMA 
polymerized in different solvents, with ( , ) 
in ethyl acetate at 70°C, in ( , ) in THF at 
60°C and ( , ) in acetone at 50°C.  
Conditions: 
[tBMA]0/[TBE]0/[CuBr]0/[PMDETA]0 =  
50/1/1/1 in 25-vol% solvent. Open symbols 
relate to Mw/Mn and the filled ones to Mn SEC. 

Figure 8.1. Comparison of the kinetics plots 
for tBMA polymerization in different solvents, 
with ( ) in ethyl acetate at 70°C, ( ) in THF 
at 60°C and ( ) in acetone at 50°C.  
Conditions: 
[tBMA]0/[TBE]0/[CuBr]0/[PMDETA]0 = 
50/1/1/1 in 25-vol% solvent.  
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In the presence of acetone, the kinetic study of the polymerization shows that the ln ([M]0/[M]) versus 

time plot exhibits a downward curvature after 10 min (figure 8.1) indicating termination of the process. 

Also, the molecular weight of the polymer does not increase at conversions higher than 36% (figure 

8.2). Thus, the polymerization is ill-controlled under these conditions.  

On the other hand, the tBMA polymerizations in ethyl acetate and in THF results are comparable. The 

first-order kinetic plot of the ln ([M]0/[M]) versus time is linear up to 61% conversion, indicating that a 

constant number of growing polymer chains is present (figure 8.1). Beyond this conversion, 

termination reactions proceed. Their Mns increased linearly with conversion, and the Mw/Mn 

decreased progressively with conversion with a final value of less than 1.2 (figure 8.2). The ATRP 

polymerization of tBMA in ethyl acetate and in THF is quite similar. The only difference is that the 

polymerization in ethyl acetate is faster than in THF.  
 

* End-group Analysis 

The use of TBE as initiator allowed us to analyze the terminal structure of the polymers by 1H NMR 

spectroscopy (figure 8.3). The PtBMA end groups have been analyzed by 1H NMR spectroscopy, and 

the observations are in line with the previous study of PMMA by Sawamoto et al. [30]. Besides the 

large absorptions of the repeating units of tBMA (a, b and c), there are characteristic signals 

originating from the α-halocarbonyl compounds as initiators at 4.68 ppm (peak i). The methylene 

protons of the ω-end group of unit of tBMA (peak a”) and the ω-end group methyl protons of the tert-

butyl ester group (peak b’) were seen at 1.34 ppm. The terminal α-end group was identified as the 

dibromide by the presence of the small peaks (i and a’) attributed to the terminal protons adjacent to 

the halogen. These results indicate that this ATRP polymerization proceeds via activation of the C-Br 

bond, originating from the initiator, by the CuBr/PMDETA catalyst system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.3. 1H NMR spectrum of PtBMA in CDCl3. 
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After that, DPn (which corresponds to the tBMA unit number p) and Mn of PtBMA were calculated from 

the 1H NMR spectrum. DPn could be calculated from the integration of the tert-butyl group (peak c) of 

PtBMA and the one of the initiator (peak i), which gives the following equation: 

DPn = p = (Ic / 9) x (2 / Ii) 

The calculation of DPn permits to determine the Mn of the polymer by the following equation: 

Mn = MTBE + MtBMA x p = 282.7 + 142.2 x p 
 

As shown in table 8.3, the Mn obtained from the peak intensity ratio (Ic / 9) x (2 / Ii) [Mn NMR] was          

4540 g.mol-1, which was not in very good agreement with that obtained from SEC [Mn SEC = 5 400 

g.mol-1] calibrated against PS standards.  

 

Table 8.3. DPn and Mn calculated by 1H NMR and SEC. 

DPn NMR Mn NMR (g.mol-1) Mn SEC (g.mol-1) 

49 7 240 8 250 

30 4 540 5 400 

31 4 680 5 590 

23 3 550 4 600 
 

8.2.1.2. Homopolymerization of Styrene 

 A huge number of studies have been performed, dealing with ATRP polymerization of St with 

a wide spectrum of initiating systems. Matyjaszewski et al. have polymerized St in a controlled way by 

ATRP catalyzed by a copper complex CuBr/bipy with TCE as initiator [31]. For our experiments, PS 

was synthesized by a similar strategy but with TBE as initiator. 
 

* Kinetics 

Figure 8.4 compares the plot of ln([M]0/[M]) versus time for St polymerization initiated at two different 

temperatures, 90 and 110°C, while keeping the monomer/initiator and catalyst/Br molar ratios 

comparable. At 110°C, polymerization is four times faster than at 90°C, and conversion is also higher. 

However, in figure 8.5, the Mw/Mn (< 1.3) is lower at 90°C, indicating a better control than at 110°C. In 

both cases, the molecular parameters of PS, including the chain polydispersity (Mw/Mn < 1.4), are well 

controlled until a certain conversion. Slower kinetics indicates that either the propagation rate constant 

is smaller or the equilibrium is more displaced toward the dormant species (see Chapter 7).  

 

At high St conversion, a shoulder is observed on the SEC chromatograms on the high Mn side. 

Although the molecular weight of the chains associated remains constant, the polydispersity index 

increases, which suggests the occurrence of transfer reactions and autopolymerization. These 

transfer reactions have also been detected by Matyjaszewski et al. for other copper catalysts.  
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* Effect of the Initiator/Catalyst Molar Ratio 

Until recently, the major drawback of ATRP is the large amount of catalyst, which is usually required 

to promote the polymerization control [32]. After the completion of this thesis, new developments with     

ppm-amounts of copper have been described (see Chapter 7).  

Experiments were thus carried out by varying the ratio of the initial concentrations of TBE to CuBr, 

while the ratio of monomer to TBE was kept constant ([St]0/[TBE]0 = 50). In table 8.4, the 

initiator/catalyst molar ratio has been decreased from 1.0 to 0.5, which results in a slower initiation 

efficiency and a longer reaction. Moreover, the Mn sec increased whereas the conversion was smaller. 

The decrease in the initiation efficiency f ( f = Mn calc / Mn SEC) might be attributed to more frequent 

termination reactions during the early stage of the polymerization, thus before the persistent radical 

effect is effective and allows for self-regulation of the radical polymerization [16].  
 

Table 8.4. Effect of the initiator/catalyst molar ratio (Conditions: T = 110°C, solvent = 25 Vol-% 

toluene, [M]0/[TBE]0 = 50/1). 

[TBE]0/[CuBr]0/[PMDETA]0 Time (min) Conv (%) Mn SEC 
a (g.mol-1) Mw/Mn a f  b 

1/1/1 60 56 2 920 1.23 0.96 

1/0.75/0.75 195 43 2 830 1.35 0.76 

1/0.5/0.5 240 34 3 620 1.51 0.47 

a) using PS standards. b) f = Mn calc / Mn SEC 
 

 

 

Figure 8.4. Kinetic plots for St 
polymerization in toluene at 90 and 110°C, 
with ( ) ln ([M]0/[M]) at 90°C, ( )  
ln ([M]0/[M]) at 110°C, ( ) conversion at 
90°C and ( ) conversion at 110°C.  
Conditions: [St]0/[TBE]0/[CuBr]0/[PMDETA]0 
= 50/1/1/1 in 25 vol-% toluene.  

Figure 8.5. Conversion dependence of   
Mn SEC and Mw/Mn for St polymerization in 
toluene at 90 and 110°C, with ( )    Mn SEC 
at 90°C, ( ) Mn SEC at 110°C, ( ) Mw/Mn 
at 90°C and ( ) Mw/Mn at 110°C.  
Conditions: 
[St]0/[TBE]0/[CuBr]0/[PMDETA]0  
= 50/1/1/1 in 25 vol-% toluene. 
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* End-group Analysis 

The terminal structure of the polymers obtained with CuBr/PMDETA was then analyzed by 1H NMR. 

Both α- and ω-end groups of a PS sample were characterized by 1H NMR spectroscopy as 

demonstrated in figure 8.6.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6. 1H NMR spectrum of PS with Mn NMR = 3 600 g.mol-1 in CDCl3. 
 

Besides signals at δ 1.05-2.45 ppm (a and b) and δ 6.30-7.30 ppm (c) ascribed to the repeating 

monomer unit, characteristic resonances originating from the initiator and catalyst moieties are visible 

at δ 4.45 ppm (i) and δ 4.8 ppm (b”), respectively. Significantly, the 1H NMR spectrum of PS showed a 

minor resonance at 4.24 ppm (a”) which can be attributed to the methylene protons of the 

tribromoethoxy end group. Integration of these signals and comparison with the methylene resonance 

of styrene between 1.05 and 2.45 ppm resulted in a Mn of 2500 g.mol-1, which is essentially the same 

as that determined from theory and confirms that TBE is an efficient initiator for controlled 

polymerization of St and leads to materials with a single tribromoethyl chain end. Additionally, the 

integral ratio of the two signals of the methylene protons of HO-CH2-CBr2-CH2 (i, a”) with the terminal 

methylene (b”) adjacent to the Br atom is 2.2/1, demonstrating that the chain transfer reaction of TBE 

is negligible. So, it can be concluded that the      HO-CH2-CBr2 group and Br atom reside at α- and ω-

end of the polymer respectively. 
 

 These results suggest that TBE is an efficient initiator for controlled ATRP of St and tBMA, 

which is in agreement with recent work on the use of polyhalogenated initiators, such as CCl4, in 

ATRP [33]. The research toward higher molecular weight polymers of St and tBMA is described in the 

next part. For that reason, polymerizations with another metal catalyst, NiBr2(PPh3)2, have been done. 
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8.2.2. Synthesis with a Nickel Catalyst 

 In typical ATRP, an alkyl halide and transition-metal compound complexed by an appropriate 

ligand in its lower oxidation state are used in the initiating system. Nickel, a late transition metal, differs 

from copper. Due to its preference to oxidative addition and reductive elimination by a two-electron 

transfer reaction instead of a one-electron redox addition process, there have only been a limited 

number of examples about nickel-catalyzed Kharash reactions.  

Few documents are reported on nickel-based ATRP. Teyssié et al. [34] first introduced the 

homogeneous [Ni(o,o’(CH2NMe2)2C6H3)Br] catalyst to the controlled polymerization of MMA and 

nBMA (n-butyl methacrylate). NiBr2(Pn-Bu3)2 or NiBr2(PPh3)2 complexes induced living radical 

polymerization of MMA in the presence of an aluminium additive [30,35]. Jérôme et al. [36] reported 

on the controlled radical polymerization of MMA, nBA (n-butyl acrylate) and the synthesis of 

poly(methyl methacrylate)-block-poly(n-butyl methacrylate)-block-poly(methyl methacrylate) (PMMA-

b-PnBMA-b-PMMA) triblock copolymer with a difunctional initiator catalyzed by NiBr2(PPh3)2. 

Sawamoto et al. [37] gave examples of zerovalent nickel complex, Ni(PPh3)4, in controlling MMA 

polymerization with additives [38]. Without a radical initiator, NiBr2(Pn-Bu3)2 catalyzed air- induced 

polymerization of phenethyl methacrylate in a living process through an unknown mechanism [39]. 

ATRP of side-group siloxane containing monomer mediated by NiBr2(PPh3)2 was reported recently 

[40]. 
 

 However, so far, there are few reports concerning nickel complexes used for controlled 

radical polymerization of St [30,41] and none about tBMA. Nickel-mediated ATRP was used here for 

ATRP of St and tBMA, catalyzed by a NiBr2(PPh3)2 complex in the absence of Lewis acid. This 

knowledge will be used in a next step for the construction of graft copolymer structures based on the 

same complex. 

 
8.2.2.1. Pseudo-Living Polymerization of St with NiBr2(PPh3)2 

* Mechanism 

The mechanism of the homopolymerization of St via ATRP with NiBr2(PPh3)2 as metal catalyst is 

described in scheme 8.3. The Ni(II)-mediated controlled polymerization most likely proceeds via the 

reversible and homolytic cleavage of the carbon-bromine terminal group that originates from the 

organic bromides, where the cleavage involves a redox reaction between Ni(II) and Ni(III) species. 

Such a reversible redox reaction is due to the wide variety of possible oxidation states of nickel (0 – 

IV) [42]. Furthermore, the equilibrium is shifted to the dormant state because nickel favors the divalent 

(+2) state over the trivalent (+3) state. This process is followed by the radical addition of HO-CH2-Br2• 

to St, after which the Ni(III) species is reduced to the original Ni(II) complex to give the HO-CH2-

Br2⎯St adduct with a terminal C-Br bond. This keeps the concentration of the radical species (the 

growing end) low enough to suppress the side reactions between propagation radical species. The 
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polymerization proceeds via repetitive addition of St to the radical species, reversibly generated from 

the covalent species with the    C-Br terminal.  

Note that NiBr2(PPh3)2 is a single-component system, which acts as a catalyst without ligand, 

whereas a nitrogen-based ligand is required to complex copper ions in the other systems.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 8.3. Synthesis of St with TBE as initiator and NiBr2(PPh3)2 as metal catalyst via ATRP. 
 

* Effect of Temperature 

St was polymerized in bulk at different temperatures (without any activator as a Lewis acid). 

Comparison experiments were carried out to estimate the catalytic activity of NiBr2(PPh3)2 with TBE 

as the initiator in the radical polymerization of St, and the results are summarized in tables 8.5 and 

8.6.  Note that because of the slow thermal decomposition of the NiBr2(PPh3)2 complex as mentioned 

by Sawamoto [30], this could be avoided (or at least reduced) by increasing the monomer 

concentration, thus decreasing the reaction time compared to the catalyst decomposition. For that 

reason, experiments were made at high monomer concentration: [St]0/[TBE]0/[Ni]0 = 250/1/0.5. 

 

The results in table 8.5 and figures 8.7 and 8.8 prompted us to examine in detail the effect of the 

temperatures on the polymerization of St.  

The rate of polymerization decreased with temperature, more specifically at 90°C the conversion 

reached 85% in 20 hours whereas those at 105 and 120°C needed 1 and 8 hours respectively to 

reach a lower conversion. As expected, the reaction is faster at high temperature but not controlled 

anymore.  In all cases, in the beginning of the reaction, a first-order kinetics is observed with a narrow 

Mw/Mn, although they became broader with increasing time and at higher temperatures.   
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Table 8.5. ATRP homopolymerization of St in bulk with [St]0/[TBE]0/[Ni]0 = 250/1/0.5 at different 

temperatures. 

entry T (°C) time 
(hour) 

Conversiona 
(%) 

Mn calc 
a 

(g.mol-1) 
Mn SEC b 
(g.mol-1) 

Mw/Mn
b f c 

1 120 8.25 4.8 1 480 1 300 1.90 1.13 

2 105 13 30.5 7 910 7 950 1.45 0.99 

3 90 20 85.4 21 630 21 250 1.16 1.02 

a) determined by GC. b) determined by SEC using PS standards. c)  f = Mn calc / Mn SEC 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The polymerization of St with TBE initiator at high temperature (120 and 105°C) shows a fast and 

controlled initiation, but slowed down in a few hours, resulting in ill-controlled polymers of low Mn and 

wide Mw/Mn (see figures 8.7 and 8.8) due to its thermal decomposition. Effectively, Sawamoto has 

reported [30,36] that this NiBr2(PPh3)2 metal catalyst appears not to be stable and soluble enough in 

organic solvents, and some decomposition has been noted in prolonged use at relatively high 

temperatures, thus considerably retarding the polymerization. To overcome these disadvantages, 

polymerization was done at lower temperature.  

 

Figure 8.7. Kinetics plots for St polymerization in 
bulk at different temperatures with ln ([M]0/[M]) 
(filled symbols) and conversion (opened 
symbols): ( , ) at 120°C, ( , ) at 105°C and 
( , ) at 90°C. 
Conditions: [St]0/[TBE]0/[Ni(II)]0 = 250/1/0.5.  
 

Figure 8.8. Conversion dependence of Mn SEC 
and Mw/Mn for St polymerization in bulk with ( ) 
at 90, ( ) at 105°C and ( ) at 120°C. 
 Conditions: [St]0/[TBE]0/[Ni(II)]0 = 250/1/0.5. 
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Decreasing the temperature to 90°C resulted in a better control of polymerization. The linear time 

dependence of ln([M]0/[M]) (figure 8.7) is consistent with a controlled polymerization that is first-order 

in monomer. Although the origin for the short introduction period is not clear yet, it might be related to 

the formation of the actual initiating species as a result of an interaction between the catalyst and the 

initiator [43]. An alternative explanation might be found by Matyjaszewski et al. [44]. The dependence 

of molecular weight and polydispersity on the St conversion is illustrated in figure 8.8. The linear 

dependence observed for Mn is in agreement with a controlled process with a constant number of 

growing chains. However, a slight broadening of the polydispersity is observed beyond 70% 

conversion. The dramatic increase of viscosity of the polymerization medium at high conversion is 

expected to change the rate of exchange between active and dormant species and accordingly 

increase the polydispersity.  

 

From the experimental Mn SEC compared to the calculated one Mn calc (Mn calc = [St]0/[TBE]0 x Mw 

monomer x conversion), f close to unity has been calculated (table 8.5), which is much better 

compared to the value reported by Sawamoto et al. [30] for PMMA (f = 0.75). Sawamoto concluded 

that increasing the MMA concentration is a way to preserve the polymerization control although no 

Lewis acid activator is used anymore. In our case, these results indicate that this ATRP 

polymerization proceeds via activation of the C-Br bond originated from the initiator by the Ni catalyst 

system. 
 

* Effect of Concentration of Ni 

Generally, ATRP catalysts are used in near stoichiometric amounts relative to the activated bromide. 

Paradoxically according to Sawamoto research, better controlled polymerization is obtained with 

lower Ni catalyst concentration [30]. A series of experiments was carried out, where the concentration 

of Ni catalyst was varied from 0.5 to 0.2 according to one mole of TBE (see table 8.6).  
 
Table 8.6. ATRP homopolymerization of St in bulk at 90°C with [St]0/[TBE]0 = 250/1 with different 

concentrations of NiBr2(PPh3)2. 

entry [TBE]0/[Ni]0 time (hour) Conversion a (%) Mn (g.mol-1)b Mw/Mn
b 

1 1/0.5 20 85 21 250 1.16 

2 1/0.2 26 94 24 300 1.07 

a) determined by GC. b) determined by SEC using PS standards. 
 
In both cases, the Mw/Mn of the polymers is unimodal and narrow, and the conversion reached 85 and 

94% (table 8.6).  Comparing the effect of different ratios of [TBE]0/[Ni]0, it is obvious that diminishing 

the concentration of Ni lowered the value of Mw/Mn and resulted in high conversions (94%). Actually, 

the decrease of the catalyst concentration, which increases the polymerization time and narrows the 

polydispersity of the products, was also observed by Sawamoto [45]. This suggests that NiBr2(PPh3)2 

interacts with the bromide initiator to render part of TBE ineffective as the initiating species during the 

early stage polymerization. In other words, part of TBE does not serve as initiator. This work is 
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currently in progress by Sawamoto. Moreover, the equilibrium is shifted to the dormant state because 

nickel favors the divalent (+2) state over the trivalent (+3) state. This keeps the concentration of 

radical species low enough to suppress the side reactions between propagation radical species 

themselves like radical coupling and/or disproportionation. 
 

* Kinetics 

In figure 8.9, the linear plot of ln([M]0/[M]) versus reaction time through the origin indicated that the 

polymerization was first-order without induction time and that the concentration of active centers 

remained constant throughout the reaction. Under these conditions, the polymerization occurred 

smoothly, and monomer conversion reached 94% in 26 hours. In figure 8.10, the Mn increased in 

direct proportion to monomer conversion up to 24 300 g.mol-1 with narrow Mw/Mn (Mw/Mn = 1.07). This 

confirmed us the possibility to prepare higher Mn PS with the NiBr2(PPh3)2 metal catalyst system at 

lower concentration.  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

* Pseudo-living Polymerization and Narrow Mw/Mn 

To investigate the living nature of the polymerization with [TBE]0/[Ni]0 = 1/0.2, a fresh feed of St was 

added to the reaction mixture at 90°C when most of the initial St was consumed (> 90% conversion in   

25 hours). After the addition, a smooth second-phase polymerization took place, and conversion 

reached 120% (30% consumption of the added St) in additional 8h30 (figure 8.10). Until 120% 

conversion, Mn increased in direct proportion to monomer conversion, and Mw/Mn remained narrow 

and shifted to higher Mn. After this time, the second-phase polymerization was considerably slower 

due to the loss of the complex by thermal decomposition (dashed line in figure 8.10). This non-living 

process was already observed by Sawamoto for the homopolymerization of MMA with CCl3Br as 
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Figure 8.9. Kinetics plots for St polymerization 
in bulk at 90°C with (o) ln ([M]0/[M]) and  
(*) conversion. 
Conditions: [St]0/[TBE]0/[Ni]0 = 250/1/0.2. 
 

Figure 8.10. ( ) Mn and ( ) Mw/Mn as 
function of conversion of PS obtained in 
monomer-addition experiment with [TBE]0/[Ni]0 
= 1/0.2 in bulk at 90°C.  
[St]0/[St]add/[TBE]0 = 250/250/1. 
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initiator in toluene at 80°C and was ascribed to the thermal instability of the Ni catalyst [35]. Such kind 

of results is referred to as pseudo-living polymerizations. 
 

8.2.2.2. Homopolymerization of tBMA 

 In contrast to the variety of transition metal complexes that induced living polymerization of 

MMA, no examples have been reported, to the best of our knowledge, about the radical 

homopolymerization of tBMA via activation of carbon-halogen bonds with the use of Ni metal 

catalysts. We attempted to employ the NiBr2(PPH3)2-based initiating system with TBE for 

homopolymerizations of tBMA.  

 However, this metal catalyst does not initiate polymerization as shown in table 8.7.  At 

different temperatures and in different solvents varying the concentration of Ni, conversions are low 

after 25 hours and polymers have ill-controlled Mn and broad Mw/Mn.  
 

Table 8.7. ATRP of tBMA initiated by TBE with NiBr2(PPh3)2 as metal catalyst. [tBMA]0/[TBE]0/[Ni]0 = 
200/1/1). 
entry solvent T (°C) reaction 

time (h) 
Conversiona 

(%) 
Mn calc b 
(g.mol-1) 

Mw/Mn
c 

1 bulk 90 20 4  1 180 1.27 

2 bulk 75 20 3 1 020 1.05 

3 25vol-% acetone 50 25 4 1 230 1.28 

4 25vol-% ethyl acetate 70 25 7  2 120 1.48 

5 25vol-% THF 60 25 7 1 960 1.60 

 
 
 
  

 These results could be explained by the insolubility of NiBr2(PPh3)2 with the tBMA monomer, 

in contrast to St. Thus, in what follows only the Cu/ligand catalyst system will be further employed for 

the synthesis of PtBMA-containing graft copolymers. 
 

8.2.3. Conclusion 

 The opportunity now exists to combine theses results into a novel synthetic strategy for the 

synthesis of a wide variety of graft copolymers from a readily available backbone using TBE as ATRP 

initiator. Table 8.8 recapitulates the homopolymerization results. 

 In all cases, TBE was found to be a good initiator for both homopolymerizations of tBMA and 

St, but the results diverge with the choice of catalyst. For the homopolymerization of tBMA, only 

CuBr/PMDETA catalyst is able to supply a controlled polymerization, whereas NiBr2(PPh3)2, because 

of its insolubility with the monomer, does not. Thus far, the ATRP polymerization of St with TBE 

initiator can be successfully carried out, catalyzed by two different transition metal compounds, CuBr2 

and NiBr2(PPh3)2. The polymers obtained are functionalized by α- group and ω-bromide atom, which 

can be used to initiate a normal ATRP process by addition of a second monomer. 

a) determined by GC. b) Mn calc = ([tBMA]0/[TBE]0) * monomer conversion * Mw initiator. c) determined by 
SEC using PS standards. 

  b 

a 
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Table 8.8 Mn characteristics of homopolymers prepared by ATRP. 

Monomer Metal catalyst Mn SEC (g.mol-1) Mn calc (g.mol-1) Mw/Mn 

tBMA CuBr/PMDETA 5 400 4 540 1.16 

tBMA NiBr2(PPh3)2 / / / 

styrene CuBr/PMDETA 3 040 2 920 1.35 

styrene NiBr2(PPh3)2 25 310 24 300 1.07 

 
8.3. Synthesis of the Graft Copolymers 

The goal of this work was to synthesize PMVE-g-PS and PMVE-g-PMAA graft copolymers. 

The generally applicable approach for the preparation of these graft copolymers involves two steps. 

The first step is the LCP synthesis of the backbone, as already described previously in Chapter 3, 

which results in a linear statistical copolymer with MVE and CEVE units, with a small amount of CEVE 

to keep the thermo-responsiveness of PMVE. To control the syntheses of PMVE-g-PS and PMVE-g-

PMAA by the grafting from method via ATRP, the PMVE backbone is turned into a macroinitiator, 

which is obtained by the nucleophilic substitution of the chlorine groups, resulting into PMVE-g-TBE. 

This macroinitiator permits St and tBMA to be grafted from the backbone via ATRP. Then, PMVE-g-

PMAA is obtained by the deprotection of the PtBMA side chains. The way of this synthesis is 

described in scheme 8.1.  
 

8.3.1. First Step: Synthesis of the Macroinitiator 

 To investigate the compatibility of the PMVE backbone with the conditions necessary for the 

ATRP of tBMA and St, an appropriate macroinitiator was synthesized. TBE with a hydroxyl end group 

on one hand, for the substitution of chlorine pendent groups, and a tertiary bromide end group for 

ATRP reaction on the other hand, is highly desirable in the synthesis of the macroinitiator (Scheme 

8.4).  

mn OO
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OHBr
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mn OO
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BrBr Br
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Troom
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Scheme 8.4. Synthesis of the macroinitiator. 
 

Throughout the experiments described in Chapter 3, the composition of the backbones used 

for the synthesis of the macroinitiator as precursor of graft copolymers, are summarized in table 8.9. 

By regulating the feed amount ratio of the two monomers, hence the number of the initiating site from 

the macroinitiator as well as the graft number the final graft copolymers could be well controlled. 
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Table 8.9. Overview of the P(MVE-stat-CEVE) backbone compositions. 
Name MVE a 

unit 
CEVEa 

unit 
CEVEa 
(mol-%) 

DPn
a Mn 1H NMR 

(gmol-1) 
Mn SEC 

(gmol-1) 
Mw/Mn

b 

B4 336 4 1.78 340 19 940 32 490 1.18 

B5 296 10 3.32 306 18 360 31 080 1.16 

B6 270 11 6.96 281 16 840 29 530 1.17 

 

 The macroinitiators were prepared by a nucleophilic substitution of chlorine groups from the 

CEVE units of the PMVE backbone by an excess of TBE. As for the synthesis of PMVE-g-PEO (see 

Chapter 5), the pendant chlorine groups on the PMVE backbone were substituted by the hydroxyl 

end group of TBE with the help of a strong base, nBuLi. The products were characterized by 1H NMR 

and SEC. Figure 8.11 presents the SEC traces of the starting materials and isolated product.  
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.11. SEC traces of the P(MVE-stat-CEVE) backbone and the synthesized PMVE-g-TBE 
macroinitiator. 
 
The macroinitiator trace shifted entirely to higher molecular weight. No significant shoulder can be 

observed, suggesting negligible contributions of side reactions. Transformation can be confirmed by 
1H NMR spectroscopy (see figure 8.12) as well as by E.A. (see table 8.10). The 1H NMR spectrum 

shows the presence of the characteristic peak of the CH2 protons (peak f) near the three bromine 

groups of TBE, which demonstrates that the reaction proceeded. 
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Figure 8.12. 1H NMR spectrum of the macroinitiator in CDCl3. 
 

Table 8.10 summarizes the results of the macroinitiator syntheses. 
 

Table 8.10. Results of the nuceophilic substitution of the backbone precursor and the synthesized 

macroinitiator, determined from E.A. 

Number of CEVE 
unit in the 
backbone 

Number of 
Cl 

substituted 

Nucleophilic 
substitution %

Mn 
backbone 

(g.mol-1) 

Mn macroinitiator 
(g.mol-1) 

Mw/Mn 

4 4 100 19 940 20 930 1.16 

10 8 80 18 360 20 330 1.19 

11 9 80 16 840 19 060 1.15 
 

 In all cases, the polydispersity remained narrow, and the Mn increased with the number of 

TBE grafted onto the precursor. As can be seen most of the chlorine groups were substituted by TBE.  
 

8.3.2. Second Step: Synthesis of PMVE-g-PS and PMVE-g-PtBMA 

8.3.2.1. Mechanism 

 PMVE-g-PtBMA and PMVE-g-PS grafts copolymer, with TBE as initiating groups, were 

synthesized by ATRP with the same procedure as the homopolymers (see previous section) (Scheme 

8.5).  
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Scheme 8.5. Synthesis of PMVE graft copolymers with PMVE-g-TBE macroinitiator via ATRP. 

 

8.3.2.2. Synthesis of PMVE-g-PS with Copper Catalyst 

 PS side chains were first  polymerized with CuBr/PMDETA catalyst system at 90°C via ATRP 

in 25 vol-% toluene solution, as was determined in the previous section as the best parameters for the 

St  homopolymerization. The resulting Mn and Mw/Mn are summarized in table 8.11. Note that the graft 

copolymerizations in this section were made from the macroinitiator of B6. 

 
Table 8.11. Graft copolymerization of PMVE-g-PS at 90°C, with the initial conditions, Mn NMR 
macroinitiator = 19 060 g.mol-1 with 9 TBE and [St]0/[TBE]0/[CuBr]0/[PMDETA]0 = 225/1/1/1               
(DPn, theor/PS chain = 25). 
 
solvent conversion 

(%) 
time 
(min) 

DPn
a/chain Mn NMR

a 
(g.mol-1) 

Mn SEC
b 

(g.mol-1) 
Mw/Mn

b 

25 vol-% toluene 13 7 3 21 870 28 720 1.52 

50 vol-% toluene 20 10 5 23 750 26 980 1.15 

a) determined by 1H NMR. b) determined by SEC with PS standards 



Chapter 8 
 

 - 182 -

While the copolymerization with 25 vol-% is not controlled, higher conversion and lower Mw/Mn are 

obtained for more diluted conditions (50% solvent). Because of the high viscosity of PMVE, a diluted 

solution permits a better increment of St from the backbone.  

Reactions were monitored over time to determine whether the Mn was a linear function of conversion 

and whether the polymerizations exhibit first-order kinetics with respect to monomer over the course 

of the reaction (figures 8.13 and 8.14). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mw/Mn was typically narrow for low conversions (> 20%) and broader at higher conversions with the 

emergence of a high molecular weight shoulder in SEC traces. Although higher molecular weights 

could be obtained, broader Mw/Mns were observed, presumably due to graft-graft coupling at higher 

conversion. We can deduce that a certain degree of disproportion or radical coupling of initiators is 

likely occurring. This is supported by the fact that the molecular weight increased whereas no more 

monomer conversion is observed, and secondly by an increase of the viscosity in the polymer 

mixture. From all these observations, it can be concluded that the graft copolymerization is poorly 

controlled with the initiator catalyst CuBr/PMDETA. 
 

 Recently, Müller et al. reported the synthesis of well-defined hyperbranched copolymers via 

ATRP with CuBr/PMDETA as initiator system at 60°C in ethyl acetate [46]. However, the system had 

several drawbacks, including limited molecular weights and extremely low rate. Hence, these 

drawbacks were resolved by the use of NiBr2(PPh3)2 as metal catalyst to prepare well-defined, 

monodisperse and highly hyperbranched polymers [47]. Indeed, the control of Mn and Mw/Mn in ATRP 

with CuBr/PMDETA is poor, due to radical coupling and chain transfer reactions of the growing radical 

species. Hence, the possibility of using CuBr/PMDETA system for the synthesis of highly branched 

Figure 8.13. Plots of conversion and ln[M]0/[M] 
versus time for PMVE-g-PS copolymerization 
in 50 vol-% toluene at 90°C with (o)  
ln ([M]0/[M]) and (*) conversion. 
Conditions:  
[St]0/[TBE]0/[CuBr]0/[PMDETA]0=225/1/1  
(DPn/PS chain = 25). 

Figure 8.14. ( ) Mn and ( ) Mw/Mn as 
function of conversion of PMVE-g-PS obtained 
in monomer-addition experiment.  
Conditions: 
[St]0/[TBE]0/[CuBr]0/[PMDETA]0=225/1/1  
(DPn/PS chain = 25). 
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PMVE-g-PS was ruled out. In this regard, since few years, the use of Ni metal catalyst provided 

considerable control in the polymerization of star block and hyperbranched copolymers of MMA.     

Therefore, we extended our synthetic approach to the preparation of PMVE-g-PS using ATRP 

polymerization techniques with a Ni catalyst system. 
 

8.3.2.3. Synthesis of PMVE-g-PS with Nickel Catalyst 

 According to the conditions of the homopolymerization of St in the previous session, the 

nickel-mediated radical graft polymerization was carried out first at 90°C in bulk as shown in table 

8.12. Note that the graft copolymerizations in this section were made from the macroinitiator of B5. 
 

Table 8.12. Graft copolymerization of PMVE-g-PS with the initial conditions,  Mn NMR macroinitiator = 

20330 g.mol-1 with 8 TBE and [St]0/[TBE]0/[Ni(II)]0 = 200/1/0.2 ( DPn, theor/PS chain = 25). 

solvent 
(vol-%) 

T 
(°C) 

conversion 
(%) 

time 
(min) 

DPn/chaina Mn NMR
a 

(g.mol-1) 
Mn SEC

b 
(g.mol-1) 

Mw/Mn
b 

bulk 90 38 30 10 28 690 40 990 1.91 

50 % toluene 90 38 90 9 27 860 40 970 1.52 

50 % THF 75 90 90 23 39 570 49 460 1.18 

50 % ethyl acetate 60 32 120 8 27 020 39 740 1.12 

a) determined by 1H NMR. b) determined by SEC with PS standards. 
 
 
Upon completion of the bulk polymerization and because of broad polydispersity (Mw/Mn = 1.91), the 

polymer was dissolved in a 50 vol-% solvent. The composition of the mixture also requires a solvent 

such as THF or ethyl acetate to facilitate miscibility of the macroinitiator. The Ni catalyst has shown to 

be active under mild conditions in both organic solvents (see previous section).  

 On the basis of this result, the solution polymerization of PMVE-g-PS graft copolymers was 

conducted using three different solution systems at different temperatures. These results are 

summarized in table 8.12. When the polymerization was done using 50 vol-% toluene at 90°C, the 

conversion reached 38% (as determined by GC) but with lower Mw/Mn, even if it still remains broad. 

Thus, the addition of solvent in the system decreases the viscosity of the reaction mixture and aims to 

lower Mw/Mn.  

For the polymerization in THF at 75°C, in contrast to the polymerization in ethyl acetate, almost full 

conversion (90%) was reached after 90 min, and the Mn was 39 570 g.mol-1 corresponding  to              

DPn /chain = 23, which is almost the same as the theoretical value (DPn theor /chain = 25), and the 

Mw/Mn was narrow (1.18). Therefore the kinetics of this reaction was studied (see figures 8.15 and 

8.16).  
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As expected, the first-order kinetic plot of the polymerization in THF in figure 8.15, and the Mn as 

function of conversion in figure 8.16, both show the linear behaviour. Thus, the grafting ratio increased 

with reaction time and linearly with conversion with a negligible contribution of transfer and 

terminations.  
 

 Figure 8.17 shows the SEC traces of graft copolymers and the chain extended macroinitiator. 

The clear shift of the SEC peak of the macroinitiator to shorter retention times and the absence of a 

tail or shoulder at higher retention times show that the efficiency of the macroinitiator is high and 

confirms that the grafting process of PS chains proceeded in a controlled fashion.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8.17. SEC traces of macroinitiator (Mn SEC =32 480 g.mol-1, Mw/Mn = 1.19, with 8 initiating sites) 
and graft copolymer (Mn = 49 460 g.mol-1,  Mw/Mn = 1.18, with 8 grafts). [St]0/[PMVE-Br]0/[Ni]0 = 
200/1/0.2, in 50 vol-% THF at 75°C. 
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Figure 8.15. Kinetics plots for St graft 
copolymerization in 50 vol-% THF at 75°C with 
(■) ln ([M]0/[M]) and (□) conversion (%). 
Conditions: [St]0/[TBE]0/[Ni(II)]0 = 200/1/0.2.  

Figure 8.16. Conversion dependence of Mn NMR 
and Mw/Mn for St graft copolymerization in 50 
vol-% THF at 75°C, with (■) Mn NMR and (□) 
Mw/Mn.  
Conditions: [St]0/[TBE]0/[Ni(II)]0 = 200/1/0.2. 
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The polymerization was stopped before 100% conversion of monomer to avoid side reactions, which 

could lead to high Mw/Mn. The graft copolymers were purified, dried, and analyzed by 1H NMR to 

verify incorporation of the St monomer. Figure 8.18 shows a typical 1H NMR spectrum of PMVE-g-PS. 

The assignment of each proton shows that the 1H NMR spectrum is consistent with the expected 

copolymer structure. By taking the area ratio of the phenyl PS protons to the PMVE protons, we were 

able to estimate the weight percentage of PS (PS wt-%) in the copolymer and the degree of 

polymerization of grafted PS chains (DPn PS chain) on the PMVE chain backbone. The NMR results are 

listed in tables 8.13 and 8.14.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.18. 1H NMR spectrum of PMVE-g-PS in CDCl3. 
 

In all cases, these graft copolymers have the same length of the backbone and same distribution of 

the PS grafts over the PMVE chain. Integration of the peak areas was used to generate the data 

shown in tables 8.13 and 8.14.   
 

Table 8.13. Results of the PMVE-g-PS data from 1H NMR and SEC. 

Macroinitiator PMVE-g-PS DPn 
PS/chain 

Mn NMR (g.mol-1) Mn SEC (g.mol-1) Mw/Mn 

B4 GPS1 24 30 970 38 710 1.19 
B4 GPS3 76 52 710 58 570 1.25 
B5 GPS2 23 39 570 49 460 1.18 
B5 GPS4 71 80 550 89 500 1.27 
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Table 8.14. Results of the GPS2 data from 1H NMR and SEC. 

time (min) conversion (%) Mn NMR (g.mol-1) Mn SEC (g.mol-1) f a 

0 0 20 330 32 480 0.63 

15 22 22 760 33 470 0.68 

30 41 26 560 37 940 0.70 

60 70 32 360 42 580 0.76 

90 90 39 570 49 460 0.80 

a) f = Mn NMR/Mn SEC 

 

Moreover, the Mn of PMVE-g-PS, as determined by SEC using PS standards, was 49 460 g.mol-1, 

which is different to the one determined by NMR (Mn NMR = 39 570 g.mol-1). This could be explained by 

the difference of the hydrodynamic volume of PMVE (see Chapter 3). The fact that the  f value  gets 

closer to the unity could be explained by the affinity of the PS side chains with PS standards.  
 

 The efficiency of the catalyst system and the nature of the ligand used to complex metal ions 

were found to play an important role in the determination of the activity, molecular weights, Mn and 

length of side chains. For a successful PMVE-g-PS via ATRP, a sufficient proportion of dormant 

species should be maintained throughout the polymerization to keep a low concentration of 

monomeric and polymeric radicals. In our copolymerization system, the difference in the reactivity 

between the catalyst systems CuBr/PMDETA and NiBr2(PPh3)2 is basically related to the equilibrium 

between the active and dormant species in the system. As the equilibrium is faster in the case of 

NiBr2(PPh3)3 catalyst system, it permits a better control of graft copolymerizations than with 

CuBr/PMDETA catalyst system. 

 

8.3.2.4. Synthesis of PMVE-g-PtBMA as Precursor of PMVE-g-PMAA 

In order to graft PMAA side chains from the macroinitiator via ATRP, PtBMA had to be used 

as precursor of PMAA because of the possible side reactions between the catalyst system and acidic 

functionalities (see before). Copolymerizations with tBMA were performed with the same conditions 

as for the homopolymerization (see previous section) to obtain PMVE-g-PtBMA graft copolymers with 

a range of molecular weights (table 8.15). Note that B6 was used as the macroinitiator in this case.  
 

First, graft copolymerizations were made in 25-vol% solvent as for the homopolymerization. 

As can be seen, graft copolymerization in ethyl acetate resulted in uncontrolled polymerization with 

broad Mw/Mn (> 2) and low conversion (15%). In THF, despite the narrow Mw/Mn (<1.2), the low 

conversion indicates a too fast initiation. One can suppose that terminations or transfer reactions 

occurred because of the high viscosity of the macroinitiator, as for the graft copolymerizations of 

PMVE-g-PS (see previous section). So, graft copolymerizations in diluted solutions were investigated. 

Comparing the reactions, the broad Mw/Mn's in the presence of ethyl acetate show the bad efficiency 

of this solvent. Increasing the solvent concentration results in broader Mw/Mn in both cases, indicating 

an uncontrolled process.  
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Table 8.15. Graft copolymerization of PMVE-g-PtBMA with the initial conditions,                         

Mn NMR macroinitiator = 19 060 g.mol-1 with 9 TBE and [tBMA]0/[TBE]0/[CuBr]0/[PMDETA]0= 225/1/1/1 

( DPn/PS chain = 25). 

solvent 
(vol-%) 

T 
(°C) 

conversion 
(%) 

time 
(min) 

DPn
a 

PtBMA/chain 

Mn NMR
a 

(g.mol-1) 
Mn SEC

b 
(g.mol-1) 

Mw/Mn
b 

25 % THF 60 15 45 4 22 820 36 810 1.16 

25 % ethyl acetate 70 15 30 4 22 820 39 240 2.32 

50 % THF 60 9 60 2 20 940 33 780 1.54 

50 % ethyl acetate 70 23 45 6 24 710 43 860 2.49 

a) determined by 1H NMR. b) determined by SEC with PS standards. 
 

 

Also the kinetics (not shown) confirmed that the synthesis of PMVE-g-PtBMA with the 

CuBr/PMDETA catalyst system was not successful, most probably caused by the heterogeneous 

catalyst conditions due to the low solubility of CuII species in the reaction mixture. As further attempts 

did not lead to the design of better controlled graft structures based on PMVE and PtBMA, the 

research toward         bi-responsive graft copolymer structures was stopped at this stage. In the next 

chapter, we will focus on the thermo-responsive properties of the PS-containing structures.  
 

8.4. Conclusion 

 In conclusion, we have first demonstrated that CuBr/PMDETA can be used as a metal 

catalyst for the controlled polymerization of tBMA and St whereas NiBr2(PPh3)2 was found to be able 

to polymerize styrene only. In the case of the use of CuBr/PMDETA as catalyst system, low molecular 

weights were obtained because of transfer reaction occurring during the polymerization. Much higher 

molecular weights could be reached for the Ni-based system. Other benefit effects were that no 

activator, such as a Lewis acid, is required anymore and that the catalyst/initiator molar ratio can be 

decreased down to 0.2, although the polymerization rate and the initiation efficiency remain controlled.  

 

 Based on these results, a macroinitiator was synthesized in a first step by substituting the 

chlorine groups of the backbone by TBE. Both CuBr/PMDETA ATRP and nickel-mediated ATRP 

were applied to the controlled graft polymerization of PS from a PMVE backbone. While good 

conditions for the synthesis of PMVE-g-PtBMA graft copolymers could not be found, tribromo initiating 

groups were found to be compatible with the reaction conditions for the ATRP of St, only with a nickel 

metal catalyst, and PMVE-g-PS graft copolymers with controlled Mn and narrow Mw/Mn were obtained. 

This strategy allowed for the design of novel well-defined, thermo-responsive graft copolymers to be 

readily prepared in a minimum number of steps under synthetically non-demanding conditions. In the 

next chapter, the research on the thermo-properties of the PMVE-g-PS is described. 
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Chapter 9 
 

 
 

Properties of Thermo-responsive  
PMVE-g-PS Graft Copolymer  

 

 
 

9.1. Introduction 

 Since the past 20 years, extensive attention has been paid to block and graft amphiphilic 

copolymers for their capability to form stable aggregates with a core-shell structure in solution [1]. 

For example, an amphiphilic copolymer consisting of a hydrophobic chain backbone grafted with 

a number of hydrophilic branches can form stable colloidal particles in water through a one-step 

precipitation or solvent exchange [2]. It has been shown that a very slow addition of THF or DMF 

solution containing individual amphiphilic copolymer chains into a large quantity of water or 

directly dialyzed against water can lead to stable colloidal nanoparticles with the aggregated 

hydrophobic backbone chains as a hydrophobic corona shell [3]. The nanoparticle size is 

normally in the range 10-500 nm, depending on the formation conditions and the copolymer 

structure. Another interesting point is that such colloidal particles were narrowly distributed, even 

though the copolymer chains used were polydisperse [4].  

Usually, amphiphilic copolymers behave as single chains in aqueous solution like 

classical polymers or polyelectrolytes, whereas its aggregation, similar to that of amphiphilic 

copolymers, can occur under the influence of given external stimuli, mainly temperature, pH, ionic 

strength changes, or complexation [5]. Polystyrene-block-poly(acrylic acid) (PS-b-PAA) and 

polystyrene-block-poly(methacrylic acid) (PS-b-PMAA) are representative examples of well-

defined amphiphilic block copolymers commonly studied in water [6]. Eisenberg et al. showed 

that the micellar morphology of PS-b-PAA copolymers could be changed from spheres to rods, to 

vesicles and even to more complexes structures, such as multiple micellar morphologies, by 

changing the copolymer’s composition, the ionic strength, and the conditions for micellization. 

 

 PMVE is known to have a LCST in water [7] (see also Chapter 6). It is therefore expected 

that block and graft copolymers consisting of PMVE backbone and hydrophobic PS side chains 
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would possess temperature-dependent surfactant properties. PMVE/PS block copolymer 

structures have already been investigated by Deffieux et al. [8-9]. They report the topology, the 

organization and the aqueous solution properties of dendigrafts with a PS core and      PS-b-

PMVE diblock as external branches [8-9]. Since PS and PMVE blocks are incompatible in 

solution, they tend to self-organize intramolecularly, within the macromolecule, to form 

segregated subdomains yielding original morphologies such as the recently observed grapelike 

organization [8]. Such specific spatial arrangement in nanometer size domains can be explained 

by the capacity of macromolecular blocks constituting a branch (PS and PMVE) to get in contact 

and associate with the blocks of the same nature in neighbouring branches, within the dendigraft 

macromolecule. Their capacity to self-assemble and the subdomain size will depend on their 

relative proximity, block length, and limited degree of freedom, since each block copolymer 

branch is linked at one end to the dendigraft backbone. Another example of thermo-responsive 

aggregation, investigated by Dr. Bernaerts in the PCR-group, has been illustrated for block 

copolymers poly(methyl vinyl ether)-block-polystyrene (PMVE-b-PS) [10].  

 

 In this chapter, we focus our attention on the micelle formation and phase behavior of the 

aqueous solution of the corresponding graft copolymers (PMVE-g-PS) for which we expected a 

different phase behaviour. The micelle core consists of aggregated PS grafts that are surrounded 

by a corona region containing PMVE chains. In the present work, the LCST demixing behaviour 

of PMVE of well-defined molar mass, bearing different PS graft content, was investigated by 

MTDSC (collaboration with prof. B. Van Mele, VUB), and in dilute conditions by UV-VIS 

transmission, microcalorimetry and DLS (collaboration with prof. H. Tenhu, Helsinki). The phase 

behaviour of PMVE-g-PS was evaluated and compared with its precursor, the PMVE 

homopolymer. The objective is to obtain a detailed picture of the competition between intrachain 

behaviour and interchain association in the process of a better understanding of the self-

assembly of amphiphilic copolymers. Moreover, the LCST behaviour of PMVE-g-PS was also 

compared to those of PMVE-b-PS. 
 

9.2. The Thermo-responsive Properties of PMVE-g-PS 

 Since PS is a hydrophobic polymer and PMVE is hydrophilic, water is a good solvent for 

PMVE (at low temperature) but poor for PS. If the molecular weight of PS increased (e.g. GPS3 

and GPS4 in table 9.1), these PMVE-g-PS copolymers became progressively immiscible in water. 

Similarly, Dr. Bernaerts, who synthesized PMVE-b-PS, has found that PMVE32-b-PS25 block 

copolymer (corresponding to 62 wt-% PS) is not soluble anymore in water, whereas that was not 

the case for PMVE32-b-PS5 block copolymer (corresponding to 26 wt-% PS) [10].  

 

In order to study the properties of PMVE-g-PS in water, we therefore decided to focus on 

the graft copolymer structures with low PS content, e.g. GPS1 and GPS2 samples in table 9.1. 

The investigated graft copolymers and main characteristics are presented in table 9.1. In order to 
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compare the effect of the PS grafts on the thermo-responsiveness of PMVE backbone, the two 

samples, containing different number of PS grafts, were investigated. 

 
Table 9.1. Characteristics of PMVE-g-PS. 

Name 
PMVE-g-
PS 

Mn initiator 
(g.mol-1) 

Mn one PS 

graft 
(g.mol-1) 

number 
of PS 
graft 

Mn graft 

copol 
(g.mol-1)a 

wt-% 
PSa 

Mw/Mn
b Solubility 

in waterc 

GPS1 20 930 2 510 4 30 970 32 1.16 + 

GPS2 20 330 2 400 8 49 460 49 1.18 + 

GPS3 20 930 7 950 4 58 570 60 1.25 - 

GPS4 20 330 7 530 8 89 500 75 1.27 - 

a) determined by 1H NMR. b) determined by SEC with PS as standards in CDCl3. c) +: soluble in 

water, -: insoluble in water. 
 

9.2.1. Phase Diagram by Modulated Temperature Differential Scanning 

Calorimetry (MTDSC) 

 MTDSC has been used to determine a state diagram over the entire composition range 

for different PMVE-g-PS. For the principles of the technique, we refer to the experimental section 

(see PART IV). This part results from a collaboration with Dr. Zhao, Dr. Van Assche and Prof. 

Van Mele from the VUB in Brussels. A publication of this work is in preparation [11] and only a 

summary is given here to highlight the most important facts. 
 

* Demixing-remixing behaviour in aqueous solution 

The demixing and remixing kinetics in aqueous solutions of PMVE-g-PS, GPS1 and GPS2, has 

been studied by means of MTDSC in both non-isothermal and quasi-isothermal modes. The 

remixing in the solutions of GPS1 is found to be almost as fast as the demixing, which is 

completely different from that in the solutions of linear PMVE and PMVE-g-PEO/water system 

(see Chapter 6). However, the remixing in the solutions of GPS2 is much slower than the 

demixing, which is quite similar to that in the solutions of linear PMVE.  

The quasi-isothermal measurements show that the solutions of GPS1 are always time-

independent for the temperatures both outside and in the phase transition region, while the 

solutions of GPS2 have time-dependence in the transition region. The decrease of cp
app during 

the quasi-isothermal remixing in the solutions of GPS2 might be due to macroscopic phase 

separation, by which large domains of polymer-rich phase and water-rich phase are formed. 
 

* Phase diagrams 

The thermal transitions have been brought together to construct a state diagram, including the 

demixing threshold temperature Tdemix
threshold (heating) over a full range of PMVE-g-PS wt-% 

(figure 9.1).  
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Increasing the temperature of a homogeneous PMVE-g-PS/water solution induces phase 

separation. By the measurement of the Tcp’s for different compositions, the Tdemix
threshold curve can 

be constructed (figure 9.1). It has been known that the moisture absorbed by PMVE/PS 

homopolymer blends considerably lowers the phase-separation temperature [12]. On the other 

hand, it was shown for other systems that the introduction of a hydrophobic polymer segment into 

a thermoresponsive water-polymer system can result in an increase of its temperature of phase 

separation and inversely [13-15]. Few years ago, it was reported by our research group, for 

PVCL-g-PTHF/water system in which PTHF is a hydrophobic polymer, the Tcp’s increase with the 

amount of PTHF because the PTHF microdomains prevent the globular aggregation until higher 

temperatures [13]. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1. Phase diagram of GPS1 with (•) T demix
threshold, of GPS2 with (○) Tdemix 

threshold, and of 
linear PMVE (Mw = 20 000 g.mol-1) (▲) Tdemix 

threshold. Figure taken from ref. [11].  
 

In general, GPS1 and GPS2 follow the type III LCST phase behaviour such as PMVE 

homopolymer with two LCST’s.It becomes clear from Figure 9.1 that the incorporation of PS 

grafts markedly changes the phase separation process of PMVE in water. Addition of PS grafts 

on the PMVE decreases Tdemix
threshold compared to the pure PMVE [16]. In comparison to the 

phase diagram of linear PMVE (Mw = 20 000 g.mol-1), at any PMVE-g-PS wt-%, the Tdemix
threshold’s 

of the graft copolymers significantly shift to lower values.[11]. This decrease might be ascribed to 

the presence of bromide groups in the PS chains coming from the TBE initiator.  Effectively, it 

was shown in our research group that the presence of only one bromide end group to PMVE 

dramatically decreases the Tcp of PMVE to 17°C [16].  

PMVE-g-PS aqueous solutions were also studied with other techniques such as microcalorimetry 

and dynamic light scattering (DLS).   
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9.2.2. Determination of the “Cloud point” of Diluted Solutions  

 First, Tcp of the graft copolymers, which is related to the aggregation of the copolymers in 

water, was determined by different techniques: UV-Vis spectrophotometry, microcalorimetry and 

DLS. The results are recapitulated in table 9.2. 

 

Table 9.2. Tonset, Tdemix and Tpeak (°C) values of GPS1 and GPS2 by turbidimetry, 

microcalorimetry and DLS. 

C UV-VIS   microcalorimetry   DLS   

mg/mL GPS1 GPS2 GPS1 GPS2 GPS1  GPS2  

 Tonset  Tonset Tdemix Tonset Tdemix Tonset Tpeak Tonset Tpeak 

10       30 35   

5       30 35   

1 32 24 19.2 33.7 17.2 31.7 31 37 29 35 

0.5 33 25 21.2 34.0 20.1 32.5 31 37 29 35 

0.1 33 28 23.3 34.4 21.7 32.7 31 37 29 35 

0.05 34 30 24.1 35.1 23.9 33.6 31 37   
 

Table 9.2 shows that the measured Tcp‘s with UV-VIS and DLS are similar, whereas they are 

higher than those obtained with microcalorimetry. The Tonset values from HS-DSC measurements 

correspond to an earlier detection and a shift of about 10°C. This difference could mean that HS-

DSC shows dehydratation of the polymer, whereas optical methods are sensitive to the formation 

of intermolecular aggregates. Another explanation might be that heat effects related to changing 

PMVE-g-PS/water interactions with temperature occur before phase separation [17-18], leading 

to a deviation in the baseline of the reversing heat flow signal. An indication for such an effect can 

also be found in PMVE solutions, when MTDSC measurements are compared to DLS 

measurements [19].  

 

9.2.3. Microcalorimetry 

 Concerning the high sensitivity DSC measurements (for background: see PART IV), 

some thermograms of PMVE, GPS1 and GPS2 are shown in figure 9.2. All three samples (a, b 

and c) showed ∆H values within the same range (around 2-5 kJ.mol-1 PMVE), even though the 

enthalpy change was somewhat smaller for PMVE-g-PS copolymers compared to PMVE. 

Polymer a showed a Tonset and a Tdemix that are typical for pure PMVE, whereas the other two 

polymers b and c, much more hydrophobic, started to dehydrate at lower temperatures. Thus, 

hydrophobic groups lowered the maximum temperature of the dehydration of the PMVE corona, 

as it is expected. Also, the temperature range of the PMVE collapse broadened as the size of the 

hydrophobic part increased in the aggregate core. The dehydration took place over a temperature 

range of ~ 17-45°C. It has been shown earlier that PMVE dehydrates slowly due to the stabile 
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structures of the micellar particles [20]. The same could also be concluded for PMVE-g-PS 

copolymers. This phenomenon will be studied in more detail by DLS in the next section.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 9.2. PMVE 12 000 (a), GPS1 (b) and GPS2 (c) at 1 mg.mL-1. 
 

9.2.4. Dynamic Light Scattering (DLS) 

 Previous DLS studies revealed that the CONTIN routine was an appropriate tool for the 

analysis of DLS data, to characterize dilute aqueous mixtures of, for instance, PNIPAAM-b-PS 

[21]. DLS was used to monitor the coil-to-globule transition for PMVE single chains [20]. The 

driving force for this coil-to-globule transition is associated with the temperature-dependent 

molecular interaction, mainly hydrogen bonding and hydrophobic association. First of all, because 

PS is hydrophobic, micelle formation with the hydrophobic core of PS and hydrophilic PMVE 

corona should be expected. DLS was used to determine the size of such particles. 
 

9.2.4.1. Dependence of the Heating Rate 

 Figure 9.3 shows the heating rate dependence of the apparent hydrodynamic radius Rh 

for GPS1 and GPS2 in water at 10 mg.mL-1: ‘the slow heating’ represents the step-by-step 

increase of temperature at each degree, while ‘the fast heating’ means an increase of 

temperature in steps of 5°C. It shows that the formation of nanoparticles by means of the slow 

and the fast heating process results in similar Rh values. The only difference observed is at the 

Tcp. The size of the aggregates formed at this temperature during the slow heating is 

systematically larger than that formed in the fast heating process. This can be attributed to the 

competition between the intrachain ‘coil-to-globule’ transition and the interchain aggregation. In 

the fast heating process, micellar particles have less time to aggregate with each other before 

they are collapsed and stabilized by the PMVE corona above 45°C. For al the next studies, only 

the slow heating rate was used. 
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Figure 9.3. Heating-rate dependence of the hydrodynamic radius Rh of GPS1 ( ▲) and GPS2 
(( ■) graft copolymers in water at 10 mg.mL-1, where ‘the fast speed’ means 5°C between two 
measurements (closed symbols), and ‘the slow speed’ 1°C between two measurements (open 
symbols). 
 

9.2.4.2. DLS-measurements at Room Temperature 

* Effect of concentration on Rh 

The effect of the polymer concentration on the size of the aggregates was investigated at different 

angles (40 to 150°) at room temperature. Figure 9.4 shows the hydrodynamic radius Rh at 

different concentrations in the range between 0.01 and 10 mg.mL-1.  

 

 

 

 

 

 

 

 

 

 
Figure 9.4. Plot of Rh of GPS1 between 0.01 and 10 mg.mL-1 as function of polymer 
concentration at 20°C with angular dependence: at 150° ( ), at 90° ( ), at 40° ( , population I of 
aggregates, and , population II of micelles). 
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The PMVE-g-PS graft copolymers exhibit very similar characteristics and behaviour (almost same 

size and aggregates formation) in the whole angle range examined at room temperature. 

Because a slight dependence of concentration was observed, the study of the aggregate 

formation of the graft copolymers was focused at low concentrations (up to 0.5 mg.mL-1) in the 

next stage. Besides, at 40°, where the resolution for large scatterers is better than at 90°, two 

populations are observed. The small-size population was attributed to individual micelles while 

the large one was attributed to aggregates. These aggregates could result from the clustering of 

several micelles (see below).  

 

9.2.4.3. Effect of the Heating 

* Effect of temperature on the intensity and on Rh 

The Rh and the intensity of light scattering I are plotted against temperature for the graft 

copolymers, in figure 9.5, for a concentration of 0.1 mg.mL-1. Heating of a PMVE-g-PS aqueous 

solution results in a sharp increase in the light scattered intensity I at the Tcp that depends on both 

PS content and the concentration. 
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Figure 9.5. Variation of the hydrodynamic radius Rh (squares) and the intensity (triangles) of 
GPS1 (open symbols)) and GPS2 (closed symbols) graft copolymers in water at 0.1 mg.mL-1 as a 
function of temperature (5 min between two measurements).  
 
A strong influence of temperature is observed in the aqueous solution for both graft copolymers. 

A small decrease of the Rh at temperatures ranging from 20 to 30°C is first observed. This can be 

related to a volume concentration of the PMVE shell associated to its solubility decrease when 

temperature increases. This phenomenon is followed at 34°C by a rapid increase of the apparent 

hydrodynamic radius (Rh from 80 nm and more) and size distribution broadening of the objects, 

suggesting aggregation between graft copolymers. This is in agreement with the LCST properties 

Area B Area A 
Tcp 
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brought by the PMVE shell to the graft copolymers [9,22-23]. At Tcp, the size of aggregates 

increases as a result of intermolecular association. Additionally, the increase in the intensity of 

scattered light is ascribed to the increase of molar mass of the aggregates and to a decrease of 

the thermodynamic quality of the solvent.  
 

Multimolecular micelle-like aggregates formed above ~ 35°C show colloidal stability against 

further precipitation. Once formed, they shrink upon further heating. Their size remains constant 

above 45°C. Colloidal stability has earlier been observed for PMVE homopolymer and was 

explained in terms of a viscoelastic effect [20]. Thus at elevated temperature, particles are 

dehydrated and therefore dense.  

For the graft copolymers, PS grafts further decrease the mobility of the PMVE chains similar to 

what has been proposed earlier for PNIPAAm-b-PS [21]. Moreover, the reversibility of the LCST 

processes reported for linear      homo- and PMVE [22-23] copolymers with PS blocks is also 

observed with the graft copolymers.  
 

The Rh values of both graft copolymers at different concentrations are recapitulated in table 9.3. 

In all cases, Rh increases at the Tcp and decreases above Tcp, confirming first the intermolecular 

association and then the collapse of the micellar particles. Moreover, because of the high Rh 

values, we could conclude that aggregates are formed instead of unimolecular micelles, even at 

such diluted concentrations. On the other hand, Rh values below Tcp are lower than above Tcp, 

which indicates the aggregation behaviour of the micelles at elevated temperature and no 

precipitation. Additionally, Rh values are similar for all investigated concentrations and PS 

content. 
 

Table 9.3. Rh values of GPS1 and GPS2 at different temperatures. 

C  0.5 mg.mL-1   0.1 mg.mL-1   0.05 mg.mL-1  

 T< Tcp Tcp T >Tcp T< Tcp Tcp T >Tcp T< Tcp Tcp T >Tcp 

Rh GPS1 

(nm) 
 

78 

 

102 

 

87 

 

86 

 

102 

 

94 

 

75 

 

117 

 

80 

Rh GPS2 

(nm) 
 

88 

 

114 

 

103 

 

73 

 

106 

 

88 

 

76 

 

90 

 

88 

 

* Dependence of the concentration 

One interesting point is to determine the critical aggregate concentration (CAC) in order to know 

at which concentration the aggregates start to be formed. Selected DLS data are shown in figures 

9.6 and 9.7. In the first graph (figure 9.6), the intensity of light scattering was plotted as a function 

of concentration at different temperatures.  
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Figure 9.6. Variation of the intensity of light scattering of GPS1 graft copolymers in water at any 
concentration   (mg.mL-1) as a function of temperature:  at 25°C ( ), at 30°C ( ), at 40°C ( ), at 
45°C ( ). 
 

The absence of a plateau at lowest concentration indicated that no CAC is present, meaning that 

aggregates are formed at any concentration. What is more, below the Tcp, at any concentration, 

the intensity increases linearly with concentration. Above the Tcp (T > 35°C), for higher 

concentration, the intensity decreases, which means precipitation is starting. At high temperature 

(above Tcp), the mechanism of the colloidal stability above Tdemix resembles that of the 

mesoglobules formed by the PMVE homopolymer [20].  

 

This is confirmed by the second graph (figure 9.7). Above the Tcp, the intensity remains constant 

but for concentrated solution (above 5 mg.mL-1), the intensity starts to decrease slowly.  
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Figure 9.7. Variation of the intensity I of GPS1 graft copolymers in water at different temperature 
(°C) as a function of concentration (mg.mL-1):  at 0.01 mg.mL-1 (●), at 1 mg.mL-1 (▲), at 5 mg.mL-

1 (■), at 10 mg.mL-1 ( ). 
 

* Size distribution and Rh observations 

DLS measurements performed at various angles (40 to 150°) indicate the presence of 

heterogeneous population for GPS1 and GPS2. Because the same phenomena were observed 

for GPS1 and GPS2 at different concentration, only the sample of GPS1 at 0.5 mg.mL-1 is shown 

in figure 9.8.   

Below the Tcp, at 90°, Rh distribution is very broad.  Moreover, Rh distribution at 90° covers the Rh 

values at 150° and 40°. This means that the size distribution of aggregates is broad in water 

solution. As indicated by their hydrodynamic radius and broad size distribution in solution at 90°, 

the graft copolymers (figure 9.8) behave as aggregates. According to figure 9.4, formation of the 

intermolecular aggregates is confirmed at 40°, by the presence of two populations (aggregates 

(population I) + unimolecular micelles (population II)), where the resolution for large scatterers is 

better than at 90°.  

As can be seen in figure 9.8, the Rh changed with temperature. Above the Tcp, the signals of the 

intensity of scattered light are still observed, so at the first point of view, no precipitation occurred. 

Besides, the highest Rh values have disappeared at 90° and 40°, which proved that only larger 

particles have precipitated, which is in agreement with figures 9.6 and 9.7.  

As for the population of micelles with small Rh, the signal at 40° and 90° disappear after heating. 

This could be explained by the enhanced stickiness of the individual polymer chains, which 

promote multichain association and formation of clusters or aggregates. Moreover, the decrease 

of the Rh above the Tcp confirms the shrink phenomenon due to the hydrophobic character of 



Chapter 9 
 

 - 202 -

PMVE. Thus, the Rh values, which correspond to the largest aggregates, disappear above the Tcp 

showing the increase of the intramolecular interaction between aggregates. This can be 

explained by the internal contraction of PMVE corona.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 9.8. Distributions of the hydrodynamic radius Rh of GPS1 obtained at different angles 
below and above Tcp for a concentration 0.5 mg.mL-1. 
 

 

Although the PMVE-g-PS graft copolymers exhibit a much more compact aggregate above Tcp, 

thanks to the PMVE shell they collapse together because of the intramolecular interactions, as 

indicated in figure 9.7.  Also, the characteristic features of the PMVE-g-PS aggregates seem to 

be significantly different from those of PNIPAAm-b-PS [21]. Indeed, Tenhu and coworkers 

reported that PNIPAAm-b-PS block copolymers formed only isolated micelles with Dh in the 15-30 

nm. Aggregates were, however, observed for polymers with higher molecular weights or 

containing a higher PS weight fraction. In some cases, these aggregates could be suppressed 

whenever the micelles were prepared via a dialysis method [24].  

 

It has been shown that PMVE dehydrates slowly due to the stabile structures of the micellar 

particles [20]. For the same reason, the dehydration does not necessarily lead to a huge change 

in the particle size. This may be rationalized by concluding that GPS1, which has the lowest PS 

content, do not disturb the formation of a micellar particle with a hydrophobic core. GPS1 and 
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GPS2 form mesoglobules with dimensions of the same order of magnitude as the dimensions of 

the fully stretched macromolecules. The same conclusion was made in the case of PNIPAAm-b-

PS and PNIPAAm-b-PtBMA [21].  

In general, we could conclude from the complete study, that only large particles precipitate above 

Tcp and particularly for higher concentration (C ≥ 1 mg.mL-1), but the smallest particles remain 

stable in water, and a shrink phenomenon is observed due to the hydrophobic character of 

PMVE. This could be represented in the following scheme 9.1: 
 

 

 

 

 

 

 

 

 

 

 
 
 

Scheme 9.1. Micellar particles behaviour of PMVE-g-PS in water solution at different 
temperatures. 
 

9.2.5. Atomic Force Microscope (AFM) 

 The morphology of the micelle-like aggregates was then examined by AFM. The 

aggregates formed by    PMVE-g-PS sample are shown in figure 9.9. Polydisperse spherical 

aggregates are clearly seen in these samples but they are poorly contrasted. The diameter of 

these micelle-like aggregates is in the range of 20-500 nm and therefore in agreement with the 

DLS results. Large aggregates have been occasionally observed, as shown in figure 9.9. The 

large aggregates revealed a cluster morphology. However, no information about their internal 

structure could be deduced so far.  
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Figure 9.9. AFM pictures of GPS1 and GPS2 aggregates: (A) GPS1 at 0.1mg.mL-1, (B) GPS2 at 
0.1mg.mL-1.  
 

9.3. Conclusion 

 Turbidimetry, MTDSC, HS-DSC, DLS and AFM have been used to investigate the 

mesoglobular structure and the phase behavior of PMVE-g-PS. In water, the graft copolymers 

with short PS side chains form micellar particles, whereas longer PS side chains produce 

insolubility of the graft copolymers in water. Aqueous micelle-like aggregates have been prepared 

from two different PMVE-g-PS graft copolymers that contain a thermo-responsive PMVE corona 

and a high Tg polystyrene core.  

 The phase behaviour of aqueous PMVE-g-PS solutions has first been studied by MTDSC, 

which demonstrated that the solutions of the graft copolymers follow the typical type III LCST 

phase behaviour of PMVE at significantly lower demixing temperatures and LCST’s . For all 

samples, spherical mesoglobules resulting from the merging of several individual micelles and 

aggregates have been observed by DLS and AFM. At low temperature, the copolymers form 

micelle-like aggregates where their sizes are fairly independent of the concentration. It was found 

that the solubility of PMVE-g-PS in water is limited by the amount of PS grafts but higher 

solubilities were found compared to block copolymers. 

 It has been shown by microcalorimetry that the dehydratation of the PMVE backbone 

takes place in all samples but within a broad temperature range. It is concluded that the surface 

of the hydrophobic core of the small particles is crowded in a way that hinders the compression of 

the PMVE shell. Moreover, the micellar aggregates were observed to be colloidally stable, and 

the smaller mesoglobules did not precipitate from water above Tcp, whereas the largest ones 

precipitate. 
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IV.1. Reagents and Materials 

Benzylamine (MG = 107.15 gmol-1, ρ = 0.9810, bp = 184°C, 99.5% from Acros Organics) was 

used as received and degassed under argon during 10 min before use. 
 

n-Butylamine (MG = 73.13 gmol-1, ρ = 0.74, 99.5% from Acros Organics) was used as received 

and degassed under argon during 10 min before use. 
 

tert-Butyl methacrylate (tBMA, MG = 142.20 gmol-1, ρ = 0.875, bp = 132°C, 98% Aldrich) was 

distilled in the presence of phenothiazine as inhibitor at low pressure under argon. The monomer 

was stored at 4°C in the darkness, and filtered through a basic aluminium oxide (Al2O3) column 

twice to remove acid traces just before use. 
 

2-Chloroethyl vinyl ether (CEVE, MG = 106.55 gmol-1, ρ = 1.048, bp = 109°C, 99% from Aldrich) 

was washed with a 10% aqueous sodium hydroxide solution and then with water, dried overnight 

with MgSO4, distilled twice over CaH2 prior to polymerization and stored under argon at low 

temperature.  
 

Copper bromide (CuBr, MG = 223.35 g.mol-1, ρ = 4.77, mp = 498°C, 99% from Aldrich) was 

purified by stirring with acetic acid, then by filtering and washing with ethanol and diethyl ether, 

and finally by drying in a vacuum oven at 70°C [1]. 
 

Copper chloride (CuCl, MG = 134.55 g.mol-1 , Aldrich 99%) was purified by washing with acetic 

acid, filtering with ethanol and drying under vacuum [1]. 
 

Dichloromethane HPLC (CH2Cl2) was distilled under CaH2 prior to use. 
 

1,1-Diethoxyethane (DEE, MG = 118.18 gmol-1, ρ = 0.831, bp = 85°C, 99% from Acros Organics) 

was purified by refluxing 2 hours and distilled over CaH2 first,  then, just before use, distilled over 

CaH2. 
 

Anhydrous diethyl ether HPLC (Et2O, bp = 35°C) was distilled over sodium just before use in the 

presence of traces of benzophenone as indicator for the presence of H2O. 
 

Dimethylformamide HPLC (DMF, bp = 153 °C) was stored under molecular sieves 3Å. 
 

Isobutyl vinyl ether (IBVE, MG = 100.16 gmol-1, ρ = 0.768, bp = 83°C, 99.5% from Acros 

Organics) was washed with a 10% aqueous sodium hydroxide solution and then with water, dried 

overnight with MgSO4. Then it was purified by refluxing 4 hours and distilled over CaH2 first, then 

distilled again just before use under sodium in the presence of traces of benzophenone as 

indicator for the presence of H2O. 
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Methyl vinyl ether (MVE) (MG = 55.08 gmol-1, bp = 83°C, kindly donated by BASF company, 

Ludwigshafen) was passed through a CaH2 trap for drying purposes. 
 

Nickel dibromide triphosphine (Ni(II)Br2(PPh3)2, MG = 743.12 gmol-1, mp = 219-223°C, 99% from 

Aldrich) was used without purification. It was stored under nitrogen but was weighed in the open 

air prior polymerization. No catalyst degradation has been noticed even after 2 days in contact 

with air. 
 

N,N,N’,N”,N”-pentamethyldiethylenetriamine (PMDETA, MG = 173.30 gmol-1, ρ = 0.830,             

bp = 83-84°C/18 mmHg or 198°C, mp = -20°C, 99+% from Acros) was distilled                        

(85-86°C/12 mmHg), and degassed before use for 1 hour. 
 

 Poly(ethylene oxide)monomethyl ether (CH3O-PEO-OH, Mw = 2000-5000 g.mol-1, Aldrich 

Chemical Company Inc.) was used without further purification except for rigourous drying to 

remove absorbed water. It was stirred and heated at 70°C for 7 hours under vacuum.  
 

Poly(methyl vinyl ether) (PMVE, Mw = 20 000 g.mol-1, Tg = - 25°C, from Aldrich Chemical 

Company Inc.) was dried prior to further handling. 
 

Potassium iodide (KI, MG = 166.01 gmol-1, 99.995% from Acros Organics) was degassed under 

argon in darkness and dried under vacuum for at least 2 hours before use. 
 

Pyridine (MG = 79.10 gmol-1, ρ = 0.978, bp = 115°C, mp = -42°C 99.5% Avocado) was distilled 

under CaH2 prior to use. 
 

Sodium iodide (NaI, MG = 149.89 gmol-1, 99+% from Aldrich) was degassed under argon in 

darkness and dried under vacuum for at least 2 hours before use. 
 

1,1,3,3-Tetraethoxypropane (TEoP or malonaldehyde bis (diethyl acetal), MG =  220.31 gmol-1,   

ρ = 0.910, bp = 220°C, 99+%, Acros Organics) was purified by reflux (4 hours), distilled over 

CaH2 under reduced pressure and stored under argon at low temperature. It can be used only            

5 times. Then, a new purification is necessary.  
 

Tetrahexylalumminium (THA, from Interspe Hamann Group) was dissolved in dry toluene (0.1 M) 

and stored under argon at low temperature. 
 

Tetrahydrofurane HPLC (THF, bp = 67°C) was purified by refluxing and distillation over sodium in 

the presence of traces of benzophenone as indicator for the presence of H2O, then, before use, 

distilled over sodium in the presence of benzophenone.  
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2,2,6,6-Tetramethylpiperidine (TMP, MG = 141.26 gmol-1, ρ = 0.837, bp = 152°C, 98% from Acros 

Organics) was purified by refluxing 4 hours, distilled over CaH2 under reduced pressure and 

stored under argon at low temperature.  
 

Toluene HPLC (Fischer Scientific, bp = 110°C) was purified by refluxing and distillation over 

sodium in the presence of traces of benzophenone as indicator for the presence of H2O, then, 

before use, distilled over sodium in the presence of benzophenone.  
 

Triethylamine (Et3N, MG = 101.19 gmol-1, ρ = 0.726, bp = 89°C, 99.5% from Aldrich) was first 

purified by reflux (during 2 hours) and then freshly distilled over CaH2 before use. 
 

Trimethylsilyl iodide (TMSI, MG = 200.10 gmol-1, ρ = 1.406, bp = 106°C, 97% from Aldrich, 5 mL 

ampoule) was bough at Aldrich in ampoules stabilized by copper. It was used without further 

purification and stored in the freezer. 
 

Zinc iodide (ZnI2, MG = 319.18 gmol-1, 99.99+ % of purity, from Aldrich, 5 ml ampoule) was dried 

under vacuum for at least 12 hours before use under darkness, and stored under argon. 
 

Aluminium oxide (Al2O3, Aldrich neutral activated 58 Å), 2-bromoethyl phtalimide                     

(MG = 254.09 gmol-1, 98% from Avocado), n-butyl lithium (nBuLi, in a 1.6 M hexane solution, 

Fluka), lithium borohydride (LiBH4, 2 M solution in THF, from Acros Organics), potassium-tert-

butoxide (tBuO-K+, MG = 112.21 gmol-1, 95-99% from Janson Chimica), anhydrous sodium 

thiosulfate (Na2S2O3) (MG = 105.99 gmol-1, 99% from Aldrich), tetrabutylammonium bromide 

(TBAB, MG = 322.36 gmol-1, 99+% from Acros Organics), 2,2,2-tribromoethanol (TBE) (MG = 

gmol-1, from ), para-toluenesulfonyl chloride (TsCl, >99%, Fluka), triethylene glycol (TEG, MG = 

178 g.mol-1 and Aldrich Chemical Company Inc.) were used as received. 

All other unspecified reagents and materials were used after distillation or without further 

treatment. 
 

IV.2. Analytical Methods: Measurements 

IV.2.1. Atomic Force Microscopy (AFM)  

Samples for AFM analysis were prepared by solvent casting at ambient conditions by spin 

coating on substrates starting from solutions in water of PMVE-g-PS. Practically, 20 μL of a dilute 

solution (0.5 mg.mL-1 and 0.1 mg.mL-1) were spin cast on a 2 x 2 cm2 Si wafer with rotated 

monolytic contact probes. Samples were analyzed in liquid state at room temperature. All AFM 

images were recorded in air with a PicoPLus instrument from Digital imaging (now Agilent) 

modular Scanning Probe Microscope (SPM), operated in soft tapping mode. The probes were 

commercially available silicon tips with a spring constant of 40 N/m, a resonance frequency lying 
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in the 300 kHz. In this work, the images were recorded with the highest sampling resolution 

available, i.e., 1024 x 1024 data points.  
 

IV.2.2. Cloud Point Temperature (Tcp) 

For Tcp measurements, a copolymer solution was dissolved in Milli-Q water at the desired 

concentration and then put into test tubes and kept at 4°C for 24 hours. The Tcp was visually 

determined by transferring the test tubes into a water bath, and increasing the temperature 

stepwise with 1°C every 15 min. The Tcp was chosen as the temperature when the solution 

became cloudy. The phase transition temperature of the solutions was also measured by 

monitoring the transmittance at the wavelength of 540 nm through a 3 cm polystyrene cuvette 

with a heating rate of 0.1°C.min-1 in between 10 and 50 °C. The transmittance was recorded on a 

Uvikon 810 UV/VIS spectrophotometer. 

The Tcp can also be obtained from light scattering and microcalorimetry measurements. 
 

IV.2.3. Copolymers Composition 

The DPn of the copolymers and their compositions were determined from 1H NMR spectra 

according to the starting group (DEE or TEoP at 1.1-1.2 ppm) and to characteristic areas of each 

monomer repeat unit where m corresponds to the number of the repeating units of MVE, n of 

CEVE and o of IBVE. The 1H NMR spectra and the results are shown in Chapter 3. The 

methylene unit of the three homopolymers (protons a) appears in the area ICH2 between            

1.5 – 2.0 ppm. The β-methyl protons adjacent to the oxygen atom, as an ether function, of PMVE 

(protons b and c) give rise to the signal area IMVE between 3.2 – 3.55 ppm, while those adjacent 

to the oxygen of PCEVE (protons b, d and e) appear in the range area ICEVE between                

3.5 – 3.9 ppm, while also those of PIBVE (protons b and f) appear in the range area IIBVE between 

3 – 3.6 ppm. Moreover, IBVE units are also characterized in area ICH3 by a single peak (protons 

h) at 0.9 ppm.   

The DPn and the composition of each copolymers were also calculated from combinations of the 

integration of both monomers by the three following system equations: 
 

 Case of Poly(MVE-co-CEVE) 

* IMVE + ICEVE = (4 H m + 5 H n + 4 H) * IH with TEoP/TMSI initiator or IMVE + ICEVE = (4 H m + 5 H n 

+ 3 H) * IH, with DEE/TMSI initiator (area between 3.1 – 3.9 ppm) 

* ICH2 = (2 H m + 2 H n + 2 H) * IH, with TEoP/TMSI initiator or ICH2 = (2 H m + 2 H n) * IH (area 

between 1.5 – 2.0 ppm) 

* IH = i / 6H, IH: one proton integration (i: area of the signal at 1.18 ppm). 
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  Case of Poly(MVE-co-IBVE) 

The equations are the following: 

* IMVE + IIBVE = (4 H m + 3 H o + 4 H) * IH with TEoP/TMSI initiator or IMVE + IIBVE = (4 H m + 3 H o 

+ 3 H) * IH, with DEE/TMSI initiator (area between 3.1 – 3.6 ppm) 

* ICH2 = (2 H m + 3 H o + 2 H) * IH, with TEoP/TMSI initiator or ICH2 = (2 H m + 3 H o) * IH (area 

between 1.5 – 2.0 ppm) 

* ICH3 = 6 H o, peak at 0.9 ppm 

* IH = i / 6H 
 

 Case of Poly(IBVE-co-CEVE) 

The equations are the following: 

* IIBVE + ICEVE = (5 H n + 3 H o + 4 H) * IH with TEoP/TMSI initiator or IMVE + IIBVE = (5 H n + 3 H o + 

3 H) * IH, with DEE/TMSI initiator (area between 3.2 – 3.9 ppm) 

* ICH2 = (2 H n + 3 H o + 2 H) * IH, with TEoP/TMSI initiator or ICH2 = (2 H n + 3 H o) * IH (area 

between 1.5 – 2.0 ppm) 

* ICH3 = 6 H o, peak at 0.9 ppm 

* IH = i / 6H 
 

The results are listed in table 3 in Chapter 3. 
 

IV.2.4. Differential Scanning Calorimetry (DSC) 

The thermal analyses were performed on Perkin-Elmer DSC-7 differential scanning calorimeter. 

The amount of samples was about 10 or 15 mg, a heating rate of 5°C.min-1 at the second heating 

run was used and the temperature and heat capacities were calibrated with indium and n-octane 

standards. 

The glass transition temperature (Tg) of the copolymers was determined by DSC with PERKIN-

ELMER thermal analyser DSC-7 with a heating rate of 5°C.min-1 during the first and the second 

heating run with a temperature range from –100 to 140°C. During the measurement, the sample 

was purged with nitrogen gas. The Tg was defined as the onset of the change in heat capacity 

during the second heating. 
 

IV.2.5. Dynamic Light Scattering (DLS) 

* Principle 

DLS also known as quasi-elastic light scattering (QELS), is usually used to determine the particle 

size and size distribution of colloidal particles. It can be used to characterize latex, ceramic 

particles and silica, as well as adhesives, toner particles, micelles and microemulsions, among 

others. Particles that are suspended in a liquid undergo random movement caused by their 

bombardment by liquid molecules, with smaller particles ‘diffusing’ through fluid faster than larger 

particles. This phenomenon is termed Brownian motion after its discoverer Robert Brown, and 
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can be used to determine the size of the constituent particles. If a coherent and vertically 

polarized source, such as a laser, is applied to the sample, concentration fluctuations give rise to 

scattered intensity fluctuations. Variations in the intensity of the light scattered by the particles 

can be detected at any time by a single photon counting detector, and the size of the particles are 

derived using an autocorrelator and mathematical algorithms.  
 

* Theory [2-3] 

In DLS experiments, an autocorrelation function of scattered light intensity G2(t) = 〈I(0)I(t)〉 was 

collected and then converted into an autocorrelation function of scattered electric field g1(t) using 

the Siegert’s relationship [2]:       

                                                                                                                                         Eq.IV.2.5-1 
 

where G2(∞) is the experimentally determined baseline, and β is the coherence factor determined 

by the geometry of the detection (typically 0.5 ≤ β ≤ 0.8). Characteristic decay times of a field 

correlation function τi and their relative amplitudes Ai(τi) were evaluated via moments of a 

corresponding distribution function of decay times A(τ) obtained using an inverse Laplace 

transform programs CONTIN as  
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Corresponding hydrodynamic radii Rhi were obtained from relaxation times τi via the Stokes-

Einstein equation: 

                                                                           

2

06hi i
kTR q

n
τ

π
=

                                                                               
where k is the Boltzmann constant, T is the absolute temperature, n0 is the solvent viscosity, q is 

the scattering vector determined as                               , 

 

 λ0 is the wavelength of the incident laser light source; n0 is the refractive index of the solvent. 

Mean peak values of hydrodynamic size distributions were used as an average hydrodynamic 

radius Rh. 
 

* Experimental  

DLS experiments were performed to investigate properties of intermolecular aggregates on 

nanometer scale. DLS was also applied to determine the hydrodynamic radius (Rh) and 

hydrodynamic size distribution of the copolymers synthesized. Methodological aspects of DLS 

can be found elsewhere [3]. DLS measurements were conducted with a Brookhaven Instruments 

BIC-200 SM goniometer and a BIC-9000 AT digital correlator. The light source was Spectra 

Physics model SP127-35 helium/neon laser (632.8 nm, 20 mW). Time correlation functions were 

analyzed with a Laplace inversion program (CONTIN). Simultaneously, time average intensity of 

scattered light I was recorded. Intensities measured in counts of photons per second were 

normalised with respect to the Rayleigh ratio of toluene. The range of graft copolymer 

Eq.IV.2.5-2 

Eq.IV.2.5-3
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concentrations was 0.02-1 g.L-1 for PMVE-g-PEO, and 0.01-10 g.L-1 for PMVE-g-PS. The 

solutions were filtered through Millex membranes PVDF 0.45 μm filter units. The measurement 

temperature ranged from 10 to 50°C and was controlled by means of a Lauda RC 6C thermostat. 

Experiments were carried out at a scattering angle range from 40 to 150°. At each temperature, 

the solutions (cp = 0.1 x mg.mL-1) were equilibrated from 30 to 60 min before the measurements. 

In the DLS, the intensity-intensity time correlation function G2(t) was recorded, which was used 

for the determination of the average line width (Γ). The average translational diffusion coefficient 

〈D〉  was further calculated from (Γ/q2). Scattering intensity, where the effect of solvent and 

scattering angle has been taken into consideration can be written as Iθ = (Iθ, solution – Iθ, solvent)sin θ, 

with Iθ, solution, Iθ, solvent, θ being the scattering intensity of the solution, the scattering intensity of the 

solvent, and the scattering angle, respectively. Iθ has been presented as a function of q2. 

Scattering function P(q) is written as P(q) = Iθ / Iθ=0 = 1- ((Rg
2q2)/3) where Iθ=0 is estimated by 

extrapolating intensities to zero angle. Thus, q = (4πn0/λ)(sin(θ/2)) is the scattering vector with n0 

and λ are refractive index of solvent and wavelength. It is essential to use the linear part of the 

scattering function where Rg is proportional its slope, i.e. q〈Rg〉 ≤ 1.  
 

IV.2.6. Electrokinetic Sonic Amplitude (ESA) 

The pigment-polymer interaction was investigated by electrokinetic sonic amplitude (ESA) 

method. ESA measurements were carried out as described earlier [4]. This analytical technique 

measures the dynamic mobility, which in turn is related to the zeta-potential [4-5]. 
 

IV.2.7. Elemental Analysis (E.A.) 

For determining the grafting degree of the PEO side chains, all the element values were 

determined by EA. EA was performed by Solarize in France.  
 

IV.2.8. Fourier Transform Infrared (FT-IR)  

FT-IR spectra of graft copolymers were recorded between 4400-600 cm-1 with Bio-Rad 575C 

enhanced intensity FT-IR spectrometer, using polymer films cast from chloroform solutions onto 

KBr pellets. The PMVE-g-PtBMA was characterized by comparing the FT-IR spectrum of    

PMVE-g-PMAA. 
 

IV.2.9. Gas Chromatography (GC)  

GC was performed on a GC8000 from CE instruments with DB-5MS column (60 m x 0.249 mm x 

0.25 μm) from J&W scientific. Detection was done with an FID-detector. Injector and detector 

temperatures were kept constant at 250°C. Starting temperature of the column was 50°C for       

3 min, followed by heating rate of 20°C.min-1 until 230°C and kept for 8 min at this temperature. 

Conversion was determined by using acetone or dichloromethane as internal standard. 
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IV.2.10. High Sensitivity Differential Scanning Calorimetry (HS-DSC) 

or Microcalorimetry [6-8] 

* Principle 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure IV.1. Sketch diagram of a typical HS-DSC used for thermal studies of dilute solutions of 
polymer-biomolecules (adapted from [6]). Identical, total-fill sample (S) and reference (R) cells 
(typically 0.5-1 mL) containing polymer solution and buffer, respectively, are held under elevated 
atmospheric or inert gas pressure (P) to inhibit bubble formation during heating. During up-scan 
operation, power is supplied to the main heaters to raise the temperature of the cells at a steady 
rate, whilst monitoring the temperature differences between sample reference cells (ΔT1) and 
between cells and the surrounding adiabatic jacket (ΔT2). Feedback through the jacket heater 
allows the thermal shield temperature to follow that of the cells, and feedback heaters on the cells 
compensate for any temperature differences between the cells during the scan. Figure taken from 
reference [7]. 
 
A sketch showing the typical layout of a HS-DSC instrument is shown in figure IV.1. A DSC 

continuously measures the apparent specific heat of a system as a function of temperature. 

Therefore, HS-DSC can be used to examine a heat induced phase transition or conformational 

change [8]. A HS-DSC instrument contains two cells suspended in an adiabatic jacket and 

connected by various heating and temperature/power sensing circuits. In a HS-DSC experiment, 

a solution of polymer (typically 1 mg.mL-1 or less in modern instruments) is heated at constant 

rate in the calorimeter (or sample) cell alongside an identical reference cell containing buffer (H2O 

or D2O) (cell volume = 0.5-1 mL) and the temperature is increased in the range 0.1 – 100°C. 

During a heat induced endothermic transition, the temperature of the sample cell falls behind that 

of the reference since some of the energy required is used to induce the transition rather than 

heat the solution. This lag is detected and additional electric power is proportional to the energy 

associated with the thermally induced transition. Differences in heat energy uptake between the 

sample and reference cells required to maintain equal temperature, correspond to differences in 

apparent heat capacity Cp,app. These differences in heat capacity give direct information about the 

energetics of thermally-induced processes in the sample. Knowledge of the solute concentration 
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permits the conversion of the observed electrical against temperature profile to a curve 

corresponding to an excess heat capacity versus temperature plot. 
 

* Thermodynamics 

 A single HS-DSC experiment can provide a large amount of thermodynamic information, 

much of which cannot be obtained by any other technique. Equation Eq.IV.2.10-1 shows that 

integration of the experimental heat capacity (Cp) curve yields the calorimetric transition enthalpy 

(ΔHcal):      

                                                      
0dpC T H= Δ∫                                                            

This calorimetrically determined enthalpy is model independent and therefore does not depend 

on the nature of the transition. The temperature at which excess heat capacity (Cp,xs)is at a 

maximum defines the transition temperatures or mixing temperatures (Tm). Differences in the 

initial and final baselines provide a measure of the heat capacity change that accompanies the 

transition. Equation Eq.IV.2.10-2 shows that by converting the experimental data into a Cp,xs/T 

versus T curve the entropy change (ΔS) for the transition can be determined  from the area under 

such a curve.             

                                        
( ), / dp xsS C T TΔ = ∫                                                                               Eq.IV.2.10-2 

Using these data he value of ΔG can be evaluated at any temperature. 

 HS-DSC experiments suitably analyzed can also provide important information on the 

cooperativity of a transition. This can be achieved by comparing the model-dependent van’t Hoff 

enthalpy (ΔHvH obtained by shape analysis of the calorimetric data) and the calorimetric enthalpy 

(ΔHcal). The advantage of scanning microcalorimetry consists of the fact that both quantities, ΔHvH 

and ΔHcal, can be determined in a single experiment. If ΔHvH = ΔHcal then the transition proceeds 

in a two-state manner and meaningful thermodynamic data can be obtained by examining the 

temperature dependence of an equilibrium property. The ratio ΔHvH/ΔHcal represents an effective 

number of cooperative units per polymer molecule and thus provides a quantitative insight into 

the nature of the transition; specifically, it provides a measure of the fraction of the structure that 

melts as a single thermodynamic entity, i.e. it defines the size if the cooperative unit. This is a 

unique advantage of scanning microcalorimetry in the study of biological and polymer molecules. 
 

* Experimental 

Microcalorimetry measurements were performed for aqueous polymer solutions with a VP-DSC 

microcalorimeter (MicroCal Inc) at an external pressure of ca. 180 kPa. The cell volume was 

0.507 ml. The instrument response time was set at 5.6 s. Scans were performed from 10 to 

100°C at heating rates of 30, 60 and 90°C.h-1. Prior to each scan the sample was kept at 10°C for 

15 min. Data were corrected for instrument response time and analysed using the software 

supplied by the manufacturer. The polymer concentration was 1.0 mg.mL-1, unless otherwise 

specified. For the present system, the values of Tdemix are determined with an estimated accuracy 

Eq.IV.2.10-1
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of ± 0.1 °C. The heat of transitions ΔH is given in kilo Joules per moles of repeating units. For 

PMVE, P(MVE-stat-CEVE), PMVE-g-PEO and PMVE-g-PS, ΔCp = Cp (90°C)-Cp(25°C). 

The influence of the scan rate was studied on the PMVE, the backbones and various graft 

copolymers of  PMVE-g-PEO and PMVE-g-PS. In figures IV.2 and IV.3, the superposition of the 

curves with the heating rate between 30 and 90°C.h-1 shows that the variation of the scan rate 

does not cause any systematic change in the thermograms and the Tcp values. Moreover, the 

endothermic transition observed is completely reversible and reproducible (see figure IV.2 and 

IV.3).  
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Figure IV.2. Microcalorimetric endotherms for aqueous solutions of PMVE-g-PEO with heating 
rate (a) 90°C.h-1, (b) 60°C.h-1 and (c) 30°C.h-1. 
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Figure IV.3. Microcalorimetric thermograms for aqueous solutions of PMVE-g-PS with heating 
rate (a) 90°C.h-1, (b) 60°C.h-1 and (c) 30°C.h-1. 
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The onset temperature (Tonset) relates to the starting point of the aggregation process, and the 

maximal temperature values, at the peak, corresponds to the demixing temperature (Tdemix). The 

transition is caused by the dehydration of the polymer chains. Above Tdemix, the copolymer 

collapses or precipitates. 

 

For all copolymers the values of the heat capacity (Cp) were the same, within experimental error, 

before and after the transition. So the faster speed of 90°C.h-1 was chosen for all experiments. 

The reproducibility of the thermograms was demonstrated, proven by the second and subsequent 

scans with identical run parameters. The transition observed is completely reversible. 
 

IV.2.11. Methods of Micelle Preparation [10-11] 

There are two principal methods for the preparation of block copolymer micelles, the direct 

dissolution method and the dialysis method, as outlined in figure IV.4. The choice of which 

method to use depends mostly on the solubility of the block copolymer in water. If the copolymer 

is marginally soluble in water, the direct dissolution method is employed, whereas if the 

copolymer is poorly soluble in water, the dialysis method is usually employed. 

 

The direct dissolution simply involves adding the PMVE-g-PEO copolymer to water. The 

copolymer and water are mixed at room temperature, and the micelles are formed at elevated 

temperature. 

 

The dialysis method is used when micelles are to be formed from a copolymer that is not easily 

soluble in water. In this case, the PMVE-g-PS copolymer first dissolved in a common organic 

solvent, THF, that is miscible with water. Therefore, the preparation method previously introduced 

by Yu and Eisenberg for ‘crew-cut’ micelles was applied [10].  

First, an initial solution of each copolymer in THF was prepared (concentration 0.8 mg.mL-1) and 

then deionized water was added dropwise to the solutions with vigorous stirring during three days 

to induce micellization of the insoluble PMVE-g-PS. 15-30 wt-% of water was added depending 

on polymer. The quality of the solvent became gradually poorer for the hydrophobic chains, this 

causing the aggregation of the hydrophobic blocks observed as the turbidity of the solutions. 

Subsequently, the resulting slightly opaque THF/water solutions were dialyzed several times 

against water to remove THF (Spectra-Por dialysis bags, MWCO: 30 000). The final 

concentration of the copolymer in pure water was set to 15 mg.mL-1. 
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METHODS OF MICELLE PREPARATION 

 

Direct Dissolution Method 

for marginally water soluble copolymers 

Dialysis Method 

for poorly water soluble copolymers 

. Dissolve copolymer in water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Dissolve copolymer in organic solvent 

 

 
Figure IV.4. Schematic drawing of the two principal methods employed for the preparation of 
graft copolymer micelles. Figure taken from ref [10]. 
 

IV.2.12. Modulated Temperature Differential Scanning Calorimetry 

(MTDSC)  

* Thermodynamics (taken from [13]) 

A MTDSC was applied for measuring the difference in heat flow between a sample and an inert 

reference, while both were subjected to a temperature program. Such measurements provide 

information on physical and chemical changes involving endothermic and exothermic process, or 

changes in heat capacity. The sample was put in a pan that was placed within a furnace, 

symmetrically to a reference pan. The temperature difference (∆T) between both pans is related 

to the heat flow:                     

                                                                            

dQ T
dt R

Δ
=

                                                              Eq.IV.2.12-1    

with dQ the amount of heat transferred to the sample (in J) in a time interval dt and R the thermal 

resistance of the cell in K.W-1. The resulting heat flow is considered to be a combination of a 

heating rate dependent term and one related to the absolute temperature. The former is 

proportional to the heat capacity and the latter contains kinetically driven processes, which can be 

expressed as:                  

                                                                             
( ),p

dQ dTC f t T
dt dt

= +
                                     Eq.IV.2.12-2  

PMVE-g-PEO 

↑ T (°C) 

PMVE-g-PS 

. Dialysis 
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with Cp the thermodynamic heat capacity in J.K-1, t the time in min, T the actual  temperature and 

f(t,T) the time- or temperature-dependent kinetic response of any physical or chemical process 

within the sample in W. 

In MTDSC, a sample is subjected to a modulated temperature program obtained by 

superimposing a sine wave onto an isothermal or linearly changing (underlying) temperature 

program (figure IV.5) [12]: 

                                                                                 
( )0 sin

60 T
tT T A tβ ω= + +

                             Eq.IV.2.12-3 

with β the heating rate in K.min-1, T0 the initial temperature in K, AT the temperature modulation 

amplitude I K and ω the modulation angular frequency in s-1. The modulated heating rate can be 

written as follows:     

                                                                                  
( )cos

60 T
dT A t
dt

β ω ω= +
                             Eq.IV.2.12-4 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure IV.5. MTDSC heating profile, showing the modulated temperature and heating rate for a 
modulation amplitude of 1°C and a modulation period of 60 s superimposed on the heating ramp 
with a heating rate of 2°C.min-1. Figure taken from reference [13].  
 

As such, the resulting heat flow is given by:  

                         
( ) ( ) ( )cos ' , sin

60p T UND K
dQ C A t f T t A t
dt

β ω ω ω⎡ ⎤= + + +⎢ ⎥⎣ ⎦                          Eq.IV.2.12-5 

with f’(TUND,t) in W the average (underlying) response of a kinetic phenomenon to the underlying 

temperature program, AK in W the amplitude of the kinetic response to the temperature 

modulation. This equation contains two contributions: one that depends on the modulation (cyclic) 

and one that depends on the average temperature (underlying). These signals can be separated 

as follows:   
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- The resulting underlying or total heat flow (THF) corresponds to the signal given by conventional 

DSC:                 

                                          
( )' ,

60p UND
TOT

dQ C f T t
dt

β
= +

                                                            Eq.IV.2.12-6 

- The cyclic heat flow is obtained by substracting the total heat flow from the modulated heat flow: 

                                          
( ) ( )cos sinp T K

CYCL

dQ C A t A t
dt

ω ω ω= +
                                        Eq.IV.2.12-7 

The amplitude of the 1st harmonic of this cyclic heat flow and the amplitude of the 1st harmonic of 

the cyclic component of the modulated heating rate (the actual input) are obtained using a 

discrete Fourier transformation. They are used to calculate the cyclic heat capacity, which is the 

ratio between the amplitude of the cyclic heat flow (AHF) and the amplitude of the cyclic heating 

rate (ATω):      

                                            
,

HF
p CYCL

T

AC
A ω

=
                                                                                     Eq.IV.2.12-8 

Multiplying this heat capacity by the (measured) underlying heating rate β gives the ‘reversing 

heat flow’ (RHF in W, Eq.IV.2.12-9), whereas the ‘non-reversing heat flow’ (NRHF in W, 

Eq.IV.2.12-10) is calculated by substracting the reversing heat flow from the total heat flow. 

                                             ,p CYCLRHF C β=
                                                                                Eq.IV.2.12-9 

                                             NRHF THF RHF= −                                                                    Eq.IV.2.12-10 

 

On the time-scale of the modulation, thermodynamic materials properties and heating rate 

dependent transitions are found in the reversing signal (e.g. heating/cooling of the material in 

absence of thermal events). Kinetic properties, dependent on time and absolute temperature, will 

primarily show up in the non-reversing signal. Changes in the heat capacity due to a Tg, for 

example, will be found in the reversing heat flow, while a reaction exothermic is found in the non-

reversing heat flow [14]. On the other hand, when MTDSC is used for characterizing polymer 

mixtures, this straightforward deconvolution is no longer valid. Heat effects, coupled with 

melting/crystallization or mixing/demixing occur during one modulation cycle and thus have a 

contribution to both signals [15]. 
 

* Experimental 

1) for PMVE-g-PEO 

A first series of MTDSC measurements was performed on a TA Instruments 2920 DSC with the 

MTDSCTM option and a Refrigerated Cooling System (RCS) cooling accessory. Helium was used 

as a purge gas (25 mL.min-1). Indium and n-decane were used for temperature calibration. The 

former was also used for enthalpy calibration. Standard modulation conditions are an amplitude 

of 0.50°C with a period of 60 s. Heat capacity calibration was performed in standard modulation 

conditions with water, using the heat capacity difference between two temperatures, one above 
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and one below the melting temperature. In this way, the most accurate measurements of heat 

capacity changes and excess contributions, Cpexcess, were obtained. Data are expressed as 

specific heat capacities (or changes) in J.g-1.K-1. Non-isothermal experiments were performed at 

an underlying heating/cooling rate of 0.2°C.min-1. 

A second series of MTDSC experiments was performed on a TA Instruments Q1000 (T-zeroTM 

DSC-technology) with a liquid nitrogen cooling system. The calibration and measuring conditions 

were as stated above. Nitrogen was used as a purge gas (25 mL.min-1). 
 

2) for PMVE-g-PS 

MTDSC measurements were performed on a TA Instruments Q2000 DSC (Tzero
TM DSC 

technique) with the MDSC option, equipped with an RCS cooling accessory and purged with 

nitrogen (50 mL.min-1). Baseline, heat capacity, and temperature were calibrated with sapphire 

and indium. The hermetic crucibles were perforated for the measurements of pure GPS samples. 

The standard modulation conditions with AT of 0.5 K and p of 60 s were used unless stated 

otherwise. Scan rates were 1.0 and 2.5 K.min-1 for phase separation measurements and glass 

transition measurements, respectively, unless stated otherwise. For phase separation 

measurements, the solutions were kept isothermally for 30 min at a lower limit temperature of      

2 oC or -10 oC (the latter for the fwGPS > 30 wt-%) and for 5 min at an upper limit temperature of  

65 oC. For glass transition measurements, the solutions were kept isothermally for 10 min at a 

lower limit temperature of -90 oC and for 1 min at an upper limit temperature of 65 oC. Three 

heating-cooling cycles were run to see the reproducibility. For most measurements, all three 

cooling runs coincide very well. Only the first heating run was slightly different from the 

subsequent two heating run, which might be due to sample preparation effects. To reduce these 

effects, the second cycle was used for the analysis of demixing and remixing, while the second 

cooling and the third heating were used for the analysis of glass transition. Note that Tdemix threshold 

corresponds to the first point when polymer solution starts to demix. 
 

IV.2.13. Nuclear Magnetic Resonance (1H NMR and 13C NMR) 

NMR spectra were recorded on a Bruker AC 360 or AC 500 FT NMR-instrument in DMSO-d6 for 

PMVE-g-PMAA and in deuterated chloroform CDCl3 solution for the other products at room 

temperature. 
 

IV.2.14. Size Exclusion Chromatography (SEC) 

* For all the products 

SEC analyses were performed with a Waters instrument equipped with a 60 cm Polymer 

Laboratories Column, 1000 Å porosity, with a refractometer index (RI) detection (Melz), and 

chloroform (CHCl3) as eluent, and calibrated with polystyrene standards. Therefore, a conversion 

factor of 0.75 [21] for the backbone and of 0.65 for PMVE-g-PEO was used to compensate the 

difference in hydrodynamic volume with respect to the polymers synthesized in this work. Hence, 
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the molar mass distribution (Mw/Mn) and the number-average molar mass (Mn) could be 

determined. 

* For PMAA and PMVE-g-PMAA 

SEC analyses were performed on a Waters 150-C at 35°C, equipped with Styragel HT3 and HT4 

columns. PMAA and PMVE-g-PMAA were measured on three serial missed-B columns (length of 

each 30 cm, inner diameter 7.5 mm) from Polymer Labs at 40°C using a refractive index detector 

(2410 Waters). PS standards were used for calibration with N, N-dimethylacetamide (DMA) with 

added 0.21% LiCl and 0.63% HOAc as eluent at a flow rate of 1.0 mL.min-1. 

* SEC/LS 

SEC with triple detection (refractive index (RI), viscosity and light scattering) was performed on 

an instrument equipped with two Styragel (mixed C) columns at 40°C. Polystyrene standards 

were used for calibration, and THF was used as an eluent at a flow rate of 1.0 mL.min-1. A 

viscotec TS10 detector (scattering angle: 90°, wavelength laser: 670 nm) was used in 

combination with a Knaub RI detector. The Mw and PDI index were determined using the Trisec 

software (Viscotec, dn/dc = 0.103). 
 

IV.2.15. Surface Tension 

Surface tension measurements were carried out using Cahn Dynamic Contact Angle Analyzer. All 

the measurements were carried out at 20°C. To confirm precision for our experimental 

procedures, the surface tension of PMVE-g-PEO solution was measured and its critical aggregate 

concentration (CAC) determined. 
 

IV.2.16. Ultraviolet-visible spectrophotometer (UV-vis Transmission) 

The Tcp were determined with a UV-vis spectrophotometer (λ = 630 nm) for the aqueous solutions 

with polymer concentration varying from 0.01 to 15 g.L-1. Solutions were heated in a transparent  

1 cm3 thin UV cell with a constant rate of 1°C min-1. The Tcp was reported at the onset 

temperature corresponding to an increase of the turbidity. The transmittance was recorded with a 

Shimadzu 160 1PC UV-vis spectrophotometer equipped with a thermostatic cell holder       

ETEC-505. The measurements were done in a temperature range of 5-50°C. The temperature 

was elevated with a step of 5°C. In this work, the heating rate was set to 0.2°C.min-1, and no 

effect of the heating rate on the signal was observed at low heating rates. 
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IV.3. Syntheses 

IV.3.1. Synthesis of the Poly(Vinyl Ethers) 

All glasswork was dried for at least 24 hours in a drying oven at 70°C. 

The polymerization was performed in a double jacket reactor provided with magnetic stirrer, an 

inlet for gaseous MVE, an inlet for solvent, and with a rubber septum-closed neck containing a 

needle connected with a balloon filled with dry argon. 

IBVE and CEVE were added through a rubber septum by means of a hypodermal syringe. 

The gaseous MVE flowed stainless tubing into the reactor where it condensed in the cooled 

toluene solution. The amount and the mass flow of MVE were measured by a mass flow 

controller (figure IV.6). 

For polymerizations performed in the presence of THA, the latter was introduced before the DEE 

or TEoP and TMSI addition. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.6. The reactor used for the living polymerization of MVE. 
 

IV.3.1.1. Synthesis of the Random Copolymers Starting with a Mono-functional 

Initiator 

Typical copolymerizations conditions were as follows; first, 0.025 M (0.297 mL) of TMSI 

and 0.021 M (0.245 mL) of DEE were added through the septum to 80 mL of dry toluene under 

argon atmosphere at -40°C using an equipment describe in reference [16]. After 20 min, 1.036 M 

(0.086 mol) of a mixture of MVE and CEVE were added. The reactor was warmed to 0°C and the 
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polymerization was started with the injection of ZnI2, dissolved in 3 ml of diethylether. After 

2h30min, the polymerization was terminated at -20°C using 1.03 mL (0.002 mol) of LiBH4 in THF 

(1.2 mol relative to 1 mol of polymer), and 1.11 mL of deionized water added to decompose 

residual LiBH4. 

The quenched reaction mixture was washed with 10% aqueous Na2S2O3 solution, then 

with deionized water, and dried over anhydrous MgSO4. The solution was filtered and the solvent 

was dried under vacuum. 
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Scheme IV.1. PMVE with DEE/TMSI acetal initiator. 

1H-NMR (CDCl3): δ = 3.3-3.5 ppm (b, c, j, k), δ = 1.5-2.0 ppm (a), δ = 1.18 ppm (i). 
13C-NMR (CDCl3): δ = 74.5 ppm (B1), δ = 68.9 ppm (J), δ = 56-57 ppm (C), δ = 37.6-39.4 ppm (A), 
δ = 19.7 ppm (I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O). 
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Scheme IV.2. PCEVE with DEE/TMSI acetal initiator. 

1H-NMR (CDCl3): δ = 3.5-3.9 ppm (b, d, e, j, k), δ = 1.5-2.0 ppm (a), δ = 1.18 ppm (i). 
13C-NMR (CDCl3): δ = 74.5 ppm (B1), δ = 73.6 ppm (B2), δ = 68.9 ppm (J), δ = 68.7 ppm (D),         
δ = 43.7 ppm (E), δ = 39.4-41.0 ppm (A), δ = 19.7 ppm (I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
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Scheme IV.3. P(MVE-co-CEVE) with DEE/TMSI acetal initiator. 

1H-NMR (CDCl3): δ = 3.3-3.9 ppm (b, c, d, e, j, k), δ  = 1.5-2.0 ppm (a), δ = 1.18 ppm (i). 
13C-NMR (CDCl3): δ = 73.6 ppm (B2), δ = 68.9 ppm (J), δ = 68.7 ppm (D), δ  = 56-57 ppm (C),       
δ = 43.7 ppm (E), δ = 39.0-42.0 ppm (A), δ = 19.7 ppm (I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
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IV.3.1.2. Homopolymerizations of PMVE, PIBVE and PCEVE Starting with a      

Bi-functional Initiator 

Typical homopolymerizations conditions were as follows; first, 2 mL of THA (0.1 M), TMSI 

and TEoP (table IV.1) were added through the septum to 100 mL of dry toluene under argon 

atmosphere at -40°C using an equipment described in reference [16]. After 20 min, 0.83 M   

(0.086 mol) of monomer was added. The reactor was warmed and the polymerization was started 

with the injection of 5.5 mg ZnI2, dissolved in 4 mL of diethylether. After the complete reaction, 

the polymerization was terminated at -20°C using 1.7 mL (0.2 mol) of LiBH4 in THF (1.2 mol 

relative to 1 mol of polymer), and 2 mL of deionized water added to decompose residual LiBH4. 

The quenched reaction mixture was washed with 10% aqueous Na2S2O3 solution, then 

with deionized water, and dried over anhydrous MgSO4. The solution was filtered and the solvent 

was dried under vacuum. 
 

Table IV.1. Reactions conditions for the homopolymerizations with [A]0/[I]0 = 1/33. 

Monomer [M]0 [TEoP]0 = [I]0 [TMSI]0 Treaction  reaction time 

 

MVE 

0.83 M 

(5 g) 

0.011 M 

(18.6 μl) 

0.026 M 

(37.3 μl) 

 

0 °C 

 

 4 hours 

 

CEVE 

0.83 M 

(8.74 ml) 

0.027 M 

(47.2 μl) 

0.066 M 

(94.3 μl) 

 

0°C 

 

4 hours 

 

IBVE 

0.83 M 

(11.22 ml) 

0.027 M 

(47.2 μl) 

0.066 M 

(94.3 μl) 

 

-40°C 

 

2 h 45 min 
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Scheme IV.4. PMVE with TEoP/TMSI bi-acetal initiator. 

1H-NMR (CDCl3): δ  = 4.3 ppm (l), δ = 3.3-3.5 ppm (b, c, j), δ = 1.5-2.0 ppm (a, k), δ = 1.18 ppm 
(i). 
13C-NMR (CDCl3): δ = 74.5 ppm (B), δ = 68.9 ppm (J), δ = 56-57 ppm (C), δ = 37.6-39.4 ppm (A, 
K), δ = 19.7 ppm (I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O). 
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Scheme IV.5. PCEVE with TEoP/TMSI bi-acetal initiator. 
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1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 3.5-3.9 ppm (b, d, e, j), δ = 1.5-2.0 ppm (a, k), δ = 1.18 ppm 
(i). 
13C-NMR (CDCl3): δ = 73.6 ppm (B), δ = 68.7-68.9 ppm (D, J), δ = 43.7 ppm (E),                        
δ = 39.4-41.0 ppm (A, K), δ = 19.7 ppm (I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
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Scheme IV.6. PIBVE with TEoP/TMSI bi-acetal initiator. 

1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 3.0-3.7 ppm (b, f, j), δ  = 1.4-2.0 ppm (a, g, k), δ = 0.9 ppm 
(h), δ  = 1.18 ppm (i). 
13C-NMR (CDCl3): δ  = 75.8 ppm (B), δ = 68.9 ppm (F, J), δ = 39.4-41.0 ppm (A, K), δ  = 29.0 ppm 
(G), δ = 19.7 ppm (H-I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1380 cm-1 (C(CH3)2), 1365 cm-1 (C(CH3)2), 1114 cm-1 
(C-O), 1095 cm-1 (C-O). 
 

IV.3.1.3. Synthesis of the Random Copolymers Starting with a Bi-functional 

Initiator 

Typical copolymerizations conditions were as follows; first, 0.1 M (2 mL) of THA,  0.066 M 

(97.8 μL) of TMSI and 0.027 M (47.2 μL) of TEoP were added through the septum to 100 mL of 

dry toluene under argon atmosphere at -40°C using an equipment described in reference1. After 

20 min, 0.83 M (0.086 mol) of a mixture of MVE/CEVE or IBVE/CEVE were added. The reactor 

was warmed (table IV.2) and the polymerization was started with the injection of 5.5 mg ZnI2, 

dissolved in 3 ml of diethylether. The polymerization was terminated at -20°C using 1.7 mL (0.2 

mol) of LiBH4 in THF (1.2 mol relative to 1 mol of polymer), and 2 mL of deionized water added to 

decompose residual LiBH4. 

The quenched reaction mixture was washed with 10% aqueous Na2S2O3 solution, then 

with deionized water, and dried over anhydrous MgSO4. The solution was filtered and the solvent 

was dried under vacuum. 
 

Table IV.2. Reactions conditions for the copolymerizations with [A]0/[I]0 = 1/33. 

Monomer T reaction °C  reaction time 

MVE/CEVE 0°C 4 h 

IBVE/CEVE -30°C 2 h 45 
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Scheme IV.7. P(MVE-co-CEVE) with TEoP/TMSI bi-acetal initiator. 

1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 3.3-3.9 ppm (b, c, d, e, j), δ = 1.5-2.0 ppm (a, k),                  
δ = 1.18 ppm (i). 
13C-NMR (CDCl3): δ = 74.5 ppm (B1), δ = 73.6 ppm (B2), δ = 68.7-68.9 ppm (D, J), δ = 56-57 ppm 
(C), δ = 37.6-41.0 ppm (A, K), δ = 19.7 ppm (I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
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Scheme IV.8. P(IBVE-co-CEVE) with TEoP/TMSI bi-acetal initiator. 

1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 3.0-3.9 ppm (b, d, e, f, j), δ = 1.4-2.0 ppm (a, g, k),                 
δ  = 1.18 ppm (i), δ = 0.9 ppm (h). 
13C-NMR (CDCl3): δ = 75.8 ppm (B3), δ = 73.6 ppm (B2), δ  = 68.7-68.9 ppm (D, F, J),                    
δ = 37.6-41.0 ppm (A, K), δ = 29.0 ppm (G), δ = 19.7 ppm (H, I). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
 

IV.3.1.4. Two-stage Copolymerizations 

In the case of two-stage copolymerizations, at the time of completion of first-stage 

polymerization, the second-feed monomer (table IV.3) was injected into the polymerization 

system by a trans-dermal syringe for IBVE and CEVE, or through the septum by the MVE flow. 

Then the reaction was terminated and washed as described above. 
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Table IV.3.  Reactions conditions for the two-stage copolymerizations. 

First-feed monomer 
composition 

Treaction  End time of 
first stage 
product 

Second–feed monomer 
composition 

 reaction 
time 

MVE/CEVE with 

60/40 

 

0°C 

 

2 h 30 

 

MVE/CEVE with 60/40 

 

4 h 10 

IBVE/CEVE with 

85/15 

 

-30°C 

 

1 h 30 

 

IBVE/CEVE with 95/5 

 

2 h 30 

 

IV.3.2. Synthesis of the Thermo-responsive PMVE-g-PEO 

IV.3.2.1. Model Reactions 

IV.3.2.1.1. By One-step: the Nuyken Method [17-18] 

A solution of the corresponding reagents (table IV.4), benzylamine (purged with argon for 

10 min), base 1, 2 or 3 (1: TMP, 2: Et3N and 3: TBuO-K+) and TBAB only use with the base 3 

were dissolved in 30 mL dry DMF and stirred at room temperature for one hour. Subsequently, a 

solution of 2 g corresponding copolymer P(MVE-co-CEVE) (Mn = 20 460 gmol-1, composition 

86.74 mol-% MVE and 13.26 mol-% CEVE) or P(IBVE-co-CEVE) (Mn = 54 790 gmol-1, 

composition 94.2 mol-% IBVE and 5.8 mol-% CEVE) in 5 mL dry toluene was added dropwise 

within 30 min. The syringe was washed with 5 mL of dry toluene and the solvent was added to 

the reaction mixture. This mixture was heated up to 80°C and stirred for 66 hours at this 

temperature.  

After cooling to room temperature, the mixture was filtered to eliminate the solid residues 

and the solvents were evaporated. The filtrate was dissolved in 25 mL in chloroform, washed 

three times with deionized water and dried over MgSO4. The solution was filtered and the solvent 

was evaporated to dryness under reduced pressure. Then, the pure new copolymer was dried 

under vacuum. 
 

Table IV.4. Reactions conditions for the nucleophilic substitution. 

Copolymer [Benzylamine]0 [Base]0 [TBAB]0 

P(MVE-co-CEVE) 0.1225 M 

(4.9 mmol) 

0.1225 M 

(4.9 mmol) 

0.0025 M 

(0.098 mmol) 

P(IBVE-co-CEVE) 0.0548 M 

(2.19 mmol) 

0.0548 M 

(2.19 mmol) 

0.0011 M 

(0.044 mmol) 
 

IV.3.2.1.2. By Two-steps: the Finkelstein Method 

The salts KI and anhydrous Na2S2O3 were suspended in 25 mL dry acetone under argon 

(table IV.5). The copolymer was solved in 5 mL dry acetone and dropped to the suspension with 

a syringe whereby the solution changed color to yellow. The syringe was washed with 5 mL 

acetone and the solvent was added again. The amine was purged with argon for 10 min, then 
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dissolved in 5 mL dry acetone and added dropwise to the reaction mixture with a syringe. The 

reaction mixture discolored, was stirred and heated under reflux during 48 hours at 60°C, and 

cooled down to room temperature under stirring.  

Meanwhile precipitation fell out. The precipitate was filtered and the solvent was 

evaporated to dryness under reduced pressure. The residuum was dissolved in toluene. The 

quenched reaction mixture was washed with 10% aqueous Na2S2O3 solution and water, dried 

over anhydrous MgSO4, filtered, and evaporated to dryness under reduced pressure. Then, the 

pure copolymer was dried. The product obtained was a bright brown oil, which changed color to 

dark brown during standing in the lab.  
 

Table IV.5 . Reactions conditions for the nucleophilic substitution. 

Copolymer [Benzylamine]0 [KI]0 [Na2S2O3]0 

P(MVE-co-CEVE) 

86.74/13.26 

0.1225 M 

(4.9 mmol) 

0.074 M 

(2.94 mmol) 

0.147 M 

(5.88 mmol) 

P(IBVE-co-CEVE) 

94.2/5.8 

0.0548 M 

(2.19 mmol) 

0.034 M 

(1.31 mmol) 

0.066 M 

(2.63 mmol) 
 

 

 

 

 

 

 

 

 
 

 

 

 

1H-NMR (CDCl3): δ = 7.15-7.35 ppm (f), δ = 4.3 ppm (l), δ = 3.3-3.9 ppm (b, c, d, e, j),                   
δ = 1.5-2.0 ppm (a, k), δ = 1.18 ppm (i). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
 
 

IV.3.2.2. Functionalization of PEO 

Synthesis of ω-amino-poly(ethylene oxide)-monomethyl ether (CH3O-PEO-NH2) 

Hydroxyl-ended PEO was first converted to tosylate-functionalized PEO, which was, in the 

second step, substituted by ammonium to obtain the amino-functionalized PEO. 

p
CH3 O CH2 CH2 O CH2 CH2 OH

a b b c1 d1

 

Scheme IV.10. Structure of CH3- PEO-OH. 

1H-NMR (CDCl3): δ = 3.80 ppm (c1), δ = 3.75 ppm (d1), δ = 3.55-3.70 ppm (b), δ  = 3.37 ppm (a). 
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Scheme IV.9. PMVE-g-benzylamine structure. 
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Scheme IV.11. Structure of CH3- PEO-OH in TAIC. 

1H-NMR (CDCl3): δ = 4.43 ppm (d2), δ = 3.80 ppm (c2), δ = 3.55-3.70 ppm (b), δ = 3.37 ppm (a). 
 
 

First step: synthesis of PEO-TsCl 

50 g (0.01 mol) of hydroxy terminated PEO (Mw = 5000 gmol-1) was dissolved in 300 mL dry 

toluene, dried by azeotropic distillation, and concentrated to about 25% of its original volume. A 

solution of 62.5 mL (0.773 mol) dry pyridine in 125 mL dry CH2Cl2 was stirred for 30 min at -5°C. 

A second solution of 9.5 g (0.050 mol) TsCl was solubilized in 37.5 mL dry CH2Cl2 and stirred for 

30 min at 0°C. The pyridine solution was added to the PEO/toluene and stirred at 0°C, whereas 

after 30 min, the TsCl solution was added. The reaction mixture was continuously stirred 

overnight at 4-6°C under nitrogen atmosphere. Afterwards, it was cooled at 0°C, and 7.5 g ice 

were added to destroy the unreacted TsCl under stirring for 30 min. The pyridine was removed in 

the aqueous phase by addition of 97.5 mL of 0.3 N aqueous HCl solution, 250 g of ice and 10 mL 

of CH2Cl2 under stirring. On the other hand, the organic phase was extensively washed with:       

i) 3 M aqueous HCl solution at 0°C, ii) two times with a saturated NaCl solution, and iii) with a 

saturated NaHCO3 solution. Next, the organic phase was dried under MgSO4, then concentrated. 

PEO was precipitated several times by dropwise addition in cool Et2O. This mixture was kept 

overnight at 0°C to facilitate recrystallization. Finally, the precipitate was filtered off, and dried in 

oven overnight to eliminate Et2O. Yield 45 g. 

CH3 O CH2 CH2 O CH2 CH2 O S

O

O

CH3
p

a b b c3 d3 e

 
Scheme IV.12. Structure of CH3- PEO-OTs. 

1H-NMR (CDCl3): δ = 4.15 ppm (d3), δ = 4.10 ppm (c3), δ  = 3.55-3.70 ppm (b), δ = 3.37 ppm (a). 
E. A. Calcd for PEO5000: C, 54.43 wt-%; H, 8.96 wt-%; O, 35.98 wt-%. Found: C, 54.39 wt-%; H, 
8.92 wt-%; O, 36.06 wt-%. 
FT-IR (KBr): 2877 (ν C-H), 1458 (ν C-CH2), 1182 (ν S-O-C), 1114 (ν CH2-O-CH2),                  
1106 (ν C-O-C), 665 (ν C-Cl), no absorption for OH at 3500 cm-1. 
 

Second step: synthesis of PEO-NH2
 (2) 

40 g (0.008 mol) of PEO-TsCl (Mw = 5000 gmol-1) was dissolved in 220 mL NH3 (25% in water) 

and heated for 72 hours at 70°C under reflux in an autoclave (500 ml, Schott, Mainz). After 

cooling to room temperature, the autoclave was carefully opened. After concentrating the mixture 

by rotatory evaporation, ethanol was stepwise added and removed till no residual NH3 could be 

detected. The PEO was redissolved in CH2Cl2 and washed with 15 mL of 2 N aqueous NaOH 

solution, after which toluene (1v/10v toluene/CH2Cl2) was added to separate the emulsion 

phases. The organic phase was washed with half saturated NaCl solution; dried under MgSO4, 

and filtered off. Finally, the solution was concentrated and redissolved in toluene, allowing 

crystallization at 0°C at least overnight. Once precipitation took place, the crystals were washed 
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with cool diethyl ether several times and the solid material was dried in vacuum oven. Yield 36 g. 

The yield of amination was 100 % as determined by the amount of TsCl by NMR.  

p
CH3 O CH2 CH2 O CH2 CH2 NH2

a b b c4 d4

 
Scheme IV.13. Structure of CH3- PEO-NH2. 

1H-NMR (CDCl3): δ  = 3.50 ppm (c4), δ = 3.55-3.70 ppm (b), δ = 3.37 ppm (a), δ = 2.95 ppm (d4). 
E. A. Calcd for PEO5000: C, 54.45 wt-%; H, 9.13 wt-%; N, 0.28 wt-%; O, 36.14 wt-%. Found: C, 
54.39 wt-%; H, 9.19 wt-%; N, 0.34 wt-%; O, 36.05 wt-%. 
FT-IR (KBr): 3420 (ν N-H), 2877 (ν C-H), 1580 (ν N-H), 1458 (ν C-CH2), 1114 (ν CH2-O-CH2) and 
1106 (ν C-O-C), no absorption for S-O-C 1182 and for Cl at 665 cm-1. 
 

This hydrophilic polymer is soluble in many solvents, e.g. water, ethanol, pyridine, dioxane, 

toluene, dichloromethane, chloroform, tetrahydrofurane, and insoluble in diethylether and 

petroleum ether. 
 

IV.3.2.3. Synthesis of PMVE-g-PEO 

2.64 mL (4.22 mmol) nBuLi were slowly added to a solution of 8.43 g (4.22 mmol) CH3-PEO-NH2 

(2) (Mw = 2000 gmol-1) dissolved in 150 ml dry THF under argon atmosphere at -78°C, and stirred 

for 30 min. 4 g (1.40 mmol Cl) P(MVE-stat-CEVE) (234MVE/5CEVE, Mn = 14 230 gmol-1) (1) was 

dissolved in 20 mL of dry toluene. Then, the solution (1) of P(MVE-stat-CEVE) was dropwise 

added to the reaction mixture of (2) stirred at room temperature for 72 hours. The syringe used 

was rinsed out with 5 mL of dry toluene, which are added to the reaction mixture. After this 

period, the chlorine ions were detected as a white precipitate by addition of silver nitrate aqueous 

solution into the system. The solvents were evaporated and the product (3) was dissolved in 

CH2Cl2. The strong nBuLi base was destroyed with acetic acid at low temperature. Then, the 

solution was neutralized with a NaHCO3 saturated solution washed several times by pure water, 

dried over MgSO4 and filtered off. The graft product was precipitated in cold diethyl ether, and 

then purified by dialysis (MWCO 7-10000, two weeks) in water to remove the remaining PEO. 

Dialysis in water yielded pure PMVE-g-PEO as sticky or white powder depending on the PMVE 

wt-%. The success of purification process was shown by the disappearance of the homo-PEO 

peak in the SEC chromatograms. 
 

 

 

 

 

 

 
 

1H-NMR (CDCl3): δ = 5.6 ppm (g), δ = 4.3 ppm (l), δ = 3.3-3.9 ppm (b, c, d, e, j), δ = 1.5-2.0 ppm 
(a, k), δ = 1.18 ppm (i). 
FT-IR: 2953 cm-1 (C-H), 2871 cm-1 (C-H), 1114 cm-1 (C-O), 1095 cm-1 (C-O), 732 cm-1 (C-Cl),  
667 cm-1 (C-Cl). 
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 Scheme IV.14. PMVE-g-TEG structure. 
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Scheme IV.15. Structure of PMVE-g-PEO. 

1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 3.3-3.9 ppm (b, c, d, e, g,, h, j), δ  = 1.5-2.0 ppm (a, k), δ = 
1.18 ppm (i). 
FT-IR (KBr): 3420 (ν N-H), 2953 and 2871 (ν C-H), 1580 (ν N-H), 1458 (ν C-CH2), 1114 (ν C-O), 
1106 (ν C-O-C),1095 (ν C-O) and 732 (ν C-Cl) cm-1.  
 

IV.3.3. Syntheses of PMVE-g-PS and PMVE-g-PtBMA by ATRP 

IV.3.3.1. ATRP Homopolymerization Procedure of St and tBMA 

 All experiments were conducted according to the Schlenck method. In a typical ATRP 

experiment, the appropriate amounts of initiator, monomer, solvent and magnetic bar were 

introduced in a glass tube, which was then closed by a three-way stopcock and placed under 

nitrogen flow to remove oxygen molecules during 45 min. In a second, dry 10 mL three-neck 

round-bottom flask, catalyst system was charged, and the flask was sealed with a rubber septum. 

This activator was also bubbled with argon for 45 min to remove traces of oxygen. Then, the 

catalyst system was added under nitrogen with a syringe to the monomer solution and placed in 

an oil bath preheated and maintained at the desired temperature.  

When high temperature and/or long reaction time were required, the tubes were sealed under 

vacuum. For the polymerization in acetone, the tube was frozen in liquid nitrogen and three 

“pump-freeze-thaw” cycles were then performed. To study the kinetics of the polymerization, 

samples were taken using a degassed syringe during the course of reaction and diluted with ethyl 

acetate. Part of the solution was used for GC and 1H NMR to determine monomer conversion, 

while the remaining part was used for SEC analysis. After completion of the reaction, ethyl 

acetate (10 mL) was added to the flask. The resulting green catalyst (CuII or NiII complex) colored 

polymer solution was passed through a aluminium oxide (Al2O3) column to remove the copper or 

nickel complex. The resulting colorless polymer solution was concentrated by rotavaporation, 

after which the polymer was purified by precipitation. After evaporation of the solvent, PS was 

dissolved in THF and recovered by precipitation into cold methanol, filtered and dried under 

vacuum until constant weight. In the case of PtBMA, the product was dissolved in a small quantity 

of chloroform, and then added dropwise to a solution of ethanol/water (90/10) under stirring and 

left precipitating overnight. Afterwards, water was added dropwise to accelerate the precipitation 

of the product. The final product was filtrated, washed with water and dried in vacuum oven. The 

PtBMA, depending on the Mn and polydispersity, could also be dissolved in THF and precipitate 

in cold hexane. 
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IV.3.3.1.1. With CuBr/PMDETA as Metal/Ligand Catalyst 

 For the homopolymerization of tBMA, CuBr catalyst (265.0 mg, 1.85 mmol), TBE     

(523.0 g, 1.85 mmol), tBMA (15 mL, 92.3 mmol, DPn theoretical = 50) and 15 mL THF (50/50 v/v) 

and were charged to a dry 100 mL three-neck round-bottom flask, and the flask was sealed with a 

rubber septum. The reaction mixture was bubbled with argon gas for 45 min to remove traces of 

oxygen. In a second, dry 10 mL three-neck round-bottom flask, PMDETA (385.0 μL, 1.85 mmol) 

was degassed 45 min before use to remove traces of oxygen. Then, PMDETA was added via a 

degassed syringe to the monomer solution and immersed in oil bath at 60°C to start the 

polymerization.  

The same procedure was used for PS polymerization. The table IV.6 recapitulates the 

experimental data of PtBMA and PS syntheses. 
 

Table IV.6. Data from PtBMA and PS syntheses. 

monomer [M]0 
mol, mL 

[TBE]0 
mmol, mg 

[CuBr]0 
mmol, mg 

[PMDETA]0 
mmol, μL 

temperature 
(°C) 

vol solvent 
(mL) 

 
tBMA 

50 

0.092; 15 

1 

1.85; 523 

1 

1.85; 265 

1 

1.85; 385 

 

90 

 

15 

 50 

0.138; 22.5 

1 

2.8; 792 

1 

2.8; 402 

1 

2.8; 585 

 

70 

 

7.5 

 50 

0.196; 22.5 

1 

3.93; 1103 

1 

3.93; 559 

1 

3.93; 814 

 

110 

 

7.5 

St 50 

0.196; 22.5 

1 

3.93; 1103 

0.75 

2.95; 423 

0.75 

2.95; 615 

 

110 

 

7.5 

 50 

0.196; 22.5 

1 

3.93; 1103 

0.5 

1.97; 280 

0.5 

1.97; 407 

 

110 

 

7.5 
 

IV.3.3.1.2. With NiBr2(PPh3)2 as Metal Catalyst 

 The procedure was the same as discussed in the previous homopolymerization with 

CuBr/PMDETA except that NiBr2(PPh3)2 was added instead of CuBr, and TBE was added in the 

second flask instead of PMDETA to start the polymerization. The table IV.7 recapitulates the 

experimental data of PtBMA and PS syntheses. 
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Table IV.7. Data from PtBMA and PS syntheses. 

monomer [M]0 

mol, mL 

[TBE]0 

mmol, mg 

[NiBr2(PPh3)2]0 

mmol, mg 

temperature 

(°C) 

vol solvent 

(mL) 

tBMA 200 

0.092; 15 

1 

4.6; 130 

1 

4.6; 343 

 

70 

 

5 

 

St 
250 

0.131; 15 

1 

0.52; 148 

0.5 

0.26; 194 

 

90 

 

/ 

 250 

0.131; 15 

1 

0.52; 148 

0.2 

0.10; 77.7 

 

90 

 

/ 
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Scheme IV.16. Structure of PtBMA. 

1H-NMR (CDCl3): δ = 4,68 ppm (i), δ = 2.18 ppm (a’), δ = 1.70-2.13 ppm (a, b”), δ = 1.30-1.51 ppm 
(a”, b’, c), δ = 0.88–1.21 ppm (b). 
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Scheme IV.17. Structure of PS. 

1H-NMR (CDCl3): δ  = 6.30-7.30 ppm (c), δ = 4,8 ppm (b”), δ = 4,45 ppm (i), δ  = 4.24 ppm (a”),   
δ = 2.76 ppm (b, b’), δ  = 2.38 ppm (a’), δ  = 1.25–2.25 ppm (a). 
 
 

IV.3.3.2. Synthesis of the Macroinitiator 

 TBE (5.54 g, 19.6 mmol) was dissolved in 20 mL THF under stirring under argon 

atmosphere. When the solution temperature was decreased to -78 °C, nBuLi (12.25 mL,         

19.6 mmol) (1.6 mol in hexane relative to 1 mol of chlorine group) was added slowly during 1 hour 

under stirring. The mixture was heated to room temperature and a solution of P(MVE-stat-CEVE) 

(30 g, 16.3 mmol of chlorine groups), previously dissolved in 100 mL dry THF during one hour, 

was added dropwise to the basic mixture. After three days, the solvent was evaporated. The 

product was dissolved in toluene, then washed several times with deionized water, dried over 

anhydrous MgSO4 and filtrated. The solvent was evaporated and the product was dried overnight 

under vacuum oven. Table IV.8 recapitulates the macroinitiator syntheses data. 
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Table IV.8. Data from the macroinitiator syntheses. 

 backbone              TBE         nBuLi  

name m (mg) nb CEVE n CEVE (mmol) n (mmol) m (g) n (mmol) V (mL) 

B4 20 4 4.0 4.8 1.36 4.8 3.00 

B5 30 10 16.3 19.6 5.54 19.6 12.25 

B6 27 11 17.6 21.2 5.98 21.2 13.23 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Scheme IV.18. Structure of the macroinitiator PMVE-g-TBE. 

1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 4.25 ppm (f), δ = 3.3-3.9 ppm (b, c, d, e, j), δ = 1.5-2.0 ppm 
(a, k), δ  = 1.18 ppm (i). 
 
 
IV.3.3.3. ‘Grafting from’ Procedure of the Synthesis of the PMVE-g-PS and 

PMVE-g-PtBMA  

CuBr/PMDETA or NiBr2(PPh3)2  were used as catalyst for the graft copolymer synthesis. The 

procedure was the same as discussed in the previous homopolymerization except that a 

macroinitiator (203 mg, Mn = 20 930 g.mol-1, 0.009 mmol, theoretical degree of polymerization 

200) and solvent (toluene, 4.45 mL) were added to the flask initially. PMVE modified with TBE as 

a graft initiator (called the macroinitiator), and the solvent were placed into a dry 100 mL three-

neck round-bottom flask, and the flask was sealed with a rubber septum. Once the macroinitiator 

was completely dissolved, the monomer (St, 0.081 mL, 7.76 mmol) and catalyst were added. The 

solution was bubbled with argon for 45 min to remove traces of oxygen. Then, the monomer 

solution was immersed in an oil bath at the desired reaction temperature to start the 

copolymerization. Samples were taken and analyzed for monomer conversion by GC and 1H 

NMR. The obtained graft copolymer was purified as described above. PMVE-g-PS was 

precipitated in cold methanol whereas PMVE-g-PtBMA precipitated in ethylene glycol. 
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Table IV.9. Data from PMVE-g-PtBMA and PMVE-g-PS syntheses with CuBr/PMDETA as 

catalyst from the macroinitiator M3. 

monomer [M3]0 

mmol, mg 

[M]0 

mmol, mL 

[TBE]0 

mmol 

[CuBr]0 

mmol, mg

[PMDETA]0 

mmol, μL 

T 

(°C) 

vol 

solvent
(mL) 

 
tBMA 

 

0.026; 0.51  

250 

58.5; 9.5 

 

1 

0.234 

1 

0.234; 34 

1 

0.234; 49 

 

60 

 

4.45 

 

St 

 

0.025; 0.49 

250 

57.8; 6.04 

1 

0.231 

1 

0.231; 33 

1 

0.231; 48 

 

90 

 

3.02 
 

Table IV.10. Data from PMVE-g-PS syntheses with NiBr2(PPh3)3 as metal catalyst with             

DPn = 200. 

macroinitiator [Macro]0 

mmol, mg 

[M]0 

mmol, mL 

[TBE]0 

mmol 

[NiBr2(PPh3)2]0 

mmol, mg 

T 

(°C) 

vol solvent 

(mL) 

 

M1 

 

0.009; 203 

200 

7.76; 0.81 

1 

0.039 

1 

0.039; 288 

 

75 

 

0.81 

 

M2 

 

0.008; 166 

200 

12.8; 1.34 

1 

0.064 

0.5 

0.064; 47.5 

 

75 

 

1.34 
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Scheme IV.19. Structure of PMVE-g-PtBMA. 

1H-NMR (CDCl3): δ = 4.3 ppm (l), δ = 3.3-3.9 ppm (b, c, d, e, j), δ = 1.70-2.13 ppm (f),                   
δ = 1.5-2.0 ppm (a, k), δ = 1.30-1.51 ppm (h), δ = 1.18 ppm (i), δ δ = 0.88–1.21 ppm (g). 
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Scheme IV.20. Structure of PMVE-g-PS. 

1H-NMR (CDCl3): δ = 6.30-7.30 ppm (h), δ = 4.3 ppm (l), δ = 3.3-3.9 ppm (b, c, d, e, j), δ  = 2.76 
ppm (g), δ = 1.25-2.25 ppm (a, f, k), δ = 1.18 ppm (i). 
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Conclusion 

 
  

 

 

 
 A representative variety of thermo-responsive graft copolymers of controlled architecture 

with fascinating properties has been the topic of this research. What has emerged from this work 

is that the controlled/living polymerization methods developed so far eliminate the limits in the 

design of novel types of graft copolymers with potential applications such as drug carriers, 

switchable amphiphiles, mineralization templates, etc... Interdisciplinary research was needed in 

order to get advantage of the high potential of these thermo-responsive graft copolymers towards 

specific applications.  
 

 Thermo-responsive PMVE was chosen as the backbone of the graft copolymer structures. 

A statistical copolymerization of VE with a small amount of CEVE was synthesized by living 

cationic copolymerization techniques (Chapter 3). The pendant chlorine groups have been used 

for the coupling reaction with telechelic PEO with the grafting onto method (Chapter 5). Based on 

the same idea, the pendant chlorine groups were capable to initiate the controlled radical 

polymerization (ATRP) of styrene and tBMA via the grafting from method (Chapter 8). All these 

polymers were well-defined with regard to the molecular weights of the backbone and the 

branches, as well as the number of branches. They could have narrow molecular weight 

distribution but the position of the branches is random. 
 

 To introduce PEO as side chains, it was necessary to use an excess of homopolymer to 

efficiently graft it onto the functionalized PMVE main chain, and the remaining fraction was 

removed with dialysis in order to obtain pure graft copolymers (Chapter 5).  

 In comparison to the grafting onto approach with coupling reaction by nucleophilic 

substitution, the grafting from method by ATRP offers convenient and mild radical reactive sites 

and generally results in little or no excess of the graft homopolymer. On the other hand, the 

prediction of the molecular weight of the growing side chain is problematic in this case. Some 

homopolymerizations of St and tBMA were first investigated with a new ATRP initiator, 

tribromoethanol (TBE), by two different metal catalyst systems, CuBr/PMDETA and NiBr2(PPh3)2 

(Chapter 8). It was confirmed that ATRP is a particularly suitable polymerization technique for 

both St and tBMA with CuBr/PMDETA. On the other hand, the NiBr2(PPh3)2 metal catalyst system 

was proved to be efficient only for St homopolymerization. 

 First of all, to control the syntheses of PMVE-g-PS and PMVE-g-PMAA by the grafting from 

method via ATRP, the PMVE backbone was converted  into a macroinitiator, bearing ATRP initiating 
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groups as side groups in each repeating unit, which is obtained by the nucleophilic substitution of the 

chlorine groups, followed by transformation of the precursor polymer into PMVE-g-TBE. In this way, 

this efficient macroinitiator permitted St and tBMA to be grafted from the backbone via ATRP 

(Chapter 8). 

 

 In the case of tBMA, which was chosen as precursor monomer of methacrylic acid, 

complications have been encountered due to (1) uncontrolled radical formation with 

CuBr/PMDETA catalyst system, and (2) the immiscibility between tBMA and NiBr2(PPh3)2 metal 

catalyst. Thus, attempts were done to obtain bi-responsive PMVE-g-PMAA graft copolymers, 

after deprotection of the PtBMA side chains but, unfortunately, this polymerization procedure was 

unsuccessful as a result of the ill-defined control (Chapter 8).  

 For the PS-containing graft copolymers, both copper and nickel-mediated ATRP were found 

to be possible. In the case of the use of CuBr/PMDETA as catalyst, low molecular weights were 

obtained because of transfer reactions occurring during the polymerization. PMVE-g-PS graft 

copolymers with higher molecular weights have been successfully synthesized with the Ni catalyst.    
 

 From the number of research and review papers published over the last decade, it turns 

out that graft copolymer micellization, which is a unique example to achieve self-assembled 

nanoparticles with well-defined morphologies, is an area of increasing interest for the 

fundamental understanding and in view of practical application possibilities. Once the desirable 

structure was developed, properties of the aqueous solutions of thermo-responsive copolymers 

were investigated (Chapter 6 and 9). 

 MTDSC proved to be an excellent tool to evaluate the miscibility of the binary polymer 

mixtures studied, especially using its sensitivity for measuring Tg. The PMVE-g-PEO/water 

system does not show improved phase separation kinetics in comparison with PMVE (Chapter 
6). This is due to the fact that PMVE does not vitrify (at Tdemix) nor seems to be miscible with 

PEO. This difference in thermo-responsive behaviour also affects the change in demixing 

temperature upon grafting the backbone materials. It is generally assumed that grafting a 

hydrophilic polymer onto a thermo-responsive polymer enhances the solubility properties in 

water, which is thought to increase the demixing temperature. This hypothesis holds as long as 

the polymer concentration is very low, i.e. the mixture contains a substantial amount of bulk water 

[1]. However, when investigating the entire composition range, using MTDSC, the Tdemix of 

PMVE-g-PEO was clearly lowered upon grafting. This originates from the thermo-responsive 

backbone to interact with the surrounding water, resulting in a weakening of the water-polymer 

interaction and thus lowering Tdemix. The introduction of a hydrophilic component also influences 

the kinetics of phase separation. Both the rate of demixing and remixing became instantaneous 

upon grafting linear PMVE with PEO and PS.  

 Introduction of different hydrophilic/hydrophobic groups, such as CEVE-pendant groups,  

Br nucleophilic groups, PEO and PS grafts, proved to have a large influence on the type III LCST 

phase behaviour of PMVE in water. In all cases, statistical and graft copolymers with PMVE shift 
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the miscibility gap to lower temperatures. Hence, the solubility behaviour of PMVE in water gets 

worse as the content of CEVE, Br, PEO and PS increases.  

 

 Moreover, the aggregate formation was investigated by DLS and HS-DSC (Chapter 6 
and 9). In the case of PMVE-g-PEO copolymers, it was found that above the demixing 

temperatures, a core shell nano-structure was formed, in which the core consists of collapsed 

PMVE chains, whereas the PEO chains form the shell. The attained particle dimensions do not 

allow quantifying the core and shell size. This is explained by a substantial amount of residual 

water in the core. In contrast, PMVE-g-PS formed micelles with a PS core and PMVE shell at any 

temperature.  

For all samples, spherical mesoglobules resulting from the merging of several individual 

micelles and aggregates have been observed, similar as for the PMVE homopolymer. At low 

temperature, the copolymers form micelle-like aggregates with sizes that are fairly independent of 

the concentration. Further investigation revealed that size aggregates of PMVE-g-PEO and 

PMVE-g-PS do not change when the number or the length of the grafts increased. This indicates 

that the formation of aggregates is due to intramolecular interaction between the grafts and the 

backbone on one hand, and between each graft copolymer on the other hand. This 

intramolecular aggregation is less likely to happen upon lowering the polymer concentration.  A 

comparison of all these data revealed that the formation of the PMVE-g-PEO and of the      

PMVE-g-PS nanoparticles with a ‘core-shell’ structure actually involves two processes: the 

intrachain ‘coil-to-globule’ transition just below Tcp, and the interchain aggregation. Nevertheless, 

Rh values determined by DLS have shown that the interchain aggregation is dominant. 
 

 Aqueous polymer systems that display large conformational changes in response to 

temperature variations have attracted much attention in recent years covering a wide range of 

applications. Although these materials are very promising, usually the response rate is too slow. 

This can be overcome by introducing grafts on the thermo-responsive PMVE backbone. As 

general conclusion, PMVE-g-PEO and PMVE-g-PS graft copolymers have proved to have 

suitable thermo-responsive properties. For example, PMVE-g-PEO has been shown to act as 

efficient dispersants and stabilizers for carbon black, a good model for sludge [2]. From the 

industrial viewpoint, pigment or inorganic particle stabilization in water has a huge potential due 

to the public demand for products friendly to the environment. We expect that our work could help 

chemists as well as non-chemists to develop new applications which could be reliably utilized in 

real life application. 
 

 With regard to future developments, we assume the opportunity for the synthesis of the 

desired bi-responsive graft copolymers. After our research on the PMVE-g-PMAA system, the 

use of 1-ethoxyethyl as the protecting group for (meth)acrylic acid has been studied in our 

research group. Poly(1-ethoxyethyl methacrylate) (PEEMA) and  poly(1-ethoxyethyl acrylate) 

(PEEA) are novel precursors for poly(methacrylic acid) (PMAA) and poly(acrylic acid) (PAA), 



Conclusion 

 - 246 -

respectively [3]. They have the unique property that deprotection is carried out by a heating step, 

with the loss of ethyl vinyl ether (bp: 33°C) as a gas, preventing the need of an additional 

purification step after deprotection. 

 A different synthetic strategy towards graft copolymer architectures could rely on a 

combination of ATRP and “click” chemistry. Recently, in our research group, a combination of 

ATRP of EEA and the Cu(I) catalyzed “click” chemistry 1,3-dipolar cycloaddition reaction of 

azides and terminal alkynes was evaluated as a method to synthesize diverse amphiphilic 

copolymer structures [4]. Using 1-ethoxy protecting group strategy as precursor of PAA 

segments, polymers with alkyne as well as azide functionalities have been synthesized. These 

polymers were subsequently “clicked” together to yield block copolymers. Moreover, it is well-

known that the bromide ends of polymers prepared by ATRP can easily be transformed into 

azides by nucleophilic substitution and subsequently reacted with functional alkynes. Based on 

this scheme, a new strategy could be used for preparing well-defined bi-responsive PMVE-g-

P(M)AA graft copolymers, consisting of the synthesis of a PMVE-macroinitiator with a suitable  

pendant azide functional compound, followed by the “click” coupling grafting reaction of the 

alkyne-terminated PEE(M)A (see scheme C1). 

 

Scheme C1. Schematic depiction of the synthesis of graft copolymers using ‘click’ chemistry. 
Figure taken from ref [4]. 
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Appendix I: COPOINT program 
 

COPOINT program [1] is a simple program that fits integrated copolymerization 
equations to experimental monomer / copolymer composition data. The program applies 
numeric integration techniques that allow the user to introduce a wide variety of 
copolymerization equations in their differential form. The applied grid search algorithm 
ensures to find the global minimum of the square difference sum within the user-defined 
search limits. 

By evaluation of the statistical error of the square difference sum, the probable 
error ranges of the fitted copolymerization parameters are estimated, which allows the 
user to estimate the reliability of the fit [2-7]. Hence COPOINT rapidly enables the user to 
decide which model equation approximates his data best, or if his set of data is sufficiently 
accurate. 

 
The new version of the program in which the azeotropic point is enabled to be integrated, is 
given by Source code of COPOINT, written in Microsoft QuickBasic 4.5. 
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Appendix II: Basic Program for the Tidwell-Mortimer Method 

 

The use of statistically invalid procedures on otherwise good data resulted in 
tremendous diversity of tabulated reactivity ratios. 

To determine r1 and r2, a non-linear method least-squares analysis was used where 
the sum of squares of residuals SS between measured and predicted conversion (eq. AII.1) 
are minimized by changing r1 and r2:   

                                     ( ) ( )( )
2

1 2 1 2
1

, ,
n

i i
i

SS r r m freal r r
=

= −∑                          (eq. AII.1) 

where mi is the mole fraction of the copolymerized monomers at the ith experimental data 
point, freal(r1, r2)i is the value of Mayo-Lewis equation (eq. 2.2, Chapter 2.2.) at the ith 
experimental data point calculated from measured M1. 

For the least-squares procedure, the use of the ‘sum-of-squares space’ (SSspace) 
approach was opted, which is less likely to converge to a local minimum (the surface is 
inspected visually). Adapting this approach to our calculations, the Joint Confidence 
Intervals (JCI) is calculated from eq. AII.2: 

                                     ( ) ( )" " 2 2
1 2 1 2 0.95;2, , (2, 2)nSS r r SS r r F nσ −≤ + −                 (eq. AII.2) 

where SS(r1, r2) is the value of eq. AII.1 at a given  r1, r2 value, ( )" "
1 2,SS r r is the value of eq. 

AII.1 at the point estimates for  the monomer reactivity ratios, and ( )2 2
0.95;2 2, 2nF nσ − −  is 

the product of the variance of monomer conversion (estimated to be 9 x 10-4 for our 
reactions) and  ( )2

0.95;2 2, 2nF n− − at the 95% confidence interval for 2 degrees of freedom and 

n experimental data. 
 To construct the SSspace, eq. AII.1 was evaluated for a range of r1 and r2 values for a 
given data set in EXCEL 7.0 using a looping structure written in an Excel Visual Basic 
program. 
 
The Excel program 
 
First the experimental parameters M1 and m1 were written in a table AII.1 and ftheo and 
values were calculated from the Lewis-Mayo equation (eq. 2.2, Chapter 2.2.). 

In sheet 1, the grid was designed by placing r1 values in a single column (occupying 
several rows) and the r2 values in a single row (occupying several columns). The first macro 
‘SSspace’, made in Microsoft Visual Basic, was then executed by clicking on Tools  Macro 

 Macros…  SSspace  Run.  
This code generates a 200 x 255 matrix of sum-of-squares values from which the minimum 
can be selected. One can obtain the least-squares sum SS(r1, r2) at the best set of 
parameters by just keeping track of the lowest sum of squares value (SSreal) during the 
calculation of the sum of squares array. 

It is difficult to graph the numbers corresponding to the JCI in this format since 
they are not arranged in a x,y-column format. Therefore, a short macro ‘Matrixconvert’ was 
written which can convert a matrix into an x,y,z-column format. So, the r1, r2 and SS values 
were copied in sheet 2 (‘blad 3’) in three columns on clicking on Tools  Macro  Macros…  
Matrixconvert  Run. 

Finally, an algorithm ‘Verschil’ was written to construct the JCI displaying the r1 and 
r2 values for which the corresponding sum-of-squares value corresponds to the joint 
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confidence condition, which can be represented by an ellipsoid because of the sum of 
squares space. You click on Tools  Macro  Macros…  Verschil  Run. 
 
Table AII.1. Experimental and calculated data from the copolymerization of MVE with 
IBVE. 

 
The Excel Visual Basic Program 

This program was made by the PhD student Bart Dervaux from the Ghent university 
(colleague of my laboratory) with the help of ref [1,2]. 
  
 
References 
[1] van Herk A.M., J. Chem. Edu., 1995, 72, 138,  
[2] Arehart S.V., Matyjaszewski K., Macromolecules, 1999, 32, 2221.  

x or M1 Y or m1 ftheo (m1-ftheo)² freal (m1-freal)² 

0,1 0,16923 0,082458771 0,007529246 0,12059 0,002365892 

0,2 0,24242 0,185185185 0,003275824 0,239292 9,78534E-06 

0,3 0,33823 0,303265941 0,001222485 0,354501 0,00026473 

0,4 0,44286 0,429447853 0,000179886 0,464997 0,000490062 

0,5 0,54794 0,555555556 5,79967E-05 0,569923 0,000483268 

0,6 0,6962 0,674157303 0,00048588 0,668734 0,000754396 

0,7 0,78313 0,779816514 1,09792E-05 0,761145 0,00048332 

0,8 0,84001 0,869565217 0,000873511 0,847084 5,00453E-05 

0,9 0,92708 0,942668137 0,00024299 0,926635 1,97719E-07 
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Appendix III: Determination of the Degree of Functionalization of PMVE-g-PEO by 
Elemental Analysis and the Non-linear Least-squares Analysis  

 
 
The degree of grafting was determined by E.A. and the non-linear least-squares analysis 
from data coming from the PhD’s Frederic Mercier of the university of Free University of 
Brussels (VUB) in the laboratory of Professor Willem [1-2].  
The degree of the grafting t is a very important parameter characterizing to which extent 
PEO side chains are grafted. Maximal degree of grafted PEO chains on the PMVE backbone 
could be represented as (PMVE)m-(P-Cl)1-t(P-NH-CH2-CH2-(O-CH2-CH2)pOCH3)t in which P-Cl 
stands for PCEVE and t the molar fraction of CEVE units on which the pendent chlorine 
group is substituted by functional NH2-PEO-OCH3 chains. 
 
1. Determination of the degree of grafting from E.A. results 
 
The degree of grafting can be calculated from E.A. results. Major attention was paid to the 
calculation of t using these data, especially because the results obtained were not always 
easy to understand. For this purpose, the basics behind this method will be worked out here 
in order to provide a clear scope of the origin of the problems met. 
 
The principle 
E.A. provides the mass fractions of the different elements in the compound investigated. 
Considering a compound with molecular formula containing atoms of the elements α, β, θ and 
χ, the mass fractions for these elements can be written as: 

( ) ( )
( ) ( )

. . . . .
.

. . . . .
number of atoms atomic mass

Fraction
number of atoms atomic mass

μ

α α
α

μ μ
×

=
×⎡ ⎤⎣ ⎦∑

 

( ) ( )
( ) ( )

. . . . .
.

. . . . .
number of atoms atomic mass

Fraction
number of atoms atomic mass

μ

β β
β

μ μ
×

=
×⎡ ⎤⎣ ⎦∑

 

( ) ( )
( ) ( )

. . . . .
.

. . . . .
number of atoms atomic mass

Fraction
number of atoms atomic mass

μ

θ θ
θ

μ μ
×

=
×⎡ ⎤⎣ ⎦∑

 

( ) ( )
( ) ( )

. . . . .
.

. . . . .
number of atoms atomic mass

Fraction
number of atoms atomic mass

μ

χ χ
χ

μ μ
×

=
×⎡ ⎤⎣ ⎦∑

 

In this case, four equations can thus be written down, in which each of them contains only 
one single parameter t. This is demonstrated with two examples, the first one being 
compound PMVE-g-PEO, represented as in scheme AIII.1. 
 
 
 
 
 
 
 
 

Scheme AIII.1. Representation of compound PMVE-g-PEO. 
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The relative mass of each of the elements in compound PMVE-g-PEO (with m = 284, n = 5 
and p = 114) can be expressed as:  
C: [5 + 284 x 3 + (5 x 4) (1 - t) + (5 x 227) t] x 12.011 = [857 + 20 (1 - t) + 1135 t] x 12.011    (eq. AIII.1)                          
H: [12 + 284 x 6 + (5 x 7) (1 + t) + (5 x 455) t] x 1.008 = [1716 + 35 (1 + t) + 2275 t] x 1.008  (eq. AIII.2)                         
O: [2 + 284 + 5 + (5 x 114) t] x 15.999 = [291+ 570 t] x 15.999                                             (eq. AIII.3) 
Cl: [5 (1 – t)] x 35.453                                                                                                          (eq. AIII.4) 
 
The total relative mass can then be written as: 
Total mass = mass of C + mass of H + mass of O + mass of Cl 
                  = [857 + 20 (1 - t) + 1135 t] x 12.011 + [1716 + 35 (1 + t) + 2275 t] x 1.008  
                     + [291+570 t] x 15.999 + [5 (1 – t)] x 35.453 
                  = 17 131.639 + 24 867.943 t                                                                (eq. AIII.5) 
 
For compound PMVE-g-PEO, an example of mass fractions obtained from E.A. was: C: 59.11 
%, H: 9.99 %, O: 30.72 % and Cl: 0.31 %. Combining equations (eq. AIII.1 - 4) with  (eq. 
AIII.5), defines the mass fraction of the different elements as a function of the single 
parameter t: 
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O
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                                    (eq. AIII.8) 

                           
[ ]5(1 ) 35.453

0.0031
17131.639 24867.943

t
Cl

t
γ

− ×
= =

+
                                    (eq. AIII.9) 

 
Equations (eq. AIII.6-9) constitute an overdetermined system of four equations in one 
single parameter t. Hence, four independent values of t can be obtained: 
  (eq. AIII.6):  t =  0.384 using C 
  (eq. AIII.7):  t =  0.408 using H 
  (eq. AIII.8):  t =  0.406 using O 
  (eq. AIII.9):  t =  0.499 using Cl 
 
Using the equation for C, O, H or Cl, good and realistic results are obtained, values being in 
the same range of 0.4.  
 
It is also possible to determine the confidence interval t, given that the confidence interval 
on the E.A. results are known. The smallest difference in the value of γi results in a rather 
large confidence on the value obtained for t. Moreover, as the equation used is non-linear, 
the resulting confidence interval on t is not symmetric. Common use of E.A. results in 
structural chemistry makes confidence ranges of ± 0.3% for C, of ± 0.04% for H, of ± 0.5% 
for O and of ± 0.2% for Cl. 
 
2. The non-linear least-squares analysis  
 
The method will be explained for the determination of the functionalization degree t of 
compound (PMVE)m-(P-Cl)1-t(P-NH-CH2-CH2-(O-CH2-CH2)pOCH3)t with m = 284, n = 5 and     
Mw PEO = 5000 gmol-1. 
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The carbon mass fraction γc for this compound can be written as: 
[ ]

( ) ( ) [ ] ( )
857 20(1 ) 1135 12.011

857 20 1 1135 12.011 1716 35 1 2275 1.008 291 570 15.999 5 1 35.453
t t
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t t t t t
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+ − + ×

=
+ − + × + + + + × + + × + − ×⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                            

                                                                                                                            (eq. AIII.10) 
 
where 12.011, 1.008, 15.999 and 35.453 are the atomic masses of carbon, hydrogen, oxygen 
and chlorine respectively. This implies that for every element i, γi obeys an equation of the 
general form:      

                            ( )i i
i i

a b t f t
p qt

γ +
= =

+
                                                                  (eq. AIII.11) 

 
Since only the parameter t is to be optimized, the system is overdetermined since equations 
of type              (eq. AIII.11) can be written for each element present in the compounds, e.g. 
for the PMVE-g-PEO above, four elemental analysis results (C, H, O, Cl) for a single unknown 
t. The optimal t value is, accordingly, determined by non-linear least-squares analysis [3] of 
the set of equations of type (eq. AIII.11), using the expressions:  
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f t
e t

γ
σ
−

=              i = 1,…,n                                                 (eq. AIII.12) 

with  n = number of equations 
         t = parameter to be calculated 
        γi = experimental mass fraction of element i 
        σt = standard deviation on the mass fraction γi 

        ei(t) = weighted residue on the mass fraction γi 
The costfunction V(t) to be minimized in the non-linear least squares analysis is given by: 

  ( ) ( )2

1

1
2

n

i
i

V t e t
=

= ∑                                                                          (eq. AIII.13) 

or in matrix form: 
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is the column matrix of the ei values, and eτ its transposed. Minimizing the costfunction 
implies solving the equation: 
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                                                                    (eq. AIII.15) 

The numerical solution of equation (eq. AIII.15) is found by applying an iterative Newton-
Raphson process [4]: 

  
( ) ( ) ( )2

1
2

jd V t dV t
t

dt dt
+Δ = −                                                               (eq. AIII.16) 

Where j represents the iteration counting label and Δt(j+1) = t(j+1) – t(j)  (eq. AIII.17), where 
ideally converges to zero, in practice to a predefined numerical threshold. All the 
calculations on the t values from E.A. data, as described above, have been performed with 
the software MATLAB [5]. The program used for obtaining the costfunction and t can be 
found in the next section. 
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In this method, a costfunction is obtained for the set of equations associated with a given 
compound. From this costfunction, the value of t with its confidence interval is calculated. A 
typical costfunction for the PMVE-g-PEO is given in figure AIII.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure AIII.1. Costfunction for compound PMVE-g-PEO. 
 
From this figure it is clear how t is obtained by minimization of the costfunction. Only one 
minimum of the costfunction is found, meaning that any starting value of t can be used in the 
Newton-Raphson iteration procedure to find the actual t value.  
 
3. MATLAB Routines  
 
MATLAB routine and subroutines for the calculation of t, σt and Vmin for compound (PMVE)m-
(P-Cl)1-t(P-NH-CH2-CH2-(O-CH2-CH2)pOCH3)t: 
 
MAIN PROGRAM 
 
p=[61.487;57.539;10.302;9.662;27.177;32.799;1.035;0];   (mol fraction of the atom C, H, O 
and Cl of first (P-Cl)1-t;  secondly of  (P-NH-CH2-CH2-(O-CH2-CH2)pOCH3)t) 
m=[0.389;0.376;0.412,0.499];                             (t values of C, H, O and Cl from E.A. results) 
f=[0.003;0.0004;0.005;0.002]/2;                        (incertitude of each element C, H, O and Cl) 
prec=10^(-10); 
MaxItt=100; 
[t,vart,V]=estimatet (p,m,prec,MaxItt,f); 
t 
sqrt (vart) 
V 
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t = 0.402 ± 0.005, Vmin = 2.4 
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SUB ROUTINES 
 
function [t,vart,V]=estimatet (p,m,prec,MaxItt,f);                       
(%starting value) 
Points = 100; 
s=zeros (Points,1); 
for jj=1:Points 

s (jj)=costfunction ((jj/points),m,p,f); 
end 
figure (1) 
plot (s) 
[dummy,jjmin]=min (s); 
t=jjmin/Points; 
ii=0; 
dt=1 
while (ii< MaxItt) & (abs (dt/t) >prec) 
ii=ii+1; 
e=TheError (t,m,p,f); 
j=jacobian (t,p,f); 
dt=-1/ (j.’*j) * (j.’*e); 
t=t+dt; 
V=costfunction (t,m,p,f); 
end 
vart=1/ (j.’*j); 
 
function V=costfunction (t,m,p,f); 
e=TheError (t,m,p,f); 
V=0.5*e.’*e; 
 
function e=TheError (t,m,p,f); 
 
L=length (f); 
for x=1:L 

e (x,1) = (((p (((2*x) -1)) +p ((2*x)) *t) / (p (((2*L) +1)) +p (((2*L)) *t) – m(x)) / f(x)); 
end 
 
function j=jacobian (t,p,f); 
L=length (f); 
for x=1:L 

j (x,1) = (((p (((2*L) +1)) *p ((2*x))) – (p (((2*L) +2)) *p (((2*x) – 1)))) / (f (x) * ((p 
(((2*L) +1)) +p (((2*L) +2)) *t) ^2 ))) ; 
end 
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Appendix IV: Abbreviations 
 
[A]0: activator concentration 
AFM: atomic force microscope 
AIBN: azo-(bis)-isobutyronitrile  
Al2O3: aluminium oxide 
AlR3: trialkylaluminium 
ARGET: activator regenerated by electron transfer 
ATRP: atom transfer radical polymerization 
nBuLi: n-butyl lithium  
tBuO-K+: potassium-tert-butoxide 
bipy: 2,2’-bipyridine 
CAC: critical aggregate concentration  
CaH2 : calcium hydride 
CCl4 : tretrachoroethane 
CH2Cl2: dichloromethane 
CDCl3: chloroform deutered 
CMC: critical micelle concentration  
CRP : controlled radical polymerization 
Cu: copper 
CuBr: copper bromide 
CuPc : copper phthalocyanine 
DEE: 1,1-diethoxyethane 
∆Gm: Gibbs free energy of mixing 
∆Gm

0: standard free energy of micellization 
∆Hm: enthalpy of mixing 
∆Hm

0: standard enthalpy 
DLS: dynamic light scattering 
DMF: dimethylformamide  
∆Sm: entropy of mixing 
∆Sm

0: standard entropy 
DPn: number-average degree of polymerization  
DSC: differential scanning calorimetry 
E.A.: elemental analysis  
ESA: electrokinetic sonic amplitude 
Et: ethyl 
Et2O: diethyl ether 
EtOH: ethanol 
Et3N: triethylamine 
f: initiation efficiency 
fi: mole fraction of comonomer in the feed 
Fi: mole fraction of the comonomer in the copolymer 
Fn: number-average end-functionality 
FDA: Food and Drug Administration  
FT-IR : Fourier Transform Infrared  
GC: gaz chromatography 
h: hour  
HB: protonic acid 
HI: hydrogen iodide 
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HLB: hydrophilic-hydrophobic-balance or hydrophilic-lipophilic-balance 
HPLC: high performance liquid chromatography 
HS-DSC: high sensitive - differential scanning calorimetry or microcalorimetry 
I: intensity of light 
[I]0: initiator concentration 
I2: iodine 
JCI: join confidence intervals 
ka: rate constant of activation 
kd: rate constant of deactivation 
Keq: magnitude equilibrium constant 
KI: potassium iodide 
kp: rate constant of propagation 
L.A.: Lewis Acid 
LCST: Lower Critical Solution Temperature LiBH4: lithium borohydride 
[M]: concentration of monomer 
M6TREN: N,N,N’,N”,N”-hexamethyl-tris(2-aminomethyl) amine 
Me: methyl 
MeOH: methanol 
MEK: methyl ethyl ketone or acetone 
MgSO4: sulphate magnesium 
Mi: monomer i 
min: minute 
Mn: number-average-molecular weight 
Mtn: transition metal complex 
[Mtn]: concentration of catalyst at low oxidation state 
Mw: molecular weight 
Mw/Mn: molecular weight distribution 
MXn: metal halide  
mol-%: mol percent 
MTDSC: modulated temperature differential scanning calorimetry 
NaI : sodium iodide 
Na2S2O3 : sodium thiosulfate 
Ni: nickel 
Ni(II)Br2(PPh3)2 : nickel (II) bis(triphenylphosphine) dibromide  
NMP: nitroxide mediated polymerization 
NMR: nuclear magnetic resonance 
p: molar monomer conversion 
[P*]: concentration of polymer radical 
PDI: polydispersity PMDETA: N,N,N’,N”,N”-pentamethyldiethylene-triamine 
iPr: isopropyl 
PRE: persistent radical effect 
ri, r1, r2: monomer reactivity ratio of monomer i, 1 and 2 
RAFT: reversible addition-fragmentation chain transfer 
Rh: apparent hydronynamic radius 
Rp: rate of propagation 
RX: alkyl halide 
s: second 
SEC: size exclusion chromatography 
SFRP: stable free radical polylmerization 
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SS: sum of squares 
t: grafting dregree 
TAIC: trichloroacetyl isocyanate  
TBAB: tetrabutylammonium bromide 
TBE: 2,2,2-tribromoethanol 
TCE: 2,2,2-chloroethanol 
Tcp: cloud point temperature  
Tdemix: demixing temperature 
TEG: triethylene glycol  
TEoP: 1,1,3,3-tetraethoxypropane 
Tg: glass transition temperature 
THA: trihexylaluminium 
THF: tetrahydrofurane 
TiO2: titanium dioxide 
TMP: 1,1,5,5-tetramethyl piperidine  
TMSI: trimethylsilyl iodide 
TsCl: para-toluenesulfonyl chloride 
UCST: upper critical solution temperature 
wt-%: weight percent 
X: halogen 
Xi: mole fraction of monomer i 
[X-Mtn+1]: concentration of oxidized metal complexes as persistent radicals  
ZnI2: zinc iodide 
 
Monomers 
AA: acrylic acid 
AMPS: 2-acrylamido-2-methyl-1-propansulfonate 
tBu: tert-butyl 
nBA: n-butyl acrylate 
nBAc: n-butyl acetate 
nBMA: n-butyl methacylate 
tBMA: tert-butyl methacylate 
nBVE: n-butyl vinyl ether 
tBuVE: tert-butyl vinyl ether 
CEMA: cinnamoyloxyethylmethacrylate 
CEVE: 2-chloroethyl vinyl ether 
EVE: ethyl vinyl ether  
HEMA-TMS: 2-(trimethylsilyloxy)ethyl methacrylate 
IBVE: isobutyl vinyl ether  
MA: methacrylate 
MAA: methacrylic acid 
MEMA: 2-(N-morpholino) ethyl methacrylate  
MMA: methyl methacrylate  
MVE: methyl vinyl ether  
NIPAAm: N-isopropylacrylamide  
ODVE: octadecyl vinyl ether 
iPrVE: isopropyl vinyl ether 
St: styrene 
VBA: 4-vinylbenzoic acid  
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VE: vinyl ether 
VP: N-vinyl-2-pyrrolidone  
 
Homopolymers 
CH3-PEO-OH: α-methoxy-ω-hydroxyl-poly(ethylene oxide) or monomethyl ether 
poly(ethylene oxide) 
CH3O-PEO-NH2: α-amino-ω-monomethyl ether-poly(ethylene oxide) 
CH3O-PEO-OTs: α-tosylate-ω-monomethyl ether poly(ethylene oxide) 
PAA: poly(acrylic acid) 
PAEVE : poly(aminoethyl vinyl ether) 
PnBA: poly(n-butyl acrylate)  
PtBMA: poly(tert-butyl methacylate) 
PBPEM: poly(hydroxy methyl acrylate-2-(2-bromopropionyl-oxy)ethyl methacrylate) 
PCEVE: poly(2-chloroethyl vinyl ether) 
PCPFA:  isopropyl pentachlorophenyl fumarate 
PDMAEMA: poly(2-(N,N-dimethylamino) ethylmethacrylate)) 
PEEA: poly(1-ethoxyethyl acrylate) 
PEEMA: poly(1-ethoxyethyl methacrylate) 
PEG: poly(ethylene glycol)  
mPEG: monomethoxy poly(ethylene glycol)  
PEMA: poly(ethyl methacrylate) 
PEO: poly(ethylene oxide) 
PEtOx: poly(2-ethyl-2-oxazoline)  
PEVE: poly(ethyl vinyl ether) 
PIBVE: poly(isobutyl vinyl ether) 
PMA: polymethacrylate 
PMAA: poly(methacrylic acid) 
PMeOXA: poly(2-methyl-2-oxazoline) 
PMMA: poly(methyl methacrylate) 
PMO: poly(methylene oxide)  
PMVE: poly(methyl vinyl ether) 
PNIPAAm: poly(N-isopropylacrylamide)  
PODVE: poly(octadecyl vinyl ether) 
PPO: poly(propylene oxide) 
PS: polystyrene 
PVCL: poly(N-vinyl caprolactam)  
PVDF: poly(vinylidene fluoride) 
PVE: poly(vinyl ether) 
 
Copolymers 
PAA-b-PMVE: poly(acrylic acid)-block-poly(methyl vinyl ether) 
PAA-g-PMVE: poly(acrylic acid)-graft-poly(methyl vinyl ether) 
PB-g-PEO: poly(butadiene)-graft-poly(ethylene oxide)  
P(tBS-alt-MA) : poly((4-tert-butylstyrene)-alternating-maleic anhydride) 
PEG-b-PNIPAAm: poy(ethylene glycol)-block-poly(N-isopropylacrylamide)  
PEG-g-PNIPAAm: poy(ethylene glycol)-graft-poly(N-isopropylacrylamide)  
PEO-b-PLGA-b-PEO: poly(ethylene oxide)-block-poly(lactic acid-co-glycolic acid)-block- 
poly(ethylene oxide) 
PIBVE-b-PCEVE: poly(isobutyl vinyl ether)-block-poly(2-chloroethyl vinyl ether)  
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P(IBVE-co-CEVE): poly(isobutyl vinyl ether -co-(2-chloroethyl vinyl ether)) 
PMEMA-b-PDMAEMA: poly(2-(N-morpholinoethyl)methacrylate)-block-
poly(diethylaminoethylmethacrylate) 
PMMA-b-PnBMA-b-PMMA: poly(methyl methacrylate)-block-poly(n-butyl methacrylate)-
block-poly(methyl methacrylate) 
PMVE-b-PIBVE: poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) 
PMVE-b-PIBVE-b-PMVE: poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether)-block-
poly(methyl vinyl ether) 
PMVE-b-PMTEGVE: poly(methyl vinyl ether)-block-poly(methyl(triethylene glycol) vinyl 
ether) 
PMVE-b-PVA: poly(methyl vinyl ether)-block-poly(vinyl alcohol) 
PMVE-b-PS: poly(methyl vinyl ether)-block-polystyrene 
P(MVE-co-CEVE): poly(methyl vinyl ether-co-(2-chloroethyl vinyl ether)) 
P(MVE-co-IBVE): poly(methyl vinyl ether-co- isobutyl vinyl ether) 
P(MVE-co-ODVE): poly(methyl vinyl ether-co-octadecyl vinyl ether) 
P(MVE-stat-CEVE): poly(methyl vinyl ether-statistical-(2-chloroethyl vinyl ether)) 
PMVE-g-PEO: poly(methyl vinyl ether)-graft-poly(ethylene oxide) 
PMVE-g-PMAA: poly(methyl vinyl ether)-graft- poly(methacrylic acid) 
PMVE-g-PS: poly(methyl vinyl ether)-graft-polystyrene  
PMVE-g-TBE: poly(methyl vinyl ether)-graft-(2,2,2-tribromoethanol)  
PNIPAAm-b-PtBMA: poly(N-isopropyl acrylamide)-block-poly(ter-butyl methacrylte) 
PNIPAAm-b-PS: poly(N-isopropyl acrylamide)-block-polystyrene 
PNIPAAm-g-P2VP: poly(N-isopropyl acrylamide)-graft-poly(2-vinyl pyridine) 
PS-b-PAA: polystyrene-block-poly(acrylic acid) 
PS-b-PMAA: polystyrene-block-poly(methacrylic acid) 
P(St-alt-MA): poly(styrene-alternating-maleic anhydride)  
PS-g-PCEVE: polystyrene-graft-poly(2-chloroethyl vinyl ether)  
PS-g-PEO: polystyrene-graft-poly(ethylene oxide) 
PVBA-b-PMEMA: poly(4-(vinylbenzoic acid))-block-poly(2-(N-morpholino) ethyl 
methacrylate)    
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